BP神经网络逼近非线性函数
BP神经网络逼近非线性函数
应用BP 神经网络逼近非线性函一、实验要求1、逼近的非线性函数选取为y=sin(x 1)+cos(x 2) ,其中有两个自变量即x1,x2,一个因变量即y。
2、逼近误差<5% ,即:应用测试数据对网络进行测试时,神经网络的输出与期望值的最大误差的绝对值小于期望值的5% 。
3、学习方法为经典的BP 算法或改进形式的BP 算法,鼓励采用改进形式的BP 算法。
4、不允许采用matlab 中现有的关于神经网络建立、学习、仿真的任何函数及命令。
二、实验基本原理2.1神经网络概述BP 神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传播,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。
每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预判误差调整网络权值和阈值,从而使BP 神经网络预测输出不断逼近期望输出。
BP 神经网络的拓扑结构如图所示。
2.2BP 神经网络训练步骤BP 神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP 神经网络的训练过程包括以下几个步骤。
步骤 1 :网络初始化。
根据系统输入输出序列(X,Y) 确定网络输入层节点数n 、隐含层节点数l、输出层节点数m ,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk ,初始化隐含层阈值a,输出层阈值 b ,给定学习速率和神经元激励函数。
步骤 2 :隐含层输出计算。
根据输入变量X,输入层和隐含层间连接权值ω ij 以及隐含层阈值a,计算隐含层输出H 。
2.3 附加动量法经典 BP 神经网络采用梯度修正法作为权值和阈值的学习算法, 从网络预测误差的负梯 度方向修正权值和阈值, 没有考虑以前经验的积累,学习过程收敛缓慢。
对于这个问题,可 以采用附加动量法来解决,带附加动量的算法学习公式为(k) (k 1) (k) a (k 1) (k 2)式中,ω (k),ω(k-1) ,ω(k-2)分别为 k ,k-1,k-2 时刻的权值; a 为动量学习率,一般取值 为 0.95 。
基于遗传算法的BP网络及其非线性逼近能力研究
【 ywod ] e ei agrh B ew r ; o l erF nt napoc Ke rs G nt l i m;Pn tok N ni a;u ci p rah c ot n o
O 引 言
Ko grv定 理 业 已证 明 , 有 合 适 结 构 . 且 经 过 充 分 学 习 训 l aa mo 具 并
g o a p i m n t e lc l a e a e f u d b d p i g g a intd s e t ag rt m.Co a e t h r d e td s e ta g rt m,t e smu ai n lb lo tmu i h o a r a c n b o n y a o tn r d e e c n l o h i mp d wih t e g a i n e c n lo h r i h i lt o s o h x d ag rt m sf a i l n f ci e h ws t e mie o h i e s b e a d ef tv . l i e
练后的 B P网络 能够 以任 意 精 度 逼 近 有 界 区域 非 线 性 函数 。针 对 B P 在 过 去 的 几 十 年里 , 们 提 出了 诸 多 神 经 网络 模 型 。这 些 模 型 在 网络 ,对 于 闭 区 间 的 一个 连 续 函数 都 可 以用 一 个 隐 含 层 的 B 人 P网 络 逼 图形 图 像 处 理 、 自动 控 制 、 据 挖 掘 、 式 识 别 等 领 域 不 断 得 到 了应 数 模 近 , 成 任 意 的 n维 到 m 维 的 映 射 。本 文神 经 网络 优 化 模 型 采 用 三 层 完 用, 自身 也 不断 改 进 和 发 展 。 其 中 , 向传 播 模 型 ( akPo aai , 这 反 B c rpgt n o B 网络 , 拓 扑 结 构 如 图 2所示 。 其 中 n为 输 入 单 元 数 ,, 网 络 中 P 其 x为 B )是 最 常 见 的也 是 应 用 最 广 泛 的 多 层 前 馈 网 络 模 型 。 这 得 益 于 B P P 第 () 样 本 的输 入 ,, 网 络 中第 () 样 本 的 实 际 输 出 , 为 网 络 第 i个 Y为 i个 网络 较 强 的逼 近能 力 和 分 类 能 力 _ l J 。 i个 是 w B P网 络 的学 习算 法 是 B P算 法 。针对 B P网 络采 用 的算 法 多 是 梯 () 样 本 期 望输 出 。w 输 入 层 与 隐含 层 的 连接 权 值 , 是 隐 含 层 与输 出层 的连 接 权 值 , 隐 单 元 的 阚 值 , 输 出单 元 的 阈值 。 B是 B是 度 下 降法 。梯 度 下 降 法 的 优 点 是 进行 局部 寻 优 时 速 度 很 快 , 是 梯 度 但 输 入层 隐 含屡 输 出层 下 降 法容 易 陷入 局 部 极 小 , 致 其 全局 搜 索 能力 弱 、 优 性 能 不 高 . 导 寻 收 敛 速 度 慢 甚 至 不 收 敛 、 易 陷 入 局 部 极 小 值 , 约 了其 一 定 程 度 的应 容 制 W1 B1 W2 B2 用 。 遗 传 算 法 ( eei Al rh 以 下 简 称 G 是一 种 非 导 数 优 化 的 X 1 G n t gi m, c ot A) ( 期望 输 出 ) 随 机优 化 搜 索 算 法 . 有 很 强 的 全 局搜 索 能 力 和 鲁 棒 性 。 但 是 它 在 寻 具 优 时搜 索 方 向不 停 的 发 生 变 化 , 搜 索 到 全 局 最 优 解 的 代 价 较 大 。研 其 X2 ( 期塑 输 出 ) 究 表 明 , 传 算 法 能 够 以 较 快 的速 度 收 敛 到 全 局 最 优 解 的 9 % . 这 遗 O 在 以后 其 收敛 速 度 明 显 减 慢 。 时 , 传算 法局 部 搜 索 能 力 不 足 , 算 过 同 遗 运 程有 时会 出 现 早 熟 现 象 , 初 始 种 群 的选 择 有 依 赖 性 , 且 并 行 机 制 对 而 的潜 在 能 力 不 容 易 得 到 充分 利 用 。 果 用 GA结 合 B 网络 构 建 模 型 . 如 P ( 望输出 ) 期 用来 训 练 神 经 网络 , 化 神 经 网 络 的权 值 阈值 , 可 以克 服 B 优 既 P算 法 容 ( 闽值 ) 易选 人 局 部 极 小 值 的缺 陷 ,同 时 又 能 克 服 遗 传 算 法 局 部 搜 索 能 力 不 强、 容易 早 熟 的 不 足 , 互取 长 补短 , 遗 传 算 法 优化 后 的 神 经 网 络 具 相 使 图 2 本 文 BP网 络 拓 扑 结构 有 自进 化 、 自适 应 能 力 。本 文采 用 一 种 基 于 自适 应 遗 传 算法 的 神 经 网 对于 B P网 络 的 这 种 前 向 神 经 网 络 训 练采 用 的算 法 是 “ 差 逆 传 误 络学 习算 法 , 用 自适应 遗 传 算 法 在 整 个 权 值 ( 先 阈值 ) 间进 行 粗 略 搜 空 , P算 法 。 准 B 标 P算 法 和 Wirw H f学 习规 则 一 样 是 一 do — of 索 , 后 再 采 用 梯 度 下 降 法 进 行 局 部 的 寻 优 , 终 得 到 问 题 的全 局 最 播 算 法 ” 即 B 然 最
毕业设计-神经网络控制算法仿真设计
摘要目前,由于PID结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。
电厂主汽温被控对象是一个大惯性、大迟延、非线性且对象变化的系统,常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的围。
但当运行工况发生较大变化时,却很难保证控制品质。
因此本文研究基于BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。
本处用一个多层前向神经网络,采用反向传播算法,依据控制要时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。
对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。
关键词:主汽温,PID,BP神经网络,MATLAB仿真ABSTRACTAt present, because PID has a simple structure and can be adjusted proportional 、integral and differential to satisfactory control performance, it is widely used in power plants of various control process. The system of power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before. When the unit is stable, these methods will control the steam temperature in a certain range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters auto-tuning. It can make full use of the advantages of PID and neural network. Here, we use a multilayer feedforward neural network using back propagation algorithm. This net can real-time output Kp, Ki, Kd as the PID controller parameters , insteading of the traditional PID parameters determined by experience, so it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform. The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability. For the system of large delay and free-model can obtain good control effect.KEY WORDS: main steam temperature ,PID ,BP neural network, MATLAB simulation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国外研究现状 (1)1.3 立论依据 (5)1.4 本文所做的主要工作 (6)第二章神经网络的基本原理 (8)2.1 人工神经元模型 (8)2.2 神经网络的学习方式和学习规则 (9)2.2.1 神经网络的学习方式 (9)2.2.2 神经网络的学习规则 (9)2.3 神经网络的特点及应用 (10)2.4 BP神经网络 (11)2.4.1 BP神经网络的结构 (11)2.4.2 BP神经网络的算法 (12)2.5 本章小结 (16)第三章基于BP神经网络的PID控制 (17)3.1 PID控制器的离散差分方程 (17)3.2 基于BP神经网络的PID整定原理 (18)3.3 基于BP神经网络的PID控制算法流程 (22)3.4 本章小结 (22)第四章基于BP神经网络的PID控制在主汽温控制系统中的应用 (23)4.1 主汽温的控制任务 (23)4.2 主汽温被控对象的动态特性 (23)4.3 主汽温控制策略 (24)4.3.1 主汽温控制信号的选择 (24)4.3.2 主汽温控制的两种策略 (26)4.4仿真分析 (27)4.5 本章总结 (34)结论与展望 (35)参考文献 (37)致 (39)第一章绪论1.1 选题背景和意义在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。
BP网络的优缺点介绍1-1
BP神经网络的优缺点介绍人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。
最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。
神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。
多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。
首先BP神经网络具有以下优点:1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。
这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。
2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。
即BP神经网络具有高度自学习和自适应的能力。
3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。
也即BP神经网络具有将学习成果应用于新知识的能力。
4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。
(采用BP神经网络完成非线性函数的逼近)神经网络
控制系统仿真与模型处理设计报告(采用BP神经网络完成非线性函数的逼近)1、题目要求:(1)确定一种神经网络、网络结构参数和学习算法。
(2)选择适当的训练样本和检验样本,给出选取方法。
(3)训练网络使学习目标误差函数达到0.01,写出学习结束后的网络各参数,并绘制学习之前、第100次学习和学习结束后各期望输出曲线、实际输出曲线。
绘制网络训练过程的目标误差函数曲线。
(4)验证网络的泛化能力,给出网络的泛化误差。
绘制网络检验样本的期望输出曲线和网络输出曲线。
(5)分别改变神经网络的中间节点个数、改变网络的层数、改变学习算法进行比较实验,讨论系统的逼近情况,给出你自己的结论和看法。
2、设计方案:在MATLAB中建立M文件下输入如下命令:x=[0:0.01:1];y=2.2*power(x-0.25,2)+sin(5*pi*x);plot(x,y)xlabel('x');ylabel('y');title('非线性函数');得到如下图形,即所给的非线性函数曲线图:构造一个1-7-1的BP神经网络,第一层为输入层,节点个数为1;第二层为隐层,节点个数为7;变换函数选正切s型函数(tansig);第三层为输出层,节点个数为1,输出层神经元传递函数为purelin函数。
并且选Levenberg-Marquardt算法(trainlm)为BP网络的学习算法。
对于该初始网络,我们选用sim()函数观察网络输出。
继续在M函数中如下输入。
net=newff(minmax(x),[1,7,1],{'tansig','tansig','purelin'},'trainlm'); y1=sim(net,x);figure;plot(x,y,'b',x,y1,'r')title('期望输出与实际输出比较');xlabel('t');则得到以下所示训练的BP网络期望输出与实际输出曲线比较:应用函数train()对网络进行训练之前,需要预先设置训练参数。
神经网络在函数逼近中的应用
二 基于BP神经网络逼近函数 基于BP神经网络逼近函数
步骤1:假设频率参数k=1,绘制要逼近的非线性 步骤1:假设频率参数k=1,绘制要逼近的非线性 函数的曲线。函数的曲线如图1 函数的曲线。函数的曲线如图1所示 k=1; p=[p=[-1:.05:8]; t=1+sin(k*pi/4*p); plot( plot(p,t,'-'); '); title('要逼近的非线性函数'); title('要逼近的非线性函数'); xlabel('时间'); xlabel('时间'); ylabel('非线性函数'); ylabel('非线性函数');
图3 训练过程 从以上结果可以看出,网络训练速度很快,很 快就达到了要求的精度0.001。 快就达到了要求的精度0.001。
步骤4 步骤4: 网络测试 对于训练好的网络进行仿真: y2=sim(net,p); figure; plot(p,t,'plot(p,t,'-',p,y1,':',p,y2, '--') '--') title('训练后网络的输出结果'); title('训练后网络的输出结果'); xlabel('时间'); xlabel('时间'); ylabel('仿真输出'); ylabel('仿真输出'); 绘制网络输出曲线,并与原始非线性函数曲线以 及未训练网络的输出结果曲线相比较,比较出来 的结果如图4 的结果如图4所示。
BP网络在函数逼近中的应用 BP网络在函数逼近中的应用
MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合
MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
基于BP神经网络的非线性系统辨识
械工 业 出 版社 ,0 6 20.
作 者 简 介 : 志 勤 (9 1) 男 , 学 硕 士 , 程 师 , 要 从 事 杨 17 一 , 工 工 主 机 电一 体 化 方 面 的研 究 。 收 稿 日期 :08年 4月 8 日 20
2 采用 B P网络 来 实现 非 线性 系统 的辨 识
B P网络 的结构 是 :
1 )多层 网络结 构 : 输入层 、 隐层 和输 出层 ; 2 )传递 函数一 般 为 S型 函数 : ( 一 厂 z)
3 )误差 函数 ;
;
E 一寺∑( —0 ), £ 其中 f , O 分别为期望
性 较 强 的 系统 进 行 辨 识 , 有 一 定 的 适 用 性 。 具
关 键 词 : 识 ; 线 性 系统 ; P神 经 网络 辨 非 B
中图分 类号 : P 1 3 T 8
文 献标志 码 : A 经 网络用 于系 统辨识 具 有 以下 优 点 。 1 )不要求 建立 实 际系统 的辨识 格 式 , 以省去 可
1 )非线 性特性 : 经 网络具 有 逼近 任 意非 线性 神 函数 的能 力 , 为非线 性 系 统 提 供 了一 个 通 用 的 系统 辨识 方法 , 以用来 实现 非线 性系 统控 制 ; 可 2 )并 行 分 布 处 理方 式 : 在神 经 网络 中 , 息是 信
分布 存储 和并行 处 理 的 , 使 它 具有 很 强 的容 错性 这 和很 快 的处理 速度 ; 3 )自学 习和 自适应 能力 : 经 网络 在 训练 时 能 神 够从 输入 输 出数 据 中提 取 出规 律 性 的知 识 , 记忆 在
数值优化改进的BP神经网络逼近性能对比研究
( S c h o o l o f I n d u s t r y,B o h a i Un i v e r s i t y。 J i n z h o u 1 2 1 0 1 3, Ch i n a )
数值 逼近是 指 给定一 组数 据 , 用 数 学分析 的方法来 分 析这组 数据 , 常用 的数学分 析 方法有 多项 式 拟合 和 插 值运 算 。 由于人 工神经 元 网络 ( A r t i i f c i a l N e u r a l N e t w o r k s , A N N) 具有 很 强 的非 线性 映射 能 力 、 自学 习性 和 容错性 , 所 以, 近些 年来采 用 A N N对 非线 性 函数进 行逼 近成 为该 领域 的一 个研究 热 点 , 其 优越 性 可在数 据 本
境下, 每种 数值优 化 差法逼 近 的可行性 。
关 键词 : 数 值优化 ;B P神 经 网络 ; 逼 近性 能 ; 对 比研 究 中图分 类号 : T P 3 9 1 . 9 文献标 识码 : A 文章 编号 : 1 0 0 2 - 4 0 2 6 ( 2 0 1 4) 0 1 - 0 0 6 8 - 0 5
山东科学
SHANDONG SCI ENCE
第2 7 卷
第1期
2 0 1 4年 2月出版
VO I . 2 7 NO. 1 F e b. 2 01 4
D OI : 1 0 . 3 9 7 6 / j . i s s n . 1 0 0 2— 4 0 2 6 . 2 0 1 4 . 0 1 . 0 l 2
利用BP神经网络求解非线性方程组
利⽤BP 神经⽹络求解⾮线性⽅程组利⽤BP 神经⽹络求解⾮线性⽅程组待求解问题:思路我们将坐标对应的函数值作为输⼊向量,⽽将坐标作为⽬标向量,去初值点附近多个坐标对应的函数值向量作为输⼊,训练神经⽹络。
将作为输⼊输⼊到训练好的神经⽹络中,就可以得到该线性⽅程组的⼀个近似解matlab 代码function u=u(x)u = 3*x(1)-cos(x(2)*x(3))-0.5;function v=v(x)v = x(1)^2 -81 * (x(2)+0.1)^2+sin(x(3))+1.06;function w=w(x)w = exp(-x(1)*x(2))+20*x(3)+(10*pi - 3) / 3;主程序(x ,x ,x )123[u (x ,x ,x ),v (x ,x ,x ),w (x ,x ,x )]123123123(x ,x ,x )123x 0[0,0,0]x ,x ,x 1∗2∗3∗u (x ,x ,x )123v (x ,x ,x )123w (x ,x ,x )123% ----------------------------------% 使⽤神经⽹络求解⾮线性⽅程组% 以坐标(x,y,z)为⽬标向量% 坐标(x,y,z)对应的各个⾮线性函数的值(u(x,y,z), v(x,y,z), w(x,y,z))为输⼊向量% 训练⽹络后,输⼊(0,0,0)对应的输出即⾮线性⽅程组的⼀个近似解% -----------------------------------x0 = [0.1 0.1 -0.1]; %初值x = ones(200,3); % 根据初值得到200个点for i = 1:200x(i,:) = x0 + (i - 100) * 0.01;endP = zeros(3,200); % 输⼊样本矩阵,每列为⼀个样本for i = 1:200P(:,i) = [u(x(i,:)) v(x(i,:)) w(x(i,:))];endT = x'; % ⽬标矩阵,每列为⼀个⽬标向量net = newff([-100,100; -100,100; -100,100;],[3 3],{'tansig','logsig'},'traingd'); % 输⼊3,输出3(注意⽹络输⼊与⽬标向量的维数对应) net.trainParam.epochs = 15000; % 迭代15000次net.trainParam.goal = 0.01; % 误差LP.lr = 0.1; % 学习率% 训练⽹络net = train(net, P, T);% 给出⾮线性⽅程的近似解res = sim(net, [0;0;0])求解结果为:此时,解和真实解还是有误差,可以调整输⼊样本来得到更好的近似解。
神经网络原理及BP网络应用实例
神经网络原理及BP网络应用实例摘要:本文主要对神经网络原理进行系统地概述,再列举BP网络在曲线逼近中的应用。
神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
随着计算机的发展,目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
本文将介绍人工神经网络的基本概念、基本原理、BP神经网络、自适应竞争神经网络以及神经网络的应用改进方法。
关键字:神经网络;收敛速度;BP网络;改进方法The principle of neural network and the applicationexamples of BP networkAbstract:Neural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. This paper will introduces the basic concepts, basic principles, BP neural network, adaptive competitive neural network and the application of artificial neural network.Keywords:neural network,convergence speed,BP neural network,improving method1 神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
BP神经网络的优缺点
BP神经网络的优缺点BP神经网络,也称为“反向传播神经网络”,是一种常见的人工神经网络模型。
它是基于误差反向传播算法的一种机器学习方法,广泛应用于分类、回归、预测等场景中。
优点1. 非线性逼近能力强BP神经网络的非线性逼近能力优秀,可以逼近任何非线性的函数。
它的输入层、隐层和输出层之间的结构可以实现对高维非线性数据的拟合。
2. 适用 range 广泛BP神经网络可以应用于许多不同领域,如医药、自然语言处理、图像识别等。
它可以对各种形式的数据进行分类、回归、预测等。
3. 学习能力强BP神经网络可以通过大量的样本数据进行训练,并能够自动学习和自我适应。
可以对训练数据进行高效的学习和泛化,从而适应未知数据。
4. 适应动态环境BP神经网络可以适应不断变化的环境。
当模型和所需输出之间的关系发生变化时,网络可以自适应,自动调整权重和阈值,以适应新的情况。
缺点1. 学习速度慢BP神经网络的学习速度相对较慢。
它需要大量的时间和数据来调整权重和阈值,以达到稳定的状态。
2. 容易陷入局部极小值BP神经网络很容易陷入局部极小值,而无法达到全局最优解。
这可能会导致网络的准确度降低,并影响到后续的预测、分类和回归任务。
3. 需要大量的数据BP神经网络需要大量的数据进行训练,以使网络达到优秀的效果。
如果训练数据不充分,可能会导致网络过度拟合或欠拟合。
4. 对初始参数敏感BP神经网络对初始参数非常敏感。
如果初始参数不好,那么网络可能会无法进行训练,或者陷入局部最小值。
综合来看,BP神经网络具有良好的非线性逼近能力和学习能力,但也存在一些缺点,比如学习速度慢、容易陷入局部极小值等。
因此,在具体应用场景中,我们需要权衡BP神经网络的优点和缺点,选择合适的机器学习模型进行训练和预测。
BP神经网络在声乐评价中的应用
总第254期2010年第12期计算机与数字工程C om pu t er&D i g i t al Engi nee r i ngV01.38N o.1244B P神经网络在声乐评价中的应用。
袁剑(西安音乐学院计算机教研室西安710061)摘要评价表演者的演唱是受多个因素综合影响。
评价者在打分中受主观因素影响较大。
B P神经网络可模拟由各因素构成的非线性映射。
建立声乐评价体系,将各个评价指标客观化,使用成绩向量作为输入,经由B P神经网络输出得到合理的分数。
实验仿真表明,通过训练的B P网络可模拟一个稳定的评分系统。
关键词B P神经网络;声乐;评价模型中图分类号TP l83A ppl i cat i on ofB ac k Pr opa gat i on N eur a l N et w or ki n t he V ocal A ss es sm ent Syst emY ua n Ji an(C om put er St af f r oom,X i’a n C onser vat or y of M usi c,X i’a n710061)A bst怕ct T o gi v i ng a cor r ect as s ess m ent of a s inger’S per form ance i s af f e ct ed by m ul t i p l e f a ct or s.BP neu r al net w ork c a n si m ul at e a non l i ne ar s ys t e m.T hi s art i cle est abl i sh es t he eva l uat i on m odel.T he m o de l use sc o r e vec t or as a n i n put.B P ne ur a l ne t w or k w i U ou t pu t a n r e asonabl e s core.The r es ul t of si m ul at e s how s t hat a t r a i ned B P neur al ne t w or k c a n si m ul at e a st ead y sc or i ng s ys t em.K eyW or ds B P neu r al ne t w or k,voca l,eval uat i on m odeIC l a ss N t m■ae t T Pl831引言在声乐教学与艺术人才的选拔比赛中,对演唱者的演唱做出客观公正的评价至关重要,通常以打分求平均值的方法来量化评价的结果。
神经网络激活函数[BP神经网络实现函数逼近的应用分析]
神经网络激活函数[BP神经网络实现函数逼近的应用分析]神经网络激活函数是神经网络中非常重要的组成部分,它决定了神经网络的非线性特性,并且对于神经网络的求解效果和性能有着重要的影响。
本文将对神经网络激活函数进行详细的分析和探讨,并以BP神经网络实现函数逼近的应用为例进行具体分析。
1.神经网络激活函数的作用(1)引入非线性:神经网络通过激活函数引入非线性,使其具备处理非线性问题的能力,能够更好的逼近任意非线性函数。
(2)映射特征空间:激活函数可以将输入映射到另一个空间中,从而更好地刻画特征,提高神经网络的表达能力,并且可以保留原始数据的一些特性。
(3)增强模型的灵活性:不同的激活函数具有不同的形状和性质,选择合适的激活函数可以增加模型的灵活性,适应不同问题和数据的特点。
(4)解决梯度消失问题:神经网络中经常会遇到梯度消失的问题,通过使用合适的激活函数,可以有效地缓解梯度消失问题,提高神经网络的收敛速度。
2.常用的神经网络激活函数(1)Sigmoid函数:Sigmoid函数是一种常用的激活函数,它的输出值范围在(0,1)之间,具有平滑性,但是存在梯度消失问题。
(2)Tanh函数:Tanh函数是Sigmoid函数的对称形式,它的输出值范围在(-1,1)之间,相对于Sigmoid函数来说,均值为0,更符合中心化的要求。
(3)ReLU函数:ReLU函数在输入为负数时输出为0,在输入为正数时输出为其本身,ReLU函数简单快速,但是容易出现神经元死亡问题,即一些神经元永远不被激活。
(4)Leaky ReLU函数:Leaky ReLU函数是对ReLU函数的改进,当输入为负数时,输出为其本身乘以一个小的正数,可以解决神经元死亡问题。
(5)ELU函数:ELU函数在输入为负数时输出为一个负有指数衰减的值,可以在一定程度上缓解ReLU函数带来的神经元死亡问题,并且能够拟合更多的函数。
3.BP神经网络实现函数逼近的应用BP神经网络是一种常用的用于函数逼近的模型,它通过不断调整权重和偏置来实现对目标函数的拟合。
基于BP神经网络和RBF网络的非线性函数逼近问题比较研究
基于BP神经网络和RBF网络的非线性函数逼近问题比较研究丁德凯摘要:人脑是一个高度复杂的、非线性的和并行的计算机器,人脑可以组织神经系统结构和功能的基本单位,即神经元,以比今天已有的最快的计算机还要快很多倍的速度进行特定的计算,例如模式识别、发动机控制、感知等。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习,以及很强的非线性映射能力,所以它在函数(特别是非线性函数)逼近方面得到了广泛的应用。
BP神经网络和RBF神经网络,都是非线性多层前向网络,本文分别用BP(Back Propagation)网络和RBF(Radial Basis Function)网络对非线性函数f=sin(t)+cos(t)进行逼近,结果发现后者的学习速度更快,泛化能力更强,而前者的程序设计相对比较简单。
关键词:BP神经网络,RBF神经网络,函数逼近0 引言人工神经网络(Artificial Neural Networks,ANN)[1]是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的,且对输入信号有功能强大的反应和处理能力。
神经网络是由大量的处理单元(神经元)互相连接而成的网络。
为了模拟大脑的基本特性,在神经科学研究的基础上,提出了神经网络的模型。
但是,实际上神经网络并没有完全反映大脑的功能,只是对生物神经网络进行了某种抽象、简化和模拟。
神经网络的信息处理通过神经元的互相作用来实现,知识与信息的存储表现为网络元件互相分布式的物理联系。
神经网络的学习和识别取决于各种神经元连接权系数的动态演化过程。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
当前,它在许多领域有重要的作用。
例如,模式识别和图像处理;印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。
BP神经网络
BP神经网络在函数逼近中的实现1.1 概述BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。
此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于函数逼近和样本含量估计问题中,并分析比较相关参数对算法运行结果的影响。
人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
基于BP神经网络的PID控制系统设计
基于BP神经网络的PID控制系统设计摘要本文主要研究一个基于神经网络的自适应PID控制系统的设计方法,利用BP神经网络对被控对象进行在线辨识和控制。
基于BP神经网络学习算法设计出两个神经网络模型:一个利用神经网络(NNM)对非线性映射的逼近能力,对被控对象进行辨识,另一个构成具有PID结构的控制器(NNC)。
通过神经网络NNM的在线学习和修正,产生对被控对象输出的预测作用,然后由网络NNC实施控制作用,从而实现对辨识对象的PID控制。
在利用神经网络对系统进行辨识时,选用白噪声信号作为系统的输入信号,以提高系统的辨识精度;另外,为了得到神经网络控制器的初始化权值,本文在自整定过程中采用常规PID控制器整定方法之一的稳定边界法。
在设计过程中运用MATLAB语言工具箱进行编程,并通过SIMULINK动态仿真工具对一阶非线性对象进行了仿真。
仿真结果表明了利用神经网络对系统进行辨识的有效性,并用经辨识所得到的输出值取代系统的实际输出值,利用神经网络NNC对系统进行控制,获得了满意的控制效果。
关键词:神经网络,BP学习算法,自适应,参数优化,辨识1 综述PID调节器从问世至今已历经了半个多世纪,在这几十年中,人们为它的发展和推广做出了巨大的努力,使之成为工业过程控制中主要的和可靠的技术工具。
近几十年来,现代控制理论迅速发展,出现了许多先进的控制算法,但到目前为止,即使在微处理技术迅速发展的今天,过程控制中大部分控制规律都未能离开PID,这充分说明PID控制仍具有很强的生命力。
过程工业控制中实际应用最多的仍是常规的PID控制算法,这是因为PID控制具有结构简单、容易实现、控制效果好和鲁棒性强等特点,且PID算法原理简明,参数物理意义明确,理论分析体系完整,为广大控制工程师所熟悉。
但在生产现场往往由于参数整定不好而使PID控制器控制效果欠佳,整定的好坏不但会影响到控制质量,而且还会影响到控制器的性能。
PID控制中一个至关重要的问题,就是控制器三参数(比例系数、积分时间、微分时间)的整定。
人工智能实验报告-BP神经网络算法的简单实现
⼈⼯智能实验报告-BP神经⽹络算法的简单实现⼈⼯神经⽹络是⼀种模仿⼈脑结构及其功能的信息处理系统,能提⾼⼈们对信息处理的智能化⽔平。
它是⼀门新兴的边缘和交叉学科,它在理论、模型、算法等⽅⾯⽐起以前有了较⼤的发展,但⾄今⽆根本性的突破,还有很多空⽩点需要努⼒探索和研究。
1⼈⼯神经⽹络研究背景神经⽹络的研究包括神经⽹络基本理论、⽹络学习算法、⽹络模型以及⽹络应⽤等⽅⾯。
其中⽐较热门的⼀个课题就是神经⽹络学习算法的研究。
近年来⼰研究出许多与神经⽹络模型相对应的神经⽹络学习算法,这些算法⼤致可以分为三类:有监督学习、⽆监督学习和增强学习。
在理论上和实际应⽤中都⽐较成熟的算法有以下三种:(1) 误差反向传播算法(Back Propagation,简称BP 算法);(2) 模拟退⽕算法;(3) 竞争学习算法。
⽬前为⽌,在训练多层前向神经⽹络的算法中,BP 算法是最有影响的算法之⼀。
但这种算法存在不少缺点,诸如收敛速度⽐较慢,或者只求得了局部极⼩点等等。
因此,近年来,国外许多专家对⽹络算法进⾏深⼊研究,提出了许多改进的⽅法。
主要有:(1) 增加动量法:在⽹络权值的调整公式中增加⼀动量项,该动量项对某⼀时刻的调整起阻尼作⽤。
它可以在误差曲⾯出现骤然起伏时,减⼩振荡的趋势,提⾼⽹络训练速度;(2) ⾃适应调节学习率:在训练中⾃适应地改变学习率,使其该⼤时增⼤,该⼩时减⼩。
使⽤动态学习率,从⽽加快算法的收敛速度;(3) 引⼊陡度因⼦:为了提⾼BP 算法的收敛速度,在权值调整进⼊误差曲⾯的平坦区时,引⼊陡度因⼦,设法压缩神经元的净输⼊,使权值调整脱离平坦区。
此外,很多国内的学者也做了不少有关⽹络算法改进⽅⾯的研究,并把改进的算法运⽤到实际中,取得了⼀定的成果:(1) 王晓敏等提出了⼀种基于改进的差分进化算法,利⽤差分进化算法的全局寻优能⼒,能够快速地得到BP 神经⽹络的权值,提⾼算法的速度;(2) 董国君等提出了⼀种基于随机退⽕机制的竞争层神经⽹络学习算法,该算法将竞争层神经⽹络的串⾏迭代模式改为随机优化模式,通过采⽤退⽕技术避免⽹络收敛到能量函数的局部极⼩点,从⽽得到全局最优值;(3) 赵青提出⼀种分层遗传算法与BP 算法相结合的前馈神经⽹络学习算法。
基于BP神经网络算法的函数逼近
基于BP神经网络算法的函数逼近神经网络是一种基于生物神经元工作原理构建的计算模型,可以通过学习和调整权重来逼近非线性函数。
其中,基于误差反向传播算法(BP)的神经网络是最常见和广泛应用的一种,其能够通过反向传播来调整网络的权重,从而实现对函数的近似。
BP神经网络的算法包括了前馈和反向传播两个过程。
前馈过程是指输入信号从输入层经过隐藏层传递到输出层的过程,反向传播过程是指将网络输出与实际值进行比较,并根据误差来调整网络权重的过程。
在函数逼近问题中,我们通常将训练集中的输入值作为网络的输入,将对应的目标值作为网络的输出。
然后通过反复调整网络的权重,使得网络的输出逼近目标值。
首先,我们需要设计一个合适的神经网络结构。
对于函数逼近问题,通常使用的是多层前馈神经网络,其中包括了输入层、隐藏层和输出层。
隐藏层的神经元个数和层数可以根据具体问题进行调整,一般情况下,通过试验和调整来确定最优结构。
然后,我们需要确定误差函数。
对于函数逼近问题,最常用的误差函数是均方误差(Mean Squared Error)。
均方误差是输出值与目标值之间差值的平方和的均值。
接下来,我们进行前馈过程,将输入值通过网络传递到输出层,并计算出网络的输出值。
然后,我们计算出网络的输出与目标值之间的误差,并根据误差来调整网络的权重。
反向传播的过程中,我们使用梯度下降法来最小化误差函数,不断地调整权重以优化网络的性能。
最后,我们通过不断训练网络来达到函数逼近的目标。
训练过程中,我们将训练集中的所有样本都输入到网络中,并根据误差调整网络的权重。
通过反复训练,网络逐渐优化,输出值逼近目标值。
需要注意的是,在进行函数逼近时,我们需要将训练集和测试集分开。
训练集用于训练网络,测试集用于评估网络的性能。
如果训练集和测试集中的样本有重叠,网络可能会出现过拟合现象,导致在测试集上的性能下降。
在神经网络的函数逼近中,还有一些注意事项。
首先是选择适当的激活函数,激活函数能够在网络中引入非线性,使网络能够逼近任意函数。
神经网络PID
神经网络P I D -CAL-FENGHAI.-(YICAI)-Company One1BP神经网络PID控制方法研究引言所谓“神经网络”是以一种简单计算处理单元(即神经元)为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统;不仅如此,神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索功能。
神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。
由于神经网络己具有逼近任意连续有界非线性函数的能力,对于长期困扰控制界的非线性系统和不确定性系统来说,神经网络无疑是一种解决问题的有效途径。
采用神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应能力和更强的鲁棒性。
正因为如此,近年来在控制理论的所有分支都能够看到神经网络的引入及应用,对于传统的PID控制当然也不例外,以各种方式应用于PID控制的新算法大量涌现,其中有一些取得了明显的效果。
传统的控制系统设计是在系统数学模型己知的基础上进行的,因此,它设计的控制系统与数学模型的准确性有很大的关系。
神经网络用于控制系统设计则不同,它可以不需要被控对象的数学模型,只需对神经网络进行在线或离线训练,然后利用训练结果进行控制系统的设计。
神经网络用于控制系统设计有多种类型,多种方式,既有完全脱离传统设计的方法,也有与传统设计手段相结合的方式。
一般来说,基于神经网络的PID控制器的典型结构主要有两种,单神经元网络PID控制器和神经网络PID控制器两种控制算法。
本章将详细介绍基于BP 神经网络的PID控制算法,然后对单闭环调速系统的进行设计,对其进行Matlab算法仿真。
基于BP神经网络的PID整定原理PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,而是从变化无穷的非线性组合中找出最佳的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络逼近非线性函数3、试用BP神经网络逼近非线性函数
f(u) =
)5.0
u(9.1
e+
-
sin(10u) 其中,u∈[-0.5,0.5]
解题步骤:
①网络建立:使用“net=newff(minmax(x), [20, 1], {'tansig’,’ purelin' });,语句建立个前馈BP神经网络。
该BP神经网络只含个隐含层,且神经元的个数为20。
隐含层和输出层神经元的传递函数分别为tansig和pure-lin。
其他参数默认。
②网络训练:使用“net=train (net, x , y) ;”语句训练建立好的BP神经网络。
当然在网络训练之前必须设置好训练参数。
如设定训练时间为50个单位时间,训练目标的误差小于0.01,用“net.trainParam.epochs=50; net.train-Param.goal=0.01;”,语句实现。
其他参数默认。
③网络仿真:使用“y1=sim(net, x); y2=sim(net, x};”语句仿真训练前后的BP神经网络。
(2)程序如下:
clear all;
x=[-0.5:0.01:0.5];
y=exp(-1.9*(0.5+x)).*sin(10*x);
net=newff(minmax(x),[20,1],{'tansig' 'purelin'});
y1=sim(net,x); %未训练网络的仿真结果net.trainParam.epochs=50;
net.trainParam.goal=0.01;
net=train(net,x,y);
y2=sim(net,x); %训练后网络的仿真结果figure;
plot(x,y,'-',x,y1,'-',x,y2,'--')
title('原函数与网络训练前后的仿真结果比较');
xlabel('x');ylabel('y');
legend('y','y1','y2');
grid on
(3)仿真结果如图:
图1
图1为原函数y与网络训练前后(y1,y2)的仿真结果比较图。
由图1可知,用工具箱函数Newff建立网络时,对权值和阈值的初始化是随机的,所以未训练网络的仿真输出效果很差,并且每次运行的结果也不相同。
训练网络的仿真输出曲线和原始曲线非常接近,这说明训练后的网络对非线性函数的逼近效果很好。
图2
网络训练过程中误差随训练时间的变化迅速减少,在经过0.7个单位时间以后,网络的
误差就达到了逼近要求。