自然电位附自然伽马
主要测井曲线及其含义
主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
自然伽玛测井方法主要特点对比表
理论曲线是在测速为零、点状计数管的条件下计算得到的,但实际测井中,计数管不是点状的,测速也不为零,所以实测曲线和理论曲线是有些差异的,但基本形状仍然相似
一、划分岩性——当自然电位测井曲线变化缓慢、平直,或由于井条件(非导电泥浆、空井、下套管井)而不能测量自然电位时,自然伽马测井对划分泥岩层特别有用。它主要根据地层中泥质含量的变化引起GR曲线幅度变化来区分不同的岩性。
a、vτ≠0的曲线与vτ=0曲线不重合,不同vτ测得的曲线只有起点是相互一致的。
b、vτ越大,曲线的幅度下降得越大。
c、在仪器移动方向上,vτ越大,曲线拖尾越长。
d、随着地层厚度h的减小,vτ的影响增大。
自然伽马测井仪器刻度
单位时间内仪器的计数(计数率)不仅与测量对象和测量环境有关,而且与仪器本身的性能,特别是探测器的计数率有关。若某一放射性地层是均匀的,那么用不同的仪器测量的计数率是不同的,甚至同一仪器在相隔较长时间内两次测量的结果也不相同。如闪烁计数器对伽马射线的探测效率20%~30%,而盖革计数管的探测效率只有1%左右。若两种探测器的灵敏元件体积相同,在同一点上得到的计数率相差几十倍。即使仪器中采用同一类型的探测器,由于灵敏元件探测效率的差异、线路特点和外壳吸收条件不同,计数率也会有相当大的差别,这就给资料对比和定量解释造成困难。克服这一困难的办法就是对仪器进行标准化刻度。自然伽马测井仪器标准化的原理是:用自然伽马测井仪器,在规定的条件下,对强度稳定的标准伽马辐射体(放射性地层模型、长半衰期的伽马源、分布稳定的放射性地层等)进行测量,取计数率的百分之几作为一个标准单位,用这样的单位对测量值进行标定。如果两套仪器的总计数率相差一倍,那么对同一测量对象测得的计数率也相差一倍。用标准单位对测井值进行标定后,两套仪器的测量结果就会是相同的。
自然电位及自然伽马
������������ = ������������ lg
������2 ������������������
在泥岩和泥浆接触面上,由于扩散吸附作用,产生的扩散吸附电动势为 ������������������ 1 = ������������������ lg ������1 ������������������
������ 1
������������ = ������������ lg 或 ������������ = ������������ lg
������������������ ������������
������������ ������ ������������
图 3 井内自然电位分布示意图
在砂岩和泥岩接触面上,由于扩散吸附作用,产生的扩散吸附电动势为 ������1 ������������������ 2 = ������������������ lg ������2 在井与砂岩、泥岩接触面上,自然电流回路中的总自然电动势������������ 即 ������������ = ������������ + ������������������ 1 −������������������ 2 ������2 = klg ������������������ 式中 K=Kd+Kda,称为自然电位系数。可以写成: ������������������ ������������ = −klg = ������������������ ������������ 通常把 E。写作 S5P,称为静自然电位。实际测井时以泥岩作自然电位曲线的基线(即零 线),当 Cw>Cmf 时,砂岩的自然电位异常为负值,因此上式右端取负号。把井中巨厚的纯砂 岩井段的自然电位幅度近似认为是 SSP。静自然电位的变化范围在含淡水岩层的+50mV 到含 高矿化度盐水岩层的-200mV 之间。 2.自然电位曲线特点 图 6 是一组含水纯砂岩的自然电位理论曲线,横坐标是自然电位与静自然电位之比Δ Usp/SSP,纵坐标为地层厚度 h,曲线号码为层厚与井径之比 h/d。当上、下围岩很厚且岩 性相同时,从曲线上可以看到下列特点:曲线关于地层中点对称,地层中点处异常值最大; 地层越厚,Δ Usp 越接近 SSP,地层厚度变小,△Usp 下降,且曲线顶部变尖,底部变宽, △Usp≤SSP;当 h>4d 时,△Usp 的半幅点对应地层的界面,因此较厚地层可用半幅点法确 定地层界面,地层变薄时,不能用半幅点法分层。实测曲线与理论曲线特点基本相同,由于 测井时受多方面因素的影响,实测曲线不如理论曲线规则(图 7)。使用自然电位曲线时应注 意:自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线 幅度△Usp 的读数是基线到曲线极大值之间的宽度所代表的毫伏数。 在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf 时,砂岩层段出现自然电位负异常;Cw<Cmf 时,砂岩层段出现自然电位正异常;Cw=Cmf 时,没有造成自然电场的电动势产生,则没有 自然电位异常出现。Cw 和 Cmf 差别越大,造成的自然电场的电动势越大。
自然电位、自然伽马测井曲线在文15块的应用
然电位划分储集砂体下限标准遥 其中沙三上储层自然
伽马减小幅度下限为 0.50耀0.45袁几乎不受储集砂体类
别尧孔隙流体类型及测井环境的限制袁可以划分 0.4 m
的储集砂体遥 自然电位减小幅度首先随储集砂体类别
2 文 15 块储集相带评价应用
在油田储集相带评价中袁自然伽马尧自然电位测井
曲线都是不可缺少的袁利用自然伽马尧自然电位曲线同
步减小幅度评价渗砂层袁 划分水下分流河道主体微相
带曰 利用自然伽马尧 自然电位减小的幅度差评价低渗
砂尧致密砂层袁划分水下分流河道侧翼微相带咱16-17暂遥
表 1 为文 15 块油田沙三上段建立的自然伽马尧自
渊1.西安石油大学西部低渗-特低渗油田开发与治理教育部工程研究中心袁陕西 西安 710065曰 2..中国石油集团测井有限公司评价中心袁陕西 西安 710201冤
基金项目院中国石油天然气股份有限公司野十二五冶科技攻关项目野致密气藏测井采集处理与储层评价技术研究冶和 国家自然科学基金项目野基于核向量机的油藏历史拟合代理模型研究冶渊40872087冤资助
砂泥岩沉积及砂岩中泥质含量的多少与沉积环境 密切相关遥高能环境水流强烈跌簸筛选袁形成相对粒级 较粗的纯净砂岩袁SP 曲线减小幅度高遥 低能环境水流 停滞袁微细泥质得以沉积袁形成粒级细微的泥页岩袁SP 曲线与基线趋于一致遥 因此袁SP 曲线减小幅度的相对 高低袁 可以判断砂岩中泥质质量分数的多少和沉积环 境能量的强弱咱7-9暂遥
用测井曲线判别油气水层
五、声波速度测井
它就是测量声波在岩石中的传播速度或传 播时间。
声波在岩石中的传播速度与岩石的性质、 孔隙度以及孔隙中所充填的流体性质有关。 在砂泥岩剖面中,声波在砂岩中的传播时 间比在泥岩中传播时间短。
在油、气、水流体中的传播时间,由长到 短的顺序是:气---油---水。因为它们的密 度决定了它们的传播速度。
一. 自然电位
原理: 由于泥浆和地层水的矿化度不同,在钻开岩层后,在井碧附近两种 不同矿化度的溶液接触产生电化学过程,结果产生电动势造成自 然电场,沿井轴测量记录自然电位变化曲线,用以区别岩性,这种测 井方法叫自然电位测井. 用途: 由于自然电位曲线在渗透层处有明显的异常显示,因此它是划分 和研究储集层的重要方法之一,也是判断水淹层的重要曲线. 高浓度溶液中的离子受渗透压的作用要迁移到低浓度溶液中,叫 离子扩散. 负离子的迁移速度大于正离子的迁移速度. 在砂泥岩剖面中,以泥岩为基线,当地层水矿化度大于泥浆滤液矿 化度时,在自然电位曲线想砂岩层段则出现负异常.反之,砂岩层段 则出现正异常. 判断水淹层,在自然电位曲线上,泥岩基线发生偏移,上部基线偏移 说明顶部水淹,下部基线偏移说明底部水淹,自然电位幅度比正常 的要偏大.
自然伽马------实际测的是地层中泥质含量的多少
三、普通电阻率
电阻率测井:是测岩石的电阻 率和岩石中流体的电阻率高低 的曲线。
用来区分岩性、划分油水层、 进行地层对比。 在砂泥岩剖面中,砂岩电阻比 泥岩电阻高。砂岩中装油呈现 高电阻值,装水呈现低电阻。
四、感应电导率
感应电导率测井也是电阻率,只是 是一种特殊的电阻率测井。它的测 量半径大,对薄层的反应灵敏度比 普通电阻率高。它也是判别油水层 的非常重要的曲线。
自然电位测井
求地层水电阻率
4、求地层水电阻率(Rw是计算地层含油饱和度的重要参数之一) 求地层水电阻率(Rw是计算地层含油饱和度的重要参数之一
图版法: 图版法:
略
判断水淹层
5、判断水淹层
在油田开发中,常采用注水的方法来提高采收率。 在油田开发中,常采用注水的方法来提高采收率。 注水的方法来提高采收率 如果油田见到了注水则该层为水淹层。利用测井资料判断水 如果油田见到了注水则该层为水淹层。 淹层层位及估计水淹层是目前检查注水效果的重要课题, 淹层层位及估计水淹层是目前检查注水效果的重要课题,目 前有些油田利用SP曲线根据基线偏移确定水淹层位, SP曲线根据基线偏移确定水淹层位 前有些油田利用SP曲线根据基线偏移确定水淹层位,并根据 偏移量的大小来估计水淹程度。水淹层在SP SP曲线上出现基线 偏移量的大小来估计水淹程度。水淹层在SP曲线上出现基线 偏移是因为注入水的矿化度不同于地层水和泥浆滤液。当Cw 偏移是因为注入水的矿化度不同于地层水和泥浆滤液。 Cmf,且为均匀的纯砂岩, > C 注 > Cmf , 且为均匀的纯砂岩 , 可以证明在水淹水平界 面处SP曲线上无异常变化,而只发生基线偏移, SP曲线上无异常变化 面处SP曲线上无异常变化,而只发生基线偏移,可以计算出 偏移量的大小。 偏移量的大小。
常规测井
——之自然电位测井
地物 韩善朋
知识回顾
• 测井:也叫地球物理测井或石油测井,简称测井,是利用岩 层的电化学特性、导电特性、声学特性、放射性等地球物理 特性,测量地球物理参数的方法,属于应用地球物理方法 (包括重、磁、电、震、测井)之一。 • 常规测井:?????
常规测井的分类
一、划分岩性 1、自然电位测井(SP) 2、自然伽马测井(GR) 3、井径(CAL) 二、孔隙度的计算 1、声波测井 2、中子测井 3、密度测井 三、电阻率的计算 1、深层电阻率测井 2、中层电阻率测井 3、浅层电阻率测井
自然电位
(3)SP曲线形态简单,又很有地 质特征,因而便于井间对比,研究砂体 空间形态。后者是研究沉积相的重要依 据之一。
(4)SP曲线分层简单,便于计算 砂泥岩厚度、一个沉积体总厚度、沉积 体内砂岩总厚度、沉积体的砂泥岩比等 参数,按一个沉积体画出,也是研究沉 积环境和沉积相的重要资料。如沉积体 最厚的地方指示盆地中心,泥岩最厚的 地方指出沉降中心,砂岩厚度和砂地比 最高的地方指出物源方向。沉积体的平 面分布则则指出沉积环境。
.
4.确定标准温度下的地层水电阻率Rwn
(1)确定标准温度下泥浆电阻率:RmN=71.4Rm18℃/82.2 (2)确定标准温度下泥浆滤液电阻率:RmfN=Km(RmN)1.07
Km是常数,与泥浆比重有关
(3)确定RmfeN
当RmfN>0.1Ω.M时,RmfeN=0.85RmfN
当RmfN≤0.1Ω.M时,RmfeN=(146RmfN-5)/(337Rmfn+77)
自然电位测井
.
1
自然电位测井
自然电位测井是在裸眼井中测量井轴上自 然产生的电位变化,以研究井剖面地层性 质的一种测井方法。它是世界上最早使用 的测井方法之一,是一种最简便而实用意 义很大的测井方法,至今仍然是砂泥岩剖 面淡水泥浆裸眼井必测的项目之一。只要 在井内电缆底端装一个不极化电极M,在 地面泥浆池内放入另一个电极N,将它们 与地面记录仪相连,当匀速上提M电极时 ,记录的电位差变化便是井轴上自然产生 的自然变化。自然电位曲线,各个泥岩层 的曲线大体上在右边形成一条直线,称为 泥岩基线,而各个砂岩储集层则以泥岩基 线为背景形成大小不同的曲线异常,称为 自然电位异常。明显的自然电位异常是砂 岩储集层最明显的特征。
自然电位的概念
自然电位的概念自然电位(Resting membrane potential)是细胞膜在静息状态下的电位差,通常指神经元或肌肉细胞的电位。
它是细胞内外离子浓度和通透性的结果,是神经元和肌肉细胞的重要生理指标。
神经元和肌肉细胞的自然电位是维持其正常功能的重要基础,对于神经传导、兴奋传递和肌肉收缩等生理过程起着至关重要的作用。
在细胞膜的生物电学性质中,自然电位是一个极为重要的参数。
自然电位的产生与细胞膜上的离子通道、静息离子内外浓度差异以及细胞膜的电容性质等密切相关。
这些因素共同导致了细胞膜内外的电位差,维持了细胞在静息状态下的电位稳定性。
自然电位的维持是靠离子泵和离子通道的共同作用。
在细胞膜上,存在着多种离子泵和离子通道,它们对细胞内的离子浓度和电位稳定起着关键作用。
其中,Na+/K+泵、Ca2+泵等离子泵通过主动转运维持了细胞膜内外的Na+、K+、Ca2+等离子浓度差异,而离子通道如Na+通道、K+通道、Cl-通道等则可以让离子在膜上自由扩散,从而调节细胞内外的电位。
在静息状态下,细胞内外离子浓度差异导致了自然电位的形成。
在神经元和肌肉细胞中,自然电位的值通常为-70mV左右。
这是由于在细胞膜上Na+/K+泵的作用下,细胞内外Na+、K+离子浓度产生了梯度,在添加上细胞质中还有蛋白质负电荷和其他阴离子的存在,导致在细胞膜上形成了负电位,细胞膜内外离子浓度不同也使得不同离子的渗透性也不同,K+离子内外渗透能力高,进一步增强了细胞膜上的负电位。
细胞静息状态的自然电位是细胞正常生理功能的基础。
首先,它是神经元和肌肉细胞的兴奋传导的基础。
在神经元兴奋传导的过程中,细胞外的刺激能够改变细胞膜上的离子通道的状态,导致离子通道的开放和关闭,从而改变了细胞膜的电位。
而对于神经元来说,只有当细胞膜上的电位达到一定的阈值时,才能够引发动作电位的产生,从而实现神经信号的传导。
而这一系列的兴奋传导,正是依赖于细胞膜上的自然电位的稳定性。
地球物理测井4(自然伽马及自然伽马能谱测井)
4 自然伽马及自然伽马能谱测井
自然伽马测井(GR)及自然伽马能谱 测井(NGS),不同于SP测井,它们属于核测 井的范畴。 即是根据岩石及其孔隙流体的核物理 性质来研究井剖面的一类测井方法 。
4 自然伽马及自然伽马能谱测井
自然伽马测井及自然伽马能谱测井是 在井内测量岩层中自然存在的放射性元素 核衰变过程中放射出来的伽马射线的强度 来研究岩层的一种方法 。
4.2.1自然伽马测井的测量原理
岩石中的放 射性元素产生的 射线穿过地层、 泥浆、仪器的外 壳进入井下仪器 的探测器。探测 器每接收到一个 γ光子,就产生 一个电脉冲。
4.2.1自然伽马测井的测量原理
电缆将电脉冲送 到地面仪器。
4.2.1自然伽马测井的测量原理
地面仪器: 一方面负责计数, 即统计单位时间内的电 脉冲数。显然放射性越 强,单位时间内收到的 电脉冲数越多(计数率 越高)。 另一方面,将计数 率转变为与其成比例的 电位差进行记录 。
4.2.1自然伽马测井的测量原理
仪器在井 眼中移动就可 测得各深度点 反映岩石放射 性强弱的电脉 冲计数率,即 自然伽马曲 线 。
4.2.1自然伽马测井的测量原理
• 自然伽马测井 图的纵坐标为 深度坐标
4.2.1自然伽马测井的测量原理
• 横坐标为反映岩石放射性强弱的 计数率,读值的单位有两种: • 一种是:脉冲数/分; • 另一种是:API。 API是一种美国石油学会所 采用的单位。两倍于北美泥岩平 均放射性的模拟地层的自然伽马 测井值的1/200,就定义为一个 API。
4.3.2分析各种放射性元素含量的重要性
④火成岩: Th/U≈4,且U含量与火成岩的类型 关系好 。
4.3.2分析各种放射性元素含量的重要性
主要测井方法、技术指标及其作用
其次章主要测井方法、技术指标及其作用第一节常规测井方法一、电法测井1.自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以争论井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种简便而有用意义很大的测井方法,至今照旧是砂泥岩剖面必测的工程之一,是识别岩性、争论储层性质和其它地质应用中不行缺少的根本测井方法之一。
有时一些特别岩性,如某些碳酸盐岩〔阳5 井〕也有较强的储层划分力气。
其曲线的主要作用为:①划分储层;②推断岩性;③推断油气水层;④进展地层比照和沉积相争论;⑤估算泥质含量;⑥确定地层水电阻率〔矿化度〕;⑦推断水淹层。
在自然电位曲线采集过程中,主要受储层岩性、厚度、含油性和电阻率、侵入带直径、泥浆电阻率、井温、井眼扩径、岩性剖面缺少泥岩等影响,易产生多解性,在测井资料综合解释时应予以考虑。
2.一般电阻率测井一般电阻率测井是指各种尺寸的梯度电极系和电位电极系组成的测井方法,它承受不同的电极排列方式和不同的电极距,通过测量人工电场电位梯度或电位的变化来确定地层电阻率的变化。
利用具有不同径向探测深度的横向测井技术,可以识别岩性、划分储层、确定地层有效厚度、进展地层剖面比照、确定地层真电阻率及定性推断油气水层等。
目前还保存了2.5m、4m 梯度视电阻率测井,0.5m、0.4m 电位视电阻率测井以及微电极〔微电位和微梯度组合〕等一般电阻率测井方法。
〔1〕梯度视电阻率测井目前在用的有 2.5m 梯度视电阻率测井和4m 梯度视电阻率测井。
其主要作用为:①地层比照和地质制图〔标准测井曲线之一〕;②粗略推断油气水层;特别是长电极〔如4m 梯度〕,可较好地判识侵入较深地层的油气层;③划分岩性和确定地层界面;④近似估量地层电阻率。
进展该类资料分析时,应留意高电阻邻层屏蔽、电极距、围岩-层厚、井眼条件及地层或井眼倾斜的影响等。
〔2〕电位视电阻率测井目前在用的有0.5m、0.4m 电位电极系。
自然电位
自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以研究井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种最简便而实用意义很大的测井方法,至今仍然是砂泥岩剖面淡水泥浆裸眼井必测的项目之一。
对于区分岩石性质,尤其是在区分泥质和非泥质地层方面,更有其突出的优点。
第一节自然电场的产生井内有自然存在的电位变化,说明井内有自然电流流动,井内必然有自然产生的电动势。
实践研究表明,能够引起井内自然电流,进而产生一定电位值的自然电动势有多种,包括扩散电动势、扩散吸附电动势、过滤电动势、氧化还原电动势等。
在沉积岩地区的油气钻井中,主要遇到的是前三种,而且常常以前两种占绝对优势。
一、扩散电动势(地层水与泥浆之间的直接扩散)砂岩孔隙中的地层水与井内泥浆之间,相当于不同浓度的两种NaCl溶液呈直接接触。
溶液中的Cl-和Na+将从高浓度的岩层一方朝着井内直接扩散(图1-1a)。
由于两种离子的移动速度(在电化学中称迁移率)不同,Cl-的移动速度比Na+大,于是扩散之后,在低浓度的泥浆一方将出现过多的移动速度快的Cl-,带负电;而在高浓度的岩层一方,则将出现移动速度慢的Na+离子,带正电。
正负离子在不同浓度的溶液两方相对集中的结果,便产生了电位差——地层一方的电位高于泥浆一方的电位。
但是,随着扩散过程的继续进行,所形成的电场反过来会影响离子进一步的扩散。
也就是使原来移动速度快的Cl-离子减慢,而使移动速度慢的Na+加快。
当溶液两方电荷积累到一定程度,使不同符号的离子以相等的速度继续扩散,达到所谓动态平衡时,电荷的积累便停止。
于是在不同浓度的两种溶液之间形成一固定的电动势。
这种由于溶液直接接触,并通过离子的自由扩散所形成的电动势,称为扩散电动势,如图1-1b中砂岩与泥浆接触处的情况。
图1-1 井中砂、泥岩接触情况下离子扩散及形成的电荷分布(C w >C mf )可以看出,扩散电动势的极性是,低浓度溶液一方为负,高浓度溶液一方为正。
自然电位附自然伽马
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1 自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:式中为扩散电位系数,mv;,为溶液盐类的浓度,g/L。
自然电位、自然伽马测井基本原理
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。
关于测井曲线的质量控制
1、关于测井曲线的质量控制4 单条曲线质量要求4.1 井眼物性测井4.1.1流体电阻率值应随井深增加而逐渐降低,一般不应有突变现象(当井下地层出水或井漏等例外)。
4.1.2流体电阻率曲线读数与泥浆罐测得的泥浆电阻率换算到同一深度下的电阻率值相差不得大于10%。
4.1.3流体井温在井口的读值与实际温度相差不得超过1.50℃。
4.1.4重复曲线:流体电阻率为读值的10%;流体压力为全刻度的1.8%;井温为全刻度的1%。
4.2 自然伽马测井、高温小井眼自然伽马测井4.2.1曲线变化正常,能正确地反映岩性剖面变化,与已知岩性的数值符合。
4.2.2 重复曲线与主曲线对比形状基本相同,相对误差小于5%。
4.2.3统计起伏相对误差小于3%。
4.3 双侧向测井、高温小井眼双侧向测井4.3.1上井前,检查仪器车间刻度卡片。
测前、测后刻度值相对误差应在5%以内。
4.3.2在仪器的动态范围内,砂泥岩剖面地层厚度大于2m的标志层,测井曲线在井眼规则井段应符合以下规律:a) 在泥岩层或其它非渗透层段,双侧向曲线基本重合;b) 当钻井液滤液电阻率(Rmf)小于地层水电阻率(Rw)时,深侧向测量值应大于浅侧向测量值(有侵入情况下);c) 当钻井液滤液电阻率(Rmf)大于地层水电阻率(Rw)时,水层的深侧向测量值应小于浅侧向测量值,油层的深侧向测量值应大于或等于浅侧向测量值(有侵入情况下);d) 在稠油层,无钻井滤液侵入时,双侧向测量值应基本重合。
4.3.3仪器进套管后,双侧向测量值应回零。
4.3.4已知岩性地层读数与本地区经验值相符合。
4.3.5重复曲线与主曲线形状一致,相对误差小于5%。
4.3.6在仪器动态范围内,测井曲线无饱和现象。
4.4 高温小井眼双感应测井4.4.1在仪器的动态范围内,对砂泥岩剖面地层,在井眼规则井段,测量值符合以下规律:a) 在泥岩层或非渗透层段,双感应-短电位曲线基本重合;b) 当Rmf<Rw时,油层、水层的双感应-短电位均呈低侵特征(有侵入情况下);c) 当Rmf>Rw时,水层的双感应-短电位呈高侵特征,油层的双感应-短电位呈低侵或无侵特征(有侵入情况下)。
第四章 自然电位
第四章 自然电位斯仑贝谢在1928年发现了这样的现象:井中电极与放在远处的地面参考电极之间有电位差,该电位差随地层变化,通常相对于泥岩的电平有几十到几百毫伏(图4—1)。
研究过该现象的科学家有:道尔(1948和1950),威利(1949和1951),贡多尼(GO-ndouinndouin)等(1957,1962),贡多尼(Gon-douin)和斯卡拉(Scala)(1958),希尔(Hill)和安德森(Anderson)(1959)。
下文简要说明他们的论述和结论。
对着一种地层的自然电位能够由有关离子运移的两个过程引起:1)动电(电过滤或流动)电位(符号为{EK)是在电解质穿过多孔的非金属介质时产生的;2)电化学电位(符号为Ec .)是在两种不同矿化度的流体直接接触,或由半渗透膜(与泥岩相当)将它们隔开的条件下出现的。
4.1. 动电电位的起因 动电电位是在钻井液柱和地层之间存在压差,钻井液滤液被迫流入地层时出现的。
滤液通过以下地层流动,就产生动电电位:1.)渗透层的泥饼;2)正在受到侵入的渗透性地层;3)泥岩层。
希尔和安德森(1959)研究了通过泥饼的流动电势(图4—2),而在此几年以前(1951)威利提出了通过泥饼的如下的电势E 的关系式:()][1mV p K E ykm c ∆=其中y 值在0.57到0.900之间。
通过泥岩存在的过滤电位已在实验室中由贡多尼和斯卡拉(1958),希尔和安德森(1959)得到了验证(图4—3.)。
安德森等发表的现场资料也证实了泥岩动电电位的存在。
贡多尼和斯卡拉给出了泥岩的电动势:()][1mV p K E yksh ∆=其中的K 2=-0.018(R mf )1/3。
流动电位的大小取决于几个因素: 1) 过介质的压差△p ;2) 移动滤液的有效电阻率R mf ; 3) 滤液的介电常数D 1 4) 仄塔电位ξ。
5)滤液粘度μ。
因为泥饼的渗透率很低(10-2~10-4毫达西),所以钻井液柱和地层之间的压差大部分都降落在泥饼处。
第7章自然伽马测井
(4)测速v和仪器积分常数τ对曲线影响
四、地质应用
1.划分岩性,确定渗透层
主要是根据地层中泥质含量的变化引起 自然伽马曲线幅度变化来区分不同的岩性, 右图是自然伽马测井曲线对不同地层响应:
需要注意的是:对某一地区来说,应该根据岩心 分析结果与自然伽马曲线进行对比分析,找出地区性 的规律,再应用于自然伽马曲线的解释。
2.进行地层对比,优点: (1)与岩石流体性质无关(油、水、地层矿化度等) (2)与泥浆性质无关(盐、水泥浆) (3)易找到标准层。
在油气水边界地带进行地层对比,因为岩石中含流体性质 变化大,使R、SP曲线形状变化不益于进行对比。另外 膏盐地区尤为重要。
β射线:高速中子流,射程小,电离程度中等。
γ射线:频率高的电磁波或光子流,不带电,能量高,穿透力强。
5.伽马射线与物质作用
自然伽马射线→穿过物质与原子相互作用,将发生不同形式的作用, 其中主要形式为:光电效应、 康普顿一吴有训效应、 形成电子 对
(1)光电效应:当伽马射线能量较低(低于0.25Mev)时,它与组 成物质元素原子中的电子相碰撞之后,把能量全部转交电子,使 电子获得能量后脱离其电子壳层而飞出,同时伽马射线被吸收而 消失。这一过程称为光电效应,被释放出来的电子叫光电子。产 生光电效应的几率,与入射伽马射线能量和组成物质原子序数有 关
(3)电子对的形成 能量高于1.02Mev伽马射线与物质作用时,在原子核力场作用下,
可转变成正、负电子对,即一个正电子和一个负电子。伽马射线 在形成电子对后,本身被吸收。 (4)伽马射线的吸收 伽马射线能量衰减,强度减小过程称为伽马射线被吸收。 (5)电子密度与体积密度 产生康普顿一吴有训效应几率与单位体积中电子数(电子密度)有 关,电子密度ρe
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
对高低,可以判断砂岩中泥 质含量的多少和沉积环境能 量的强弱,进而利用SP曲线 形态识别沉积相类型。常见
曲线元纵向近似对称,上下两段的都比较陡,斜率较 大,且绝对值近似相等,幅厚比一般较大。
曲线元可以分为两段,上段较平缓,下段较陡。幅厚 比一般较大。
的典型曲线形态有四种(表 1):
曲线元可以分为两段,上段较陡,下段较平缓。幅厚 比较大。
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
1 自然电位与自然伽马测井曲线反映沉积相变特征
自然电位(SP曲线)在不含泥页岩的多孔隙地层中,SP曲线 偏离页岩基线的幅度大小与地层水含盐量和井中流体含盐量之差 有关。对于淡水泥浆,对着含盐水地层的位置,SP曲线向左偏移, 即负方向偏移。在其他条件相同的情况下,纯砂岩的负方向偏移 幅度最大,当砂岩中含泥质时,SP幅度减小,减小的幅度大体上 随泥质含量成正比,直至泥质含量为100%时,SP曲线完全和基 线一致。而当采用盐水泥浆时,含盐水地层的SP曲线很少或没有 偏移,甚至可以出现反转,即方向正向方偏移。
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
1 自然电位与自然伽马测井曲线反映沉积相变特征
砂泥岩沉积以及砂岩中泥 质含量的多少与沉积环境密 切相关。高能环境,由于强
表1 自然电位(含自然伽马)识别沉积相类型的曲线形态、特征表
曲线形态
(曲线斜率及幅厚比变化)
曲线特征描述
烈跌簸筛选,形成相对粒级 较粗纯净砂岩,其SP曲线幅
利用自然电位、自然伽马曲线评价储 集相带及其应用分布Fra bibliotek汇报人: 宋子齐
(西安石油大学 石油工程学院 陕西 西安 710065)
利用自然电位与自然伽马测井曲线划分沉积相带及储层分布
伽马测井——精选推荐
伽马测井第四节伽马测井⼀、⾃然伽马测井1.岩⽯的⾃然伽马放射性岩⽯的⾃然放射性是由岩⽯中的放射性同位素的种类和含量决定的。
岩⽯中的⾃然放射性核素主要是铀(U238)、钍(Th232 )、锕(Ac227)及其衰变物和钾的放射性同位素K40等,这些核素的原⼦核在衰变过程中能放出⼤量的α、β、γ射线,所以岩⽯具有⾃然放射性。
沉积岩按放射性浓度可粗略分为三类:1)放射性⾼的岩⽯:包括粘⼟岩、⽕⼭灰、海绿⽯砂岩、独居⽯砂岩、钾钒矿砂岩、含铀钒矿的灰岩及钾盐等。
深海相泥岩的放射性浓度常达90×10-12克镭当量/克;浅海相泥岩的放射性浓度为(20-30)×10-12克镭当量/克。
钾盐中的K40可达60×10-12 克镭当量/克2) 放射性中等的沉积岩:包括砂层、砂岩和含有少量泥质的碳酸盐岩等,其放射性浓度为(1-8)×10-12克镭当量/克。
3)放射性低的沉积岩:包括⽯膏、硬⽯膏、岩盐、纯的⽯灰岩、⽩云岩和⽯英砂岩等。
根据实验和统计,沉积岩的⾃然放射性⼀般有以下变化规律:(1)随泥质含量的增加⽽增加。
(2)随有机物含量增加⽽增加。
如沥青质泥岩的放射性很⾼。
在还原条件下,六价铀能被还原成四价铀,从溶液中分离出来⽽沉淀在地层中,且有机物容易吸附含铀和钍的放射性物质。
(3)随着钾盐和某些放射性矿物的增加⽽增加。
在油⽓⽥中常遇到的沉积岩的⾃然伽马放射性主要决定于泥质含量的多少。
但必须注意:从问题的实质来看,岩⽯⾃然放射性的强度是由单位质量或单位体积岩⽯的放射性同位素的含量决定的,当利⽤⾃然伽马测井资料求地层泥质含量时应做全⾯考虑。
2.⾃然伽马射线强度分布研究⾃然伽马射线在地层中和沿井轴的强度分布,是⾃然伽马测井基本理论的重要组成部分。
现按⼏种情况分别进⾏讨论。
1)⽆限均匀放射性地层中伽马射线的强度为了便于研究,先考虑⽆限均匀放射性地层的原始状态,即在尚未钻井之前地层中伽马射线的强度。
自然电位,自然伽马测井曲线在文15块的应用(一)
自然电位,自然伽马测井曲线在文15块的应用(一)自然电位,自然伽玛测井曲线在文15块的应用什么是自然电位和自然伽玛测井曲线?自然电位和自然伽玛测井曲线是两种地球物理测井技术,它们能够对地下岩石的性质、含油气程度等进行分析和识别。
自然电位(SP)测井是指将针对地下岩石中离子的自然分布所产生的电位信号进行测量和记录。
在油气勘探中,自然电位的变化能够对应不同深度和含油气程度的地层。
自然伽玛测井是通过记录地下自然辐射的伽玛射线强度变化来分析地层的物性和组成。
这种测井技术能够识别不同的岩石类型和目标层,也能够判断地层是否含有放射性物质。
文15块特征文15块是位于中国东海南部的一个海域油气勘探区域,它的地质特征主要包括:•由白垩系陆源碎屑岩、张家港组、青龙山组等构成的沉积层•浅海到近岸浅海的环境,受潮汐调节影响•低或中等成熟度的油气,以及与之相关的地层构造和地层圈闭自然电位和自然伽玛测井在文15块中的应用在文15块中,自然电位和自然伽玛测井曲线具有以下应用:1. 确认地层边界和岩性通过记录自然电位和自然伽玛曲线,可以在地层中确定不同层位和边界。
由于岩石的物性、组成和厚度等因素会对自然电位和自然伽玛产生影响,所以这些曲线能够提供较为准确的地层分类和识别。
2. 研究油气运移规律和圈闭特征文15块中的油气主要聚集在岩石孔隙和构造圈闭中,自然电位和自然伽玛曲线能够为研究这些圈闭的特征提供数据支撑。
例如,自然电位在圈闭上会形成正负极性反转的现象,而自然伽玛曲线则能够反映圈闭中油气的厚度和有无。
3. 评价油气含量和成熟度自然电位能够反映不同深度地层的含盐程度和流体性质,从而可以对油气含量进行初步估算。
同时,自然伽玛曲线还能够表示油气组分中的碳-氢比,从而提供油气成熟度的信息。
结论总的来说,自然电位和自然伽玛测井曲线是重要的地球物理测井技术,在油气勘探中起着至关重要的作用。
在文15块这一海域油气勘探区域,这两种技术也有着广泛的应用,为勘探和开发工作提供了重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1 自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:mv g/L。
与上述实验现象一样,井内自然电位的产生也是两种不同浓度的溶液相接触的产物。
在纯砂岩井段所测量的自然电位即是扩散电动势造成的,这是由于浓度为Cw的地层水和浓度为Cmf的泥浆滤液在井壁附近接触产生扩散现象的结果。
通常,Cw>Cmf,所以一般扩散结果是地层水内富集正电荷,泥浆滤液中富集负电荷,如图3所示,有图3 井内自然电位分布示意图或2.扩散吸附电动势(Eda)如图4所示,将两种不同浓度(C1>C2)的NaCl溶液用泥岩隔膜分开。
实验结果表明:浓度大的一方富集了负电荷,浓度小的一方富集了正电荷。
其原因可以解释为:泥岩的孔隙道极小,泥质颗粒对Cl-有选择性吸附作用,Cl-都被束缚在泥质颗粒表面,不能自由移动,使得Cl-的迁移速度为零,在扩散过程中,只有Na+可向低浓度一方移动。
因此,在泥岩井壁上只发生Na+的扩散,这时形成的电动势称为扩散吸附电动势(Eda)。
因为泥岩选择性地让正离子通过,其作用有如化学中的半透膜,所以扩散吸附图4扩散吸附电动势示意图电位也称薄膜电位,其表达式为在砂泥岩剖面的井内,在泥岩井壁附近,由于泥浆滤液浓度与地层水的浓度不同(Cw>Cmf)而产生的扩散吸附电动势为3、过滤电动势(动电电动势)在压力差的作用下,当溶液通过毛细血管时,由于毛细血管壁吸附溶液中负离子,使溶液正离子相对增多,并且同溶液一起向压力低的一端移动,因此在毛细管两端富集了不同符号的离子,压力低的一端带正电,压力高的一端带负电,从而产生了电位差,如图5所示:在岩层中有很多很细的连通孔隙,相当于上述的毛细管。
当泥浆柱压力大于地层压力时,由于岩层中的毛细管孔道壁和泥饼中的泥质颗粒要吸附泥浆滤液中的负离子,而正离子随着泥浆滤液向地层中移动,这样在井壁附近聚集了大量负离子,在岩层内部有大量正离子,这种电位称为过滤电动势。
图 5 过滤电动势形成示意图二、自然电位测井曲线在钻穿地层的过程中,地层与泥浆相接触,产生了扩散吸附作用,在泥浆与地层接触面上产生了自然电位。
1.井内自然电场的分布设砂岩、泥岩的地层水矿化度分别为C2,C1,泥浆滤液的矿化度为Cmf,且有Cl≥C2>Cmf。
在砂岩和泥浆接触面上,由于扩散作用,产生的扩散电动势为在泥岩和泥浆接触面上,由于扩散吸附作用,产生的扩散吸附电动势为在砂岩和泥岩接触面上,由于扩散吸附作用,产生的扩散吸附电动势为在井与砂岩、泥岩接触面上,自然电流回路中的总自然电动势式中 K=Kd+Kda,称为自然电位系数。
可以写成:通常把E。
写作S5P,称为静自然电位。
实际测井时以泥岩作自然电位曲线的基线(即零线),当Cw>Cmf时,砂岩的自然电位异常为负值,因此上式右端取负号。
把井中巨厚的纯砂岩井段的自然电位幅度近似认为是SSP。
静自然电位的变化范围在含淡水岩层的+50mV到含高矿化度盐水岩层的-200mV之间。
2.自然电位曲线特点图6是一组含水纯砂岩的自然电位理论曲线,横坐标是自然电位与静自然电位之比ΔUsp/SSP,纵坐标为地层厚度h,曲线号码为层厚与井径之比h/d。
当上、下围岩很厚且岩性相同时,从曲线上可以看到下列特点:曲线关于地层中点对称,地层中点处异常值最大;地层越厚,ΔUsp越接近SSP,地层厚度变小,△Usp下降,且曲线顶部变尖,底部变宽,△Usp≤SSP;当h>4d时,△Usp的半幅点对应地层的界面,因此较厚地层可用半幅点法确定地层界面,地层变薄时,不能用半幅点法分层。
实测曲线与理论曲线特点基本相同,由于测井时受多方面因素的影响,实测曲线不如理论曲线规则(图7)。
使用自然电位曲线时应注意:自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线幅度△Usp的读数是基线到曲线极大值之间的宽度所代表的毫伏数。
在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf时,砂岩层段出现自然电位负异常;Cw<Cmf 时,砂岩层段出现自然电位正异常;Cw=Cmf时,没有造成自然电场的电动势产生,则没有自然电位异常出现。
Cw和Cmf差别越大,造成的自然电场的电动势越大。
自然伽马测井方法原理一、自然伽马测井把仪器放到井下,测量地层放射性强度的方法叫自然伽马测井(GR)。
这种方法已有很长的历史,GR与SP相配合能很好地划分岩性和确定渗透性地层,GR的另一优点是可在套管井中测量。
1、岩石的放射性岩石的放射性,主要是由于含有铀(U)、钍(Th)、钾(K)等放射性元素,所以岩石的放射性强度决定放射性元素的含量。
一般条件下,岩石的放射性物质含量很少,按放射性的强弱沉积岩可分为以下几类:(1)自然伽马放射性高:放射性软泥、红色粘土、海绿石砂岩、独居石等岩石。
(2)自然伽马放射性中:浅海相和陆上沉积的泥质岩石,如泥质砂岩,泥质石灰岩,泥灰岩等。
(3)自然伽马放射性低:砂岩、石灰岩、石膏、岩盐、煤和沥青等2、自然伽马测井测量原理测量原理如图,测量装置由井下仪器和地面仪器组成。
下井仪器有探测器(闪烁计数管)、放大器和高压电源等几部分。
自然伽马射线由岩层穿过泥浆、仪器外壳进入探测器,经放大器把电脉冲放大后由电缆送到地面仪器。
早期的自然伽马曲线采用计数率(脉冲/的自然伽马测井都采用标准刻度单位API,曲线用GR与低放射性地层读数之差为200API单位,作为标准刻度单位。
3、自然伽马测井曲线把自然伽马测井仪下到井中,测量地层放射性强度随深度变化的曲线,称为自然伽马曲线(GR)。
(1)曲线特点。
根据理论计算自然伽马测井理论曲线如图。
其特点为:a、曲线对称于地层中点,在地层中点处有极大值或极小值,反映该层放射性大小。
b、当地层厚度h小于三倍的钻头直径d0 (h< 3d0)时,极大值随h↗而↗(极小值随h↗而↘)。
当h≥3d0时,极大值(或极小值)为一常数,与地层厚度无关,与岩石的自然放射性强度成正比。
c、h≥3d0时,由曲线的半幅点确定的底厚度等于地层的真实厚度,当h< 3d0时,由半幅点确定的地层厚度大于地层的真实厚度,而且越薄,大得越多。
理论曲线是在测速为零、点状计数管的条件下计算得到的,但实际测井中,计数管不是点状的,测速也不为零,所以实测曲线和理论曲线是有些差异的,但基本形状仍然相似。
(2)自然伽马测井曲线的影响因素a、层厚的影响。
地层变薄会使泥岩层的自然伽马测井曲线值下降,砂岩层的自然伽马测井曲线值上升,并且地层越薄,这种下降和上升就越多。
因此对h< 3d0的地层,应用曲线时,应考虑层厚的影响。
b、井参数的影响。
井径的扩大意味着下套管井水泥环增厚和裸眼井泥浆层增厚。
若水泥环和泥浆不含放射性元素,则水泥环和泥浆层增厚会使GR值降低,但由于泥浆有一些放射性,所以泥浆的影响很小。
力很强,所以下了套管的井,GR值会有所下降。
c、放射性涨落的影响。
在放射性源强度和测量条件不变的条件下,在相等的时间间隔内,对放射性的强度进行重复多次测量,每次记录的数值是不相同的,而总是在某一数值附近上下变化,这种现象叫放射性涨落。
它和测量条件无关,是微观世界的一种客观现象,且有一定的规律性。
这种现象是由于放射性元素的各个原子核的衰变彼此是独立的,衰变的次序是偶然的等原因造成的。
由于放射性涨落的存在,使得GR曲线不像电测井光滑。
放射性测井曲线上读数的变化,一是由地层性质变化引起的,另一方面是由放射性涨落引起的,要对放射性测井曲线进行正确地质解释,必须正确区分这两种原因造成的曲线变化。
d、测速的影响。
测井时的仪器上提速度是对GR曲线产生影响。
测速越大,GR关于地层越不对称。
(3)自然伽马测井曲线的应用①划分岩性。
主要根据地层中泥质含量的变化引起GR曲线幅度变化来区分不同的岩性。
I、砂、泥岩剖面砂岩(GR GR值)II、碳酸盐剖面白云岩、石灰岩(GR GR值)III、膏岩剖面岩盐、石膏(GR GR值)②进行地层对比GR曲线与地层中所含流体性质无关,其幅度主要决定于地层中的放射性物质,通常对于不同岩性其幅度较为稳定,另外,对比的标准层也易选取,通常选用厚度泥岩作标准层,进行油田范围或区域范围内的地层对比③估算地层中泥质含量:首先用自然伽马相对幅度的变化计算出泥质含量指数IGR通常I GR sh :希尔奇指数,可根据实验室取芯分析资料确定。
自然伽马测井只能测量地层中放射性元素的总含量,无法分辨地层中含有什么样的放射性元素,为此研制了自然伽马能谱测井,即测量不同放射性元素放射GR 基本所不同的是其增加了多道脉冲,能分别测量不同幅度的脉冲数,从而得出用以测定不同的放射性元素。
自然伽马能谱测井根据测经刻度可输出铀、钍、钾三条曲线及一条总的自然伽马曲自然伽马能谱测井除了GR 曲线的应用外,还可研究沉积环境,区分粘土矿物。