高中数学空间几何体考试题
高二数学空间几何体试题答案及解析
高二数学空间几何体试题答案及解析1.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20B.15C.12D.10【答案】D【解析】由图可知对于上底面的每一个顶点,在下底面有两个顶点与其连线可成为五棱柱的对角线,故五棱柱的对角线的条数共有条.【考点】正五棱柱的几何特征.2.顶点在同一球面上的正四棱柱体ABCD-A1B1C1D1中,,,则两点间的球面距离为()A.B.C.D.【答案】B【解析】已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高,它的八个顶点都在同一球面上,那么,正四棱柱ABCD-A1B1C1D1的对角线长为球的直径,中点O为球心.正四棱柱对角线AC1=2,则球的半径为1.根据题中所给数据,可得∠AOC=,则A,C两点的球面距离为。
选B.【考点】正四棱柱及其外接球的几何特征,球面距离的概念。
点评:简单题,关键是认识到:正四棱柱ABCD-A1B1C1D1的八个顶点都在同一球面上,得到正四棱柱ABCD-A1B1C1D1的对角线长即为球的直径。
3.设长方体的三条棱长分别为、、,若长方体所有棱长度之和为,一条对角线长度为,体积为,则等于( ).A.B.C.D.【答案】A【解析】设长方体的长、宽、高分别为a,b,c,由题意可知,a+b+c=6…①,abc=2…②,a2+b2+c2=25…③,由①式平方-②可得ab+bc+ac=…④,④÷②得: =,故选A【考点】本题考查了长方体的有关知识点评:此类问题主要考查了点、线、面间的距离计算,考查空间想象能力、运算能力,是基础题.4.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于.【答案】【解析】设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE=,∴两圆心的距离O1O2=【考点】本题考查了球的有关概念,两平面垂直的性质.点评:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.5.(本题12分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,⑵证:平面A1CB⊥平面BDE;⑵求A1B与平面BDE所成角的正弦值。
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
高中数学-空间几何体测试题(含答案)
高中数学-空间几何体测试题第I卷(选择题)1.在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴的对称点坐标为( ) A.(4,0,6)B.(﹣4,7,﹣6)C.(﹣4,0,﹣6)D.(﹣4,7,0)2.圆锥的母线长为2,侧面展开图是一个半圆,则此圆锥的表面积为( )A.6πB.5πC.3πD.2π3.如图所示,已知正方体ABCD﹣A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,另一端点N在正方形ABCD内运动,则MN的中点的轨迹的面积为( )A.4πB.2πC.πD.4.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有( )A.6块B.7块C.8块D.9块5.把球的大圆面积扩大为原来的2倍,那么体积扩大为原来的( )A.2倍B.2倍C.倍D.36.已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.7.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论错误的是( )A .DC 1⊥D 1PB .平面D 1A 1P ⊥平面A 1APC .∠APD 1的最大值为90° D .AP+PD 1的最小值为22+8.三棱锥O ﹣ABC 中,OA ⊥OB ,OB ⊥OC ,OC ⊥OA ,若OA=OB=a ,OC=b ,D 是该三棱锥外部(不含表面)的一点,则下列命题正确的是( )①存在无数个点D ,使OD ⊥面ABC ;②存在唯一点D ,使四面体ABCD 为正三棱锥;③存在无数个点D ,使OD=AD=BD=CD ;④存在唯一点D ,使四面体ABCD 有三个面为直角三角形.A .①③B .①④C .①③④D .①②④9.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm ,如不计容器的厚度,则球的体积为( )A .33500cm πB .33866cm πC .331372cm πD .332048cm π 10.(原创)将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )(A )错误!未找到引用源。
高三数学空间几何体试题答案及解析
高三数学空间几何体试题答案及解析1.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度观察,结果如图所示.若记3的对面的数字为,4的对面的数字为,则 ( )A.3B.7C.8D.11【答案】C【解析】从图中可看出,与4相邻的是1、6、3、5,故与4相对的是2;与3相邻的是1、2、4、5,故与3相对的是6,所以.【考点】空间几何体.2.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度观察,结果如图所示.若记3的对面的数字为,4的对面的数字为,则 ( )A.3B.7C.8D.11【答案】C【解析】从图中可看出,与4相邻的是1、6、3、5,故与4相对的是2;与3相邻的是1、2、4、5,故与3相对的是6,所以.【考点】空间几何体.3.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为.【答案】81【解析】假设矩形的一边为(),则另一边为.以x长的变为轴旋转成的圆柱的侧面积为.所以当时,.【考点】1.旋转体的知识.2.函数的最值问题.4.已知四面体的外接球的球心在上,且平面,,若四面体的体积为,则该球的表面积为()A.B.C.D.【答案】D【解析】如下图所示,由于四面体的外接球的球心在上,则为其外接球的一条直径,因此,设球的半径为,在中,,由勾股定理得,,由于为球上一点,则,且平面,所以,,所以球的表面积为,故选D.【考点】1.勾股定理;2.三角形的面积;3.三棱锥的体积;4.球的表面积5.如图所示,在正方体ABCD A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【答案】D【解析】由于C1D1与A1B1平行,MN与C1D1是异面直线,所以MN与A1B1是异面直线,故选项D错误.6.如图,正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在平面BCDE 上的射影为D点,则对翻折后的几何体有如下描述:(1)AB与DE所成角的正切值是.(2)三棱锥B-ACE的体积是a3.(3)AB∥CD.(4)平面EAB⊥平面ADE.其中正确的叙述有(写出所有正确结论的编号).【答案】(1)(2)(4)【解析】翻折后得到的直观图如图所示.AB与DE所成的角也就是AB与BC所成的角,即为∠ABC.因为AD⊥平面BCDE,所以平面ADC⊥平面BCDE. 又因为四边形BCDE为正方形,所以BC⊥CD.可得BC⊥平面ACD.所以BC⊥AC.因为BC=a,AB=BC=a,则AC== a.在Rt△ABC中,tan∠ABC==.故(1)正确;由AD==a,可得VB-ACE =VA-BCE=×a2·a=,故(2)正确;因为AB与CD异面,故(3)错;因为AD⊥平面BCDE,所以平面ADE⊥平面BCDE.又BE⊥ED,所以BE⊥平面ADE,故平面EAB⊥平面ADE,故(4)正确.7.如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.(Ⅰ)证明:平面ADE∥平面BCF;(Ⅱ)求二面角D-AE-F的正切值.【答案】(Ⅰ)利用线线平行,则面面平行证明,即可得证;(Ⅱ).【解析】(Ⅰ)先证明四边形为平行四边形得,又,所以平面平面;(Ⅱ)建立空间直角坐标系,先求出平面的一个法向量,再求出平面的一个法向量,然后利用公式即可求出余弦值为,进而求出正切值.试题解析:(Ⅰ)取的中点,的中点,连接.则,又平面平面,所以平面,同理平面,所以又易得,所以四边形为平行四边形,所以,又,所以平面平面. (6分)(Ⅱ)建立如图所示的空间直角坐标系,设,则,,,,,.设平面的一个法向量是,则,令,得. (9分)设平面的一个法向量是,则令,得.所以,易知二面角为锐二面角,故其余弦值为,所以二面角的正切值为. (12分)【考点】1.平面与平面垂直的判定方法;2.二面角的求法.8.已知某四棱锥的三视图,如图。
高二数学空间几何体试题答案及解析
高二数学空间几何体试题答案及解析1.过正三棱柱底面一边所作的正三棱柱的截面是()A.三角形B.三角形或梯形C.不是梯形的四边形D.梯形【答案】B【解析】本题考查线线平行的相关知识,该截面与底面一边的对棱相交时,截面是三角形,与另一底面相交时是梯形。
2.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,,,若,分别是棱,上的点,且,,则异面直线与所成角的余弦值为()A.B.C.D.【答案】D【解析】以的中点为坐标原点建立空间直角坐标系如图所示,则,,,,,,设,所成的角为,则.【考点】线面角.3.在正三棱柱中,若,点是的中点,则点到平面的距离是()A.1B.C.D.2【答案】B【解析】以为轴,以为轴,建立如图所示的空间直角坐标系,因为正三棱柱中,若,点是的中点,所以,所以,设平面的法向量为,因为,所以,所以,所以点到平面的距离是,故选B.【考点】点到平面的距离的求解.【方法点晴】本题主要考查了点到平面的距离问题,其中解答中涉及到空间向量的应用、平面法向量的求解、点、线、面的位置关系的判定等知识点综合考查,解答中要认真审题,合理地运用空间向量法进行合理求解,其中向量法是求解点到平面距离问题的一种常用方法,着重考查了学生的推理与运算能力,属于中档试题.4.有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为()A.B.C.D.【答案】C【解析】由三视图可知,上面是半径为的半球,体积为,下面是底面积为1,高为1的四棱锥,体积,故选C.【考点】根据三视图求几何体的体积【名师】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面地考查了考生的识图用图能力、空间想象能力、运算求解能力等.5.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的的值是()A.B.C.D.【答案】A【解析】该几何体是四棱锥,,.【考点】三视图,棱锥的体积.6.一个几何体的三视图如上图所示,则这个几何体的体积为()A.B.C.D.【答案】A【解析】分析三视图可知,该几何体为半个圆锥与四棱锥的组合,故其体积,故选A.【考点】1.三视图;2.空间几何体的体积.7.如图,三棱柱中,,,.(1)证明:;(2)若,,求三棱柱的体积.【答案】(1)证明见解析;(2).【解析】(1)取的中点O连接、、,由得,由是等边三角形得,故平面,于是;(2)根据等边三角形性质求出,,由勾股定理逆定理得出,求出,于是三棱柱的体积,故可求得三棱锥的体积.试题解析:(1)取的中点O,连接、、,因为,所以,由于, ,故为等边三角形,所以.因为,所以平面.又平面,故.(2)由题设知:与都是边长为2的等边三角形,∵是边长为2的等边三角形,所以,又,则,故又∵且,所以平面,为棱柱的高,又的面积,故三棱柱的体积,所以三棱锥的体积为1.8.五边形是由一个梯形与一个矩形组成的,如图甲所示,B为AC的中点,.先沿着虚线将五边形折成直二面角,如图乙所示.(Ⅰ)求证:平面平面;(Ⅱ)求图乙中的多面体的体积.【答案】(1)证明详见解析;(2).【解析】本题主要考查线线垂直、线面垂直、面面垂直、锥体的体积等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑思维能力、计算能力.第一问,由四边形为矩形,得,再由直二面角,得,再由勾股定理得,利用线面垂直的判定,得,最后利用面面垂直的判定,得平面平面;第二问,把图乙中的多面体拆成两个几何体,一个是锥体,一个是锥体,利用锥体体积公式分别计算,再求和即可.试题解析:(1)证明:四边形为矩形,故,又由于二面角为直二面角,故,故,由线段易知,,即,因此,所以平面;(5分)(2)解:连接CN,过作,垂足为,,又,所以平面平面,且平面,,,∴,此几何体的体积.(12分)【考点】线线垂直、线面垂直、面面垂直、锥体的体积.9.五边形是由一个梯形与一个矩形组成的,如图甲所示,B为AC的中点,.先沿着虚线将五边形折成直二面角,如图乙所示.(Ⅰ)求证:平面平面;(Ⅱ)求图乙中的多面体的体积.【答案】(1)证明详见解析;(2).【解析】本题主要考查线线垂直、线面垂直、面面垂直、锥体的体积等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑思维能力、计算能力.第一问,由四边形为矩形,得,再由直二面角,得,再由勾股定理得,利用线面垂直的判定,得,最后利用面面垂直的判定,得平面平面;第二问,把图乙中的多面体拆成两个几何体,一个是锥体,一个是锥体,利用锥体体积公式分别计算,再求和即可.试题解析:(1)证明:四边形为矩形,故,又由于二面角为直二面角,故,故,由线段易知,,即,因此,所以平面;(5分)(2)解:连接CN,过作,垂足为,,又,所以平面平面,且平面,,,∴,此几何体的体积.(12分)【考点】线线垂直、线面垂直、面面垂直、锥体的体积.10.如图,在三棱柱中,平面,为正三角形,,为的中点.(1)求证:平面平面;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】(Ⅰ)要证面面垂直,就要证线面垂直,由于其中一个面是正三棱柱的一个侧面,它的垂线在图中易证得有一条是,而是平面内的直线,因此可得面面垂直;(Ⅱ)三棱锥的体积,可选为底面,高为,也可选为底面,高为.由体积公式可得.试题解析:(Ⅰ)证明:因为底面,所以因为底面正三角形,是的中点,所以因为,所以平面因为平面平面,所以平面平面(Ⅱ)由(Ⅰ)知中,,所以所以【考点】面面垂直的判断,三棱锥的体积.11.在三棱柱中,平面,其垂足落在直线上.(1)求证:;(2)若为的中点,求三棱锥的体积.【答案】(1)见解析(2)【解析】(1)首先根据直三棱柱可得,再由条件平面易得,从而根据线面垂直的判定可证平面,即有;(2)根据条件中给出的数据可得,因此可得,再由为的中点,因此可将转化为求,从而可得.试题解析:(1)∵三棱柱为直三棱柱,∴平面,又∵平面,∴,∵平面,且平面,∴,又∵平面,平面, , ∴平面,又∵平面,∴; 5分(2)在直三棱柱中,,∵平面,其垂足落在直线上,∴,在中,, , ,,在中,, 8分由(1)知平面,平面,从而,,∵为的中点,, 10分∴. 12分【考点】1.线面垂直的性质与判定;2.空间几何体的体积.12.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()A.B.C.D.【答案】B【解析】因为相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).所以其正视图和侧视图是一个圆,因为俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,所以俯视图是有条对角线且为实线的正方形,故选B.【考点】1、阅读能力及空间想象能力;2、几何体的三视图.13.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A.B.C.D.【答案】D【解析】几何体为一个四棱锥与一个半圆锥的组合体,四棱锥的高为,底面为正方形;半圆锥高为,底面为半径为1的半圆,因此体积为,选D.【考点】三视图【名师】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】D【解析】被截去的四棱锥的三条可见棱中,在两条为长方体的两条对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D符合【考点】简单空间图形的三视图15.若一个圆锥的底面半径为,侧面积是底面积的倍,则该圆锥的体积为__________.【答案】【解析】由侧面积是底面积的倍得:因此高为,圆锥的体积为【考点】圆锥的体积16.如图,棱长为1的正方体中,是侧面对角线,上一点,若是菱形,则其在底面上投影的四边形面积()A.B.C.D.【答案】B【解析】在棱长为的正方体中,,设,则,解得,即菱形的边长为,则在底面上的投影四边形是底边为,高为的平行四边形,其面积为,故选B.【考点】平面图形的投影及其作法.17.棱长为2的正方体外接球的表面积为____________【答案】【解析】由题意得,正方体与外接球之间满足正方体的对角线长即为球的直径,所以可得,即,所以球的表面积为.【考点】球的组合体及球的表面积公式.18.棱长为2的正方体外接球的表面积为____________【答案】【解析】由题意得,正方体与外接球之间满足正方体的对角线长即为球的直径,所以可得,即,所以球的表面积为.【考点】球的组合体及球的表面积公式.19.平面截球的球面所得圆的半径为1,球心到平面的距离为,则球的表面积为()A.B.C.D.【答案】B【解析】由题球心到平面的距离为,可得;,则球的表面积为;,,故选B【考点】球的截面性质及表面积.20.如图为一简单组合体,其底面为正方形,平面,,且,为线段的中点.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.【答案】(1)见解析(2)【解析】(Ⅰ)要证线线垂直,一般先证线面垂直,注意到底面,考虑证明与平面平行(或其内一条直线平行),由于是中点,因此取中点(实质上是与的交点),可证是平行四边形,结论得证;(Ⅱ)求三棱锥的体积,采用换底,即,由已知可证就是三棱锥的高,从而易得体积.试题解析:(Ⅰ)连结与交于点,则为的中点,连结,∵为线段的中点,∴且又且∴且∴四边形为平行四边形,∴, 即.又∵平面, 面,∴,∵, ∴,(Ⅱ)∵平面,平面,∴平面平面∵,平面平面,平面,∴平面.三棱锥的体积【考点】线面垂直的判定与性质,三棱锥的体积.。
必修空间几何体练习题及答案
必修空间几何体练习题及答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]必修2第一章《空间几何体》单元测试题班别 座号 姓名__________一、选择题1、 图(1)是由哪个平面图形旋转得到的( )A B C D2、过圆锥高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( ):2:3 :3:5 C.1:2:4 D1:3:93、棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 434、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( )A. 1:3B. 1:1C. 2:1D. 3:15、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ):27 B. 2:3 C.4:9 D. 2:96、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积和体积为: ( )πcm 2,12πcm 3 πcm 2,12πcm 3πcm 2,36πcm 3 D.以上都不正确7、一个球的外切正方体的全面积等于6 cm 2,则此球的体积为 ( )A.334cm πB. 386cm π C. 361cm π D. 366cm π 8、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是( )A . 28cm πB .212cm πC .216cm πD .220cm π正视 侧9 、如右图为一个几何体的三视图,其中,俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) (A)6+3 (B)24+3 (C)24+23 (D)32二、填空题10. 长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为________.11、球的半径扩大为原来的2倍,它的体积扩大为原来的 ______ 倍.12、一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是_________.三、解答题13.将圆心角为1200面积为3 的扇形,作为圆锥的侧面,求圆锥表面积和体积*14、如图,在四边形ABCD 中,,,,,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.参考答案:;;;;;;;; .C A A 1B 1C 1 正视图 侧视图 俯视图; ; :115.解:l=3,R=1;S=4π;V=322π. 16. S=π)2460(+, V=148/3π。
高中几何体试题及答案解析
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
高中数学必修2第一章空间几何体综合练习题及答案
AB D E F第一章 空间几何体综合型训练一、选择题1. 如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . 22+B . 221+ C . 222+ D . 21+ 2. 半径为R 的半圆卷成一个圆锥,则它的体积为( )A . 33RB . 33RC . 35RD . 35R 3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A. 28cm π B. 212cmπ C. 216cm π D. 220cm π 4. 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 35. 棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A . 1:7 B. 2:7 C. 7:19 D. 5:166. 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A . 92B. 5 C. 6 D. 152 二、填空题1. 圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________.2. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________.3. 等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4. 若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________.5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________.6. 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.三、解答题1. 有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2. 已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.参考答案图(1) 图(2)一、选择题1. A恢复后的原图形为一直角梯形1(11)222S =⨯=+ 2. A2312,,,22324R r R r h V r h R πππ===== 3. B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ===4. A (3)84,7S r r l r ππ=+==侧面积5. C 中截面的面积为4个单位, 12124746919V V ++==++ 6. D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯= 二、填空题1. 6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2. 16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯= 3. <设334,3V R a a R π====2264S a S R π=====<正球4.从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5. (1)4 (2)圆锥6.设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =, 而22S r r r a ππ=+⋅=圆锥表,即23,r a r π===,即直径为3π三、解答题1.解:'1(),3V S S h h =+= 319000075360024001600h ⨯==++数学试卷及试题2.解:2229(25)(25),7l lππ+=+=。
高中数学必修二第一章《空间几何体》单元考试题(含答案)
高中数学必修二第一章《空间几何体》单元测试(时间90分钟,满分100分)一、选择题(本大题共10小题,每小题4分,共40分) 1.下列说法中正确的是( ) A.棱柱的侧面可以是三角形 B.正方体和长方体都是特殊的四棱柱 C.所有几何体的表面都能展成平面图形 D.棱柱的各条棱都相等 2.下列命题正确的是( ) A.线段的平行投影可能是一点 B.圆的平行投影是圆 C.圆柱的平行投影是圆D.圆锥的平行投影是等腰三角形3.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.21 B.41C.1D.12939 4.圆锥的高扩大到原来的2倍,底面半径缩短到原来的21,则圆锥体积( ) A.缩小到原来的一半 B.扩大到原来的两倍 C.不变 D.缩小到原来的61 5.如图所示,水平放置的圆柱形物体的三视图是( )6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,且四面体的四个顶点在一个球面上,则这个球的表面积为( ) A.16πB.32πC.36πD.64π7.如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B =∥C 1D 1,2321111==D C B A ,A 1D 1=1,则四边形ABCD 的面积是( ) A.10B.5C.25D.2108.如图,在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图所示,三视图的几何体是( )A.六棱台B.六棱柱C.六棱锥D.六边形10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.3cm 34000 B.3cm 38000 C.2 000 cm 3D.4 000 cm 3二、填空题(本大题共4小题,每小题4分,共16分)11.圆锥的轴截面是一个正三角形,则它的侧面积是底面积的_____________倍. 12.如图是一个空间几何体的三视图,则该几何体为___________.13.设矩形边长分别为a ,b (a >b ).将其按两种方式卷成高为a 和b 的圆柱筒,以其为侧面的圆柱的体积分别为V a 和V b ,则V a____________V b .14.正方体的表面积是a 2,它的顶点都在球面上,则这个球的表面积是__________. 三、解答题(本大题共4小题,共44分)15.(10分)已知圆台外切于球,圆台的侧面积和球面积之比为4∶3,求圆台的体积和球的体积比.16.(10分)如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.17.(12分)根据下图所给出的一个物体的三视图,求出该物体的体积和表面积.18.(12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h也相等,用a将h表示出来.参考答案1解析:由棱柱的特点,知侧面均为平行四边形,但底面可为三角形;其所有棱长不一定相等,但侧棱相等,所以A 、D 均错.又知球的表面不能展成平面图形,所以C 错. 答案:B 2答案:A3解析:由题意设上、下底面半径分别为r 、4r ,截面半径为x ,圆台的高为2h ,则有213=-r r x ,∴r x 25=. ∴12939)164(31)(312222=++++=r rx x h x rx r h V V ππ下上. 答案:D4解析:原变原V h r V h r V 212)2(31,3122=⋅⋅=⋅=ππ.答案:A5解析:水平放置的圆柱的正视图和俯视图都是矩形,侧视图为圆形. 答案:A6解析:将四面体补形为长方体,此长方体的对角线即为球的直径, ∴(2r )2=1+6+9=16,则S 球=4πr 2=π(2r )2=16π. 答案:A 7答案:B 8答案:B9解析:由俯视图可知,底面为六边形,又由正视图和侧视图知,该几何体为六棱锥. 答案:C10解析:由三视图可得几何体如下图所示,面EBC ⊥面ABCD ,四边形ABCD 为边长是20的正方形,棱锥高为20.∴)cm (3800020203132=⨯⨯=V .答案:B11解析:由题意可知l =2r , ∴222221221r r r l r S πππ=⋅⋅⋅=⋅⋅⋅=侧, S 底=πr 2.∴2222==r r S S ππ底侧. 答案:2 12答案:六棱台13解析:πππ4)2(22ab a b V a =⋅=,πππ4)2(22ba b a V b =⋅=.又∵a >b ,∴V a <V b . 答案:<14解析:设正方体的边长为b ,则R b 23=,2223)23(44b b R S πππ=⋅==球 , 又a 2=6b 2,∴22a S π=球.答案:22a π15解:设球的半径为r ,圆台的上、下底面圆的半径分别为r 1、r 2, 连结OD ,OC ,OG ,则OD ⊥O C,∴r 2=DG ·GC =DE ·CF =r 1·r 2,S 圆台侧∶S 球=[π(r 1+r 2)·DC ]∶4πr 2=4∶3. 又∵DC =r 1+r 2, ∴(r 1+r 2)2∶4r 2=4∶3. ∴(r 12+r 22+2r 1·r 2)∶4r 2=4∶3. ∴22221310r r r =+.∴2222121342)(31r r r rr r V V ππππ⋅++=球圈台 613231022222222121=+=++=r r r r r r r r . 16分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆台,上部是一个圆锥,并且圆锥的底面与圆台的上底面重合,我们可以先画出下部的圆台,再画出上部的圆锥.画法:(1)画轴.如图(1),画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.(2)画圆台的两底面.利用斜二测画法,画出底面⊙O ,在z 轴上截取OO′,使OO′等于三视图中的相应高度.过O′作Ox 的平行线O′x′,Oy 的平行线O′y′,利用O′x′与O′y′画出上底面⊙O′(与画⊙O 一样).(3)画圆锥的顶点.在Oz 上截取点P ,使PO′等于三视图中的相应高度.(4)成图.连结P A′、PB′、A′A 、B′B ,整理得到三视图表示的几何体的直观图,如图(2).17解:根据三视图可知原立体图形为长方体,由三视图中的数据,还原出原长方体如下图.体积V =4×5×3=60;表面积S =2(4×5+3×4+3×5)=94. 18解:32hh V ⋅=π圆锥液,h aV ⋅⋅=2)2(π圆柱液,由已知得h a h 23)2(3ππ=,∴a h 23=.。
高中数学-《空间几何体》单元测试卷
高中数学-《空间几何体》单元测试卷一、选择题(每题5分)1.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线2.一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π3.如图是由哪个平面图形旋转得到的()A.B.C.D.4.一个圆锥的母线长为20cm,母线与轴的夹角为30°,则圆锥的高为()A.B.C.20cm D.10cm5.(5分)已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是()A.16 B.16或64 C.64 D.都不对6.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:17.(5分)圆锥的轴截面是等腰直角三角形,侧面积是16π,则圆锥的体积是()A.B.C.64πD.128π8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.B.C.D.9.一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.28010.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.二、填空题(每题5分)11.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为.12.半径为R的半圆卷成一个圆锥,则它的体积为.13.正方体的内切球和外接球的半径之比为.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为厘米.15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.三、解答题16.(2014秋•瓯海区校级期中)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长10cm.求:圆锥的母线长.17.画出下列空间几何体的三视图.18.(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.19.(2010秋•海南校级期末)将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.20.一个空间几何体的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图所示,AA1=3.(1)请画出它的直观图(不要求写出画法);(2)求这个几何体的表面积和体积.21.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.参考答案与试题解析一、选择题(每题5分)1.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线【考点】棱台的结构特征;棱柱的结构特征;棱锥的结构特征.【专题】空间位置关系与距离.【分析】根据圆锥的几何特征,可判断A;根据棱柱的几何特征,可判断B;根据棱台的几何特征,可判断C;根据圆台的几何特征,可判断D.【解答】解:圆锥的侧面展开图是一个扇形,故A错误;棱柱即是两个底面全等且平行,其它各面的交线均互相平行的多面体,故B错误;棱台是由一个大棱锥被一个平行于底面的平面所截,夹在截面与底面的部分,故任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥,故C正确;通过圆台侧面上一点,有且只有一条母线,故D错误;故选:C【点评】本题考查的知识点是棱锥,棱台,棱柱,圆台,圆锥,圆柱的几何特征,难度不大,属于基础题.2.一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π【考点】由三视图求面积、体积.【专题】计算题.【分析】由已知中的三视图,我们可以确定该几何体为圆锥,根据正视图与侧视图都是边长为2的正三角形,求出圆锥的底面半径和母线长,代入圆锥侧面积公式,即可得到答案.【解答】解:由已知中三视图可得该几何体为一个圆锥又由正视图与侧视图都是边长为2的正三角形故底面半径R=1,母线长l=2则这个几何体的侧面积S=πRl=2π故选B【点评】本题考查的知识点是由三视图求面积,其中根据已知中的三视图判断出几何体的形状及圆锥的底面半径和母线长是解答本题的关键.3.如图是由哪个平面图形旋转得到的()A.B.C.D.【考点】旋转体(圆柱、圆锥、圆台).【专题】阅读型.【分析】利用所给的几何体是由上部的圆锥和下部的圆台组合而成的,从而得到轴截面的图形.【解答】解:图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选D.【点评】本题考查旋转体的结构特征,旋转体的轴截面的形状.4.一个圆锥的母线长为20cm,母线与轴的夹角为30°,则圆锥的高为()A.B.C.20cm D.10cm【考点】棱锥的结构特征.【专题】计算题.【分析】通过圆锥的母线长为20cm,母线与轴的夹角为30°,求出圆锥的高即得.【解答】解:由题设条件可知,在直角三角形中,圆锥的高:h=20cos30°=20×=.故选A.【点评】本题是基础题,考查圆锥的几何体的特征,正确利用圆锥的母线,底面半径构成的直角三角形,是解题的关键,考查计算能力.5.(5分)已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是()A.16 B.16或64 C.64 D.都不对【考点】平面图形的直观图.【专题】计算题.【分析】应分直观图中的平行四边形哪条边为4,两种情况,由斜二测画法规则可知,原正方形的边长可为4或8,求其面积即可.【解答】解:由斜二测画法规则可知,原正方形的边长可为4或8,故其面积为16或64.故选B【点评】本题考查对斜二测画法的理解,属基础知识的考查.6.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:1【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】由柱体,锥体的体积公式,代入计算即可.【解答】解:设圆柱,圆锥的底面积为S,高为h,则由柱体,锥体的体积公式得:故选D.【点评】本题考查柱体,锥体体积公式的直接应用,是基础题目.7.(5分)圆锥的轴截面是等腰直角三角形,侧面积是16π,则圆锥的体积是()A.B.C.64πD.128π【考点】旋转体(圆柱、圆锥、圆台).【专题】空间位置关系与距离.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形得l=r,代入S侧=πrl求出r和l,再求出圆锥的高,代入体积公式计算.【解答】解:设圆锥的底面半径为r,母线为l,∵圆锥的轴截面是等腰直角三角形,∴2r=,即l=r,由题意得,侧面积S侧=πrl==16,解得r=4,∴l=4,圆锥的高h==4,∴圆锥的体积V=Sh==,故选:A.【点评】本题考查圆锥的体积、侧面积,以及轴截面问题,属于基础题.8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.B.C.D.【考点】棱柱、棱锥、棱台的侧面积和表面积;旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆柱底面积半径为r,求出圆柱的高,然后求圆柱的全面积与侧面积的比.【解答】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2=.故选A.【点评】本题考查圆柱的侧面积、表面积,考查计算能力,是基础题.9.一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.280【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】三视图很容易知道是两个长方体的组合体,得出各个棱的长度.即可求出组合体的表面积.【解答】解:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【点评】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.10.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【考点】简单空间图形的三视图.【专题】计算题.【分析】直接利用三视图的画法,画出几何体的左视图即可.【解答】解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线.如图B.故选B.【点评】本题考查几何体的三视图的画法,考查作图能力.二、填空题(每题5分)11.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为28.【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】直接利用棱台的体积公式,求出棱台的体积.【解答】解:故答案为:28.【点评】本题考查棱台的体积,考查计算能力,是基础题.12.半径为R的半圆卷成一个圆锥,则它的体积为.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆锥底面圆的半径为r,高为h,根据圆锥是由半径为R的半圆卷成,求出圆锥的底面半径与高,即可求得体积.【解答】解:设圆锥底面圆的半径为r,高为h,则2πr=πR,∴∵R2=r2+h2,∴∴V=×π××=故答案为:【点评】本题考查圆锥的侧面展开图,考查圆锥的体积公式,属于基础题.13.正方体的内切球和外接球的半径之比为.【考点】球内接多面体.【专题】计算题.【分析】设出正方体的棱长,利用正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,分别求出半径,即可得到结论.【解答】解:正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a.a=2r内切球,r内切球=a=2r外接球,r外接球=,r内切球:r外接球=.故答案为:1:【点评】本题是基础题,本题的关键是正方体的对角线就是外接球的直径,正方体的棱长是内切球的直径,考查计算能力.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为12厘米.【考点】球的体积和表面积.【专题】计算题.【分析】根据圆柱水面升高的高度,求出水的体积,就是球的体积,然后求出球的半径.【解答】解:(cm)故答案为:12【点评】本题是基础题,考查圆柱的体积与球的体积的关系,考查计算能力,是送分题.15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】利用正方体的体积减去8个三棱锥的体积,求解即可.【解答】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.三、解答题16.(2014秋•瓯海区校级期中)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长10cm.求:圆锥的母线长.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆锥的母线长为l,圆台上、下底半径为r,R.利用三角形相似,求出圆锥的母线长.【解答】解:设圆锥的母线长为l,圆台上、下底半径为r,R.∵∴∴答:圆锥的母线长为cm.【点评】本题考查圆锥的结构特征,考查计算能力,是基础题.17.画出下列空间几何体的三视图.【考点】简单空间图形的三视图.【专题】作图题.【分析】根据三视图的画法,直接画出(1)圆锥几何体的三视图;(2)下部是正六棱柱,上部是正六棱锥的三视图即可.【解答】解:(1)的三视图如下:(2)的三视图如下:【点评】三视图的画出,注意长对正,宽相等,高平齐的原则,同时注意看得到的为实线,看不到的为虚线,考查作图能力.18.(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;图表型.【分析】由已知中底面半径为2母线长为4的圆锥中内接一个高为的圆柱,我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案.【解答】解:设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S,底面半径为2母线长为4的圆锥的高为=2,则圆柱的上底面为中截面,可得r=1 (2分)∴2,∴.(6分)【点评】本题考查的知识点是圆柱的表面积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.19.(2010秋•海南校级期末)将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设出圆锥的母线与底面半径,根据所给的圆锥的侧面积和圆心角,做出圆锥的母线长与底面半径,利用表面积公式和体积公式做出结果.【解答】解:设圆锥的母线为l,底面半径为r,∵3π=∴l=3,∴120°=,∴r=1,∴圆锥的高是∴圆锥的表面积是πr2+πrl=4π圆锥的体积是=【点评】本题考查圆锥的表面积和体积,解题时注意圆锥的展开图与圆锥的各个量之间的关系,做好关系的对应,本题是一个易错题.20.一个空间几何体的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图所示,AA1=3.(1)请画出它的直观图(不要求写出画法);(2)求这个几何体的表面积和体积.【考点】由三视图求面积、体积.【专题】图表型;空间位置关系与距离.【分析】(1)根据几何体的三视图判断该几何体的形状,就可画出直观图.(2)由几何体的三视图可判断这个几何体是正三棱柱,所以体积是底面积乘高.根据三视图中所给数据,就可求出底面三角形的面积和高,进而求出体积及表面积.【解答】解:(1)这个几何体的直观图如图所示:(2)这个几何体是直三棱柱.由于底面正△ABC的边长为3,侧棱长BB′=CC′=AA′=3故所求全面积S=2S△ABC+3S BB'C'C=2×+3×3×3=+27;体积V=Sh==.【点评】本题考察了三视图、直观图的特点及其画法,直三棱柱体积的计算,需要有较强的空间想象力21.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.求出圆台体积减去圆锥体积,即可得到几何体的体积.【解答】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=πr22+π(r1+r2)l2+πr1l1===.体积V=V圆台﹣V圆锥=[25π++4π]×4﹣×2π×2×2=×39π×4﹣×8π=.所求表面积为:,体积为:.【点评】本题是基础题,考查旋转体的表面积与体积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.。
高三数学空间几何体试题
高三数学空间几何体试题1.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1D.【答案】C【解析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.2.如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(1)求证:平面AA1B1B⊥平面BB1C1C;(2)若AB=2,求三棱柱ABC—A1B1C1的体积.【答案】(1)见解析(2)2【解析】(1)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AA1B1B,所以平面AA1B1B⊥平面BB1C1C.(2)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(1)知,CO⊥平面AA1B1B,且CO=BC=AB=.连结AB1,则VC—ABB1=S△ABB1·CO=AB2·CO=.因为VB1—ABC=VC—ABB1=VABC—A1B1C1=,故三棱柱ABC—A1B1C1的体积VABC—A1B1C1=2.3.已知四棱锥V-ABCD,底面ABCD是边长为3的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是________.【答案】27【解析】可证四个侧面都是直角三角形,其面积S=2××3×4+2××3×5=27.4.某几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】D【解析】由三视图还原图像,得原图是两个一样的圆锥底面对在一起了,所以.【考点】三视图.5.已知圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.现将轴截面绕着轴逆时针旋转后,边与曲线相交于点,设的长度为,则的图象大致为()【答案】A【解析】根据题意,由于圆柱底面半径为1,高为,是圆柱的一个轴截面.动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线,那么可知轴截面绕着轴逆时针旋转后,随着角的增大可知BP的变化时匀速增大的,因此选A.【考点】圆柱的展开图点评:主要是考查了圆柱体侧面展开图的运用,属于基础题。
(word版)高中数学必修2第一章空间几何体试题(含答案),文档
高一数学必修2第一章复习题一、选择题:〔每题5分,共50分〕1.以下图中的几何体是由哪个平面图形旋转得到的〔〕A B C D2.假设一个几何体的三视图都是等腰三角形,那么这个几何体可能是〔〕A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台3.圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,那么V1:V2=〔〕A.1:3B.1:1C. 2:1D.3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三局部的面积之比为〔〕:2:3 :3:5 :2:4 :3:95.棱长都是1的三棱锥的外表积为〔〕A. 3B. 2 3 3 D. 4 36.如果两个球的体积之比为8:27,那么两个球的外表积之比为〔〕A.8:27B.2:3C.4:9D.2:97.有一个几何体的三视图及其尺寸如下〔单位cm〕,那么该几何体的外表积及体积为:〔〕56俯视图主视图侧视图πcm2,12πcm3πcm2,12πcm3πcm2,36πcm3 D.以上都不正确8.以下几种说法正确的个数是〔〕①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行-1-④线段的中点在直观图中仍然是线段的中点A.1B.2C.3D.49.正方体的内切球和外接球的半径之比为〔〕A.3:1B.3:2C.2:3D.3:310.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4.再将它们卷成两个圆锥侧面,那么两圆锥的高之比为〔〕A.3∶4B.9∶16C.27∶64D.都不对请将选择题的答案填入下表:题号12345678910答案二、填空题:〔每题6分,共30分〕11.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
12.图〔1〕为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图〔2〕中的三视图表示的实物为_____________。
高中几何体试题及答案大全
高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。
求证:直线l与平面x - 2y + z = 6平行。
答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。
接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。
试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。
答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。
由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。
求椭圆的焦点坐标。
答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
空间几何体测试题及答案.doc
空间几何体测试题(满分100分)一、选择题(每小题6分,共54分)1.柯一个几何体的三视阁如下阁所示,这个几何体应是一个(A.棱台B.棱锥C.棱柱D.都不对3. 对于一个底边在X 轴上的三角形,采用斜二测凼法作出观图,其直观图血积是原三角 形面积的()3. 棱长都是1的三棱锥的表凼积为()A. V3B. 2^3C. 3^3D. 4^34. 长方体的一个顶点上三条棱长分别是3,4,5,且仑的8个顶点都在同一球面上,则这个球的表曲'积是()A. 25TTB. 507TC. 125兀D.都不对 5. 正方体的内切球和外接球的半径之比为()A. 73:1B. 73:2C. 2:^3D. ^3:36. 底面是菱形的棱柱其侧棱乘直于底面,且侧棱长为5,它的对角线的K:分别是9和15,则这个棱柱的侧而积是()A. 130B. 140C. 150D. 1607. 已知岡柱与圆锥的底側积相等,高也相等,它们的体积分别为V 和V 2,则()A. 1:3B. 1:1C. 2:1D. 3:18. 如果两个球的体积之比为8:27,那么两个球的表面积之比为() A. 8:27 B. 2:3 C. 4:9 D. 2:99. 圆锥平行于底而的截而而积是底面积的一半,则此截面分圆锥的高为上、卜‘两段的比为 ()A.-1) B. 1:2C. 1: y/2D. 1:4二、填空题(每小题5分,共20分)10. 半径为/?的半圆卷成一个岡锥,则它的体积为 _________ .俯视图A. 2倍主视图 左视图俯视阁12. 己知,ABCD 为等腰梯形,两底边为AB ,CD 且AB 〉CD,绕AB 所在的直线旋转一周所 13. H •:方体—屮,0是上底面中心,若正方体的棱为《,则三棱锥O - AB,D X 的体积为 ______________三、解答题(每小题13分,共26分)14. 将圆心角为120(),而积为3兀的扇形,作为圆锥的侧而,求圆锥的表而积和体积15. (如阳在欣半径为2,时线长为4的圆锥中内接一个高为人的圆柱, 求岡柱农面积。
高中数学空间几何经典习题及解答
高中数学空间几何体一、选择题(本大题共12小题,每小题5分,共60分)1.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A.B.C.D.2.如图所示是一个无盖的正方体盒子展开后的平面图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC为()A.1800 B.1200 C.600 D.4503.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB 上,SO⊥底面ABC,,则球的体积与三棱锥体积之比是()A.B.C.D.4.如图所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为()A.1 B.C.D.5.一平面截球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为()A.B.C.D.7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h1、h2、h3,则h1:h2:h3等于()A.B.C.D.8.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,那么剩下的部分的体积是()A.50 B.54 C.56 D.589.一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.10.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,那么右图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()11.如图所示,水平地面上有一个大球,现作如下方法测量球的大小:用一个锐角为600的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,P为三角板与球的切点,如果测得PA=5,则球的表面积为()A.B.C.D.12.一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D、E、F;且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的()A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分)13.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为__________。
高中数学空间几何体专题训练试题
立体几何专题训练1、已知正ABC △的边长为a ,那么ABC △的平面直观图ABC △'''的面积为2、已知ABC △的平面直观图ABC △'''是边长为a 的正三角形,原ABC △的面积为3、设正方体的全面积为24,那么其内切球的体积是 A.π6 B.π34 C. π38D. π3324、长方体的一个顶点上三条棱的边长分别为3、4、5,且它的八个顶点都在同一个球面上,这个球的表面积是 A. 220π B. 225π C. π50 D. π200 5、若某空间几何体的三视图如图所示,则该几何体的体积是A .2B.1C .23D.136、一个底面是正三角形的三棱柱的正视图如图所示,其侧面积...等于 A .3 B .2 C .23 D .67、一空间几何体的三视图如图所示,则该几何体的体积为 A.223π+ B. 423π+ C. 2323π+D. 2343π+8、已知某几何体的三视图如右图所示,则该几何体的体积为9、如右图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 A .36 B. 423 C . 433D. 8310、一个几何体的三视图如图所示,则这个几何体的体积等于 (A) 4 (B) 6 (C) 8 (D)1222侧(左)视图2 22正(主)视俯视图俯视图主视图左视图2 22 3俯视图 主视图 左视图 11、如图,一个空间几何体的正视图、侧视图都是面积为32,且一个内角为60的菱形,俯视图为正方形,那么这个几何体的表面积为A .23B .43C . 4D . 812、右图是一个多面体的三视图,则其全面积为 A .3 B .362+ C .36+ D .34+r 13、用单位立方块搭一个几何体,使它的主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为A .9与13B .7与10C .10与16D .10与1514、已知某三棱锥的三视图(单位:cm)如图1-1所示,则该三棱锥的体积是A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 315、下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是( )A.22πB.12πC.4π+24D.4π+3216、三棱柱C B A ABC '''-的底面是边长为1cm 的正三角形,侧面是长方形,侧棱长为4cm ,一个小虫从A 点出发沿表面一圈到达A '点,则小虫所行的最短路程为 cm 17、某几何体的三视图如图1-2所示,则该几何体的体积等于________.18②所示的几何体,则该几何体的左视图为正视侧俯俯视图主视图。
高二数学空间几何体试题
高二数学空间几何体试题1.一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点.(1)求证:MN//平面ACC1A1;(2)求证:MN^平面A1BC.【答案】(1)见解析;(2)见解析【解析】先由三视图还原几何体的直观图中线段长度,(1)利用直线与平面平行的判定定理,在平面内找一直线AC1,由三角形中位线证明MN//AC1,用直线与平面平行的判定定理得到结论;(2)通过证明平面内两相交直线同时垂直MN,由直线与平面垂直的判定定理得证. 试题解析:证明:由意可得:这个几何体是直三棱柱,且AC^BC,AC=BC=CC12分(1)由直三棱柱的性质可得:AA1^A1B1四边形ABCD为矩形,则M为AB1的中点,N为B1C1的中点,在DAB1C中,由中位线性质可得:MN//AC1,又AC1Ì平面ACC1A1,MNË平面ACC1A1\ MN//平面ACC1A16分(2)因为:CC1^平面ABC,BCÌ平面ABC,\ CC1^ BC,又BC^AC,ACÇCC1=C,所以,BC^平面ACC1A1,AC1Ì平面ACC1A1\ BC^AC1,在正方形ACC1A1中,AC1^A1C,BCÇA1C=C,\ AC1^平面A1BC,又AC1//MN,\MN^平面A1BC 10分【考点】1.三视图;2.直线与平面的平行、垂直的判定2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于.【答案】【解析】设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是对角线O1O2=OE,而OE=,∴两圆心的距离O1O2=【考点】本题考查了球的有关概念,两平面垂直的性质.点评:求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.3.在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?12、说出下列几何体的主要结构特征(1) (2) (3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( )A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( ) ① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱A ②①③B ①②③C ③②④D ④③②俯视图正视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( ) A 长方体或圆柱 B 正方体或圆柱 C 长方体或圆台 D 正方体或四棱锥4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A A 1B 1BC C 1D 1 DA21倍 B 42倍 C 2倍 D 2倍6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题 7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。
8、三视图和用斜二测画法画出的直观图都是在——————————————投影下画出来的。
9、有下列结论:①角的水平放置的直观图一定是角②相等的角在直观图中仍然相等③相等的线段在直观图中仍然相等④若两条线段平行,则在直观图中对应的两条线段仍然平行 其中正确的是——————————————10、①如果一个几何体的三视图是完全相同的,则这个几何体一定是正方体。
②如果一个几何体的正视图和俯视图都是矩形,则这个几何体一定长方体。
③如果一个几何体的三视图都是矩形,则这个几何体是长方体④如果一个几何体的正视图和俯视图都是等腰梯形,则这个几何体一定圆台。
其中说法正确的是————————— 三、解答题11、根据图中物体的三视图,画出物体的形状12、室内有一面积为3平方米的玻璃窗,一个人站在离窗子4米的地方向外看,他能看到窗前面一幢楼的面积有多大?(楼间距为20米)1.3空间几何体的表面积和体积(1)一、选择题1、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )Aππ221+ B ππ441+ C ππ21+ D ππ241+2、已知圆锥的母线长为8,底面圆周长为π6,则它的体积是( )A π559B 955C π553D 553A B CD3、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( )A 2B 2.5C 5D 104、若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:35、如图,在棱长为4的正方体 ABCD-A 1B 1C 1D 1中,P 是A 1B 1上一点, 且PB 1=41A 1B 1,则多面体P-BCC 1B 1 的体积为( )A38 B 316 C 4 D 16 6、两个平行于圆锥底面的平面将圆锥的高分成相等的三部分,则圆锥被分成的三部分的体积的比是( )A 1:2:3B 1:7:19C 3:4:5D 1:9:27二、填空题7、一个棱长为4的正方体,若在它的各个面的中心位置上,各打一个直径为2,深为1的圆柱形的孔,则打孔后几何体的表面积为——————————————8、半径为15cm ,圆心角为2160的扇形围成圆锥的侧面,则圆锥的高是——————————— 9、在三棱锥A-BCD 中,P 、Q 分别在棱AC 、BD 上,连接AQ 、CQ 、BP 、PQ ,若三棱锥A-BPQ 、B-CPQ 、C-DPQ 的体积分别为6、2、8,则三棱锥A-BCD 的体积为———— 10、棱长为a ,各面均为等边三角形的四面体(正四面体)的表面积为——————————体积为————————— 三、解答题11、直角梯形的一个底角为450,下底长为上底长的1.5倍,这个梯形绕下底所在的直线旋转一周所成的旋转体的表面积是,)25(π+求这个旋转体的体积。
12、如图,一个三棱锥,底面ABC 为正三角形,侧棱SA =SB =SC =1,030=∠ASB ,M 、N 分别为棱SB 和SC 上的点,求AMN ∆的周长的最小值。
CABDP A 1B 1C 1D 1 M CASN1.4空间几何体的表面积和体积(2)一、选择题1、若三球的表面积之比为1:2:3,则其体积之比为( ) A 3:2:1 B 3:2:1 C 32:22:1 D 7:4:12、已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是( ) A 220 B π225 C π50 D π2003、木星的体积约是地球体积的30240倍,则它的表面积约是地60球表面积的( )A 60倍B 3060倍C 120倍D 30120倍4、一个四面体的所有棱长为2,四个顶点在同一球面上,则此球的表面积为( )A π3B π4C π33D π65、等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积的大小关系是( )A 正方体S <球S <圆柱SB 球S <圆柱S <正方体SC 圆柱S <球S <正方体SD 球S <正方体S <圆柱S6、半球内有一内接正方体,,则这个半球的表面积与正方体的表面积的比为( )A 65πB 125πC2πD 以上答案都不对 二、填空题7、正方体表面积为2a ,它的顶点都在球面上,则这个球的表面积是———————————— 8、半径为R 的球放置于倒置的等边圆锥(过轴的截面为正三角形)容器中,再将水注入容器内到水与球面相切为止,则取出球后水面的高度是——————————————9、把一个直径为40cm 的大铁球熔化后做成直径是8cm 的小球,共可做——————————个(不计损耗)。
10、三个球的半径之比为1:2:3,则最大的球表面积是其余两个球的表面积的——————————倍。
11、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋化了,会溢出杯子吗?(半球半径等于圆锥底面半径)12、有三个球和一个边长为1的正方体,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比。
1.5空间几何体综合检测一、选择题1、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( ) A 一个圆台,两个圆锥 B 两个圆台、一个圆柱 C 两个圆台、一个圆柱 D 一个圆柱、两个圆锥2、中心角为1350,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A :B 等于( )A 11:8B 3:8C 8:4D 13:83、设正方体的表面积为24,一个球内切于该正方体,则这个球的体积为( )Aπ6 Bπ332 C π38 D π34 4、若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,且恰好装满,则水面高度是( ) A cm 36 B cm 6 C cm 3182 D cm 3123 5、64个直径都为4a的球,记它们的体积之和为甲V ,表面积之和为甲S ,一个直径为a 的球,记其体积为乙V ,表面积为乙S ,则( )A 甲V >乙V ,且甲S >乙SB 甲V <乙V ,且甲S <乙SC 甲V =乙V ,且甲S >乙SD 甲V =乙V ,且甲S =乙S 6、已知正方体外接球的体积是π332,则正方体的棱长为( ) A 22 B332 C 324 D 3347、下列有关棱柱的说法:①棱柱的所有的面都是平的②棱柱的所有棱长都相等③棱柱的所有的侧面都是长方形或正方形④棱柱的侧面的个数与底面的边数相等⑤棱柱的上、下底面形状、大小相等,正确的有——————————8、已知棱台两底面面积分别为802cm 和2452cm ,截得这个棱台的棱锥高度为35cm ,则棱台的体积是————————9、一个横放的圆柱形水桶,桶内的水占底面周长的41,则当水桶直立时,水的高度与桶的高度的比为——————10、一个圆台上底半径为5cm ,下底半径为10cm ,母线AB 长为20cm ,其中A 在上底面上,B 在下底面上,从AB 中点M 拉一条绳子,绕圆台的侧面一周转到B 点,则这条绳子最短长为———————— 三、解答题1112、如图,在长方体ABCD-A 1B 1C 1D 1中, 用截面截下一个棱锥C-A 1DD 1,求棱锥 C-A 1DD 1的体积与剩余部分的体积比。
A B C DA1B 1C 1D 1第二章 点、直线、平面之间的位置关系2.1空间点、直线、平面之间的关系(1)一、选择题1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的D 一个平面一定是平行四边形2、已知点A 和直线a 及平面α,则:①αα∉⇒⊄∈A a a A , ② αα∈⇒∈∈A a a A , ③αα∉⇒⊂∉A a a A , ④αα⊂⇒⊂∈A a a A ,其中说法正确的个数是( )A 0B 1C 2D 3 3、下列图形不一定是平面图形的是( )A 三角形B 四边形C 圆D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A 4、6、7 B 3、4、6、7 C 4、6、7、8 D 4、6、85、共点的三条直线可确定几个平面 ( ) A 1 B 2 C 3 D 1或36、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点, 则,正方体的过P 、Q 、R 的 截面图形是( )A 三角形B 四边形C 五边形D 六边形二、填空题7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。