自动控制原理总经典总结
(完整版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
(完整版)自动控制原理知识点总结
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结
自动控制原理知识点总结————————————————————————————————作者:————————————————————————————————日期:自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。
2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。
3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。
4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。
5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。
6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。
7. 偏差信号e(t):是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点:控制精度高,抗干扰能力强。
缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。
准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t +∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数) 拉氏变换的基本法则 1.线性法则 2.微分法则 3.积分法则1()d ()f t t F s s ⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦Le ()()atf t F s a ⎡⎤=-⎣⎦L传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比称为系统(或元部件)的传递函数。
完整版)自动控制原理知识点汇总
完整版)自动控制原理知识点汇总自动控制原理总结第一章绪论在自动控制中,被控对象是要求实现自动控制的机器、设备或生产过程,而被控量则是表征被控对象工作状态的物理参量或状态参量,如转速、压力、温度、电压、位移等。
控制器是由控制元件组成的调节器或控制装置,它接受指令信号,并输出控制作用信号于被控对象。
给定值或指令信号r(t)是要求控制系统按一定规律变化的信号,是系统的输入信号。
干扰信号n(t)又称扰动值,是一种对系统的被控量起破坏作用的信号。
反馈信号b(t)是指被控量经测量元件检测后回馈送到系统输入端的信号。
偏差信号e(t)是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点是控制精度高,抗干扰能力强。
但是使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求包括稳定性、快速性和准确性。
稳定性和快速性反映了系统的过渡过程的性能,而准确性则是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章控制系统的数学模型拉氏变换是一种将时间域函数转换为复频域函数的数学工具。
单位阶跃函数1(t)、单位斜坡函数、等加速函数、指数函数e-at、正弦函数sinωt、余弦函数cosωt和单位脉冲函数(δ函数)都有其典型的拉氏变换。
拉氏变换的基本法则包括线性法则、微分法则、积分法则、终值定理和位移定理。
传递函数是线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比,称为系统或元部件的传递函数。
动态结构图及其等效变换包括串联变换法则、并联变换法则、反馈变换法则、比较点前移“加倒数”和比较点后移“加本身”,以及引出点前移“加本身”和引出点后移“加倒数”。
梅森公式是一种求解传递函数的方法,典型环节的传递函数包括比例(放大)环节、积分环节、惯性环节、一阶微分环节、振荡环节和二阶微分环节。
第三章时域分析法时域分析法是一种分析控制系统时域特性的方法。
其中,时域响应包括零状态响应和零输入响应。
自动控制原理知识点总结(通用4篇)
自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。
对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。
振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。
|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。
(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。
当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。
这条曲线就是幅相频率特性曲线,简称幅相曲线。
(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。
对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。
对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。
(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。
自动控制原理总结
⾃动控制原理总结⾃动控制原理1. ⾃动控制的⼀般概念反馈系统的基本组成测量元件给定元件⽐较元件放⼤元件执⾏元件校正元件⾃动控制系统的基本控制⽅式反馈控制⽅式⽆论什么原因使被控量偏离期望值⽽出现偏差时,必定会产⽣⼀个相应的控制作⽤去降低或消除这个偏差。
开环控制⽅式特点是控制装置与被控对象之间只有顺向作⽤⽽没有反向联系,系统的输出量不会对系统的控制作⽤产⽣影响。
⾃动控制系统的分类线性连续控制系统线性定常离散控制系统⾮线性控制系统系统只要有⼀个元部件的输⼊-输出特性是⾮线性的,这类系统就称之为⾮线性控制系统。
对⾃动控制系统的基本要求稳定性我们先讨论为什么控制系统会不稳定。
由于⼀般的控制系统都含有⼀个储能元件或者惯性元件,这类元件的能量不可能发⽣突变。
因此从被控量偏离期望值,到控制量做出反应,需要⼀定的延缓时间,这个过程称为过渡过程。
当控制量已经回到期望值⽽使偏差为零时,执⾏机构本应⽴刻停⽌,但是由于过渡过程的存在,使得控制量反⽽向反向变化,如此反复进⾏,使得被控量在期望值附近来回摆动,这个过程呈现振荡形式。
如果这个振荡是逐渐减弱的,即控制量最终会回到期望值,我们称这个系统是稳定的;如果振荡逐渐增强,我们称这个系统是不稳定的。
快速性前⾯提到,虽然稳定系统最终会回到稳定状态,但是这个回到稳定状态的快慢对于⼀些系统来说是⾮常关键的。
⼀般从控制开始,到系统的输出量在期望值的⼀定误差范围内来回摆动的时间,我们称之为调节时间。
这个时间⼀般可以⽤来反映系统调节的快慢。
⽽在调节过程,⼀般振荡都会有个最⼤振幅,最⼤振幅⼀般也对于⼀些系统来说也⾮常重要,我们⽤来这个最⼤振幅与期望值的差与期望值的⽐值来反映系统的这个性质,称之为超调量。
准确性尽管前⾯我们提到稳定系统最终会趋于稳定,但是是在期望值的允许误差范围内,即使在很⼤的时间长度上,最终输出量也难以与期望值完全⼀致。
我们将⽆穷的时间尺度下,最终输出量与期望值之差成为稳态误差,稳态误差为⽆穷⼤的系统说明不稳定。
自动控制原理知识点总结1~3章
自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量.3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入.5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较.反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号.7、负反馈控制原理:检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号.然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制 .9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础. (2)、快速性:动态过程时间要短,振荡要轻。
(3)、准确性:稳态精度要高,误差要小。
12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有: 微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图.对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
自动控制原理总结之判断系统稳定性方法
自动控制原理总结之判断系统稳定性方法判断系统稳定性是控制理论研究中的重要内容,正确判断系统的稳定性对于设计和实施控制策略非常关键。
在自动控制原理中,常见的判断系统稳定性的方法主要包括根轨迹法、频率响应法和状态空间法等。
根轨迹法是一种基于系统传递函数的方式来判断系统稳定性的方法。
通过分析系统传递函数的极点和零点的分布,在复平面上绘制出根轨迹图来描述系统特性。
根轨迹图上的点表示系统传递函数的闭环极点位置随控制参数变化的轨迹,通过观察根轨迹图,可以判断系统的稳定性。
一般来说,当根轨迹图上所有的闭环极点都位于左半平面时,系统是稳定的;而如果存在闭环极点位于右半平面,系统就是不稳定的。
此外,根轨迹法还可以通过分析根轨迹图的形状、离散角和角度条件等来进一步评估系统的稳定性。
频率响应法是一种基于系统的频率特性来判断稳定性的方法。
通过分析系统的频率响应曲线,可以得到系统的增益和相位信息,进而判断系统的稳定性。
在频率响应法中,常见的评估指标有增益裕度和相位裕度。
增益裕度表示系统增益与临界增益之间的差距,而相位裕度则表示系统相位与临界相位之间的差距。
一般来说,增益裕度和相位裕度越大,系统的稳定性就越好。
根据增益裕度和相位裕度的要求,可以设计合适的控制器来保证系统的稳定性。
状态空间法是一种基于系统状态方程来判断稳定性的方法。
在状态空间表示中,系统的动态特性由一组一阶微分方程组表示。
通过求解状态方程的特征值,可以得到系统的特征根。
一般来说,当系统的特征根都位于左半平面时,系统是稳定的;而如果存在特征根位于右半平面,系统就是不稳定的。
此外,状态空间法可以通过观察系统的可控和可观测性来进一步判断系统稳定性。
当系统可控和可观测时,系统往往是稳定的。
除了以上几种常见的判断系统稳定性的方法外,还有一些其他的方法,如Nyquist稳定性判据、Bode稳定性判据、李雅普诺夫稳定性判据等。
这些方法各有特点,常常根据具体的系统和问题选择合适的方法来判断稳定性。
自动控制原理知识点总结
自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。
一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。
控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。
控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。
测量元件负责测量被控量,并将其转化为电信号反馈给控制器。
执行机构接受控制器的控制信号,对控制对象施加作用。
自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。
开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。
闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。
二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。
数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程是最基本的描述形式,但求解比较复杂。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它可以方便地分析系统的频率特性和稳定性。
状态空间表达式则能更全面地描述系统的内部状态和动态特性。
建立数学模型的方法有分析法和实验法。
分析法是根据系统的物理规律和结构,推导出数学方程。
实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。
三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。
主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。
稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。
对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。
上升时间、峰值时间和调节时间反映了系统的快速性。
自动控制原理总经典总结
自动控制原理总经典总结自动控制原理》总复控制系统控制系统是由受控对象和控制器组成的系统,用于控制和调节被控量。
根据不同的角度,控制系统可以分为恒值系统和随动系统、线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统等。
线性系统线性系统是指系统的输出与输入之间存在线性关系的系统。
建模时可以采用求传函或脉冲传函的方法,分析时可使用根轨迹法、频率特性法等方法。
非线性系统非线性系统是指系统的输出与输入之间不存在线性关系的系统。
建模时可以采用描述函数法或相平面法,稳定性分析时可以求奇点和极限环,运动时间可以通过振幅和频率计算得出。
控制系统的基本概念控制系统的基本术语包括自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
掌握这些基本概念可以帮助理解控制系统的基本组成和工作原理。
基本控制方式控制系统的基本方式包括开环控制系统、闭环控制系统和复合控制系统。
开环控制系统没有反馈,闭环控制系统则通过反馈控制来实现对被控量的调节,复合控制系统则是开环控制和闭环控制的组合。
数学模型数学模型是用数学表达式描述控制系统的工作原理和特性的模型。
建模时可以采用物理系统的微分方程描述、拉普拉斯变换及反变换、传递函数及典型环节的传递函数、脉冲响应函数等方法。
图形表示可以采用结构图、信号流图等方法。
基本要求研究自动控制原理需要掌握控制系统的基本概念、基本控制方式、数学模型等知识。
同时,需要了解控制系统的分类和典型输入信号,并能够正确理解数学模型的特点和概念。
掌握这些知识可以帮助理解控制系统的工作原理和实际应用。
2.了解动态微分方程建立的一般方法和小偏差线性化方法。
3.掌握使用拉普拉斯变换解微分方程的方法,并对解的结构、运动模态、特征根的关系、零输入响应、零状态响应等概念有清晰的理解。
4.正确理解传递函数的定义、性质和意义,并熟练掌握系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
自考自动控制原理经典总结
1、扰动:当输入变化而引起被控量的变化。
2、偏差信号:输入信号与反馈信号的差值。
3、自动控制:应用控制装置自动的、有目的地控制或调节机器设备或生产过程,使之按照人们规定的或者希望的性能指标运行。
4、自动控制系统组成:比较元件、控制器、受控对象、测量、变送元件。
5、常规控制器:定值元件、比较元件、放大元件、反馈元件。
6、程序控制系统:被控量的给定值是一个已知的时间函数,控制的目的是要求被控量按照给定的定值的时间函数来改变。
7、动态过程:单调、衰减振荡、等幅振荡、渐扩振荡。
(稳定性、快速性、准确性)8、拉斯变换:单位阶跃:1/s;单位斜坡t:1/s2 ;e-at:1/s+a;te-at:1/(s+a)2;sinwt:w/s2+w2;Coswt:s/s2+w2;e-at sinwt:w/(s+a)2+w2;e-atcoswt:s+a/(s+a)2+w29、传递函数:只对线性定常系统,在零厨师条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比(分子阶数小于分母阶数因为系统中有较多的惯性元件)。
10、输出节点(陷点):只有输入支路的节点,它对应于因变量或输出信号。
11、混合节点:既有输入支路又有输出支路的节点。
12、回路和回路增益:回路就是闭通路,回路各支路传输的乘积称为回路增益。
13、前向通路和前向通路增益:从输入节点到输出节点的通路上,经过任一节点不多于一次的通路,前向通路中各支路传输的乘积为前向通路增益。
14、最大超调量σp:动态响应曲线偏离稳态值的最大偏差值;上升时间tr;峰值时间tp:响应曲线达到过调量的第一个峰值所需要的时间。
调整时间ts:响应曲线达到5%以内的时间。
15、稳态误差ess:响应的稳态值与希望的给定值之间的偏差。
16、二阶系统的单位阶跃响应:0<ξ<1:为一对实部为负的共轭复根;ξ=1:一对相等的负实数。
ξ>1:两个不相等的负实根。
ξ=0:一对共轭纯虚根。
-1<ξ<0:一对具有正实部的共轭复根。
自动控制原理知识点总结
自动控制原理知识点总结一、数学模型与传递函数1.系统的数学模型:数学模型是通过建立系统的数学方程来描述系统的物理特性和行为规律。
2.传递函数:传递函数是描述系统的输入和输出之间关系的函数,它是系统的拉普拉斯变换的比值。
二、系统的稳定性1.稳定性的概念:系统的稳定性是指系统在给定条件下的输出是否能够始终收敛到一个有限的范围内。
2.稳定性判据:稳定性可以通过判断系统的极点位置来确定,例如极点都位于左半平面时系统是稳定的。
3. 稳定性分析方法:常用的稳定性分析方法有根轨迹法、Nyquist稳定判据和Bode稳定判据。
三、系统的时间响应1.系统的单位冲击响应:单位冲击响应是系统对冲激信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
2.系统的单位阶跃响应:单位阶跃响应是系统对阶跃信号的输出响应,它可以通过拉普拉斯变换和反变换求得。
3.响应特性参数:常用的响应特性参数有时间常数、峰值时间、峰值幅值、上升时间、超调量和稳态误差等。
四、控制系统的单一闭环反馈1.开环系统与闭环系统:开环系统是指没有反馈路径的系统,闭环系统是指存在反馈路径的系统。
2.单位负反馈控制系统:单位负反馈控制系统是指闭环系统中反馈信号与输入信号的比例为-1的系统。
3.闭环系统的稳态误差:稳态误差是指系统在达到稳定状态后,输出与期望输出之间的偏差。
4.稳态误差的计算和减小方法:可以通过增大控制增益、引入积分环节或者采用预估控制来减小稳态误差。
五、PID控制器1.PID控制器的结构和原理:PID控制器是由比例环节、积分环节和微分环节组成的控制器。
比例环节根据当前误差来调节输出,积分环节根据累积误差来调节输出,微分环节根据误差变化率来调节输出。
2.PID调节器参数整定方法:常用的整定方法有经验整定法、频域法和模拟优化等。
六、根轨迹法1.根轨迹的概念和性质:根轨迹是描述系统极点运动规律的图形,它是由系统的传递函数特征方程的根随一个参数的改变轨迹而形成的。
自动控制原理知识点总结
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析和设计的学科,它在工程技术、机械制造、航空航天、电力系统等众多领域都有着广泛的应用。
接下来,让我们一起深入了解一下自动控制原理中的一些重要知识点。
一、控制系统的基本概念控制系统是指由控制对象、控制器和反馈环节组成的能够对被控对象的输出进行自动控制的系统。
控制对象是被控制的物理设备或过程,控制器则是根据给定的输入和反馈信号产生控制作用的装置,反馈环节用于将控制对象的输出反馈给控制器,以实现对系统的调节和控制。
控制系统的性能指标通常包括稳定性、准确性和快速性。
稳定性是指系统在受到干扰后能够恢复到平衡状态的能力;准确性是指系统的输出与给定输入之间的偏差大小;快速性则是指系统从一个状态过渡到另一个状态所需的时间。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程是描述系统动态特性的最基本形式,但求解较为复杂。
传递函数则是在零初始条件下,输出的拉普拉斯变换与输入的拉普拉斯变换之比,它可以方便地分析系统的频率特性和稳定性。
状态空间表达式则是用一组状态变量来描述系统,更适合于多输入多输出系统的分析和设计。
三、控制系统的时域分析时域分析是通过直接求解系统的微分方程或状态方程,来研究系统的性能。
其中,重要的概念包括单位阶跃响应、单位脉冲响应和稳态误差。
单位阶跃响应是指系统在单位阶跃输入信号作用下的输出响应,它可以反映系统的稳定性和快速性。
单位脉冲响应则是系统在单位脉冲输入信号作用下的输出响应,与系统的传递函数是拉普拉斯变换对的关系。
稳态误差是指系统在稳态时输出与输入之间的偏差,它与系统的类型和开环增益有关。
对于给定的输入信号,通过计算稳态误差可以评估系统的准确性。
四、控制系统的根轨迹法根轨迹是指当系统的某个参数(通常是开环增益)从 0 变化到无穷大时,系统特征方程的根在复平面上的变化轨迹。
《自动控制原理》知识点资料整理总结
第一章绪论1.机械系统:以实现一定的机械运动、输出一定的机械能和承受一定的机械载荷为目的。
激励(输入):外界与系统的作用,如作用力(载荷)。
分为控制输入和扰动输入。
响应(输出):系统由于激励作用而产生的变形或位移。
2.机械工程控制论的研究对象和任务是什么?机械工程控制论实质上是研究机械工程中广义系统的动力学问题。
具体地说,是广义系统在一定的外界条件作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性所决定的整个动态历程,研究系统与其输入、输出三者之间的动态关系。
从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械控制工程论的任务可以分为以下五个方面:(系统分析问题)已知系统和输入,求系统的输出。
(最优控制问题)已知系统和理想输出,设计输入。
(最优设计问题)已知输入和理想输出,设计系统(滤波与预测问题)已知输出,确定系统,以识别输入或输出中的有关信息。
(系统辨识问题)已知输入和输出,求系统的结构与参数。
3.控制系统的基本要求(稳、准、快)稳定性:动态过程的振荡倾向和系统能够恢复平衡状态的能力。
稳定性是系统工作的首要条件。
准确性:在调整过程结束后输出量与给定的输入量之间的偏差。
衡量系统工作性能的重要指标。
快速性:系统输出量与希望值之间产生偏差时,消除这种偏差的快速程度。
控制的三要素:控制对象、控制目标、控制手段。
控制论的两个核心:信息和反馈需要解决的两大基本问题:控制系统的分析和控制系统的设计。
4.反馈:将系统的输出以一定的方式返回到系统的输入端并共同作用于系统的过程。
内反馈:系统或过程中存在的各种自然形成的反馈。
内反馈是造成机械系统存在动态特性的根本原因。
外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈。
正反馈:能使系统的绝对值增大的反馈。
负反馈:能使系统的绝对值减小的反馈。
5.自动控制的本质:闭环自动控制系统的工作过程就是一个“检测偏差并纠正偏差”的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自动控制原理》总复习第一章自动控制的基本概念一、学习要点1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
2.控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。
3.自动控制系统的组成:由受控对象和控制器组成。
4.自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。
5.对自动控制系统的基本要求:稳、快、准。
6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。
3.了解控制系统的典型输入信号。
4.掌握由系统工作原理图画方框图的方法。
三、容结构图四、知识结构图第二章 控制系统的数学模型一、学习要点1.数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换;(3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。
2.数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(#)5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图及结构图的简化,并能用梅逊公式求系统传递函数。
(##)6、传递函数的求取方法:1)直接法:由微分方程直接得到。
2)复阻抗法:只适用于电网络。
3)结构图及其等效变换,用梅逊公式。
4)信号流图用梅逊公式。
四、知识结构图第三章控制系统的时域分析一、学习要点1.基本概念:稳定性、时域响应、动态性能指标、误差与稳态误差等。
2.控制系统的稳定性(1)劳斯稳定判据;(2)赫尔维茨稳定判据。
3.控制系统的动态性能(1)一阶系统的暂态响应;(2)二阶系统的暂态响应。
4.控制系统的稳态性能(1)一般概念;(2)误差系数。
二、基本要求1.了解线性定常系统的时域响应组成,熟悉控制系统暂态响应性能指标的定义(#)。
2.掌握一阶系统的暂态响应及性能指标,并能根据给出的指标确定满足要求的系统参数T。
(#)3.掌握二阶系统的暂态响应分析及其与极点之间的关系,重点掌握二阶系统的暂态响应性能指标公式及计算,并能根据给出的指标确定满足要求的系统参数ζ和n ω,尤其是改善二阶系统动态性能的两种措施。
(#)(#)4. 一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。
5. 了解稳定性的概念,掌握线性定常系统稳定的充要条件(#)。
6. 重点掌握判断稳定性的Routh 代数判据及应用(#)(#),对Hurwitz 判据有一般了解。
能根据系统要求确定满足稳定的系统参数围(#)(#)。
7. 了解稳态误差的概念、定义、产生原因、类型。
8. 重点掌握给定稳态误差终值的计算,稳态误差系数的计算,扰动稳态误差终值的计算及减小稳态误差的方法,并能根据系统对稳态误差的要求确定系统参数。
(#)(#) 三、容结构图第四章控制系统的根轨迹法一、学习要点1.基本概念(1)根轨迹定义(2)根轨迹绘制的基本条件:幅值方程和相角方程。
2.绘制根轨迹的基本法则(1)常规根轨迹的绘制法则(2)参量根轨迹绘制(3)零度根轨迹绘制3.增加开环零极点对根轨迹的影响4.利用根轨迹分析系统①稳定性;②运动形式;③主导极点;④超调量;⑤调节时间;⑥实数零、极点的影响;⑦偶极子及其处理。
二、基本要求1.重点掌握绘制常规负反馈系统根轨迹的基本条件和基本法则;(#)(#)2.理解参量根轨迹和零度根轨迹的绘制;3.了解多回路控制系统的根轨迹;4.掌握增加开环零极点对根轨迹的影响;(#)5.能根据根轨迹分析系统性能随参数变化的趋势。
(#)三、容结构图四、知识结构图第五章控制系统的频率特性一、学习要点1.频率特性的定义2.频率特性的几何表示(1)极坐标图或奈奎斯特图(Nyquist图)(2)对数频率特性曲线(Bode图)3.典型环节的频率特性及最小相位系统(1)典型环节频率特性(2)最小相位系统与非最小相位系统4.稳定判据(1)奈奎斯特稳定判据(2)对数频率特性的稳定判据5.开环频域指标(1)幅值裕度(2)相角裕度6.闭环频域指标(1)零频幅值M(0)ω(2)带宽频率b(3)谐振峰值M r和谐振频率rω(4)闭环系统频域指标与时域指标的关系7.开环对数频率特性与时域性能指标:(1)三频段的概念(2)开环系统频域指标与时域性能指标的关系二、基本要求1.正确理解频率特性的概念,掌握典型环节的频率特性并运用频率特性分析系统的稳态响应。
(#)ω(#)(#)。
2.熟练掌握绘制开环系统Nyquist图和Bode图的方法,会求剪切频率c3.重点掌握奈奎斯特稳定判据及其在系统分析中的应用。
(#)(#)4.重点掌握相角裕度、幅值裕度的计算。
(#)(#)5.掌握开环对数频率特性与系统性能之间的关系,正确理解三频段的概念。
(#)6.正确理解并掌握用实验数据确定传递函数,由最小相位系统的Bode图确定系统的传递函数的方法,会求开环放大系数K。
(#)(#)三、容结构图四、知识结构图第6章控制系统的校正一、学习要点1.控制系统校正的一般概念2.控制系统的性能指标3.校正方法──频率法,根轨迹法4.校正方式1)串联校正;2)反馈校正;3)串联反馈校正;4)前馈补偿校正(复合控制)。
5.基于频率响应法的串联校正1)串联超前校正;2)串联滞后校正;3)串联滞后—超前校正;4)三种串联校正方法的特点与作用;5)串联校正的希望特性法。
二、基本要求1.熟悉典型的无源校正装置,掌握校正网络的频率特性及其作用。
2.正确选择校正网络。
3.掌握串联校正的频率设计方法,重点掌握三种串联校正方式的特点与作用(#)(#)。
4.重点掌握期望特性的求取方法及串联校正的期望特性法。
(#)(#)5.重点掌握校正前后相角裕度、幅值裕度的计算。
(#)(#)6.了解反馈校正的频率设计法。
三、容结构图第七章线性离散控制系统一、学习要点1.基本概念:连续信号、离散信号、离散系统、采样过程、采样开关、保持器。
2.采样:(1)采样过程;(2)香农采样定理;(3)零阶保持器。
3.离散系统的数学模型:(1)差分方程;(2)数学工具—z变换;(3)脉冲传递函数。
3. 系统分析(1)离散系统稳定性分析(2)准确性分析(离散系统的稳态误差分析)(3)快速性分析与时间响应(4)校正:校正方法,数字校正装置的实现,最少拍系统的校正,无稳态误差的最少拍系统的校正二、基本要求1、掌握离散控制系统的相关概念及离散控制系统与连续控制系统的主要区别。
2、掌握z变换、z反变换的概念及其主要性质。
3、充分理解采样定理及采样周期对离散控制系统的影响。
4、理解零阶保持器的具体含义及作用,熟悉零阶保持器的传递函数、频率特性及特点。
5、重点掌握脉冲传递函数的概念及其求解离散控制系统开环、闭环脉冲传递函数的方法。
(#)(#)6、正确理解离散控制系统稳定性的含义及其稳定的充要条件,熟练掌握离散控制系统的稳定性判断方法,能根据系统要求确定满足稳定性的系统参数围。
(#)(#)7、重点掌握计算离散控制系统的稳态误差方法。
(#)(#)8、了解离散控制系统极点分布与系统瞬态响应之间的关系,能根据给定输入求取离散控制系统的时间响应。
9、正确理解离散系统的校正方法和数字校正装置的实现方法;能对离散系统进行最少拍系统的校正和无稳态误差的最少拍系统的校正。
三、容结构图四、知识结构图第八章非线性控制系统分析一、学习要点1.非线性系统的特点2.典型非线性环节及其对系统性能的影响3.非线性系统分析(1)描述函数法:描述函数的应用前提、自振的分析及计算。
(2)相平面法:①基本概念:相平面、相轨迹、奇点、平衡点、相轨迹的走向、极限环等。
②相轨迹描述方法:解析法、等倾线法。
二、基本要求1、从系统组成、数学描述、动态过程及分析方法等几方面来正确理解线性系统和非线性系统的基本概念和本质区别。
2、正确理解描述函数法的基本概念和应用前提。
3、利用描述函数法能够对系统作定性分析及求出一般近似解。
4、掌握负倒描述函数曲线的绘制方法。
(#)5、重点掌握基于描述函数法计算系统自振参数及判断系统稳定性的方法。
(##)6、正确理解相平面法的基本概念和特点。
7、掌握开关线、奇点及其类型、极限环等概念,尤其能判断奇点及其类型。
8、掌握线性系统和非线性系统的相轨迹绘制方法(解析法、等倾线法)。
三、容结构图四、知识结构图。