2018年初一数学几何图形初步(一)几何图形练习题

合集下载

七年级上册数学几何图形初步基础练习题附答案 教师版

七年级上册数学几何图形初步基础练习题附答案 教师版

七年级上册数学几何图形初步基础练习题附答案一、单选题(共18题;共36分)1.如图,在直线l上依次有A,B,C三点,则图中线段共有()A. 4 条B. 3 条C. 2 条D. 1 条【答案】B【解析】【解答】解:图中线段共有AB、AC、BC三条,故答案为:B【分析】根据线段有两个端点即可判断。

2.如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A. 两点确定一条直线B. 两点之间线段最短C. 两点之间直线最短D. 垂线段最短【答案】B【解析】【解答】A、图中AB属于线段关系,A不符合题意;B、图中AB属于线段关系,且关于线段之间的距离从弯曲的改为直的,B符合题意;C、图中AB属于线段关系,C不符合题意;D、垂线段最短是指点到直线的距离,图中是点与点之间的距离,D不符合题意。

故答案为B。

【分析】连接两点间的线段长度叫做两点间的距离,两点的所有连线中线段最短,即两点之间线段最短。

3.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A. 2 cmB. 3 cmC. 4 cmD. 6 cm【答案】B【解析】【解答】解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC= 1AC=3cm.2故MC的长为3cm.故选B.【分析】由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC的长.4.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】 D【解析】【解答】解:从A到B有①,②,③三条路线,最短的路线是①,其理由是两点之间,线段最短.故选D.【分析】根据两点之间线段最短解答.5.杭州到上海有条路可以走(如图所示),则其中最近的一条路线的序号是()A. (1)B. (2)C. (3)D. (4)【答案】B【解析】【分析】此题主要考查了线段的性质根据两点之间线段最短的性质作答.从杭州到上海共有4条路,第(2)条路最近,理由是两点之间,线段最短.故选B.思路拓展:此题为数学知识的应用,考查知识点两点之间线段最短.6.在图中,不同的线段的条数是()A. 3B. 4C. 5D. 6【答案】 D【解析】【分析】根据图形的特征结合线段的表示方法即可得到结果。

人教版 七年级数学 第4章 几何图形初步 复习题(含答案)

人教版 七年级数学 第4章 几何图形初步 复习题(含答案)

人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。

初一几何题

初一几何题

2018年08月03日初中数学组卷几何专练一.选择题(共12小题)1.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1 B.2 C.3 D.42.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°3.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是()A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块4.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450 B.540 C.630 D.7205.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.166.如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α7.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC 的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°8.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=30°,则∠3=()A.30°B.40°C.45°D.70°9.若△ABC的三个内角的比为2:5:3,则△ABC的形状是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形10.如图,∠DAC是△ABC的一个外角,AE平分∠DAC,且AE∥BC,则△ABC 一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形11.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个12.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°二.填空题(共8小题)13.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为.14.一个多边形的每个外角都是45°,则这个多边形的边数为.15.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.16.一个多边形的内角和是外角和的4倍,那么这个多边形是边形.17.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是.18.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为°.19.如图,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的结果是.20.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S=cm2.阴影三.解答题(共5小题)21.如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.(2)求∠C的度数.22.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②;(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.23.如图,在△ABC中,AD是高,BE是角平分线,AD,BE交于点F,∠C=30°,∠BFD=70°,求∠BAC的度数.24.阅读理解:请你参与下面探究过程,完成所提出的问题.(Ⅰ)问题引入:如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=70°,则∠BOC=度;若∠A=α,则∠BOC=(用含α的代数式表示);(Ⅱ)类比探究:如图②,在△ABC中,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α.试探究:∠BOC与∠A的数量关系(用含α的代数式表示),并说明理由.(Ⅲ)知识拓展:如图③,BO、CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用含α、n的代数式表示).25.如图,四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.(1)试探究∠1与∠2有何关系,并说明理由.(2)试探究BE与DF有何位置关系,并说明理由.2018年08月03日panda的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1 B.2 C.3 D.4【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上.【解答】解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.【点评】本题考查对三角形的中线、角平分线、高的正确理解.2.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°【分析】根据图(1)先求出梅花扇的内角的度数是120°,则两锐角的和等于60°,把梅花图案连接成正五边形,求出每一个内角的度数,然后解答即可.【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.【点评】本题主要考查了多边形的内角与外角的性质,仔细观察图形并作出辅助线是解题的关键,难度中等.3.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是()A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选:B.【点评】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.4.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450 B.540 C.630 D.720【分析】根据题意,画出图象,由图可知∠3+∠4=∠8+∠9,因为五边形内角和为540°,从而得出答案.【解答】解:如图∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠8+∠9+∠5+∠6+∠7,=五边形的内角和=540°,故选:B.【点评】本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论.5.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.6.如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α【分析】过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,依据BC平分∠DBE,AC平分∠BAD,即可得到CD平分∠BDG,再根据三角形外角性质,即可得出∠BDC的度数.【解答】解:如图,过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,∵∠ABD=52°,∠ABC=116°,∴∠DBC=∠CBE=64°,∴BC平分∠DBE,∴CE=CF,又∵AC平分∠BAD,∴CE=CG,∴CF=CG,又∵CG⊥AD,CF⊥DB,∴CD平分∠BDG,∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,∴∠ACB=∠CBE﹣∠CAB=(∠DBE﹣∠DAB)=∠ADB,∴∠ADB=2∠ACB=2α°,∴∠BDG=180°﹣2α°,∴∠BDC=∠BDG=90°﹣α°,故选:C.【点评】本题主要考查了多边形的外角与内角、三角形外角的性质以及角平分线的定义的运用,解决问题的关键是作垂线,进而得到CD平分∠BDG.7.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC 的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°【分析】先根据∠ABC=40°,∠ACD=76°,得出∠ACD﹣∠ABC=36°,再利用角平分线的定义得:∠ACD﹣∠ABC=18°,即∠E=∠ECD﹣∠EBC=18°.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.【点评】本题考查了三角形的外角性质,同时要运用整体的思想,关键是从∠ACD 这个外角看到∠ECD,根据等量代换解决此题.8.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=30°,则∠3=()A.30°B.40°C.45°D.70°【分析】根据角平分线的定义得到∠1=∠ECF,根据平行线的性质得到∠F=∠ECF,根据三角形的外角的性质列式计算即可.【解答】解:∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,又∵∠1=70°,∠2=30°,∴∠3=70°﹣30°=40°,故选:B.【点评】本题考查的是三角形的外角的性质、平行线的性质以及角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.若△ABC的三个内角的比为2:5:3,则△ABC的形状是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【分析】设三角形的三个内角分别是5k,2k,3k.根据三角形的内角和是180°,列方程求得三个内角的度数,即可判断三角形的形状.【解答】解:设三角形的三个内角分别是5k,2k,3k.根据三角形的内角和定理,得5k+2k+3k=180°,解得k=18°.∴最大的内角为90°.∴该三角形是直角三角形.故选:C.【点评】此题考查了三角形的内角和定理以及三角形的分类.三角形按角分类有锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形叫直角三角形.10.如图,∠DAC是△ABC的一个外角,AE平分∠DAC,且AE∥BC,则△ABC 一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】求出∠B=∠C即可,利用角平分线得到角相等,由平行线得到角相等,再进行等量代换可得△ABC是等腰三角形.【解答】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.【点评】本题考查了等腰三角形的性质及判定定理及平行线的性质、角平分线的性质;进行角的等量代换是正确解答本题的关键.11.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个【分析】怎样选取分类的标准,才能做到点C的个数不遗不漏,按照点C所在的直线分为两种情况:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有4个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个.【解答】解:C点所有的情况如图所示:故选:D.【点评】此类题应选取分类的标准,才能做到不遗不漏.12.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°【分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.【解答】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n﹣2)•180 (n≥3且n为整数).二.填空题(共8小题)13.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为八.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.14.一个多边形的每个外角都是45°,则这个多边形的边数为8.【分析】利用任何多边形的外角和是360°,用360°除以一个外角度数即可求出答案.【解答】解:多边形的外角的个数是360÷45=8,所以多边形的边数是8.故答案为:8.【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.15.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,故答案为:40°.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.16.一个多边形的内角和是外角和的4倍,那么这个多边形是十边形.【分析】先设这个多边形的边数为n,得出该多边形的内角和为(n﹣2)×180°,根据多边形的内角和是外角和的4倍,列方程求解.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形的边数是10.故答案为:十.【点评】本题主要考查了多边形内角和定理与外角和定理,多边形内角和=(n ﹣2)•180 (n≥3且n为整数),而多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和始终为360°.17.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是150米.【分析】根据题意判断出小华走过的路线图形是正多边形,用360°除以24°求出多边形的边数,再根据多边形的周长公式列式计算即可得解.【解答】解:由题意得,小华走过的路线图形是正多边形,360°÷24°=15,15×10=150米,所以,一共走的路程是150米.故答案为:150米.【点评】本题考查了多边形内角与外角,判断出走过的路线图形是正多边形并利用多边形的外角和定理求出边数是解题的关键.18.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为95°.【分析】首先利用平行线的性质得出∠BMF=80°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,∴∠D=360°﹣100°﹣70°﹣95°=95°.故答案为:95.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.19.如图,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的结果是190°.【分析】根据正九边形的特征,由多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)先求出正九边形的内角和,进一步得到2个内角的和,根据三角形内角和为180°,可求∠3+∠4的度数,根据角的和差关系即可得到图中∠1+∠2的结果.【解答】解:如图,(9﹣2)×180°÷9×2=7×180°÷9×2=280°,∠3+∠4=180°﹣90°=90°,∠1+∠2=280°﹣90°=190°.故答案为:190°.【点评】考查了多边形内角与外角,关键是熟练掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).20.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,=1cm2.则S阴影【分析】根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.【解答】解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.【点评】此题主要是根据三角形的面积公式,知三角形的中线把三角形的面积分成相等的两部分.三.解答题(共5小题)21.如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.(2)求∠C的度数.【分析】(1)先由三角形外角的性质得出∠ADC=∠B+∠BAD,再由∠ADC=80°,∠B=∠BAD即可得出∠B的度数;(2)直接根据三角形的内角和定理得出∠C的度数.【解答】解:(1)∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,又∵∠ADC=80°,∠B=∠BAD,∴∠B=∠ADC=×80°=40°;(2)在△ABC 中, ∵∠BAC +∠B +∠C=180°,∴∠C=180°﹣∠B ﹣∠BAC=180°﹣40°﹣70°=70°.【点评】本题考查的是三角形内角和定理及外角的性质,熟知三角形的内角和是180°是解答此题的关键.22.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究 请自己观察上面的图形和表格,并用含n 的代数式将上面的表格填写完整,其中① n ﹣3 ;②n (n ﹣3) ;(2)实际应用 数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳 乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【分析】(1)依据图形以及表格中的变换规律,即可得到结论;(2)依据数学社团有18名同学,即可得到数学社团的同学们一共将拨打电话数量;(3)每个同学相当于多边形的一个顶点,则共有n 个顶点,进而得到每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话,据此进行判断.【解答】解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n﹣3);数学社团有18名同学,当n=18时,×18×(18﹣3)=135.【点评】本题主要考查了多边形的对角线,n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n﹣3)(n≥3,且n为整数).23.如图,在△ABC中,AD是高,BE是角平分线,AD,BE交于点F,∠C=30°,∠BFD=70°,求∠BAC的度数.【分析】根据高线的定义可得∠ADB=90°,然后根据直角三角形两锐角互余求出∠FBD,再根据角平分线的定义求出∠ABD,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD是高线,∴∠ADB=90°,∵∠BFD=70°,∴∠FBD=90°﹣70°=20°,∵BE是角平分线,∴∠ABD=2∠FBD=40°,在△ABC中,∠BAC=180°﹣∠ABD﹣∠C=180°﹣40°﹣30°=110°.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.24.阅读理解:请你参与下面探究过程,完成所提出的问题.(Ⅰ)问题引入:如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=70°,则∠BOC=125度;若∠A=α,则∠BOC=90°+α(用含α的代数式表示);(Ⅱ)类比探究:如图②,在△ABC中,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α.试探究:∠BOC与∠A的数量关系(用含α的代数式表示),并说明理由.(Ⅲ)知识拓展:如图③,BO、CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数(用含α、n的代数式表示).【分析】(Ⅰ)由三角形内角和定理可求得∠ABC+∠ACB,根据角平分线的定义可求得∠OBC+∠OCB,在△BOC中利用三角形内角和定理可求得∠BOC;(Ⅱ)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC与∠B+∠D之间的关系;(Ⅲ)根据三角形的内角和等于180°列式整理即可得∠BOC=﹣α.【解答】解:(Ⅰ)∠ABC+∠ACB=180°﹣∠A=110°,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=125°;∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵点O是∠ABC和∠ACB平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=90°﹣α,∴∠BOC=90°+α;(Ⅱ)∠BOC=120°+α.理由如下:∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+α.(3)∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠DBC+∠ECB)=180°﹣(180°+∠A)=•180°﹣.故答案为:125°;90°+α.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.25.如图,四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.(1)试探究∠1与∠2有何关系,并说明理由.(2)试探究BE与DF有何位置关系,并说明理由.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠3+∠2=90°,∵∠1+∠2=90°,∴∠1=∠3,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,注意平行线的性质和判定定理的综合运用.。

七年级上册几何图形初步

七年级上册几何图形初步

几何图形初步一、选择题1、从上面看这四个几何体,看到相同图形的几何体是______;从左面看这四个几何体,看到相同图形的几何体是______;从正面看这四个几何体,看到相同图形的几何体是______.a b c dA.abcd,bcd,abcdB.abc,bcd,abcdC.abcd,abcd,abcdD.acd,bcd,abc2、将如图所示的ABCRt 绕直角边AB旋转一周,所得几何体的主视图是()A B C D3、在下面的四个几何体中,左视图与主视图不相同的几何体是()A B C D4、如图,是一个由5个正方体组成的立体图形,从上面看得到的平面图形是()A B C D5、如图所示,将平面图形绕旋转轴旋转一周,得到的几何体是( )A B C D 6、如图,AB OD ⊥于O ,OE OC ⊥,图中与AOC ∠互补的角有( )A.1个B.2个C.3个D.4个7、如图所示,阴影部分的面积是)2(b a >( )A.42a ab π- B.22b ab π- C.22a ab π- D.42b ab π-8、在灯塔O 处观测到轮船A 位于北偏西︒54的方向,同时轮船B 在南偏东︒15的方向,那么AOB ∠的大小为( )A.︒126B.︒105C.︒144D.︒1419、木工师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,这是因为( )A.两点确定一条直线B.两点之间,线段最短C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离10、下列说法正确的是( )A.一条直线可以看成一个平角B.角的大小与两边的长短无关C.若MB AM =,则点M 是AB 的中点D.两点之间的线段叫两点间的距离11、下列说法中,错误的是( )A.射线AB 和射线BA 是同一条射线B.直线AB 和直线BA 是同一条直线C.线段AB 和线段BA 是同一条线段D.连接两点间的线段的长度叫两点间的距离12、下面四个角中,最有可能与︒70角互补的角是( )A B C D13、下列说法中:①相等的两个角的补角相等;②若BC AB =,则点B 为线段AC 的中点;③三条直线两两相交,必定有三个交点;④在同一平面内,经过一点且只有一条直线与已知直线垂直;⑤线段AB 就是点A 到点B 之间的距离,其中正确的有( )A.1个B.2个C.3个D.4个14、平面上有任意四点,经过其中两点画一条直线,共可画直线( )A.1条B.6条C.6条或4条D.1条、4条或6条15、如图,是一副特制的三角板,用它们可以画出一些特殊的角,在︒54,︒60,︒63,︒72,︒99,︒120,︒144,︒150,︒153,︒171的角中,能画出的角有()A.6个B.7个C.8个D.9个16、如图,是一个正方形纸盒的展开图,若在其中三个正方形C B A 、、中分别填入适当的数,使得它们折成正方体后相对的面上两个数字互为相反数,则填入正方形C B A 、、中的三个数依次是( )A.1,3-,0B.0,3-,1C.3-,0,1D.3-,1,017、三棱柱的平面展开图为()A B C D18、如图,一副三角板(直角顶点重合)摆放在桌面上,若︒∠AOD,则BOC∠150=等于()A.︒40 D.︒5020 B.︒30 C.︒19、如图如图是由一副三角尺拼成的图案,它们有公共顶点O,且有一部分重叠,已知︒BOD,则AOC∠的度数是()=∠40A.︒150140 D.︒40 B.︒120 C.︒20、如图所示几何体的俯视图是()A B C D21、如图,是一个正方体截去一个角后得到的几何体,它的主视图是( )A B C D22、若一个︒60的角绕顶点旋转︒15,则重叠部分的角的大小为( )A.︒15B.︒30C.︒45D.︒7523、如图,是一副三角板叠放的示意图,则α∠的大小为( )A.︒45B.︒60C.︒75D.︒9024、如图,直线CD AB 、相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,若︒=∠35AOM ,则CON ∠的度数为( )A.︒35B.︒45C.︒55D.︒6525、如图:已知21∠<∠,那么1∠与)12(21∠-∠之间的关系是( ) A.互补 B.互余 C.和为︒45 D.和为︒75二、填空题26、若'18521︒=∠,则1∠的余角为______.27、'''__________________56.23︒=︒.28、一个角的余角是这个角的补角的31,则这个角的度数等于______. 29、时钟6点25分,时针与分针所夹的锐角的度数是______.30、如图,将一副三角板的直角顶点重合,若︒=∠50AOD ,则______=∠COB .31、如图,把一块长方形纸片ABCD 沿EG 折叠,若︒=∠35FEG ,则AEF ∠的补角为______.32、如图,直线CD AB 、相交于点O ,︒=∠90DOF ,OF 平分AOE ∠,︒=∠29BOD ,则EOF ∠的度数为______.33、如图,AOB ∠内有三条射线OE OD OC 、、,则图中共有______个角.34、如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的共有______种情况.35、如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则______2=-y x .36、已知线段16=AB ,点C 在直线AB 上,且10=AC ,O 为AB 的中点,则线段OC 的长度是______.37、如图,在数轴上有D C B A 、、、四个整数点(即各点均表示整数),且CD BC AB 32==,若D A 、两点表示的数的分别为−5和6,点E 为BD 的中点,那么该数轴上上述五个点所表示的整数中,离线段BC 的中点最近的整数是______.38、如图,CO AO ⊥,BO DO ⊥若︒=∠30DOC ,则AOB ∠的度数为______.39、一个几何体的表面图如图所示,则这个几何体是______.40、如图,某长方体的表面展开图的面积为430,其中5=BC ,10=EF 则AB 的长度为______.41、如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是______.42、已知线段cm AB 8=,点C 在线段AB 所在的直线上,若cm AC 3=,点D 为直线BC 的中点,则线段cm AD ______=.43、如图,线段cm DE CD BC AB 1====,图中所有线段的长度之和为cm ______.44、一个角的余角比它的补角的32还少︒40,求这个角的余角等于______度. 45、如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形,若图中正方形的边长为a ,则阴影部分的面积为______.46、如图,直线CD AB 、相交于点O ,COE ∠为直角,︒=∠60AOE ,则______=∠BOD .47、已知,︒=∠30ABC ,︒=∠50ABD ,若射线BF BE 、分别是ABD ABC ∠∠、的平分线,则EBF ∠的度数为_____.48、已知本学期某学校下午上课的时间为14时15分,则此时刻钟表上的时针与分针的夹角为______.49、已知OB OA ⊥,直线CD 过点O ,且︒=∠25AOC ,则______=∠BOD . 50、在三角形ABC 中,8=AB ,9=AC ,10=BC ,0P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =,在边AB 上取点2P ,使得12AP AP =,在边BC 上取点3P ,使得23BP BP =,若130=P P ,则0CP 的长度为______.51、如图,在同一平面内︒=∠90AOB ,︒=∠60AOC ,OD 平分AOB ∠,则COD ∠的补角等于______.52、如图,OE 平分BOC ∠OD 平分BOC ∠,OF 平分COD ∠,OG 平分AOD ∠,直接写出BOE COF AOG ∠+∠+∠的度数为______.53、如图,直线1l 与2l 相交于点O ,1l OM ⊥,若︒=∠44α,则______=∠β度.54、如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,如果︒=∠40AOB ,︒=∠60COE ,则______=∠BOD .55、一条射线OA ,从点O 再引两条射线OB 与OC ,使︒=∠40AOB ,︒=∠20BOC ,则______=∠AOC . 三、简答题56、根据下列语句画出图形: (1)连接BD AC 、相交于点O ;(2)延长线段DC AB 、交于点E ; (3)反向延长线段CB DA 、相交于点F .57、如图,直线AB 与CD 相交于点O ,︒=∠90AOM ,且OM 平分NOC ∠,若NOB BOC ∠=∠4,求MON ∠的度数.58、如图,点C 是线段AB 上一点,点D 是线段BC 的中点,7=AD ,3=AC ,求线段AB 的长.59、如图,直线CD AB 、相交于点O ,AB OE ⊥,CD OF ⊥, (1)写出图中AOF ∠的余角______;(2)如果AOD EOF ∠=∠51,求EOF ∠的度数.60、有一个正方体,在它的各个面上分别标上数字6~1,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出该正方体的一种表面展开图.(要求把数字标注在表面展开图中)61、下图是由大小相同的小立方块搭成的几何体,请在下图方格纸中画出该几何体的三视图.62、如图所示,几何体是由小正方体堆积而成的,其中每个正方体的棱长都是2.cm(1)该几何体的三视图中,有两种视图的形状是相同的,指出这两种视图,并在网格中画出剩下的那种(每个网格正方形边长均为cm2);(2)求这个立体图形的表面积(包含底面).∠,用直尺和三角尺画图:63、如图,已知α(1)画出α∠的一个余角;(2)画出α∠的两个补角1∠和2∠;(3)1∠和2∠相等吗?说说你的理由.64、如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为cm2,请直接写出3,宽为cm2,长方形的长为cm修正后所折叠而成的长方形的体积:3______cm.65、如图,O为直线AB上一点,OD平分AOCDOE,∠90∠,︒=图中共有______对互补的角;(1)若︒∠的度数;AOC,求出BOD∠50=(2)判断OE是否平分BOC∠,并说明理由.66、如图,︒∠的内部有一条射线OC,AOB,在AOB=∠90(1)画射线OCOD⊥;(2)写出此时AOD∠的数量关系,并说明理由.∠与BOC67、如图,把一张长cm8的长方形硬纸板的四个角各剪去一个同样大10,宽cm小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)设正方形的边长为xcm,无盖长方体盒子的侧面积是多少;(结果不用化简)(2)如果把长方形硬纸板的四个角分别剪去2个边长为xcm的正方形和两个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,长方体盒子的表面积是多少?(结果不用化简)(3)在(2)的情况下,当2=x时,长方体盒子的表面积有最大值吗?如果有,求出最大值;如果没有,说明理由.68、如图所示,若将类似于d c b a 、、、四个图的图形称做平面图,其顶点数、边数与区域数之间存在某种关系.观察图和表中对应的数值,探究计数的方法并作答;(1)数一数每个图中各有多少个顶点、多少条边,这些边围出多少个区域并填表;(2)根据表中数值,写出平面图的顶点数、边数、区域数之间的一种关系; 如果一个平面图有20个顶点和11个区域,那么利用⑵中得出的关系可知这个平面图有______条边.69、如图,直线AB 与CD 相交于点O ,OD 平分BOE ∠,OD OF ⊥. (1)AOF ∠与EOF ∠相等吗?请说明理由. (2)直接写出图中和DOE ∠互补的角. (3)若︒=∠60BOE ,求AOD ∠和EOF ∠的度数70、如图,已知︒AOB,射线OC绕点O从OA位置开始,以每秒︒4的速度=∠90顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒︒1的速度逆时针方向旋转,当OC与OA成︒180时,OC与OD同时停止旋转.(1)当OC旋转10秒时,______∠COD;=(2)当OC与OD的夹角是︒30时,求旋转的时间;(3)当OB平分COD∠时,求旋转的时间.71、如图所示,两块三角板摆放在一起,射线OM平分BOC∠,ON平分AOC∠. (1)求MON∠的度数;(2)将下方的三角板绕点O旋转一定角度,使得︒AOC,其他条件不变,∠20=求MON∠的度数.72、如图,已知线段AB 和CD 的公共部分CD AB BD 4131==,线段CD AB 、的中点F E 、之间距离是cm 10,求CD AB 、的长.73、如图,线段24=AB 动点P 从A 出发,以每秒2个单位的速度沿射线AB 运 动,M 为AP 的中点.(1)出发多少秒后,AM PB 2=?(2)当P 在线段AB 上运动时,试说明BP BM -2为定值;(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②PN MA +的值不变.选择一个正确的结论,并求出其值.74、如图,已知点A 在射线OX 上,OA 的长度为2,若OA 绕点O 按逆时针方向旋转︒30到'OA ,则点'A 的位置可以用]302[︒,表示;若OA 绕着点O 按顺时针方向旋转︒50到''OA 则点''A 的位置可以表示为]502[︒,. (1)试在图中画出点]501[︒,B 点]302[︒-,C ;(画图工具不限,在图中标明所画点的位置的数据和角度)(2)已知点N M 、的位置分别是]606[︒,,]1207[︒-,,则;______=MN ; (3)猜想:以点]603[︒,P ,]304[︒-,Q ,则线段PQ 的长度______.75、已知OC 是AOB ∠内部的一条射线,N M 、分别为OC OA 、上的点,线段ON OM 、分别以s /30︒,s /10︒的速度绕O 点逆时针旋转;(1)如图1,若︒=∠140AOB ,当ON OM 、逆时针旋转s 2时,分别到''ON OM 、处,求''COM BON ∠+∠的值;(2)如图2,若ON OM 、分别在COB AOC ∠∠、内部旋转时,总有BOM COM ∠=∠3,求BOC ∠的值;(3)知识迁移,如图3,C 是线段AB 上的一点,点M 从点A 出发在线段AC 上向C 点运动,点N 从点C 出发在线段CB 上向B 点运动,点N M 、的速度比为2:1,在运动过程中始终有BN CM 2=,则______=ACBC .(直接写出答案)图1 图2 图376、如图,直线l 上有C B A 、、三点,cm AB 8=,直线l 上有两个动点Q P 、,点P 从点A 出发,以s cm /21的速度沿AB 方向运动,点Q 从点B 同时出发,以s cm /51的速度沿BC 方向运动. (1)点Q P 、出发几秒后,点B 是线段PQ 的中点?(2)运动过程中,点P 和点Q 能否重合?若能重合,几秒后重合?(3)运动过程中,线段PQ 与线段AQ 的长度能否相等?说明你的理由.77、如图,点D C 、是半圆弧上的两个动点,在运动过程中保持︒=∠90COD .(1)如图1,OE 平分AOC ∠,OF 平分BOD ∠,求EOF ∠的度数;(2)如图2,OE 平分AOD ∠,OF 平分BOC ∠,求EOF ∠的度数;(3)在(2)的条件下,试探究COE ∠和DOF ∠有怎样的数量关系,请说明理由.。

人教版七年级数学几何图形初步测试题(含答案)

人教版七年级数学几何图形初步测试题(含答案)

人教版七年级数学几何图形初步测试题(含答案)姓名: 评价:一、跟踪训练1. 图1是由下列哪个图形绕虚线旋转一周形成的( )2. 小丽制作了一个图2所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )3.如图3,A 、B 、C 三棵树在同一直线上,量得A 树 与B 树间的距离是4米,B 树与C 树间的距离是3米,小明正好站在A 、C 两棵树的正中间O 处,请你计算一下小明与B 树的距离是( )。

A. 2米B. 1. 5米C. 4米D. 0. 5米4. 如图4,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100°ABCD图1A图3图45. 计算:53°40′30″×2-75°57′28″÷2=______.6. 一个角的补角是这个角余角的4倍,则这个角的度数为 .7. 如图5,小红过生日时,妈妈买了一块蛋糕, 如果不考虑它上面的点缀,画出从左面、正面、 上面看这个蛋糕主体部分的平面图形.8. 如图6,已知线段AB=4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明很轻松地求得CD=2. 他在反思过程中想到:若点O 在AB 的延长线上时,原有的结论“CD=2”是否仍然成立?请帮小明画出图形并说明原结论是否成立.9. 小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图7所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图7中的拼接图形上再画一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. (添加所有符合要求的正方形,添加的正方形用阴影表示)图7图6图510. 如图8, O 为直线AB 上一点,已知∠AOC=50°,OD 平分∠AOC ,∠DOE=90°. (1)请你数一数,图中有多少个小于平角的角;(2)求∠BOD 的度数;(3)请通过计算说明OE 是否平分∠BOC.二、中考链接1. (福州市)从左面看图1中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个图12. (柳州市)如图2,点A 、B 、C 是直线l 上的三个点,图中共有线段的条数是( )。

人教新版七年级数学上册《几何图形初步》测试题及答案

人教新版七年级数学上册《几何图形初步》测试题及答案

七年级数学第四章几何图形初步测试题(新课标)(时限: 100 分钟总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。

每小题题号123456789答案2 分,共 24 分。

1011121.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是()建A.和B谐.设和谐社C.社D会.会2.下面左边是用八块完全相同的小正方体搭成第 1题图的几何体,从上面看该几何体得到的图是()A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥第3题图4.如图,对于直线AB,线段 CD,射线 EF,其中能相交的是()CBB A B D AAF C DEEF E FA B C D5.下列说法中正确的是()新课标第一网A.画一条 3 厘米长的射线B画.一条3 厘米长的直线C.画一条 5 厘米长的线段D在.线段、射线、直线中直线最长6.如图,将一副三角尺按不同位置摆放,摆放方式中∠与∠互余的是()αβαββαβαA B C D7.点 E 在线段 CD上,下面四个等式①1CD;③ CD= 2CE;CE= DE;② DE=2④CD=1DE.其中能表示 E 是线段 CD中点的有()2A.1个B. 2个 C. 3个 D. 4个8. C 是线段 AB上一点, D 是 BC 的中点,若AB = 12cm,AC = 2cm,则 BD 的长为()A. 3cmB. 4cmC. 5cmD. 6cm9.如图是一正方体的平面展开图,若AB= 4,则该正方体A、B 两点间的距离为()AA. 1B. 2第 9题图BC. 3D. 410.用度、分、秒表示 91.34°为()A. 91° 20/ 24//B. 91° 34/C. 91°20/ 4//D. 91° 3/4//11.下列说法中正确的是()A.若∠ AOB= 2∠AOC,则 OC 平分∠ AOBB.延长∠ AOB 的平分线 OCC.若射线 OC、 OD 三等份∠ AOB,则∠ AOC=∠ DOCD.若 OC 平分∠ AOB,则∠ AOC=∠ BOC12.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:D C D(B)C DNCP1MA B AA B乙甲甲:将纸片沿对角线AC 折叠,使 B 点落在 D 点上,则∠ 1= 45°;乙:将纸片沿AM、 AN 折叠,分别使 B、 D 落在对角线 AC 上的一点 P,则∠ MAN= 45°对于两人的做法,下列判断正确的是()A.甲乙都对B甲.对乙错C甲.错乙对D甲.乙都错二、填空题:本大题共8 小题,每小题 3 分,共 24 分。

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。

(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个 B.2个 C.3个 D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上 B.射线OB上C.射线OD上 D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。

第四章 几何图形初步复习题--解答题(含解析)

第四章 几何图形初步复习题--解答题(含解析)

人教版数学七上第四章几何图形初步复习题--解答题一.解答题1.(2018春•洛宁县期中)一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).2.(2017秋•海陵区校级月考)如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.3.(2018秋•埇桥区校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b=;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=.4.(2017秋•仓山区校级月考)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)5.(2018秋•历下区期中)如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?6.(2018秋•金水区校级月考)小明学习了“面动成体”之后,他用一个边长为3cm、4cm 和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)7.(2018秋•郓城县期中)如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)8.(2018秋•武昌区期中)如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.9.(2018秋•历下区期中)点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?10.(2018秋•滦县期中)在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是;点B对应的数是.(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.11.(2018秋•句容市月考)数轴是一个非常重要的数学工具,它使数和数轴上的点建立对应关系,解释了数与点之间的内在联系,它是“数形结合”的基础.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答(1)将点B向右移动4个单位长度后到达点D,点D表示的数是,A、D两点之间的距离是;(2)移动点A到达E点,使B、C、E三点的其中某一点到其它两点的距离相等,写出点E在数轴上对应的数值;12.(2017秋•潮阳区期末)如图,点C是线段AB上的一点,M是AB的中点,N是CB的中点.(1)若AB=13,CB=5,求MN的长度;(2)若AC=6,求MN的长度.13.(2017秋•洪泽区期末)已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;甲到达B点时共运动了秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距28个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.14.(2018•邵阳县模拟)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?15.(2017春•沂源县校级月考)如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.16.(2017秋•兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为°,分针每分钟转动的角度为°;(2)8点整,钟面角∠AOB=°,钟面角与此相等的整点还有:点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数.17.(2018秋•大石桥市校级月考)如图,经测量,B处在A处的南偏西55°的方向,C 处在A处的南偏东16°方向,C处在B处的北偏东83°方向,求∠C的度数.18.(2018秋•彭水县校级月考)如图,是A、B、C三个村庄的平面图,已知B村在A 村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B两村的视角∠ACB的度数.19.(2018秋•沙坪坝区校级月考)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求甲船由港口A到海岛B的行驶时间;(2)求乙船由港口A到经C港到达海岛B的行驶时间.20.(2018春•黄岛区期中)林湾乡修建一条灌溉水渠,如图,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村水渠从C村沿什么方向修建,可以保持与AB的方向一致?21.(2018秋•防城港期中)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B处的北偏东80°方向,求∠ACB的度数.22.(2017秋•浠水县期末)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.23.(2017秋•孝感期末)计算:(1)48°39′+67°31′﹣21°17′;(2)23°53′×3﹣107°43′÷5.24.(2018秋•滦县期中)已知:如图,OM是∠AOC的角平分线,ON是∠BOC的角平分线,(1)当∠AOB=90°,∠BOC=40°时,求∠MON的度数.(2)若∠AOB的度数不变,∠BOC的度数为α时,求∠MON的度数.25.(2018秋•海港区期中)若∠AOC=100°,∠BOC=30°,OM、ON分别是∠AOC和∠BOC的平分线,求∠MON的度数.(自己画图,并写出解题过程)26.(2017秋•伍家岗区期末)射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.27.(2017秋•鼓楼区期末)如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,∠EOF的度数为°;(2)当∠BOC=α(0°<α<90°)时,求∠EOF的度数.28.(2017秋•平定县期末)如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.29.(2017秋•惠阳区期末)已知:如图,ON平分∠AOC,OM平分∠BOC,∠AOB=90°(1)若∠AOC=40°,求∠AOM和∠MON的大小;(2)当锐角∠AOC的度数发生改变时,∠MON的大小是否发生改变?如不会改变,请写出∠MON的大小,并写出推理过程;如会改变,也请说明理由30.(2017秋•硚口区期末)(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD 为折痕,求∠CBD的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)31.(2018春•大庆期末)∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.32.(2018秋•遵义月考)如图所示,将一副三角板直角顶点O重合,证明∠AOD=∠COB,并求∠AOC+∠BOD的度数.33.(2017秋•马山县期末)如图,已知∠AOB=50°,OD是∠COB的平分线.(1)如图1,当∠AOB与∠COB互补时,求∠COD的度数;(2)如图2,当∠AOB与∠COB互余时,求∠COD的度数.34.(2017秋•西陵区期末)如图,直线SN⊥直线WE,垂足是点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)写出图中与∠BOE互余的角:.(2)若射线OA是∠BON的角平分线,探索∠BOS与∠AOC的数量关系.人教版数学七上第四章几何图形初步复习题--解答题参考答案与试题解析一.解答题1.(2018春•洛宁县期中)一块长、宽、高分别为4cm、3Cm、2cm的长方体橡皮泥,要用它来捏一个底面半径为1.5cm的圆柱,圆柱的高是多少厘米?(精确到0.1cm,π取3.14).【分析】直接利用圆柱体体积公式计算得出答案.【解答】解:设圆柱的高是hcm,根据题意得:π×1.52h=4×3×2,∴h≈3.4,答:圆柱的高约是3.4cm.2.(2017秋•海陵区校级月考)如图所示为8个立体图形.其中,柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧.【分析】根据柱体的意义,椎体的意义,可得答案.【解答】解:柱体的序号为①②⑤⑦⑧,锥体的序号为④⑥,有曲面的序号为③④⑧,故答案为:①②⑤⑦⑧;④⑥;③④⑧.3.(2018秋•埇桥区校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a=8;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= 9;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 32;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到n3个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b=12(n﹣2)+(n﹣2)3.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.4.(2017秋•仓山区校级月考)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)【分析】由底面圆的面积求出底面半径=3米,由勾股定理求得母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【解答】解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).5.(2018秋•历下区期中)如图在直角三角形ABC中,边AC长4cm,边BC长3cm,边AB长5cm.(1)三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何体体积是否一样?通过计算说明;(2)若绕着边AB旋转一周,所得的几何体的体积是多少?【分析】(1)先分别求出旋转后得出的圆锥的体积,再比较即可;(2)求出直角△ABC的高CD,再求出圆锥的体积即可.【解答】解:(1)三角形绕着边AC旋转一周,所得几何体的体积是×π×32×4=12π(cm)2;三角形绕着边BC旋转一周,所得几何体的体积是×π×42×3=16π(cm)2;∵12π≠16π,∴三角形绕着边AC旋转一周,所得几何体的体积和绕着边BC旋转一周所得几何的体积不一样;(2)过C作CD⊥AB于D,∵AC=4cm,BC=3cm,AB=5cm,又∵32+42=52,∴△ACB是直角三角形,∠ACB=90°由三角形的面积公式得:,CD=2.4(cm),由勾股定理得:AD===3.2(cm),BD=5cm﹣3.2cm=1.8cm,绕着边AB旋转一周,所得的几何体的体积是:×π×2.42×3.2+×1.8=9.6π(cm)2.6.(2018秋•金水区校级月考)小明学习了“面动成体”之后,他用一个边长为3cm、4cm 和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)依据面动成体,即可得到几何体简图.(2)依据几何体的底面半径,运用圆锥体积计算公式即可得到几何体的体积.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π(cm3),以3cm为轴的体积为×π×42×3=16π(cm3),以5cm为轴的体积为×π()2×5=9.6π(cm3).7.(2018秋•郓城县期中)如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.8.(2018秋•武昌区期中)如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【分析】(1)根据数轴上的点移动时的大小变化规律,即“左减右加”即可得到结论;(2)根据题意列式计算即可;(3)根据题意得到点数是2的指数次幂+1,据此计算即可.【解答】解:(1)如图所示,(2)如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5;(3)∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×(+++…+)=130.9.(2018秋•历下区期中)点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?【分析】(1)依据两点间的距离公式,即可得到A、B两点间的距离;(2)依据BC的长,即可得出C点表示的数.【解答】解:(1)由图可得,A、B两点间的距离是|2﹣(﹣)|=;(2)由题可得,BC=|﹣﹣(﹣3)|=,当B点和A点重合时,C点表示的数是2﹣=.10.(2018秋•滦县期中)在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是﹣5;点B对应的数是﹣2.(2)A,B两点间的距离是3;B,C两点间的距离是2;A,C之间的距离是5.(3)当原点在点B处时,三个点到原点的距离之和最小,最小距离是5.【分析】(1)根据数轴上A、B、C三点的位置,可得A和B表示的数;(2)根据数轴上两点的距离公式=|x1﹣x2|,可得结论;(3)根据两点的距离公式分情况计算可得结论.【解答】解:(1)若以点C为原点,则点A对应的数是﹣5,点B对应的数是﹣2;故答案为:﹣5;﹣2.(2)∵点B为原点,则点A表示的数是﹣3;点C表示的数是2;∴AB=0﹣(﹣3)=3,BC=2﹣0=2,AC=2﹣(﹣3)=5,∴A,B两点间的距离是3;B,C两点间的距离是2,A,C之间的距离是5,故答案为:3;2;5.(3)①当原点在点A处时,三个点到原点的距离之和=0+3+5=8,②当原点在点B处时,三个点到原点的距离之和=3+0+2=5,③当原点在点C处时,三个点到原点的距离之和=5+2+0=7,∴当原点在点B处时,三个点到原点的距离之和最小,最小距离是5;故答案为:点B;5.11.(2018秋•句容市月考)数轴是一个非常重要的数学工具,它使数和数轴上的点建立对应关系,解释了数与点之间的内在联系,它是“数形结合”的基础.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答(1)将点B向右移动4个单位长度后到达点D,点D表示的数是2,A、D两点之间的距离是6;(2)移动点A到达E点,使B、C、E三点的其中某一点到其它两点的距离相等,写出点E在数轴上对应的数值﹣7或0.5或8;【分析】(1)根据数轴上的点向右移动加,可得D点的坐标,根据两点间的距离公式,可得答案;(2)根据线段的中点的性质,可得E点的坐标.【解答】解:(1)∵点B表示﹣2,∴点B向右移动4个单位长度后到达点D,点D表示的数是﹣2+4=2;∴A、D两点之间的距离是|﹣4|+2=6;故答案为:2,6;(2)当EB=BC时,E点表示的数是﹣7,当BE=EC时,E点表示的数是0.5,当BC=EC时,E点表示的数是8.综上所述:点E在数轴上对应的数值为:﹣7或0.5或8.故答案为:﹣7或0.5或8.12.(2017秋•潮阳区期末)如图,点C是线段AB上的一点,M是AB的中点,N是CB的中点.(1)若AB=13,CB=5,求MN的长度;(2)若AC=6,求MN的长度.【分析】(1)根据线段中点的定义即可得到结论;(2)根据线段中点的定义和线段的和差即可得到结论.【解答】解:(1)∵M是AB的中点,AB=13,∴BM=AB=13=6.5,∵N是CB的中点,CB=5,∴BN=CB=5=2.5;∴MN=BM﹣BN=4;(2)∵M是AB的中点,N是CB的中点,∴BM=AB,BN=CB,∵AC=6,∴MN=BM﹣BN=AB﹣BC=(AB﹣BC)=AC=6=3.13.(2017秋•洪泽区期末)已知数轴上有A,B两点,分别代表﹣40,20,两只电子蚂蚁甲,乙分别从AB两点同时出发,甲沿线段AB以3个单位长度/秒的速度向右运动,甲到达点B处时运动停止,乙沿BA方向以5个单位长度/秒的速度向左运动.(1)A,B两点间的距离为60个单位长度;甲到达B点时共运动了20秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距28个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.【分析】(1)根据A,B两点之间的距离AB=|﹣40﹣20|,根据题意即可求解;(2)根据题意列方程即可得到结论;(3)根据题意列方程即可得到结论;(4)设甲到达B点前,甲,乙经过a秒在数轴上相遇,根据题意得方程解方程即可.【解答】解:(1)A、B两点的距离为AB=|﹣40﹣20|=60,甲到达B点时共运动了60÷3=20秒;故答案为:60,20;(2)设它们按上述方式运动,甲,乙经过x秒会相遇,根据题意得3x+5x=60,解得x=,﹣40+3x=﹣.答:甲,乙在数轴上的﹣点相遇;(3)两种情况,相遇前,设y秒时,甲、乙相距28个单位长度,根据题意得,3y+5y=60﹣28,解得:y=4,第一次相遇后,设y秒时,甲、乙相距28个单位长度,根据题意得,5y+3y﹣60=28,解得:y=11,答:4秒或11秒时,甲、乙相距28个单位长度;(4)甲到达B点前,甲,乙不能在数轴上相遇,理由:设甲到达B点前,甲,乙经过a秒在数轴上相遇,根据题意得,3a+60=5a,解得:a=30,3a=3×30=90>60,故甲,乙不能在数轴上相遇.14.(2018•邵阳县模拟)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC﹣BC即AB的一半.有AC﹣BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.15.(2017春•沂源县校级月考)如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.【分析】(1)由已知可求得CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.【解答】解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.16.(2017秋•兴化市期末)钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;(2)8点整,钟面角∠AOB=120°,钟面角与此相等的整点还有:4点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数.【分析】(1)根据时针旋转一周12小时,可得时针旋转的速度,根据分针旋转一周60分钟,可得分针旋转的速度;(2)根据时针与分针相距的份数乘每份的度数,可得答案;(3)根据时针旋转的角度减去分针旋转的角度,可得答案.【解答】解:(1)时针每分钟转动的角度为0.5°,分针每分钟转动的角度为6°;故答案为:0.5,6;(2)0.5×60×4=120°,4点时0.5×60×4=120°,故答案为:120,4;(3)如图,∠AOB=6×30+15×0.5﹣15×6=97.5°.17.(2018秋•大石桥市校级月考)如图,经测量,B处在A处的南偏西55°的方向,C 处在A处的南偏东16°方向,C处在B处的北偏东83°方向,求∠C的度数.【分析】根据已知条件得出∠BAC=∠BAE+∠CAE,再根据平行线的性质得出∠DBA=∠BAE,然后求出∠ABC的值,最后根据三角形的内角和定理即可求出∠C的度数.【解答】解:∵∠BAE=55°,∠CAE=16°,∠DBC=83°,∴∠BAC=∠BAE+∠CAE=55°+16°=71°,∵AE∥BD,∴∠DBA=∠BAE=55°.∴∠ABC=∠DBC﹣∠DBA=83°﹣55°=28°,∴∠C=180°﹣28°﹣71°=81°.18.(2018秋•彭水县校级月考)如图,是A、B、C三个村庄的平面图,已知B村在A 村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B两村的视角∠ACB的度数.【分析】根据三角形的内角和即可得到结论.【解答】解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.19.(2018秋•沙坪坝区校级月考)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求甲船由港口A到海岛B的行驶时间;(2)求乙船由港口A到经C港到达海岛B的行驶时间.【分析】(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解;(2)根据时间=即可得到结论.【解答】解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=x,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=x,AB=BD=x,由AC+CD=AD得20+x=x解得:x=10+10∴AB=30+10。

几何图形练习题(含答案)

几何图形练习题(含答案)

1.小杰从上面观察如图所示的热水瓶时,得到的图形是A.B.C .D.2.下列现象能说明“面动成体”的是A.天空划过一道流星B.旋转一扇门,门在空中运动的痕迹C.扔出一块小石子,石子在空中飞行的路线D.汽车雨刷在挡风玻璃上划出的痕迹3.下列图形中,含有曲面的立体图形是A.B.C.D.4.下列四个几何体中,从左边看到的图形与其他三个不同的是A.B.C.D.5.如图是将一个底面为正方形的长方体切掉一个角后得到的几何体,则从上面看到的几何体的形状图是A.B.C.D.6.下列四个立体图形中,各自从三个方向看,得到的形状图中有两个相同,另一个不同的是A.①②B.②③C.②④D.③④7.如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A.美B.丽C.和D.县8.下列图形中,能够折叠成一个正方体的是A.B.C.D.9.在市委、市府的领导下,全市人民齐心协力,将我市成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面相对的字应是A.文B.明C.城D.市10.如图所示的棱柱有A.4个面B.6个面C.12条棱D.15条棱11.如图是一个棱锥,它是由__________个三角形和__________个底所组成的.12.如图所示的立体图形,是由__________个面组成,面与面相交成__________条线.13.正方体有__________个面,__________个顶点,经过每个顶点都有__________条棱,这些棱的长度__________,棱长为a的正方体的表面积为__________.14.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明____________.15.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象____________.16.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“体”字相对的字是“____________”.17.如图是哪种几何体的表面展开图形____________.(写出几何体的名称)18.观察图中的物体,____________是从正面看到的,____________是从左面看到的,____________是从上面看到的.19.一个正方体的表面展开图如下图所示,则原正方体中的“★”所在面的对面所标的字是____________.20.如图是哪种几何体的表面展开的图形_____________.(写出几何体的名称)21.已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为____________cm3.22.流星坠落会在空中留下一条____________;转动的自行车辐条会形成一个____________;一个长方形绕自身的一条边旋转会形成一个____________.23.从上往下看下列四个物体可得到第二行的四个图形,将四个图形与其相应的物体连接起来.24.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 6 10 12棱数9 12面数 5 8 观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.25.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.26.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?27.如图是正方体的平面展开图,在顶点处标有自然数1~11,折叠围绕成正方体后,与数字6重合的数字是A.7,8 B.7,9 C.7,2 D.7,428.把下图中的三棱柱展开,所得到的展开图是A.B.C.D.29.从正面观察如图的两个立体图形,得到的平面图形是A.B.C.D.30.下列说法中,正确的是A.长方体中任何一个面都与两个面平行B.长方体中任何一个面都与两个面垂直C.长方体中与一条棱平行的面只有一个D.长方体中与一条棱垂直的平面有两个31.下面几何体的截面不可能是长方形的是A.长方体B.正方体C.圆锥D.圆柱32.由6个大小相同的小正方体搭成的几何体被小颖拿掉2个后,得到如图1所示的几何体,图2是从不同方向看原几何体得到的三种形状图,请你判断小颖拿掉的两个正方体原来放置在A.1号的前后B.2号的前后C.3号的前后D.4号的前后33.某几何体从三个方向看的形状如图,则组成该几何体的小正方体的个数是__________.34.将图中所示的纸片沿虚线折叠起来的几何体是__________,且1的对面是__________,2的对面是__________,3的对面是__________.35.如图所示,是三棱柱的表面展开示意图,则AB=__________,BC=__________,CD=__________,BD=__________,AE=__________.36.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?37.如图是由一些相同的小正方块搭成的几何体.(1)图中有__________个小正方体;(2)请在方格纸中分别画出这个几何体从三个方向看得到的图形.38.一个圆柱的底面半径是10cm,高是18cm,把这个圆柱放在水平桌面上,如图所示.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.39.(2018·巴中)毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是A.B.C.D.40.(2018·河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是A.厉B.害C.了D.我41.(2018·大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是A.庆B.力C.大D.魅42.(2018·徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是A.B.C.D.43.(2018·烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为A.9 B.11 C.14 D.1844.(2018·北京)下列几何体中,是圆柱的为A.B.C.D.3.【答案】D【解析】根据立体图形的特征,解答即可.A.角是平面图形,故A不符合题意;B.半圆环是平面图形,故B不符合题意;C.棱台不含曲面,故C不符合题意;D.侧面是曲面的立体图形,故D符合题意;故选:D.4.【答案】D【解析】A选项中的几何体从左面看到的图形是:,B选项中的几何体从左面看到的图形是:,C选项中的几何体从左面看到的图形是:,D选项中的几何体从左面看到的图形是:.所以与其他三个不同的是D选项.故选D.7.【答案】D【解析】由同一排两个面相隔一个面,则这两个面相对可知,“美”与“和”相对,“建”与“县”相对,“设”与“丽”相对.故选D.8.【答案】B【解析】选项A、C、D经过折叠均不能围成正方体;只有B能折成正方体.故选B.9.【答案】B【解析】由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选B. 10.【答案】D【解析】如图所示的棱柱是正五棱柱,正五棱柱有7个面,15条棱.故选D.11.【答案】41【解析】观察所给的几何体可知,该几何体为四棱锥,∴该几何体由4个侧面(侧面为三角形)和1个底面(底面为四边形)所组成的.故答案为:4;1.故答案为6,8,3,相等,6a2.14.【答案】线动成面【解析】“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明线动成面.故答案为:线动成面.15.【答案】点动成线【解析】“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.16.【答案】喜【解析】这是一个正方体的平面展开图,共有六个面,其中面“我”与面“欢”相对,面“立”与面“图”相对,面“喜”与面“体”相对.故答案为:喜.17.【答案】三棱锥【解析】因为展开图是四个三角形,故该展开图是由三棱锥展开得到的.故答案为:三棱锥. 18.【答案】c;b;a【解析】观察图中的物体,c是从正面看到的,b是从左面看到的,a是从上面看到的.故答案为:c;b;a.24.【解析】填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 12棱数b9 12 15 18面数c 5 6 7 8 根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c–b=2.25.【解析】如图所示.29.【答案】A【解析】从正面看左边是一个矩形,右边是一个正方形,故选A.30.【答案】D【解析】A、长方体中任何一个面都与1个面平行,故此选项错误;B、长方体中任何一个面都与4个面垂直,故此选项错误;C、长方体中与一条棱平行的面有2个,故此选项错误;D、长方体中与一条棱垂直的平面有两个,正确.故选D.31.【答案】C【解析】长方体,正方体,圆柱的截面都可能出现长方形,只有圆锥的截面只与圆、三角形有关.故选C.32.【答案】B【解析】观察图形,由上面看到的图可得拿掉的两个正方体原来放在2号的前后.故选B.33.【答案】6【解析】由三视图可得几何体中小正方形个数:1+4+1=6,故答案为:6.34.【答案】正方体,4,5,6.【解析】这是一个正方体的平面展开图,共有六个面,其中面“4”与面“1”相对,面“6”与面“3”相对,“2”与面“5”相对.故答案为:正方体,4,5,6.(2)如图所示:38.【解析】(1)所得的截面是圆;(2)所得的截面是长方形;(3)当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大.这时,长方形的一边等于圆柱的高,另一边等于圆柱的底面直径.如图所示:则这个长方形的面积为:10×2×18=360(cm2).39.【答案】C【解析】选项C不能围成正方体,不符合题意.不考虑文字方向,选项D围成的正方体如图所示,符合题意,故选C.。

七年级上册《数学》几何图形专项练习题((含答案)

七年级上册《数学》几何图形专项练习题((含答案)

七年级上册《数学》几何图形专项练习题第1课时几何图形一、能力提升1.下列所列举的物体中,与圆锥的形状类似的是()A.足球B.字典C.易拉罐D.标枪的尖头2.下列图形属于柱体的是()3.下列第一行所示的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如由a,b组成的图形记作a☉b,那么由此可知,下面第二行的图中可以记作a☉d的是()4.如图,下面各几何体中,是三棱柱的是.(只填序号)5.下列说法:①圆锥和圆柱的底面都是圆;②棱锥底面边数与侧棱数相等;③棱柱的上、下底面是形状、大小相同的多边形;④四棱柱是长方体.其中正确的是.(填序号)6.有一个几何体,形状如图所示,这个几何体的面数为.7.如图,下列各图形主要由哪些简单的几何图形组成?二、创新应用8.请利用图中的几何体拼出蘑菇、台灯等图案,并和同伴一起交流,尽量拼出最多的图案.答案一、能力提升1.D.2.C.3.A.根据题意,知a代表长方形,d代表直线,因此记作a☉d的图形是长方形和直线的组合,故选A.4.④.5.①②③.6.6.7.解:(1)由圆组成;(2)由长方形和正方形组成;(3)由菱形(或四边形)组成;(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).二、创新应用8.分析:本题是开放性试题,只要所给答案合理即可.解:答案不唯一,如图.第2课时几何图形的三种形状图与展开图一、能力提升1.如图,小李书桌上放了一本书,从上往下看得到的平面图形是()2.如图,一个带有方形空洞、圆形空洞的儿童玩具.如果用下列几何体作为塞子,那么既可以堵住方形空洞又可以堵住圆形空洞的几何体是()3.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看到的图形如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.144.有3块正方体积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑5.图①是一个小正方体的侧面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是.图①图②6.根据下列多面体的平面展开图,填写多面体的名称:(1),(2),(3).7.如图,将下列图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)8.如图,画出所给几何体的从正面看、从左面看和从上面看得到的图形.9.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图②中标出点P,Q,S的位置.二、创新应用10.火箭的示意图如图所示(火箭圆柱底面的周长不等于圆柱的高),请你画出火箭的平面展开图.11.如图,在一个长方体的展开图上,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?答案一、能力提升1.A.2.B.从正面与上面分别看圆柱体所得的平面图形分别是长方形和圆,它既可以堵住方形空洞又可以堵住圆形空洞.3.B.因为右上角的碟子有5个,左下角的碟子有3个,左上角的碟子有4个,所以碟子的总数为3+4+5=12.4.C.根据第一个图和第二个图可知,与绿色相邻的四个面的颜色分别为白、黑、蓝、红,从第三个图可知第六个面为黄色,即为绿色一面的对面.5.国.翻到题图②第1格时朝下的为“了”字,第2格为“害”字,第3格为“厉”字,其对面为“国”字,即为这时小正方体朝上一面的字.6.(1)长方体.(2)三棱柱.(3)三棱锥.7.1或2或6.8.解:9.解:如图所示.二、创新应用10.解:11.解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.4.1.2点、线、面、体一、能力提升1.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()2.下列几何体有6个面的有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②棱柱的顶点数一定是偶数,棱的条数一定是3的倍数;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是cm2.9.观察右图,填空:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.如图①,把一张长为6厘米、宽为10厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)绕轴旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?二、创新应用12.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:顶点数多面体面数(F) 棱数(E)(V)四面体 4 4长方体8 6 12正八面体8 12正十二面20 12 30体你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)若一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表三角形的个数为x,八边形的个数为y,求x+y的值.答案一、能力提升1.D.2.C.3.C.直棱柱有12个顶点,一定是六棱柱,因此它的面的个数是8.4.B.5.D.由题中图形可以看出,左边的长方形的竖直的两条边与已知的直线平行,因而这两条边旋转形成两个柱形表面,旋转一周后可能形成的立体图形是一个管状的物体.6.面动成体.从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面转动成体.7.(1)点动成线.(2)线动成面.8.18.将正方形旋转一周所形成的图形是圆柱,从正面看圆柱是一个长方形,长方形的一边长为3cm,另一边长为6cm.因此面积为18cm2. 9.解:(1)六棱柱.(2)8;2;6;六边;长方.(3)侧面的个数与底面多边形的边数相等.10.解:从第一行的平面图形绕某一边旋转或沿某一方向平移可得到第二行的立体图形,从第二行的立体图形的上面看可得到第三行的平面图形.(1)→(三)→(D);(2)→(二)→(C);(3)→(四)→(B);(4)→(一)→(A).11.解:(1)甲三角形绕它的一条直角边所在直线旋转一周,形成一个底面半径是6厘米,高是10厘米的圆锥,它的体积是×π×62×10=120π(立方厘米).(2)乙三角形(如题图③)绕轴旋转一周,形成一个圆柱,且中间挖去了一个和圆柱同底等高的圆锥,它的体积是π×62×10-π×62×10=240π(立方厘米).二、创新应用12.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为V+F-E=2.(2)由题意,得F-8+F-30=2,解得F=20.(3)因为有24个顶点,每个顶点处都有3条棱,两点确定一条直线,所以共有24×3÷2=36条棱.由(1)得24+F-36=2,解得F=14,所以x+y=14.。

数学七年级上册 几何图形初步专题练习(word版

数学七年级上册 几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.3.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.4.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.5.已知:如图所示,直线,另一直线交于,交于,且,点为直线上一动点,过点的直线交于点,且 .(1)如图1,当点在点右边且点在点左边时,的平分线与的平分线交于点,求的度数;(2)如图2,当点在点右边且点在点右边时,的平分线与的平分线交于点,求的度数;(3)当点在点左边且点在点左边时,的平分线与的平分线所在直线交于点,请直接写出的度数,不说明理由.【答案】(1)解:过点作 .∵平分 .∴ .∴(两直线平行,内错角相等).同理可证..∴ .(2)解:过点作 .∵ .∴ .∵平分 .∴ .∴(两直线平行,同旁内角互补).∵平分 .∴(两直线平行,内错角相等).∴ .(3)解:过点作 .∵平分 .∴(两直线平行等,内错角相等).∴平分 ..∴ .∴(两直线平行,同旁内角互补)..【解析】【分析】(1)过点作,由角平分线定义可得,利用两直线平行内错角相等,可得,同理可得∠CPE=∠PCA= ∠DCA=25°,从而求出∠BPC的度数.(2)过点作 . 利用邻补角定义可得∠DBA=100°,由角平分线定义可得∠DBP= ∠DBA=50°,根据两直线平行,同旁内角互补可得∠BPE=130°.根据角平分线定义及两直线平行,内错角相等角可得∠PCA=∠CPE= ∠DCA=25°,从而求∠BPC的度数.(3)过点作 . 根据两直线平行,内错角相等角可得∠DBP=∠DPE=40°,根据邻补角可求出∠CPE的度数,由角平分线的定义可得∠PCA= ∠DCA=65°,根据两直线平行,同旁内角互补可求出∠CPE的度数,继而求出∠BPC的度数.6.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)解:由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的处(2)解:如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ= AB,∴(3)解:② 的值不变.理由:如图,当点C停止运动时,有CD= AB,∴CM= AB,∴PM=CM-CP= AB-5,∵PD= AB-10,∴PN= AB-10)= AB-5,∴MN=PN-PM= AB,当点C停止运动,D点继续运动时,MN的值不变,所以【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.7.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【答案】(1)解:①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°(3)解:设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON列方程求解即可.8.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点是外一点,连接、,求的度数.天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.又∵,∴ .解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.【答案】(1)∠EAB;∠DAC(2)解:过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)解:如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.9.直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM 上运动.(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB 的度数.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.【答案】(1)解:∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠EAB= ∠OAB=35°,∠EBA= ∠OBA=25°,∴∠AEB=180°-35°-25°=120°(2)解:不发生变化,理由如下:如图,延长BC、AD交于点F,∵点D、C分别是∠PAB和∠ABM的角平分线上的两点,∴∠FAB= ∠PAB= (180°-∠OAB),∠FBA= ∠MBA= (180°-∠OBA),∴∠FAB+∠FBA= (180°-∠OAB)+ (180°-∠OBA)= (180°+∠AOB)=90°+ ∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°- ∠AOB=60°,同理可求∠CED =90°- ∠F=60°;(3)∠DCE的度数40°或80°【解析】【解答】解:(3)①当∠DCE=2∠E时,显然不符合题意;②当∠DCE=2∠CDE时,∠DCE= =80°;③当∠DCE= ∠CDE时,∠DCE= =40°,综上可知,∠DCE的度数40°或80°.【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根据AE、BE分别是∠BAO和∠ABO的角平分线,可得∠EAB和∠EBA的值,在△EAB中,根据三角形内角和即可得出∠AEB的大小;(2)不发生变化,延长BC、AD交于点F,根据角平分线的定义以及三角形内角和可得∠F =90°- ∠AOB,∠CED =90°- ∠F,即可得出∠CED的度数;(3)分三种情况求解即可.10.已知:直线AB,CD相交于点O,且OE⊥CD,如图.(1)过点O作直线MN⊥AB;(2)若点F是(1)中所画直线MN上任意一点(O点除外),且∠AOC=35°,求∠EOF的度数;(3)若∠BOD:∠DOA=1:5,求∠AOE的度数.【答案】(1)解:如图,MN为所求(2)解:若F在射线OM上,∵MN⊥AB,OE⊥CD,∴∠AOC+∠COM=90°,∠EOF+∠COM=90°,则∠EOF=∠AOC=35°;若F'在射线ON上,∵MN⊥AB,OE⊥CD,∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°则∠EOF'=∠DOE+∠DON=145°;综上所述,∠EOF的度数为35°或145°;(3)解:∵∠BOD:∠DOA=1:5∴∠BOD:∠BOC=1:5,∴∠BOD=∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°.【解析】【分析】(1)根据垂直的定义即可作图;(2)分F在射线OM上和在射线ON 上分别进行求解即可;(3)依据平角的定义以及垂线的定义,即可得到∠AOE的度数.11.学习千万条,思考第一条。

七年级上册数学 几何图形初步专题练习(word版

七年级上册数学 几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.3.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.4.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.5.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.【答案】(1)解:由得:,解得:∴点的坐标为(2)解:不变化∵轴∴BC∥x轴∴∵平分∴∴∴(3)解:点P可能在OC,OA边上,如下图所示,由(1)可知,BC=5,AB=3,故矩形的面积为15若点P在OC边上,可设P点坐标为,则三角形BCP的面积为,剩余部分面积为,所以,解得,P点坐标为;若点P在OA边上,可设P点坐标为,则三角形BAP的面积为,剩余部分面积为,所以,解得,P点坐标为 .综上,点的坐标为, .【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.6.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.7.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.8.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.9.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF ∴∠ABC= ∠ABE,∠ABD= ∠ABF∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°又AP平分∠DAG,∠BAG=50°∴∠DAP= ∠DAG∴∠APD=180°-∠DAP-∠ADP=180°-∠DAG-∠ABF=180°- (∠DAB-∠BAG)-∠ABF=180°-∠DAB+ ×50°-∠ABF=180°- (∠DAB+∠ABF)+25°=180°- ×180°+25°=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴∠3+∠4=90°,又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)=45°- ∠3+90°-∠4=135°-(∠3+∠4)=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.10.如图,在△ABC中,点E在AC边上,连结BE,过点E作DF∥BC,交AB于点D.若BE 平分∠ABC,EC平分∠BEF.设∠ADE=α,∠AED=β.(1)当β=80°时,求∠DEB的度数.(2)试用含α的代数式表示β.(3)若β=kα(k为常数),求α的度数(用含k的代数式表示).【答案】(1)解:∵β=80°,∴∠CEF=∠AED=80°,∵BE平分∠ABC,∴∠BEC=∠CEF=80°,∴∠DEB=180°﹣80°﹣80°=20°;(2)∵DF∥BC,∴∠ADE=∠ABC=α,∵BE平分∠ABC,∴∠DEB=∠EBC=∵EC平分∠BEF,∴β=∠CEF=(180°﹣)=90°﹣α;(3)∵β=kα,∴90°﹣α=kα,解得:α=【解析】【分析】(1)根据对顶角的性质得到∠CEF=∠AED=80°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.11.将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起(其中,,),固定三角板,另一三角板的边从边开始绕点顺时针旋转,设旋转的角度为.(1)当时;若,则的度数为________;(2)若,求的度数;(3)由(1)(2)猜想与的数量关系,并说明理由;(4)当时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.【答案】(1)150°(2)∵∠ACB=130°,∠ACD=90°,∴∠DCB=130°−90°=40°,∴∠DCE=90°−40°=50°;(3)∠ACB+∠DCE=180°,理由如下:①当时,如图1,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;②当时,如图2,∠ACB+∠DCE=180°,显然成立;③当时,如图3,∠ACB+∠DCE=360°-90°-90°=180°.综上所述:∠ACB+∠DCE=180°;(4)存在,理由如下:①若AD⊥CE时,如图4,则 =90°-∠A=90°-60°=30°,②若AC⊥CE时,如图5,则 =∠ACE=90°,③若AD⊥BE时,如图6,则∠EMC=90°+30°=120°,∵∠E=45°,∴∠ECD=180°-45°-120°=15°,∴ =90°-15°=75°,④若CD⊥BE时,如图7,则AC∥BE,∴ =∠E=45°.综上所述:当 =30°时,AD⊥CE,当 =90°时,AC⊥CE,当 =75°时,AD⊥BE,当=45°时,CD⊥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=30°,∴∠DCB=90°−30°=60°,∴∠ACB=∠ACD+∠DCB=90°+60°=150°,故答案是150°;【分析】(1)①先根据直角三角板的性质求出∠DCB的度数,进而可得出∠ACB的度数;②由∠ACB=130°,∠ACD=90°,可得出∠DCB的度数,进而得出∠DCE的度数;(2)根据(1)中的结论可提出猜想,再分3种情况:①当时,②当时,③当时,分别证明∠ACB与∠DCE的数量关系,即可;(3)分4种情况:①若AD⊥CE时,②若AC⊥CE时,③若AD⊥BE时,④若CD⊥BE 时,分别求出的值,即可.12.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;(2)如图②,若OA、OB同时顺时针转动,①当 =3秒时,∠AOB=________ ;②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________【答案】(1)4.5(2);解:由题意知,∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).当ON为∠AOB的角平分线时,有180-30t =10t ,解得:t =4.5;当OA为∠BON的角平分线时,10t =2(30t -180),解得:t =7.2;当OB为∠AON的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,∴∠AOM+∠BON=180 ,∴,解得:;∴秒,OA与OB第一次重合;故答案为:4.52)解:①若OA、OB同时顺时针转动,∴,,∴;故答案为:120;【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.。

七年级上册数学几何图形初步好题附答案

七年级上册数学几何图形初步好题附答案

七年级上册数学几何图形初步好题附答案评卷人得分一.选择题(共17小题)1.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或66.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB 的长度为()A.4 B.6 C.8 D.107.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条 B.2条 C.3条 D.4条10.如图,共有线段()A.3条 B.4条 C.5条 D.6条11.下列说法中,正确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个12.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离13.下列说法中错误的是()A.A、B两点之间的距离为3cmB.A、B两点之间的距离为线段AB的长度C.线段AB的中点C到A、B两点的距离相等D.A、B两点之间的距离是线段AB14.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个 B.2个 C.3个 D.4个15.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.3016.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示17.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB 的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°评卷人得分二.填空题(共2小题)18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.19.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.评卷人得分三.解答题(共21小题)20.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.21.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.22.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.23.如图,点C、D在线段AB上,D是线段AB的中点,AC=AD,CD=4,求线段AB的长.24.如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.26.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD 的中点,CD=6cm,求线段MC的长.27.如图,已知线段AD=10cm,线段AC=BD=6cm.E、F分别是线段AB、CD的中点,求EF的长.28.观察图①,由点A和点B可确定条直线;观察图②,由不在同一直线上的三点A、B和C最多能确定条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定条直线、n 个点(n≥2)最多能确定条直线.29.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+ =cm.∵D是AC的中点,∴AD==cm.∴BD=AD﹣=cm.30.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.31.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.32.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.33.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.34.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.35.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?36.已知线段AB上顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,且AB=56cm.(1)求线段AE的长;(2)若M、N分别是DE、EB的中点,求线段MN的长度.37.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).38.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有条.39.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.40.已知数轴上点A、B、C所表示的数分别是﹣3,+7,x.(1)求线段AB的长;(2)若AC=4,①求x的值;②若点M、N分别是AB、AC的中点,求线段MN 的长度.七年级上册数学几何图形初步好题附答案参考答案与试题解析一.选择题(共17小题)1.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A.2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选D.3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面.故选C.5.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB 外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.6.如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB 的长度为()A.4 B.6 C.8 D.10【解答】解:∵C为AB的中点,∴AC=BC=AB=×12=6,∵AD:CB=1:3,∴AD=2,∴DB=AB﹣AD=12﹣2=10(cm).故选D.7.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm【解答】解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=3cm,答:AD的长为3cm.故选:B.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.9.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条 B.2条 C.3条 D.4条【解答】解:图中线段有AB、AC、BC这3条,故选:C.10.如图,共有线段()A.3条 B.4条 C.5条 D.6条【解答】解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.11.下列说法中,正确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个【解答】解:①过两点有且只有一条直线,正确,②连接两点的线段叫做两点间的距离,不正确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,正确,④若AB=BC,则点B是线段AC的中点,不正确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不正确,端点不同,⑥直线有无数个端点.不正确,直线无端点.共2个正确,故选:A.12.下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离【解答】解:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误;故选B.13.下列说法中错误的是()A.A、B两点之间的距离为3cmB.A、B两点之间的距离为线段AB的长度C.线段AB的中点C到A、B两点的距离相等D.A、B两点之间的距离是线段AB【解答】解:A、A、B两点之间的距离为3cm,故A选项说法正确;B、A、B两点之间的距离为线段AB的长度,故B选项正确;C、线段AB的中点C到A、B两点的距离相等,故C选项正确;D、A、B两点之间的距离是线段AB,应为AB的长度,故D选项错误.故选:D.14.下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A.1个 B.2个 C.3个 D.4个【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.15.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6 B.12 C.15 D.30【解答】解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.16.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示【解答】解:A、∠1与∠AOB表示同一个角,正确,故本选项错误;B、∠β表示的是∠BOC,正确,故本选项错误;C、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选项错误;D、∠AOC不能用∠O表示,错误,故本选项正确;故选D.17.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB 的方向角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【解答】解:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°﹣30°=60°,故射线OB的方向角是北偏西60°,故选:B.二.填空题(共2小题)18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为6.【解答】解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.19.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共21小题)20.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.21.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.【解答】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.22.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.23.如图,点C、D在线段AB上,D是线段AB的中点,AC=AD,CD=4,求线段AB的长.【解答】解:∵AC=AD,CD=4,∴CD=AD﹣AC=AD﹣AD=AD,∴AD=CD=6,∵D是线段AB的中点,∴AB=2AD=12;24.如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).25.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.26.已知:如图,B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD 的中点,CD=6cm,求线段MC的长.【解答】解:由AB:BC:CD=2:4:3,设AB=2xcm,BC=4xcm,CD=3xcm, (1)分则CD=3x=6,解得x=2.…2分因此,AD=AB+BC+CD=2x+4x+3x=18(cm).…4分因为点M是AD的中点,所以DM=AD=×18=9(cm).…6分MC=DM﹣CD=9﹣6=3(cm).…7分27.如图,已知线段AD=10cm,线段AC=BD=6cm.E、F分别是线段AB、CD的中点,求EF的长.【解答】解:∵AD=10,AC=BD=6,∴AB=AD﹣BD=10﹣6=4,∵E是线段AB的中点,∴EB=AB=×4=2,∴BC=AC﹣AB=6﹣4=2,CD=BD﹣BC=6﹣2=4,∵F是线段CD的中点,∴CF=CD=×4=2,∴EF=EB+BC+CF=2+2+2=6cm.答:EF的长是6cm.28.观察图①,由点A和点B可确定1条直线;观察图②,由不在同一直线上的三点A、B和C最多能确定3条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作6条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定10条直线、n 个点(n≥2)最多能确定n(n﹣1)条直线.【解答】解:①由点A和点B可确定1条直线;②由不在同一直线上的三点A、B和C最多能确定3条直线;经过A、B、C、D四点最多能确定6条直线;直在同一平面内任三点不在同一直线的五个点最多能确定10条线、根据1个点、两个点、三个点、四个点、五个点的情况可总结出n个点(n≥2)时最多能确定:条直线.故答案为:1;3,6,10,.29.如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+ BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm,∵D为AC中点,∴AD=AC=3cm,∴BD=AD﹣AB=3cm﹣2cm=1cm,故答案为:BC,6,AC,3,AB,1.30.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;(3)若点C为线段AB延长线上任意一点,且满足AC﹣CB=b,求线段MN的长.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN,=(AC+CB)=(8+6)=7;(2)∵若M、N分别是线段AC、BC的中点,∴AM=MC,CN=BN,AM+CM+CN+NB=a,2(CM+CN)=a,CM+CN=,∴MN=a;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=b.31.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.32.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.33.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:34.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N 为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.【解答】解:(1)∵A,B两点所表示的数分别为﹣2和8,∴0A=2,OB=8∴AB=OA+OB=l0.(5分)(2)线段MN的长度不发生变化,其值为5.分下面两种情况:①当点P在A、B两点之间运动时(如图甲).MN=MP+NP=AP+BP=AB=5(3分)②当点P在点A的左侧运动时(如图乙).MN=NP﹣MP=BP﹣AP=AB=5(3分)综上所述,线段MN的长度不发生变化,其值为5.(1分)35.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线OE上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?【解答】解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.36.已知线段AB上顺次有三个点C、D、E,把线段AB分成2:3:4:5四部分,且AB=56cm.(1)求线段AE的长;(2)若M、N分别是DE、EB的中点,求线段MN的长度.【解答】解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=56,解得,x=4,则AC、CD、DE、EB分别为8cm、12cm、16cm、20cm,则AE=AC+CD+DE=36cm;(2)∵M是DE的中点,∴ME=DE=8cm,N是EB的中点,∴EN=EB=10cm,∴MN=ME+EN=18cm.37.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n+1=,故答案为:.38.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.【解答】解:(1)(2)(3)图中有线段6条.39.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.【解答】解:∵M为AB的中点,∴AM=BM=AB=3cm,∵N为MC的中点,∴MN=NC=8cm.∴BN=MN﹣BM=5cm,∴BC=BN+NC=5+8=13(cm).答:BC长为13cm.40.已知数轴上点A、B、C所表示的数分别是﹣3,+7,x.(1)求线段AB的长;(2)若AC=4,①求x的值;②若点M、N分别是AB、AC的中点,求线段MN 的长度.【解答】解:(1)AB=7﹣(﹣3)=10;(2)①∵AC=4,∴|x﹣(﹣3)|=4,∴x﹣(﹣3)=4或(﹣3)﹣x=4,∴x=1或﹣7;②当点A、B、C所表示的数分别是﹣3,+7,1时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是﹣1,∴MN=2﹣(﹣1)=3;当点A、B、C所表示的数分别是﹣3,+7,﹣7时,∵点M、N分别是AB、AC的中点,∴点M表示的数为2,点N的坐标是﹣5,∴MN=2﹣(﹣5)=7;∴MN=7或3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形初步(一)几何图形练习题一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方休中的距离是()A.0 B.1 C . D .2.要在地球仪上确定深圳市的位置,需要知道的是()A.高度B.经度C.纬度D.经度和纬度3.如图的几何体中,它的俯视图是()4.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.北 B.京 C.精 D.神5.(3分)如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤ B.②⑤ C.③⑤ D.②④6.如图的立体图形可由哪个平面图形绕轴旋转而成()1 / 187.如图是一个三棱柱的展开图.若AD=10,CD=2,则AB的长度可以是()A.2 B.3 C.4 D.58.下面四个几何体中,左视图是矩形的几何体是()9.下列几何体的主视图是三角形的是()10.如图,从左面观察这个立体图形,能得到的平面图形是()A. B. C. D.11.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()12.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()13.用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱 B.圆锥 C.三棱柱 D.正方体14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()15.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()评卷人得分一、解答题16.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).3 / 1818.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.(本题满分8分)一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积说明原因。

(2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状。

20.(3分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.主视图(从正面看)左视图(从左面看)俯视图(从上面看)21.(8分)在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.22.(4分)5个棱长为1的正方体组成如图所示的几何体,画出该几何体从正面和左面看到的图形.23.(6分)分别画下图几何体的三视图.主视图:左视图:俯视图:24.(本题满分10分)(1)画出下图中几何体的三视图._______________ ______________ ______________主视图左视图俯视图(2)小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.5 / 18①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为 cm2.25.(4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体的主视图和左视图.评卷人得分二、填空题26.如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是.27.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是.28.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).29.(3分)底面直径和高都是1的圆柱侧面积为.30.长方体的主视图与俯视图如图所示,则这个长方体的体积是.31.(3分)如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为 cm2.7 /1832.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是.33.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数相等,则x -2y =________.34.要锻造一个直径为8cm ,高为4cm 的圆柱形毛坯,至少截取直径为4cm 的圆钢_________cm.35.如图,它是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则()a b c --=________.36.如图,把这个平面展开图折叠成立方体,与“祝”字相对的字是 .37.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,你我的中梦国的周长=________.若AB=6,BC=8,则AEF38.如图,四边形ABCD是正方形,延长AB到点E,使,则∠BCE的度数是 .39.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花颜色红黄蓝白紫绿花朵数654321现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如下图所示,那么长方体的下底面共有______朵花.40.某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是.参考答案【答案】C.【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选:C.考点:1.勾股定理;2.展开图折叠成几何体.2.D.【解析】试题分析:要在地球仪上确定深圳市的位置,需要知道它的经纬度.故选D.考点:坐标确定位置.3.C.【解析】试题分析:从上面看易得一排由4个正方形组成.故选C.考点:简单组合体的三视图.4.A.【解析】试题分析:由图1可得,“践”和“神”相对;“北”和“精”相对;“行”和“京”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“精”在下面,则这时小正方体朝上面的字是“北”.故选A.考点:几何体的展开图.5.B.【解析】试题分析:,图案⑥可变为(如下图),观察图形可得,组成图案⑥的基本图形是②⑤,故答案选B.1 / 18考点:图形的平移.6.D.【解析】试题分析:这个几何体是个半球,它应该是由一个直角扇形旋转360度得到,故答案选D.考点:点、线、面的关系.7.C.【解析】试题分析:由图可知,AD=AB+BC+CD,∵AD=10,CD=2,∴AB+BC=8,设AB=x,则BC=8-x,则828x xx x-⎧⎨--⎩<+2<解这个不等式组得:3<x<5,∴AB的长度可以是4,故选C.考点:1.几何体的展开图;2.三角形三边关系.8.A.【解析】试题分析: A、左视图是矩形,A正确;B、左视图是三角形,B不正确;C、左视图是三角形,C不正确;D、左视图是圆,D不正确.故选A.考点:简单几何体的三视图.9.B.【解析】试题分析: A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选B.考点:简单几何体的三视图.10.A.【解析】试题分析:从左面看下面一个正方形,上面一个正方形,故选A.考点:简单组合体的三视图.11.B.【解析】试题分析:根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选B.考点:展开图折叠成几何体.12.D.【解析】试题分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.试题解析:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.考点:展开图折叠成几何体.13.A.【解析】试题分析: A、圆柱的截面可能是圆,长方形,符合题意;B、圆锥的截面可能是圆,三角形,不符合题意;C、三棱柱的截面可能是三角形,长方形,不符合题意;D、正方体的截面可能是三角形,或四边形,或五边形,或六边形,不符合题意;故选A.考点:截一个几何体.14.B.【解析】试题分析:A、左视图与主视图都是正方形,故A不符合题意;B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选B.考点:简单几何体的三视图.15.A.【解析】试题分析:从几何体左面看得到一列正方形的个数为2,故选A.考点:简单组合体的三视图.16.答案不唯一.见解析.【解析】试题分析:动手实践即可得出结果.试题解析:答案不唯一,如图等等.考点:展开图折叠成几何体.17.见解析【解析】试题分析:(1)利用长方形的性质结合基本图形进而拼凑即可;(2)利用平行四边形的性质结合基本图形进而拼凑即可;3 / 18(3)结合基本图形进而拼凑出符合题意的四边形即可.试题解析:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示:考点:图形的剪拼18.(1)参见解析;(2)5,7.【解析】试题分析:(1),明确俯视图,左视图的意义是画图的关键,俯视图是从物体的上面往下看到的平面图形,左视图是从物体的左面往右看到的平面图形.(2)要保证俯视图和左视图不变,最少第一层有4个立方块,第二层有1个立方块需5个,最多时第二层第一排再填2个,最多需7个.试题解析:(1)从物体的上面往下看到的平面图形第一排3个正方形,第二排1个正方形,从物体的左面往右看到的平面图形左侧竖排有2个正方形,右侧1个正方形.如图所示:(2)要保证俯视图和左视图不变,最少时第一层有4个立方块,第二层有1个立方块,共5个;最多时第一层有4个立方块,第二层第一排有3个立方块,共7个;∴最少5个,最多7个.考点:几何体的三视图.19.(1)甲的硬板纸利用高,原因略;(2)图见解析.【解析】试题分析:(1)利用长方形和圆的面积公式分别求出长方形和圆的面积,然后比较大小即可;(2)根据图形画出长方形硬纸板的形状,关键是使长方形硬纸板的利用率最高(如图). 试题解析:(本题满分8分)(1)解:长方形的长:5a , 长方形的宽:235a ,长方形的面积:5a ·235a=2325a 2≈21.65a 2,左视图 俯视图圆的半径r:r2=2 22233⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛aa=7a2,r=7a≈2.6458a圆的面积:π·(2.6458a)2≈21.98a2.∵21.65a2<21.98a2,∴甲的硬板纸利用高.(2)画图考点:1.长方形的面积公式;2.圆的面积公式.20.见解析【解析】试题分析:分别画出三视图即可试题解析:如图:考点:三视图21.见解析【解析】连结AC,5 / 18∵E 、F 分别是AB 、BC 的中点,(已知)∴EF ∥AC 且EF=21AC (三角形中位线定理),同理可得HG ∥AC 且HG=21AC (三角形中位线定理),∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形(一组对边平行且相等的四边形是平行四边形)22.见解析.【解析】试题分析:根据主视图是从正面观看得出的图形,左视图是从左边看得出的图形,从而将看到的图形画出来即可.试题解析:解:所画图形如下所示:考点:几何体的三视图.23.见解析【解析】试题分析:根据实际物体,主视图有两列,最左边有两个,主视图与左视图相同,俯视图左侧有一个,左侧有两个,直接画出三视图即可,注意三视图摆放的位置.试题解析:如图所示:(每个图形2分)考点:作图-三视图.24.(1)图见解析;(2)①图见解析;②210cm 2.【解析】试题分析:(1)利用三视图的画法分别从不同角度得出即可;(2)①根据长方体的展开图判断出多余一个正方形;②根据长方形和正方形的面积公式分别列式计算即可得解.试题解析:(1)如图所示:①多最下方的正方形;②长方体的表面积=52×2+8×5×4=210(cm2).考点:作图-三视图;几何体的展开图..25.答案见试题解析.【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,4,2,左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.试题解析:考点:1.作图-三视图;2.作图题.26.4.【解析】试题分析:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.考点:正方体相对两个面上的文字.27.球.【解析】7 / 18试题分析:只有球的三视图都是圆,故这个几何体是球.考点:由三视图判断几何体.28.①③④.【解析】试题分析:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.考点:截一个几何体.29.π.【解析】试题分析:圆柱的底面周长=π×1=π.圆柱的侧面积=底面周长×高=π×1=π.故答案为:π.考点:圆柱的计算.30.36.【解析】试题分析:根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可. 试题解析:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.考点:由三视图判断几何体.31.36-【解析】试题分析:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱,∴这个正六边形的底面边长为1,∴侧面积为长为6,宽为6-的长方形,∴面积为:6(6⨯-=36-36-考点:展开图折叠成几何体.32.梦.【解析】试题分析:由展开图可知,“你”字和“梦”字是相对的两个面,所以这个字是梦. 考点:正方体的表面展开图.33.-6.【解析】试题分析:由题意知:x=2,y=4,所以x-2y=2-8=-6.考点:正方体的平面展开图.34.16【解析】试题分析:设截取直径为4cm 的圆钢xcm ,则根据体积相等可列方程22442x ππ⨯=,解得x=16.考点:一元一次方程的应用.35.-2014.【解析】试题分析:依题意得:a=﹣2013,b=﹣2014,c=﹣2015;∴a﹣(b﹣c)=﹣2013﹣(﹣2014+2015)=﹣2014.故答案为:﹣2014.考点:正方体相对两个面上的文字.36.功【解析】试题分析:因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以根据这一特点可知,与“祝”字相对的字是功.考点:正方体的表面展开图.37.9【解析】试题分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.在Rt△ABC中,AC==10,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9.故答案为:9.考点:1.三角形中位线定理;2.矩形的性质.2238. 5.【解析】试题分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数。

相关文档
最新文档