matlab单纯形法

合集下载

单纯形法matlab

单纯形法matlab

数学软件与实验数学与信息科学学院信息与计算科学单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c)B0=A(:,1:m);cb=c(:,1:m);xx=1:n;sgm=c-cb*B0^-1*A;h=-1;sta=ones(m,1);for i=m+1:nif sgm(i)>0h=1;endendwhile h>0[msg,mk]=max(sgm);for i=1:msta(i)=b(i)/A(i,mk);end[mst,mr]=min(sta);zy=A(mr,mk);for i=1:mif i==mrfor j=1:nA(i,j)=A(i,j)/zy;endb(i)=b(i)/zy;endendfor i=1:mif i~=mrfor j=1:nA(i,j)=A(i,j)-A(i,mk)*A(mr,j);endb(i)=b(i)-A(i,mk)*b(mr);endendB1=A(:,1:m);cb(mr)=c(mk);xx(mr)=mk;sgm=c-cb*B1*A;for i=m+1:nif sgm(i)>0h=1;endendendfm=c*xx;例题:编写下列求解如下线性规划问题的单纯形法函数min f'xs.t ax<=b(其中b>=0)函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解fval为最优值it为迭代次数无最优解op=0有最优解op=1编写程序如下:function [x,fval,it,op]=singl(f,a,b)[m,n]=size(a);c=[a eye(m) b;f' zeros(1,m+1)];fval=0;x=zeros(m+n,1);op=1;it=0;e=zeros(1,m);lie=find(f<0);l=length(lie);while(l>0)for j=1:ld=find(c(:,lie(j)));d_l=length(d);if d_l>0for i=1:mif c(i,lie(j))>0e(i)=c(i,end)/c(i,lie(j));elsee(i)=inf;endend[g,h]=min(e);for w=1:m+1if w==hc(w,:)=c(w,:)/c(h,lie(j));elsec(w,:)=c(w,:)-c(h,:)*c(w,lie(j))/c(h,lie(j));endendit=it+1;elseop=0;endendlie=find(c(end,:)<0);l=length(lie);endfor i=1:(m+n)ix=find(c(:,i));if(length(ix)==1)&(ix<=m)&(c(ix,i)==1) x(i)=c(ix,end)elsex(i)=0endendfval=-c(end,end);。

单纯形方法(SimplexMethod)Matlab仿真详解

单纯形方法(SimplexMethod)Matlab仿真详解

单纯形方法(SimplexMethod)Matlab仿真详解最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M 算法和分段法的仿真,拿出来与大家分享一下。

单纯形方法是求解线性规划问题的一种基本方法。

单纯形方法基本步骤如下:1)将所给的线性规划问题化为标准形式:min ()..0Tf x c x s t Ax bx ==≥s.t.是英文subject to 的简写,意思是受约束,也就是说第一个方程(目标函数)受到后面两个方程的约束。

对于求最大值问题可以将目标函数加负号转换为最小值问题。

max ()min ()T T f x c x f x c x =?=-其他的问题就是将实际问题中的不等式约束改为等式约束,主要方法是引进松弛变量和剩余变量,以及将自有变量转换为非负变量。

①对于不等式1b ,1,2,nij ji j a xi m =≤=∑ ,引入松弛变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=++==≥=∑②对于不等式1b ,1,2,nij ji j a xi m =≥=∑ ,引入剩余变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=+-==≥=∑③若变量为自有变量(可取正、负或零,符号无限制),则引入两个非负变量将其表示如下:j j j j j x x x x x '''?=-?'≥??''≥? 2)找出一个初始可行基B ,作出单纯形表,这里假设输入的线性规划问题已经有初始可行基。

0T c S A b ??=3)测试所有的检验数(目标函数的系数C ),记录检验数中的正数,若全部小于等于0,则已经找到最优解,计算终止。

否则转至4)。

4)测试所有为正的检验数,若在单纯性表中,其所在的列中其他元素全部小于等于0,则此问题无最优解,计算终止,否则转至5)。

Matlab单纯形法

Matlab单纯形法

• 线性规划问题 • 解决这一问题我们用的是linprog函数,linprog 函数求的是最小值,线性规划是求最大,所以 要在目标函数前加一个负号. • x = linprog( c , A , b , Aeq , beq , lb , ub , x0 )是求 解线性规划问题的命令。 • c是目标函数的系数向量,A是不等式约束 AX<=b的系数矩阵,b是不等式约束AX<=b的常 数项,Aeq是等式约束AeqX=beq的系数矩阵, beq是等式约束AeqX=beq的常数项,lb是X的下 限,ub是X的上限,X是向量[x1,x2,...xn]即决策 变量。
Matlab单纯形法
• 运行matlab会显示三个窗口,分别是变量窗 口,命令窗口和历史窗口。 • 在命令窗口中出现命令提示符 “>>”,就 可以输入命令,按回车键完成运算。 • 命令窗口的说明: • 1.在命令中,空格不参与运算。 • 2.几条命令可以写在同一行,用逗号隔开。 • 3.在命令窗口中不能返回到前面的命令行 进行修改后在重新执行。
• 如果模型中不包含不等式约束条件,可用 []代替A和b表示缺省;如果没有等式约 束条件,可用[]代替Aeq和beq表示缺省; 如果某个xi无下界或上界,可以设定lb(i) =-inf或ub(i)=inf; 用[x , Fval]代替上述各命令行中左边的x, 则可得到在最优解x处的b中,用[1 2 3]表示行向量;[1;2;3] 表示列向量;[1 2 3;4 5 6;7 8 9]表示矩阵。 • 矩阵按行输入,元素之间用空格或“,” 隔开,行与行之间用“;”隔开。 • 特殊命令创建矩阵a=[m:q:n],m是起始值;n 是终止值;q是增量。如a=[1:2:13] • 特殊矩阵建立:eye创建一个单位矩阵,如 eye(4);ones创建一个元素全是1的矩阵,如 ones(1,4);zeros创建一个全是0的矩阵,如 zeros(1,4).

实验二:MATLAB编程单纯形法求解

实验二:MATLAB编程单纯形法求解

北京联合大学实验报告项目名称:运筹学专题实验报告学院:自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。

(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w,BwB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k kBy p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的是,为了提高运行速度。

单纯形法MATLAB程序

单纯形法MATLAB程序

单纯形法(Mat lab程序)%%单纯形法(Mat lab程序)a= input (' input the major matrix A '); b=input (' input the matrix b '); n=input C input the judgement ');%%为计数器(确定循环次数)萨0;while g<40%%确定非负alength=max(size(n));blength二max(size(b));m=0;for i=l:alength辻n(i)〉=0m二m+1;endend;if m==alengthx=b;breakend;%%找Ks二min(n);for i=l:alengthif n(i) ==sk二i;breakend;end;%%a[i,k]的非负性m=0;for i=l:blengthif a(i, k)<0m二m+1;end;end;if m==blengthdisp('x does not exit');judge二1;breakend;%%找L确定主元cc=100000;for i=l:blengthif a (i, k) >0if(b(i)/a(i, k))<cccc=b(i)/a(i, k);endend end; for i=l:blengthif a(i, k)~=0if (b(i)/a(i, k))==cc1二i;breakendend end; %%计算,a 标准化zu=a(l, k); aa=a; for i=l:1-1 for j=l:alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for i=l+l:blengthfor j=l :alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for j=l:alengthaa(l, j)=a(l, j)/zu; end;%%b 勺判别bb=b; bb(l)=b(l)/zu;for i=l: 1~1 bb(i)=b(i)~b⑴*a(i, k)/a(l, k);end;for i=l+l:blength bb(i)二b(i)-b(l)*a(i, k)/a(l, k);end;b二bb; %%确定判别数tt 二n;for j=l:alength11 (j) =n(j)-a(1, j)*n(k)/a(1, k) ; end; n=tt;a=aa;%%显示单纯形表sa sa二[b' aa;0 n];dispC单纯表示例’);disp(g+1);disp(sa);g二g+l;judge=2;end;if judge==2q二0; result=zeros (alength, 2); for j=l+q:alengthif n(j)=0 t=a(:, j) ; zu=find( t) ; resu lt( j, l)=j ; result (j, 2)=x(zu) ; q 二q+1 ;endif n(j)>0 result(j,l)=q+l; q=q+l;endend;dispC最优解’);disp (result);dispC循环次数');end。

实验二MATLAB编程单纯形法求解

实验二MATLAB编程单纯形法求解

北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业: 物流工程班级: 1201B 学号:21姓名: 管水城成绩: 2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。

(2)使学生对线性规划的单纯形法有更深的理解、二、实验用仪器设备、器材或软件环境计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx其中初始可行基为松弛变量对应的列组成、对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。

设初始基为B,然后执行如下步骤:(1)、解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2)、计算单纯形乘子w, BwB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令 max{}k i R σσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3)、解k k By p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4)、确定下标r,使 {}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断就是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的就是,为了提高运行速度。

单纯形法的matlab编程

单纯形法的matlab编程

单纯形法的matlab实现首先输入三个值系数矩阵A目标函数系数行向量C列向量b根据大M法进行扩列A,C,b.使得行数不变,列数增加M 进行的到基向量的坐标,非基变量的坐Cb,Cn,Xb,Xn,此时的值便是典式,不在需要进行进一步化简,只需求解检验变量delta的值迭代过程输入上一步得到A,C,b,Cb,Cn,Xb,Xn,输出值为最优解为X,得到目标函数的最优解Z的值迭代循化用while循环当找到解时结束循环break或者当发现循化结果没有最优解时跳出循环,这里涉及两个判断,两个判断量初始值都可以写在循环外,两者的值共同决定循环的执行与否循化最开始进行判断初始可行解是否为最最优解,若是直接跳出循化,若上面的判断不成立,接下来进行下一个判断,若不符合进行下面入基和出基变量的选值入基和出基变量的循化是两次循化,第一次找到k的值,第二次根据上一次的k找r的值注意因为值有约束,而且是找函数最小值,需要对这个列向量进行变换一下将小于等于0的都变成无穷大,接下来进形下一次的循化,进而找到转轴元将A,b,delta合成一个新的矩阵,进行旋转变化,得到值后反变回相应的值,接下来需要对Xb,Xn的值进行交换这个步骤要两个循环,第一个循化对Ark的所在行进行变化,接下来进行对整个矩阵进行行变换,包括两种情况,两次循化嵌套分别是r==1时和r~=1的时候建立总体X的坐标列向量发生交换时出基变量找Xb,入基变量从X中找有先后顺序先解决Xn的变化。

在解决Xb的值直接解决基变量其他为0A=input('输入系数矩阵\n');b=input('输入列向量b\n');C=input('输入目标函数行向量\n');M=5200;global m;global n;global X;[m,n]=size(A);I=eye(m);A=[A,I];Xb=[];Xn=[];for i=1:mC(i+n)=-M;Xb(i)=n+i;endXb=Xb';Cb=C(1,n+1:n+m);for i=1:nXn(i)=i;endXn=Xn';X=[Xn;Xb];[m,n]=size(A);diedai(A,C,b,Cb,Xb);function[Z]=diedai(A,C,b,Cb,Xb)delta=C-Cb*A;global m;global n;global X;while1s2=0;s1=0;for j=1:nif delta(j)>0s1=1;for i=1:mif A(i,j)>0s2=1;endendendendif s1==0disp('目标函数最优解')Z=Cb*b;disp(Z)disp('基变量为');[Xb,index]=sort(Xb);disp(Xb)b=b(index);disp('基可行解为');disp(b)break;endif s2==0disp('目标函数无界,无最优解');break;end[~,k]=max(delta);p=A(:,k);zhuan=[];for i=1:mzhuan(i)=b(i)/p(i);if zhuan(i)<=0zhuan(i)=inf;endend[~,r]=min(zhuan);b(m+1)=0;Z=[A;delta];Z=[Z,b];z=Z;ark=A(r,k);for j=1:n+1Z(r,j)=Z(r,j)/ark;endif r==1for i=2:m+1for j=1:n+1Z(i,j)=Z(i,j)-z(i,k)*Z(r,j);endendelse for i=[1:r-1,r+1:m+1]for j=1:n+1Z(i,j)=Z(i,j)-z(i,k)*Z(r,j);endendendA=Z(1:m,1:n);delta=Z(m+1,1:n);b=Z(1:m,n+1);Cb(r)=C(k);Xb(r)=X(k);endend。

线性规划单纯形法matlab解法

线性规划单纯形法matlab解法

%单纯形法matlab程序-ssimplex% 求解标准型线性规划:max c*x; . A*x=b; x>=0% 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b% N是初始的基变量的下标% 输出变量sol是最优解, 其中松弛变量(或剩余变量)可能不为0% 输出变量val是最优目标值,kk是迭代次数% 例:max 2*x1+3*x2% . x1+2*x2<=8% 4*x1<=16% 4*x2<=12% x1,x2>=0% 加入松驰变量,化为标准型,得到% A=[1 2 1 0 0 8;% 4 0 0 1 0 16;% 0 4 0 0 1 12;% 2 3 0 0 0 0];% N=[3 4 5];% [sol,val,kk]=ssimplex(A,N)% 然后执行 [sol,val,kk]=ssimplex(A,N)就可以了。

function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; % 迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 % 已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 % 问题有无界解disp('have infinite solution!');flag=0;break;endendif flag % 还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; % 出基变量下标endend% 以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A( i,inb);EndEndEndEndend。

单纯形法matlab程序

单纯形法matlab程序

function Z=dcxf(c,A,N) %定义函数名称为dcxf。

l=length(N);CB=c(N(1):N(l))[m,n]=size(A);b=A(:,n);A=A(:,1:n-1);%参数包括目标函数系数(C),约束条件的系数矩阵(A),%其中A的最后一列为约束条件的右端值b,初始基向量的位置(N)。

…sigma=c-CB*A;%计算检验数sigma。

display('初始单纯形表为:');%输出初始的单纯形表table=[nan,nan,nan,c;CB',N',b,A;nan,nan,nan,si gma]opt=1;step=0;while optstep=step+1;%定义循环,直到第“step”步找到最优解(opt=0)。

if sum(sigma>0)==0 %利用检验数判断是否得到最优解,并给出提示。

display('没有得到最优解,继续迭代.'); ~opt=0;elseinb=find(sigma==max(sigma)); %利用单纯形方法找到入基变量的位置num=length(inb);Inb=inb(num)flag=0;for i=1:m %利用单纯形方法找出出基变量的位置if A(i,inb)>0:theta(i)=b(i)/A(i,inb);elsetheta(i)=inf;endendoutb=find(theta==min(theta));num=length(outb); %判断足否出现退化现象,如出现退化,给il{语言提示,并取最后出现的符合出基条件的变量为出基变量。

if num~=1/display('出现退化情况.');endoutb=outb(num);for i=1:m %将单纯形表进行“转轴”运算,得到新的单纯形表。

for j=1:n-1if i==outbAnew(i,j)=A(outb,j)/A(outb,inb);bnew(i)=b(outb)/A(outb,inb);@elseAnew(i,j)=A(i,j)-A(outb,j)/A(outb,inb)*A(i,inb );bnew(i)=b(i)-b(outb)/A(outb,inb)*A(i,inb);endendenddisplay('主元素为:'),a=[A(outb,inb),outb,inb] %输出主元素,计算新单纯形表的检验数。

matlab 单纯形法

matlab 单纯形法

matlab 单纯形法并解释如何使用MATLAB 中的单纯形法来求解线性规划问题。

【引言】在运筹学和数学规划领域,线性规划是一种重要的数学建模和优化方法。

它用于解决实际问题中关于资源分配、生产计划、物流安排等的决策问题。

单纯形法是一种经典的线性规划解法,它通过迭代优化目标函数的值来找到最优解。

MATLAB 提供了强大的高级优化工具箱,包括对线性规划问题的求解。

在本文中,我将逐步介绍如何使用MATLAB 中的单纯形法来求解线性规划问题。

【前提条件】在使用单纯形法求解线性规划问题之前,我们需要明确问题的数学模型。

线性规划问题可以形式化为如下的标准形式:最大化:C^T * X约束条件:AX <= B, X >= 0其中,X 是变量向量,C 是目标函数系数向量,A 是约束条件的系数矩阵,B 是约束条件的右端向量。

在MATLAB 中,我们可以通过定义这些向量和矩阵来表示线性规划问题。

接下来,我将演示如何使用MATLAB 的优化工具箱来完成线性规划求解任务。

【问题定义】以下是一个简单的线性规划问题的例子,我们将以此为例来展示MATLAB 中单纯形法的求解过程。

最大化:2x1 + 3x2约束条件:x1 + x2 <= 4x1 - x2 <= 2x1, x2 >= 0【MATLAB 实现】首先,在MATLAB 中创建变量和约束条件的向量和矩阵。

代码如下:MATLABC = [-2; -3]; 目标函数的系数向量A = [1, 1; 1, -1]; 约束条件的系数矩阵B = [4; 2]; 约束条件的右端向量接下来,我们使用`linprog` 函数来求解线性规划问题。

这个函数将返回最优解X 和最优解的目标函数值FVAL。

代码如下:MATLAB[X, FVAL, EXITFLAG] = linprog(-C, A, B);注意,我们在输入目标函数系数向量C 时,在前面添加了负号。

这是因为`linprog` 函数默认求解最小化问题,而我们是要求解最大化问题。

单纯形方法(Simplex Method)Matlab 仿真详解

单纯形方法(Simplex Method)Matlab 仿真详解

最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M 算法和分段法的仿真,拿出来与大家分享一下。

单纯形方法是求解线性规划问题的一种基本方法。

单纯形方法基本步骤如下: 1) 将所给的线性规划问题化为标准形式:min ()..0Tf x c x s t Ax bx ==≥s.t.是英文subject to 的简写,意思是受约束,也就是说第一个方程(目标函数)受到后面两个方程的约束。

对于求最大值问题可以将目标函数加负号转换为最小值问题。

max ()min ()T T f x c x f x c x =⇒=-其他的问题就是将实际问题中的不等式约束改为等式约束,主要方法是引进松弛变量和剩余变量,以及将自有变量转换为非负变量。

①对于不等式1b ,1,2,nij ji j a xi m =≤=∑ ,引入松弛变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=++==≥=∑②对于不等式1b ,1,2,nij ji j a xi m =≥=∑ ,引入剩余变量将其变为等式形式如下:1b ,1,2,0,1,2,nij jn i i j n i a xx i mx i m+=+-==≥=∑③若变量为自有变量(可取正、负或零,符号无限制),则引入两个非负变量将其表示如下:j j j j j x x x x x '''⎧=-⎪'≥⎨⎪''≥⎩ 2)找出一个初始可行基B ,作出单纯形表,这里假设输入的线性规划问题已经有初始可行基。

0T c S A b ⎡⎤=⎢⎥⎢⎦⎣3)测试所有的检验数(目标函数的系数C ),记录检验数中的正数,若全部小于等于0,则已经找到最优解,计算终止。

否则转至4)。

4)测试所有为正的检验数,若在单纯性表中,其所在的列中其他元素全部小于等于0,则此问题无最优解,计算终止,否则转至5)。

单纯形法的MATLAB实现

单纯形法的MATLAB实现

clearclcM=1000000;A=[3,2,-3,1,0;1,-2,1,0,1];%约束矩阵C=[-3,1,2,M,M,0];%价值矩阵B=[6,4]';%右端向量s=find(C<0);f=length(s);while(f)for k=1:length(s)x=find(A(:,s(k))>0);y=find(B(x)./A(x,s(1))==min(B(x)./A(x,s(1))));%选择的要有正元素if(length(x)+1==1)break;endendy=x(y);%找到的xj的行数aa=A(y,s(k));%找到的xjA(y,:)=A(y,:)./aa;B(y,:)=B(y,:)./aa;z=find(A(:,s(k)));%除去找到的行z(find(z==y))=[];for i=1:length(z);yz=-A(z(i),s(k));A(z(i),:)=A(z(i),:)+A(y,:)*yz;disp('*')B(z(i),:)=B(z(i),:)+B(y,:).*yz;enddisp('转换后')A=AB=BAB=[A,B];C=C+AB(y,:)*(-C(s(k)))s=find(C<0);vpa([A,B;C]);s=find(C<0);f=length(s);end-C(length(C))%最有解:max 2*x1+3*x2s.t. x1+2*x2<=84*x1<=164*x2<=12x1,x2>=0加入松驰变量,化为标准型,得到A=[1 2 1 0 0 8;4 0 0 1 0 16;0 4 0 0 1 12;2 3 0 0 0 0];N=[3 4 5];然后执行? [sol,val,kk]=ssimplex(A,N)就可以了。

注:基变量对应的基矩阵一定是单位阵。

(这一局限将在后面的升级是改善)% 求解标准型线性规划:max c*x;s.t. A*x=b;x>=0% 本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b % N是初始的基变量的下标%输出变量sol是最优解%输出变量val是最优值,kk是迭代次数function [sol,val,kk]=ssimplex(A,N)[mA,nA]=size(A);kk=0; %迭代次数flag=1;while flagkk=kk+1;if A(mA,:)<=0 % 已找到最优解flag=0;sol=zeros(1,nA-1);for i=1:mA-1sol(N(i))=A(i,nA);endval=-A(mA,nA);elsefor i=1:nA-1if A(mA,i)>0&A(1:mA-1,i)<=0 %? 问题有无界解disp('have infinite solution!');flag=0;break;endendif flag % 还不是最优表,进行转轴运算temp=0;for i=1:nA-1if A(mA,i)>temptemp=A(mA,i);inb=i; % 进基变量的下标endendsita=zeros(1,mA-1);for i=1:mA-1if A(i,inb)>0sita(i)=A(i,nA)/A(i,inb);endendtemp=inf;for i=1:mA-1if sita(i)>0&sita(i)<temptemp=sita(i);outb=i; %出基变量下标endend%以下更新Nfor i=1:mA-1if i==outbN(i)=inb;endend% 以下进行转轴运算A(outb,:)=A(outb,:)/A(outb,inb);for i=1:mAif i~=outbA(i,:)=A(i,:)-A(outb,:)*A(i,inb);endendendendend。

利用Matlab求解线性规划问题

利用Matlab求解线性规划问题

利用Matlab 求解线性计划问题一、 若应用单纯形法求解首先将线性计划通常形式化为标准形式1、 若为max f (x ), 则化为- max f (x )2、 将不等式约束变为等式约束3、 将任意变量化为非负变量(即x1、 x2….xn>=0)4、 将负限定系数化为正值(Ax=b,若b 为负, 则等式两边都同时乘以-1) 使用单纯形法求解线性计划时, 首先要化问题为标准形式 所谓标准形式是指下列形式:∑==n j j j x cz 1m ax⎪⎩⎪⎨⎧=≥==⋅⋅∑=),,2,1(0),,1(1n j x m i b x a t s jnj i j ij 当实际模型非标准形式时, 则需化为标准形式例1、 用单纯形法求解下面线性计划问题minf (x )=-- +2≤ 4 +≤12 -≤3i i b X g ≤)()1(若i k i b x X g =+⇒)(i i b X g ≥)()2(若i k i b x X g =-⇒)(, ≥0解: 用M函数文件形式求解A=[-1 2 1 0 0;2 3 0 1 0;1 -1 0 0 1];c=[-4 -1 0 0 0];b=[4;12;3];[x,mf]=SimpleMthd0(A,c,b,[3 4 5])M函数文件运行得结果以下:x = 4. 1.mf =-18.0000例2、用单纯形法求解下面线性计划问题maxf(x)=7+14+4≤360+≤200+10≤300, ≥0解: 用M函数文件形式求解A=[9 4 1 0 0;3 10 0 1 0;4 5 0 0 1];c=[-7 -14 0 0 0];b=[360;300;200];[x,mf]=SimpleMthd0(A,c,b,[3 4 5])输出结果为:x =20.0000 24.0000mf =-476.0000例3、用单纯形法求解下面线性计划问题minf(x)=--+-4.4++=4++2.5+3=5, , , ≥0解: 用M函数文件形式求解A=[1 1 1 0;1 2 2.5 3];c=[-1.1 -2.2 3.3 -4.4];b=[4;5];[x,mf]=SimpleMthd0(A,c,b,[3 4 ])输出结果为:x = 4.0000 0 0 0.3333mf = -5.8667解: 用M函数文件形式求解A=[2 1 1 1 0 0;1 2 3 0 1 0;2 2 1 0 0 1];c=[-3 -1 -2 0 0 0];b=[20;50;60];[x,mf]=SimpleMthd0(A,c,b,[3 4 5])输出结果为:x =0 0 60mf =-120二、若使用matlab本身工具箱线性计划是一个优化方法, Matlab优化工具箱中有现成函数linprog.min f(x)s.t . (约束条件): Ax<=b(等式约束条件): Aeqx=beqlb<=x<=ublinprog函数调用格式以下:格式1、 [x,fval]=linprog(f,A,b)功效是求线性计划min f(x);约束条件是: Ax<=b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%求解标准型线性规划:max c*x;s.t. A*x=b;x>=0
%本函数中的A是单纯初始表,包括:最后一行是初始的检验数,最后一列是资源向量b %N是初始的基变量的下标
%输出变量sol是最优解
%输出变量val是最优值,kk是迭代次数
function [sol,val,kk]=ssimplex(A,N)
[mA,nA]=size(A);
kk=0; %迭代次数
flag=1;
while flag
kk=kk+1;
if A(mA,:)<=0 %已找到最优解
flag=0;
sol=zeros(1,nA-1);%给每个变量赋初值0
for i=1:mA-1
sol(N(i))=A(i,nA);%给基变量赋新值(替换0)
end %给出最优解
val=-A(mA,nA);
else
for i=1:nA-1
if A(mA,i)>0&A(1:mA-1,i)<=0 %问题有无界解
disp('have infinite solution!');
flag=0;
break;
end
end
if flag %还不是最优表,进行转轴运算
temp=0;
for i=1:nA-1
if A(mA,i)>temp
temp=A(mA,i);
inb=i; % 进基变量的下标
end
end %选择最大检验数纵向对应的变量为进基变量
sita=zeros(1,mA-1);
for i=1:mA-1
if A(i,inb)>0
sita(i)=A(i,nA)/A(i,inb);
end
end
temp=inf;
for i=1:mA-1
if sita(i)>0&sita(i)<temp
temp=sita(i);
outb=i; %出基变量下标
end
end %选择最小的sita横向对应的变量为出基变量
%以下更新N
for i=1:mA-1
if i==outb
N(i)=inb;%以进基变量的下标替代出基变量的下标
end
end
%以下进行转轴运算
A(outb,:)=A(outb,:)/A(outb,inb);%将主元化为1
for i=1:mA
if i~=outb
A(i,:)=A(i,:)-A(outb,:)*A(i,inb);%将进基变量所在列除主元外的其余元素化为0
end
end
end
end
end。

相关文档
最新文档