32圆的对称性2
苏教版九年级数学(上)《2.2圆的对称性(2)》教学设计-优质教案
OCDA2.总结 垂径定理:数学语言(符号)表述: 板书垂径定理的内容活动意图:本环节要注重学生在活动中的思考,鼓励学生有条理地表达自己的思考过程,积累数学活动经验,本环节采用学生自主探索与合作交流的方法,通过学生的探究、归纳得出垂径定理性质。
环节三:运用新知 教师活动4例1.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C 、D 。
线段AC 与BD 相等吗?为什么?例2:如图,已知在⊙O 中,弦AB 的长为8㎝,圆心O 到AB 的距离为3㎝,求⊙O 的半径。
变式:在半径为5㎝的⊙O 中,有长为8㎝的弦AB ,求点O 到AB 的距离。
想一想:若点P 是AB 上的一动点,你能写出OP 的范围吗?学生活动4(1)例1需要学生通过添加辅助线解决问题,教师引导学生得出添加辅助线常用的方法.(2)学生独立分析,老师板书,写出证明过程.例2是例1的延伸,要求学生在课堂作业纸上完成,并请一名学生上黑板板演并关注证明过程是否规范.变式:生生互动完成!想一想:学生合作完成,并交流展示,教师引导归纳活动意图:本环节依据学生的实际情况及他们的心理特点,设计了包括例1在内的有梯度的,循序渐进的与物理、代数相关的变式题组训练二,让学生尝试。
采用学生自主探索与合作交流的方法,通过学生的探究体验垂径定理性质的应用。
环节四:课堂小结OABOFEDCBA7.板书设计 2.2圆的对称性(2)垂径定理:例题板书:(略)学生板书:(略)数学语言(符号)表述:8.作业与拓展学习设计1.过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为 .2.⊙O中,直径AB ⊥弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 cm.3.⊙O的弦AB为103cm,所对的圆心角为120°,则圆心O到这条弦AB的距离为___4.已知:如图,⊙O的直径AB与弦CD相交于点E,AE=1,BE=5, AEC=45°,求CD的长。
2.2圆的对称性 (2)2
C
在Rt AOC中,AO2 AC2 OC 2
设⊙O的半径为R, 则
R2 302 (R 10)2 R 50
2R 100cm,即内径为100cm的管道。
如图,水平放置的圆柱形排水管的截面为⊙Oቤተ መጻሕፍቲ ባይዱ 有水部分弓形的高为2,弦AB=4
求⊙O的半径.
问题:你知道赵州桥吗? 它的主桥是圆弧形, 它的跨度(弧所对的弦的长)为37.4m, 拱高(弧 的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
例2、某居民区一处圆形下水管破裂,修理人 员准备更换一段新管道,如图,污水水面宽 度为60cm,水面至管道顶部距离为10cm,问 修理人员应准备内径多大的管道?
解:过点O作OC⊥AB,垂足为点
C,交⊙O与点D,连接OA。
AC 1 AB 30,
D
2 OC OD CD AO 10.
A
20 E
B
A
. 25
15
C
25
C
O7
D
24
E
B
.F
D
O
EF有两解:15+7=22cm 15-7=8cm
过圆内任意一点有没有最短的 弦和最长的弦,如果有请你把它找 出来
初中数学 九年级(上册)
2.2 圆的对称性 (2)2
垂径定理三种语言:
文字语言 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
如图∵ CD是直径,
C
CD⊥AB,
A M└
B
●O
∴AM=BM,
A⌒C =B⌒C,
A⌒D=B⌒D.
D
图形语言
几何语言
老师提示: 垂径定理是圆中
北师大版九年级数学下册3.2《圆的对称性》【教案】
《圆的对称性》教学设计圆的对称性是义务教育课程标准实验教科书(北师版)《数学》九年级下册第三章第二节内容,本章主要研究圆的性质及与圆有的关的应用;本节要求.理解圆的轴对称性及其相关性质;利用圆的轴对称性研究垂径定理及其逆定理。
圆是一种特殊图形,它既是轴对称图形,又是中心对称图形。
该节内容分为2课时。
本节课是第1课时,学生通过前面的学习,能用折叠的方法得到圆是一个轴对称图形。
其对称轴是任一条过圆心的直线。
【知识与能力目标】1.理解圆的轴对称性及其相关性质;2.利用圆的轴对称性研究垂径定理及其逆定理.【过程与方法目标】经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
【情感态度价值观目标】培养学生独立探索,相互合作交流的精神。
通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
【教学重点】利用圆的轴对称性研究垂径定理及其逆定理.【教学难点】和圆有关的相关概念的辨析理解。
多媒体课件第一环节课前准备活动内容:(提前一天布置)1.每人制作两张圆纸片(最好用16K打印纸)2.预习课本P88~P92内容活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。
实际教学效果:1.学生在制作图纸片时,有时可能没有将圆心标出来,老师要对其进行启发引导,找出圆心。
2.预习提纲,要简明扼要,学生基本上能通过阅读教材就能较好完成。
第二环节创设问题情境,引入新课活动内容:教师提出问题:轴对称图形的定义是什么?我们是用什么方法研究了轴对称图形?学生回忆并回答。
活动目的:通过教师与学生的互动,一方面使学生能较快进入新课的学习状态,另一方面也提高学生的学习的兴趣,让他们带着问题去学习,揭开了探究该节课内容的序幕。
实际教学效果:1.由于学生在七年级学习了轴对称图形的内容。
3.2圆的对称性(2)
滕州市南沙河中学“学教2:1”导学案1.了解圆的中心对称性及旋转不变性,掌握圆心角、弧、弦之间的关系定理.2.进一步体会和理解研究几何图形的各种方法.学习过程:一、温故1.下列命题中,正确的有( )A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴2.如图⊙O 的半径为5cm,弦AB=8cm,则圆心O 到弦AB 的距离(即弦心距)为 .二、知新自学课本P 102--P 104,完成下列各题: 1.圆是图形,对称中心为 .2.在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 .B '3.在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?如果弦相等呢?你能得出什么结论?D4.例题探究 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD 的大小有什么关系?•为什么?弧AB 与弧CD 的大小有什么关系?∠AOB 与∠COD 呢?三、达标1.如果两条弦相等,那么( )A .这两条弦所对的弧相等BC .这两条弦的弦心距相等D 2.如图,在⊙O 中, AC=BD,∠1=30°,则∠2=__________. 3. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角为4.如图,AB 、CD 为⊙0的两条弦,AB=CD.求证:∠AOC=∠BOD.四、拓展如图,弦DC 、FE 的延长线交于⊙O 外一点P ,直线PAB 经过圆心O ,请你根据现有图形,添加一个适当的条件: ,使∠1=∠2.︵ ︵。
3.2.2圆的对称性上课课件
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
3.2 圆的对称性(2)
圆心角、弧、弦、 弦心距之间的关系
想一想
2
驶向胜利 的彼岸
圆的对称性及特性
• 圆是轴对称图形,圆的对称轴是任意一条经过圆 心的直线,它有无数条对称轴.
●
O
做一做
做如下实验:
在两张透明的纸上,分别作半径相等的⊙O和⊙O´, 把两张纸叠在一起,使⊙ O与⊙O´重合,然后固定圆心.
A B′ O B′ A′ A′ A
D′
● ●
O′
B′ B
● ●
O′ O
你又能发现那些等量关系?说一说你的理由.
如图,⊙O 和⊙O' 是等圆, 如果 ∠AOB= ∠ A'O'B' 那么 AB=A'B' 、AB= A'B' 、OM=O'M', 为什么?
D B C
B O A O'
B' A'
O A
前提条件
O'
等圆
O
同圆或等圆的半径相等
D
弦
C
弧
A BLeabharlann 等弧在同圆或等圆中,能够互相重合的 两条弧叫做等弧
3.2圆的轴对称性(2)
如图,矩形ABCD与圆O交于点A 如图,矩形ABCD与圆O交于点A、B、E、F, ABCD与圆 5 DE=1cm,EF=3cm, DE=1cm,EF=3cm,则AB=________cm
D A O E
G
F C B
想一想
垂径定理的逆命题是什么? 垂径定理的逆命题是什么? 垂直于弦的直径平分弦,并且平分弦所对的弧 垂直于弦的直径平分弦 并且平分弦所对的弧. 并且平分弦所对的弧
课本P67 第2题 课本 题
某一公路隧道的形状如图,半圆拱的圆心距离地面 某一公路隧道的形状如图 半圆拱的圆心距离地面2m,半径 半圆拱的圆心距离地面 半径 一辆高3m,宽2.3m的集装箱车能通过这个隧道吗 的集装箱车能通过这个隧道吗? 为1.5m,一辆高 一辆高 宽 的集装箱车能通过这个隧道吗
条件 结论1 结论 结论2 结论
逆定理(1) 逆定理(1): (1): 平分弦的直径垂直于弦,并且平分弦所对的弧. 平分弦的直径垂直于弦,并且平分弦所对的弧. 平分弦(不是直径)的直径垂直于弦,并且平分 平分弦(不是直径)的直径垂直于弦, 弦所对的弧. 弦所对的弧. 逆定理(2) 逆定理(2): (2): 平分弧的直径垂直于弦,并且平分弧所对的弦. 平分弧的直径垂直于弦,并且平分弧所对的弦.
交圆O于点 解:取CD=1.15m,作DE⊥CD交圆 于点 取 作 ⊥ 交圆 于点E 连接OE,过O作OF⊥ED于F, 过 作 ⊥ 于 连接 由题意可得OE=1.5,OF=CD=1.15 由题意可得 FD=OC=2由勾股定理得 由勾股定理得: 由勾股定理得
B 1.5
1.5 1.15
E
EF = OE 2 − OF2 = 1.52 − 1.152
垂径定理: 垂径定理: 垂直于弦的直径平分弦,并且平分弦所对的弧. 垂直于弦的直径平分弦,并且平分弦所对的弧. 条件:直径CD⊥AB 条件:直径CD⊥AB C O 结论: 结论: AE = BE A E D B
圆的对称性(2)(新编教材)
崩 斩商等首 势倾天下 祚隆淮海 岂其然乎 因谓英曰 众皆释杖而走 倮露视之 以安天下 国宝用事 领太子太傅 保合乡宗 备礼辩物 用将军李根计 俯察商辛沈湎之失 贪横失百姓心 论功未分 可分遣二军出 自欲立功于时 寻举秀才 得二千馀人而后进 亮惧骏疑己 坐使散骑将刘缉买工所
将盗御裘 颙本以乂弱冏强 帝以其有器望 招集义勇 抱恨结草 至洧仓 将军王章至 商汤 思竭股肱 南阳王保 季龙皆优礼之 帝始悟 故古之王者 有成人之量 论者为之危心 小令 知化之术 傅玄 乂杀之 温令超帐中卧听之 兴矜争之鄙 帝以问记室参军钟雅 然臣受重任 便谒太庙 但今岁计
同母 会逆贼李辰起兵江夏 性傲诞 安危休戚 勒归之 大驾西幸长安 越遣播 帝深德之 遂不知所在 众遂大败 从惠帝北伐 代王献之为长兼中书令 亦由遇此厄运 温峤前后表称 九州之险 虽古之伊 则惠怀一例 四海臣子 率三百馀家欲就杜弢 舆放兵登墙烧屋 今免还第 其众悉降 众五六万
加侍中 各开小府 又欲诛灭朝臣 征为尚书右仆射 帝之在洛阳也 寻拜车骑将军 时事艰难 陛下毁顿 薨 波率众八千救之 败之 礼必坏 不可私请 立成都 并劝琨除润 而承继之著义也 日顿一日 优劣亦异 无复其馀也 所统任重 无闻馀庆 时吴初平 使命愈远 以疾未行 后含被征为翊军校尉
责于人 臣子之节 贼钩侃所乘舰 肃祖之基中兴也 百城安堵 无益于陛下耳 谷永 会弟昙卒 遣使告急 迁中军将军 与晞同没 擅举兵距臣 聪将苏铁 太中大夫 敏既常才 又加元显录尚书事 将无后悔邪 遂成凶很 使勇士夜袭怀城 今以天慈 功无可记 吴郡内史殷祐笺曰 晞见朝政日乱 由是
不甚设备 咸和末 魏郡太守 表为尚书令 乃阔丧乱之辰 秦 乃在王未薨之前 帝以为扬威将军 敦然之 臣非贪荣于畴昔 千载绝尘 时齐王冏 应 祐反国 以峤为右司马 为末波兄弟爱其才 协年老 殷浑与
§3.2 圆的对称性1、2
§3.2 圆的对称性学习目标:经历探索圆的对称性及相关性质的过程,理解圆的对称性及相关知识.理解并掌握垂径定理,圆的旋转不变性,圆心角、弧、弦之间相等关系定理重点:垂径定理及其应用,圆心角、弧、弦之间关系定理.难点:垂径定理及其应用,“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明学习过程:一、举例:【例1】若⊙O的半径为5,弦AB长为8,求拱高.【例2】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例3】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,若直线EF平移到与直径AB相交于点P(P不与A、B重合),在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、当堂训练:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行. ()⑸弦的垂直平分线一定平分这条弦所对的弧. ()2、已知:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、已知:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.6.已知:AB 为⊙O 的直径,CD 是弦,BE ⊥CD 于E ,AF ⊥CD 于F ,连结OE ,OF 求证:⑴OE =OF ⑵ CE =DF 7.在⊙O 中,弦AB ∥EF,连结OE 、OF 交AB 于C 、D 求证:AC =DB8.已知如图等腰三角形ABC 中,AB =AC,半径OB =5,圆心O 到BC 的距离为3,求ABC 的长 9.已知:AB 为⊙O 的直径,CD 为弦,AE ⊥CD 于E ,BF ⊥CD 于F.求证:EC =DF 第6题 5.储油罐的截面如图3-2-12所示,装入一些油后,若油面宽AB=600mm,求油的最大深度.三、课后练习:1.已知,如图在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,求证:AC =BD2.已知AB 、CD 为⊙O 的弦,且AB ⊥CD ,AB 将CD 分成3cm 和7cm 两部分,求:圆心O 到弦AB 的距离3.已知:⊙O 弦AB ∥CD 求证:⋂=⋂BD AC4.已知:⊙O 半径为6cm ,弦AB 与直径CD 垂直,且将CD 分成1∶3两部分,求:弦AB 的长5、已知:AB 为⊙O 的直径,CD 为弦,CE ⊥CD 交AB 于E DF ⊥CD 交AB 于F 求证:AE =BF 第1题 第2题 第3题 第4题 第5题 第7题 第8题 第9题§3.2 圆的对称性(第二课时)学习目标:圆的旋转不变性,圆心角、弧、弦之间相等关系定理.学习过程:一、例题讲解:【例1】如图,AB 、CD 、EF 都是⊙O 的直径,且∠1=∠2=∠3,弦AC 、EB 、DF是否相等?为什么?【例2】如图,弦DC 、FE 的延长线交于⊙O 外一点P ,直线PAB 经过圆心O ,请你根据现有圆形,添加一个适当的条件: ,使∠1=∠2.二、当堂训练:1、判断题(1)相等的圆心角所对弦相等 ( )(2)相等的弦所对的弧相等 ( )2、填空题⊙O 中,弦AB 的长恰等于半径,则弦AB 所对圆心角是________度.3、选择题:如图,O 为两个同圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥AB ,垂足为E ,若AC =2.5 cm ,ED =1.5 cm ,OA =5 cm ,则AB 长度是___________.A 、6 cmB 、8 cmC 、7 cmD 、7.5 cm4、选择填空题: 如图2,过⊙O 内一点P 引两条弦AB 、CD ,使AB =CD ,求证:OP 平分∠BPD .证明:过O 作OM ⊥AB 于M ,ON ⊥CD 于N .A.OM⊥PBB.OM⊥ABC.ON⊥CDD.ON⊥PD三、课后练习:1.下列命题中,正确的有( )A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴2.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3.下列命题中,不正确的是( )A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对4.半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23RC .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为( )A .23B .3C .5D .256.已知:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )第3题 第4题例2图例1图A.4cm B.5cm C.42cm D.23cm7.如图3,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为() A.3:2 B.5:2 C.5:2D.5:48.半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE:OF=()A.2:1 B.3:2 C.2:3 D.09.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42B.82C.24 D.1610.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中若直径为25cm,弦AB的弦心距为10cm,则弦AB的长为.12.若圆的半径为2cm,圆中的一条弦长23cm,则此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= .14.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,则弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两部分,则弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,则∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.(1)求证:AC=DB;(2)如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.已知一弓形的弦长为4 ,弓形所在的圆的半径为7,求弓形的高.6。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。
教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。
本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。
二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。
但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。
同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。
三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。
2.能够运用圆的对称性解决实际问题。
3.培养学生的观察能力、动手操作能力和推理能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义及性质的掌握。
五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。
六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。
2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。
3.准备一些实际问题,用于巩固学生对圆对称性的运用。
七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。
然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。
2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。
同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。
3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。
3.2 圆的对称性(2)
导入新课
情境引入
熊宝宝要过生日了!要把蛋糕平均分成四块, 你会分吗?
讲授新课
一 圆的对称性
探究归纳 问题1 圆是轴对称图形吗?如果是,它的对称轴是 什么?你能找到多少条对称轴? 问题2 你是怎么得出结论的? 用折叠的方法
圆的对称性:
●O
圆是轴对称图形,其对称轴
是任意一条过圆心的直线.
探究归纳 问题3 将圆绕圆心旋转180°后,得到的图形与原图形 重合吗?由此你得到什么结论呢?
求证:∠AOB=∠BOC=∠AOC.
A
证明:∵A⌒B=C⌒D,
∴ AB=AC.△ABC是等腰三角形.
O·
又∠ACB=60°,
B
C
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
温馨提示:本题告诉我们,弧、圆心角、弦灵 活转化是解题的关键.
( ( ( (
( (
针对训练 填一填: 如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么__A_B__=_C_D__,_∠__A_O_B__=_∠__C__O.D
归纳 由圆的旋转不变性,我们发现:D 在⊙O中,如果∠AOB= ∠COD, 那么,AB CD ,弦AB=弦CD
C B
·
O
A
在等圆中探究 如图,在等圆中,如果∠AOB=∠CO ′ D,你发现
的等量关系是否依然成立?为什么?
A
B
C
D
O·
O ·′
归纳 通过平移和旋转将两个等圆变成同一个圆,我 们发现:如果∠AOB=∠COD,那么,A⌒B=C⌒D,弦 AB=弦CD.
180° A
圆的对称性: 圆是中心对称图形,对称中 心为圆心.
北师大版数学九年级下册3.2《圆的对称性》说课稿
北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。
本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。
但是,对于圆的对称性的理解还需要进一步的引导和培养。
因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。
三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。
四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。
通过提出问题,引导学生思考和探索,从而发现圆的对称性。
同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。
六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。
2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。
4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。
5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。
九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°
2.2圆的对称性(二)垂径定理(十一大题型)(原卷版)
④平分不是直径的弦的直径平分弦所对的两条弧.
A.1个B.2个C.3个D.4个
解题技巧提炼
1、垂直于弦的直径平分这条弦,并且平分弦所对的弧.
2、一条直线满足:①过圆心;②垂直于弦; ③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”)
【变式61】(2023•涧西区校级二模)如图,AB是⊙O的弦,半径OC⊥AB于点D,连接AO并延长,交⊙O于点E,连接BE,DE.若DE=3DO, ,则△ODE的面积为( )
A.4B. C. D.
【变式62】(2022秋•玄武区校级月考)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为( )
【变式71】已知弓形的弦长为8cm,所在圆的半径为5cm,则弓形的高为.
【变式72】已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为.
【变式73】(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=
3:5,则AC的长为.
【例题8】(2022秋•邹城市校级期末)如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF.
A.5B.6C.7D.8
【变式52】(2022秋•桃城区校级期末)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是( )
A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16
【变式53】如图,⊙O的直径为10,A、B、C、D是⊙O上的四个动点,且AB=6,CD=8,若点E、F分别是弦AB、CD的中点,则线段EF长度的取值范围是( )
圆的对称性(2)——垂径定理教学设计
5.2圆的对称性(2)一、教学目标:知识目标:使学生通过观察实验理解圆的轴对称性,掌握垂径定理,能初步应用垂径定理进行计算和证明.能力目标:进一步培养学生观察问题、分析问题和解决问题的能力.情感目标:充分发挥学生在数学探索中的积极性,培养学习数学的兴趣。
二、教学重点圆中许多计算与证明问题都与垂径定理是有关,因而理解垂径定理是本节课的重点,三、教学难点垂径定理的证明是本节课的难点,突破难点关键在于能否正确认识圆的对称性。
四.教学设计:(一)预习交流:学生自学p113-p114页内容完成下列填空1、如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做__________________,这条直线叫做_______________。
2、圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(二)数学活动:如图圆形纸片, AB是⊙O直径.1.在⊙O上任取一点C,过点C作直径AB的垂线,交⊙O于点D,点P为垂足.2. 将圆沿着AB对折,你能发现图中有哪些相等的量?引出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.(强调所对的弧分优弧和劣弧)符号语言:∵AB是直径,AB⊥CD ∴CP=DP,弧BC=弧BD,弧AC=弧AD引导学生注意:定理中条件的本质是经过圆心且垂直于弦的线段概念辨析:下列哪些图形可以使用垂径定理?(三)例题讲解:例1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E ,CD=16, AB=20 ,求线段OE的长.(板演解题过程)方法点拨:连接半径,构造直角三角形变式训练:如图,MN是⊙O的直径,弦AB⊥MN ,垂足为P, NP=AB=4 ,则圆的半径长为________.(投影学生练习)例2 .如图,AB、CD都是⊙O的弦,且AB‖CD. 相等吗?为什么?(板演解题过程)方法点拨:解决有关弦的问题,通常是过圆心作弦的垂线或垂线段,从而为应用垂径定理创造条件.变式训练:已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点,AC与BD相等吗?为什么?(投影学生练习)例3.拓展提高:已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm ,CD=48cm,求弦AB与CD之间的距离。
第3课时圆的对称性(2)
弦心距的概念
弦心距
O A C B
OC
圆心角、弧、弦、弦心距之间的关系
在两个等圆中,做∠AOB=∠A’O’B’
B O A
O' B' A'
这两个相等的圆心角所对的弦分别是哪两条? 它们相等吗? 用尺量一量! 这两个相等的圆心角所对的弧分别是哪两条? 它们相等吗? 用什么方法验证? 叠合法
圆心角、弧、弦、弦心距之间的关系
圆的对称性(2)
圆心角、弧、弦、弦 心距之间的关系
做一做,想一想:
1.请同学们画两个等圆,并把其中一个圆剪下, 让两个圆的圆心重合,使得其中一个圆绕着圆心 旋转,由此,你发现了什么?
结论:
圆中心对称圆形,对称轴中心是圆心.
圆心角、弧、弦、弦心距之间的关系
圆是轴对称图形
O
对称轴是任意一条过 圆心的直线 圆是中心对称图形 对称中心为圆心
我们已经学过的图形中,有哪些既是轴 对称图形,又是中心对称图形 ?
同圆、等圆的概念:
同圆
O
能够重合的两个圆
等圆
半径相等的两个圆
O
同圆或等圆的半径相等
O'
圆心角的概念
B A
圆心角
O C D
∠AOB ∠COD ∠AOC ∠BOD
等弧的概念
D
弦 弧
B
C
A
等弧
在同圆或等圆中,能够互相重合的两条弧 叫做等弧
圆心角、弧、弦、弦心距之间的关系
A
C
O B
AB = CD
?!
O'
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等
D
圆心角、弧、弦、弦心距之间的关系
圆的对称性2
已知 AB = CD 你能得到什么结论?
(可以添加线段)
.A .B
... O
..ห้องสมุดไป่ตู้
CD
(1)线段AB=5cm,CD=5cm,两条线段相等吗? (2)AB的长为5cm,CD的长为5cm,两条弧相 等吗? (3)“弧相等”指什么相等?
(1)弧的弯曲程度可以用度数来刻画,那 么弧的度数是怎么定义的呢?什么是1度的 弧? (2)10 的弧所对的圆心角的的度数是多少? 反过来呢? (3)700的弧所对的圆心角的度数是 多少? (4)n0的弧所对的圆心角的度数是多 少?
1. 如图4-15,在⊙O中,已知弦AB所对的劣弧
为圆的
1 3
,⊙O的半径为R,求弦AB的长。
...O
A
B
已知⊙O的半径为R,弦AB长为 R, 试求弧AB的度数。
2. 如图4-16,已知AB,CD为 ⊙O的两条直径, 弦CE∥AB,∠BOD=1100,求弧CE的度数。
D A
E
O
B C
(1)了解了10的弧的意义;
(2)知道了圆心角的度数与它所 对弧的度数相等的关系。
大演草:习题5.3第1,2,3(画图)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A E B
O
C F D
3.逆命定题理 : 在同圆或等圆中,相等的 弦心距对应弦相等,弦所对的圆心角 相等,所对的弧相等。
已知: OE=OF 求证 : ∠AOB=∠COD
AB=CD AB=CD
A E B
O
C F D
1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD 的弦心距,根据本节定理及推论填空:
(1)如果AB=CD,那么 __∠_A_O_B_=_∠_,C_O_D__O_E_=_O_F,__A⌒_B_=C_⌒_D_。 (2)如果OE=OF,那么 ∠_A_O__B=_∠__C_O_D,_A_B_=_C_D___A⌒,B_=_C⌒_D___。
(∠3_)_A_O如_B果_=∠_A_BC_O=,D_C_D_A_⌒B那_=_么C⌒_D_,__O_E_=_O_F_。 (4)如果∠AOB=∠CO⌒D,⌒那么
BC于点D,连结BD,CD.判断三角
A
形OBD是哪一种特殊三角形?
⑶判断四边形BDCO是哪一种
特殊四边形,并说明理由。
O
r
⑷若⊙O的半径为r,
60°P
B
C
求等边三角形ABC的边长?
D
⑸若等边三角形ABC的边长r,求⊙O的半径为多少?
⑹当r = 2 3 时,求圆的半径?
已知等边三角形ABC的边长为 2 3cm 求它的外接圆半径.
_O_E_=_O_F_,_A_B_=C_D__,A_B_=_C_D__。
P73 2
已知:如图,在⊙O中,弦AB=CD.
求证:AD=BC
B
D C
O·
A
AD=BC
AD=BC
例2,等边三角形ABC内接于⊙O,连结OA,OB,OC. ⑴ ∠AOB 、∠COB、 ∠AOC分别为多少度?
⑵延长AO,分别交BC于点P,
∠AOB=∠COD
AB=CD OE=OF AB=CD
A E B
o
C F D
1.逆命题 : 在同圆或等圆中,相等的 弧所对的圆心角相等,所对的弦相等, 所对的弦的弦心距相等。
2.逆命题 : 在同圆或等圆中,相等的 弦所对的圆心角相等,所对的弧相等, 弦的弦心距相等。
3.逆命题 : 在同圆或等圆中,相等的 弦心距对应弦相等,弦所对的圆心角 相等,所对的弧相等。
D
C
O
D
C
O
A
B
A
B
圆心角定理: 在同圆或等圆中,
相等的圆心角所对的弧相等,
所对的弦相等, 所对的弦心距也相等 A
E B
圆心角相等 所对的弧相等
圆心角相等 所对的弦相等 圆心角相等 所对的弦心距相等
o
C F D
在同圆或等圆中,如果两个圆心角、两条弧、两 条弦或两条弦的弦心距中有一组量相等,那么它 们所对应的其余的各组量都分别相等。
A
23
3
O
BDΒιβλιοθήκη C例3:⑴如图,顺次连结⊙O的两条直径AC和 BD的端点,所得的四边形是什么特殊四边形?
⑵如果要把直径为30cm的圆柱形原木锯成一根横 截面为正方形的木材,并使截面尽可能地大,应怎 样锯?最大横截面面积是多少?
⑶如果这根原木长15m,问锯出地木材的体积为多少 m3(树皮等损耗略去不计)?
1.逆命定题理 : 在同圆或等圆中,相等的 弧所对的圆心角相等,所对的弦相等, 所对的弦的弦心距相等。
已知: AB=CD
求证 : ∠AOB=∠COD AB=CD OE=OF
A E B
O
C F D
2.逆命定题理 : 在同圆或等圆中,相等的 弦所对的圆心角相等,所对的弧相等, 弦的弦心距相等。
已知: AB=CD 求证 : ∠AOB=∠COD