第七章 金属和半导体的接触
半导体物理_第七章
2. 反偏状态下的肖特基结 对于上述金属和N型半导体材料相接触所形成的 肖特基结,当我们在半导体材料一侧外加一个相对于 金属材料为正的电压,此时的肖特基结即处于反偏状 态。
上图为处于反偏状态下的肖特基结能带示意图, 从图中可见,电子从半导体材料一侧到金属材料一侧 所需越过的势垒高度增加了,增加的幅度就是外加的 反向偏置电压VR,而从金属材料一侧到半导体材料一 侧所需越过的势垒高度фB0仍然保持不变。外加电压 使得肖特基结的空间电荷区(也就是耗尽区)宽度增 加,肖特基结界面处的最大电场强度也相应地大大增 强。
与反向偏置的PN结情况类似,我们可以对反向偏 置的肖特基结空间电荷区应用泊松方程,由此可以求 得肖特基结空间电荷区的宽度为:
§9.2 正偏状态下的PN结与肖特基结 在本节中,我们将对PN结和肖特基结在正向偏置 条件下的空间电荷区,能带图做以介绍,至于I-V分析 我们将在第九章中再做进一步的讨论。 在前面的分析讨论中,我们看到,无论是处于热 平衡的零偏状态,还是有外加反向电压的反偏状态, PN结中都存在一个势垒,这个势垒阻挡了N型区中的 电子向P型区中的进一步扩散,同时这个势垒也阻挡 了P型区中的空穴向N型区中的进一步扩散。因此在零 偏或反偏状态下,PN结中基本没有电流流过。 类似地,在零偏或反偏状态下,肖特基结中基本 上也没有电流流过。
第九章 金属半导体和半导体异质结
§9.1金属-半导体接触的整流特性 所谓整流特性,理想情况下指的就是单向导电特性, 广义上说,凡是正反向非对称的I-V特性,都可以在一 定意义上称之为整流特性。众所周知,最早的半导体整 流器就是采用金属-半导体接触形成的,例如早期的矿 石检波器,就是采用一根金属触针与一块半导体硒矿石 晶体相接触而制作的。 目前,各种金属-半导体接触大多采用在半导体晶 体材料的表面淀积一层金属薄膜的方式来制备,例如可 以在硅晶体材料的表面淀积一层金属铝膜,从而形成金 属-半导体之间的整流接触。这种类型的半导体整流结 通常称为肖特基势垒结,有时也简称为肖特基结。
半导体物理第七章金属与半导体的接触
eV kT
⎞ ⎟⎠
J
V<0 当e|V|>>kT J = − J ST
V
-J0
反向饱和电流JsT与外加电压无关,强烈依赖温度
热场发射理论:
适用于平均自由程较长,迁移率较高材料,如硅锗等
半导体物理
25
三. 镜像力(image force)的影响
理论与实际的偏差
当半导体中的电子到达金属-半导体的界面附近时,该 电子将在金属表面感生正电荷。由于金属表面的电力线 必须垂直于表面,因此该电子在金属表面感生电荷的总 和必定等价于金属内部与该电子镜面对称处的一大小相 等的正电荷。
P
E0
E0
型
半
Wm
导
EC
Ws
Wm
EC
Ws Ef
体
Ef
EV
EV
反阻挡层
半导体物理
阻挡层
8
表面态对接触势垒的影响
理想肖特基势垒接触: qΦB = Wm − χ
金属与半导体接触是否形成接触势垒,取决于它们的功函 数大小。
同一种半导体与不同金属接触时,形成的势垒高度同金属 的功函数成正比。
实际金-半接触: 90%的金属和半导体接触形成势垒,与功函数关系不大。
2o Wm < Ws 时仍有肖特基势垒
半导体物理
肖特基势垒
Φ BN
=
EC
− EFs =
2 Eg 3
13
势垒区的电势分布
假设: (耗尽层近似) 空间电荷区载流子全耗尽;
d 2V dx 2
=
⎪⎧− ⎨ ⎪⎩
qN D
ε 0ε r
0
0≤ x≤d x>d
E( x) = − dV = qN D (x − d )
MK_第七章金属和半导体接触
Nuo Liu, Jian Gang Ni, Cai Geng Tu School of Microelectronic and Solid State Electronics Department of Microelectronic Science and Technology UESTC
5、解:
(1) λ红 = 770nm
⇒E=h c
λ红cBiblioteka = 6.625 × 10−34
3 × 108 = 1.61eV <Ws , 不能放出电子 −9 770 × 10
ht
tp :// an
−34
λ紫 = 390nm
3 × 108 ⇒E=h = 6.625 × 10−34 = 3.19eV > Ws,能放出电子 −9 λ紫 390 × 10
6、解:
ρ = 10Ω ⋅ cm ⇒ N D = 1.5 × 1014 cm −3
2ε r ε 0 ((Vs )0 + V ) 1/ 2 ⎧ ] ⎪ X d = [− qN D Q⎨ ⎪− q (V ) = 0.3eV s 0 ⎩ 2ε r ε 0 (Vs )0 1/ 2 2 × 16 × 8.85 × 10−12 × (−0.3) 1/ 2 ⇒ X d |V =0 = [− ] = [− ] −19 14 6 1.6 × 10 × 1.5 × 10 × 10 qN D = 1.88 × 10−6 m = 1.88µ m ∴ X d |V =−5 = X d |V =0 (Vs )0 + V −0.3 − 5 = 7.90 µ m = 1.88 × −0.3 (Vs )0
0.62 ) = 5.28 × 10-4 A/cm 2 = 1.11× 120 × 300)× exp(− ( 0.026 qV ) − 1] ∴ J=J ST [exp( k0T
第七章-金属和半导体的接触
在接触开始时,金属和半导体的间距大于原子的 间距,在两类材料的表面形成电势差Vms。
Ws Wm 接触电势差: Vms Vm V q
‘ s
紧密接触后,电荷的流动使得在半导体表面相当 厚的一层形成正的空间电荷区。空间电荷区形成 电场,其电场在界面处造成能带弯曲,使得半导 体表面和内部存在电势差,即表面势Vs。接触电 势差分降在空间电荷区和金属与半导体表面之间 。但当忽略接触间隙时,电势主要降在空间电荷 区。
二、金属和半导体的功函数Wm 、Ws
1、金属的功函数Wm 表示一个起始能量等于费米能级的电子,由 金属内部逸出到表面外的真空中所需要的最 小能量。
即:Wm E0 ( EF )m
E0为真空中静止电子的 能量,又称为真空能级。
Wm (EF)m
E0
金属铯Cs的功函数最低1.93eV,Pt最高为5.36eV
不存在表面态时,Ws=χ+En, 存在表面态时,功函数要有相应的改变,加上 qVD=EF0-EFs0的效应。
E0
Wm
Wl
Ec(0) qVD
En
能带弯曲量 qVD=EF0-EFs0
Ec
EF
EFs
半导体的功函数则变为:
Ws qVD En Ws EF EFs Wl
1 0 0
① N型半导体:
E0
χ
W
s
Ec
En
Ws E E E c F n s
式中:
(EF)s
Ev
En Ec ( EF )s
② P型半导体:
Ws Eo ( EF )s Eg Ep
式中:
Ep ( EF )s Ev
半导体物理_第七章_金属和半导体接触
2、如何实现欧姆接触?
总结
总结
总结
总结
总结
需修正:①镜像力;②隧道效应
总结
习题
习题
习题
Ehvhc6.62103470301100891.61019 1.78eV Ehvhc6.621034 40301100891.61019 3.10eV
实质上是半导体价带顶部附近的电子流向金属,填充金 属中EF以下的空能级,而在价带顶附近产生空穴。
加正向电压时,少数载流子电流与总电流值比称为少数 载流子的注入比,用 表示。对n型阻挡层而言:
7.3.2 欧姆接触
1、什么是欧姆接触?
欧姆接触应满足以下三点: 1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗); 3、不会使半导体内部的平衡载流子浓度发生显著改变。
空间电荷区 电子从体内到表面,势能增加,表面能带向上弯曲
2、WS >Wm 电子系统在热平衡状态时应有统一的费米能级
电子反阻挡层;低阻 ——欧姆接触
考虑价带的电子转移,留下更多的空穴,形成空间 电荷区。空穴从体内到表面,势能降低,能带向上 弯曲。
7.1.3 表面态对接触势垒的影响
金属和半导体接触前
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体
lபைடு நூலகம் >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。
半导体 第七章 金属和半导体的接触
两种理论结果表示的阻挡层电流与外加电压变 化关系基本一致,体现了电导非对称性
正向电压,电流随电压指数增加;负向电压, 电流基本不随外加电压而变化
JSD与外加电压有关;JST与外加电压无关,强 烈依赖温度T。当温度一定,JST随反向电压增 加处于饱和状态,称之为反向饱和电流。
③镜像力和隧道效应的影响
Vms
Vm
Vs
Ws
Wm q
Vm和Vs分别为金属和半导体的电势。
随着D的减小
➢ 靠近半导体一侧的金属表面负电荷 密度增加,同时靠近金属一侧的半 导体表面的正电荷密度也随之增加。
➢ 由于半导体中自由电荷密度的限制, 正电荷分布在一层相当厚的表面层 内,即空间电荷区。
➢ 空间电荷区内存在一定电场,造成 能带弯曲。半导体表面和内部之间 存在电势差VS,称为表面势。
P
exp{4
(
2mn*
)
1 2
d0
[qV
(
y
)]
1 2
dy}
h2
0
exp{4
(
mn* R 0
h2ND
)
1 2
[(Vs
)
0
]}
有外加电压时,势垒宽度为d,表面势为
[(Vs)0+V],则隧道概率
P
exp{4
(
mn* R
h2ND
0
)
1
2 [(Vs
上述金半接触模型即为Schottky 模型:
n型
p型
Wm>Ws 阻挡层 反阻挡层
Wm<Ws 反阻挡层 阻挡层
7.1.3表面态对接触电势的影响
势垒高度qns Wm
实验表明:不同金属的功函数虽然相差很大,但与半 导体接触时形成的势垒高度却相差很小。
半导体物理第七章金属和半导体的接触
半导体的导电性能介于金属和绝缘体 之间。其内部存在一个或多个能隙, 使得电子在特定条件下才能跃迁到导 带。常见的半导体材料有硅、锗等。
接触的物理意义
01
金属和半导体的接触在电子器件 中具有重要应用,如接触电阻、 欧姆接触等。
02
理解金属和半导体的接触性质有 助于优化电子器件的性能,如减 小接触电阻、提高器件稳定性等 。
03
肖特基结模型适用于描述金属 和p型半导体之间的接触。
06
金属和半导体的接触实验 研究
实验设备和方法
实验设备
高真空镀膜系统、电子显微镜、 霍尔效应测量仪等。
实验方法
制备金属薄膜,将其与半导体材 料进行接触,观察接触表面的形 貌、电子输运特性等。
实验结果分析
接触表面的形貌分析
通过电子显微镜观察接触表面的微观结构, 了解金属与半导体之间的相互作用。
详细描述
当金属与半导体相接触时,由于金属和半导体的功函数不同,会产生电子的转移。这种电子的转移会 导致在接触区域形成一个势垒,阻碍电子的流动,从而产生接触电阻。接触电阻的大小与金属和半导 体的性质、接触面的清洁度、温度等因素有关。
热导率
总结词
热导率是指材料传导热量的能力,金属 和半导体的热导率差异较大,这会影响 它们之间的热交换效率。
详细描述
欧姆接触的形成需要满足一定的条件,包括金属与半导体之间要有良好的化学相容性和冶金相容性,以及半导体 内部载流子浓度要足够高。欧姆接触在集成电路和电子器件中具有广泛应用。
隧道结
总结词
隧道结是指金属和半导体之间形成的 具有隧道传输特性的结,当外加电压 达到一定阈值时,电流可以通过隧道 效应穿过势垒。
2
这个接触势垒会影响金属和半导体之间的电流传 输和热传导,进而影响电子器件的性能。
半导体物理:金属和半导体的接触
Wm<Ws
n型反阻挡层(理想欧姆接触)
半导体表面带负电,空间电荷区电场的方向由半导体表面指向 体内,表面电子的能量低于体内,能带向下弯曲,表面处电子 浓度远大于体内。所以此时的空间电荷区是一个很薄的高电导 层,称之为反阻挡层(表面电子积累),对半导体和金属的接 触电阻影响很小。
在空间电荷区内便存在一定的电场,造成能带弯曲,使半 导体表面和内部之间存在电势差Vs,即表面势。
这时接触电势差一部分降落在空间电荷区,另一部分降落 在金属和半导体表面之间。
Ws
Wm q
Vms
Vs
若D小到可以与原子间 距相比较,电子可自由 穿过间隙
接触电势差绝大部分降 落在空间电荷区。
电子亲合能X
定义:E0与Ec之差
E0 EC
半导体功函数
半导体功函数
Ws E0 (EF )s
电子亲合能,它表示要使半导
体导带底的电子逸出体外所 需要的
Ws [Ec (EF )s ] En
En Ec (EF )s
n
=
En q
半导体的功函数与杂质浓度的关系
的流动。
它们之间的电势差完全补偿了原来费米能级的不同
Vms
Vm
Vs Ws
Wm q
随着D的减小,靠近半导体一侧的金属表面负电荷密度增 加,同时,靠近金属一侧的半导体表面的正电荷密度也随 之增加。
由于半导体中电荷密度的限制,这些正电荷分布在半导体 表面相当厚的一层表面层内,即空间电荷区。
半导体中的电子将向金属流动,使金属表面带负电,半导体表
第七章 金属-半导体接触
2
xc
隧道效应引起的势垒降低为
2qr3N0DVDV1/2xc
反向电压较高时,势垒的降低才明显
④肖特基势垒二极管
肖特基势垒二极管: 利用金属-半导体整流接触特性制成的二极管。 肖特基势垒二极管与pn结二极管的区别: (1)多数载流子器件和少数载流子器件 (2)无电荷存贮效应和有电荷存贮效应 (3)高频特性好。 (4)正向导通电压小。
镜像电荷 +
电子 -
–x´ n x
镜像电荷
这个吸引力称为镜像力,它应为
f 40 q (22x)216q20x2
把电子从x点移到无穷远处,电场力所做的功
f
x
dx 1q 6 200 x 12d x1 q6 20x
半导体和金属接触时,在耗尽层中,选(EF)m 为势能零点,由于镜像力的作用,电子的势能
n型半导体:
W s E c E F s E n
式中:
E0
E n
Ec(EF)s
χ Ws Ec
En Ep
(EF)s Ev
E0
p型半导体:
Ep (EF)s Ev
χ Ws Ec
En Ep
(EF)s Ev
W s E o (E F )s E g E p
n型半导体: W s E c E F s E n p型半导体: W s E o (E F )s E g E p
若 xd0 xm, 从上式得到
xm
1
4(NDxd0)1/2
势能的极大值小于qΦns。这说明,镜象力使 势垒顶向内移动,并且引起势垒的降低 q 。
q q2 rN 0 Dm m xd1 4 2 q 27N r 3D 0 3V D V 1/4
镜像力所引起的势垒降低量随反向电压的增加 而缓慢地增大 当反向电压较高时,势垒的降低变得明显, 镜像力的影响显得重要。
半导体与器件-金属和半导体的接触
基本要求: 掌握金属和半导体功函数的定义,这是讨
论接触电势差的基础;理解形成接触电势 差的过程,掌握肖特基势垒模型.
理解巴丁模型即表面态对接触势垒的影响 以及阻挡层与反阻挡层(高电导)的概念.
即由于表面态的影响,也可能产生与表 (7-2)相反的情况。
§7.2 金属半导体接触整流理论(阻挡层的 整流理论)
若金属的功函数小于半导体的功函数,则金 属与n型半导体接触时,电子将从金属流向半 导体,在半导体表面形成负的空间电荷区。 其中电场方向由表面指向体内,表面势大于 零,能带向下弯曲。这里电子浓度比体内大 的多,因而是一个高电导的区域,称之为反 阻挡层。
反阻挡层是很薄的高电导区,它对半导体和 金属接触电阻的影响是很小的。所以反阻挡 层与阻挡层不同,在平常的实验中观察不到 它的存在(P181,图7-6,表7-2)。
(Vs)0+V 电子势垒为:-q[(Vs)0+V]
a>.当正偏,V>0,与(Vs)0异号反向,阻挡层势垒 降低为-q[(Vs)0+V],图7-10,(b),则使电子从n型 半导体向金属一边流动,形成从金属向半导体 的正向电流I. I主要由n型半导体中多子构成.
b>.当反偏,V<0,与(Vs)0同号同向,阻挡层势垒 升高为-q[(Vs)0+V],图7-10,(c),则使电子从金属 向n型半导体一边流动,形成从半导体向金属 的反向电流I’. 但由于金属势垒qns很高,电子 要脱离金属到达半导体很不易,故I’很小,类似 与p-n结的整流特性,正向导通,反向截止.
当半导体表面态密度很高时(图7-8), 它可屏蔽金属接触的影响,使半导体内 的势垒高度和金属的功函数几乎无关, 而基本上由半导体的表面性质所决定 (表面态的定扎现象Pinned,P182)。
半导体物理学第七章知识点
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
第七章 金属和半导体的接触
第七章金属和半导体的接触金属—半导体接触指由金属和半导体互相接触而形成的结构,简称M-S 接触。
主要的金属与半导体接触类型:1、单向导电性的整流接触2、欧姆接触§7.1M-S 接触的势垒模型一、功函数和电子亲和能要使一个电子能够逸出金属表面(即能够达到0E 以上的能级),需要给予电子的能量最少应为0m Fm W E E =−,m W 称为金属的功函数或逸出功。
半导体的功函数为0S FSW E E =−半导体的电子亲和势为0C E E χ=−,表示要使半导体导带底的电子逸出体外所需要的最小能量。
此时半导体的功函数又可以表示为:[]S C FS n W E E E χχ=+−=+。
二、理想的M-S 接触的势垒模型假设:①在半导体表面不存在表面态;②M-S 接触之间没有绝缘层或绝缘层很薄(1020o~A )的紧密接触的理想情况。
以金属和n 型半导体的接触为例:1、S mW W <若m S W W >,电子从半导体一侧流向金属一侧,在半导体表面形成正的空间电荷区,产生自建电场,形成负的表面势(从半导体表面到半导体内部的电势之差),能带向上弯曲,形成表面势垒(阻挡层)。
用D V 表示从半导体内部到界面的电势差,则半导体一侧的电子所面临的势垒高度为:D S m s qV qV W W =−=−,称为表面势垒或肖特基势垒;金属一侧的电子所面临的势垒高度为ns D n m q qV E W φχ=+=−2、m SW W <在n 型半导体表面处形成一个高电导区,称为反阻挡层。
金属和p 型半导体接触时:当m S W W >时,表面处能带向上弯曲,形成空穴的反阻挡层;当m S W W <时,表面处能带向下弯曲,形成p 型阻挡层。
三、表面态对接触势垒的影响巴丁最早提出了M-S 接触中有表面态影响的模型,称为巴丁势垒模型。
在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。
半导体物理第七章
E0
E Fs
Ec
Ev
假设金属和 n型半导体相接触且 Wm Ws
接触中 :
Wm
EFm
接触后:
E0
Ws
Ec EFs
qm
EF
qVD
Ec EF
Ev xD Ev
≌- qVs 接触势垒 Wm-Ws=-q(Vms+Vs)
导带底电子向金属运动时必须越过的 势垒的高度: qVD=Wm-Ws
金属一边的电子运动到半导体一边也需要 越过的势垒高度:
(b) Wm<Ws
E0 Ec EFs
电子反阻挡层:
Wm
EFm
Ws
Ec EF
Ev
qVD Ws Wm
Ev
(2)金属-p型半导体接触 (1)Ws>Wm 空穴阻挡层:
E0 Wm
EFm
Ec Ws
EFs
Ev
接触后:
Ec
EF Ev
qVD=Ws-Wm xD
半导体一边的势垒 qVD Ws Wm
–具有受主表面态的n型半导体与金属接触
• 平衡时费米能级达到同一水平,半导体的费米能级EFs相对 于金属的费米能下降了(Wm—Ws)。在间隙D中,从金属到 半导体电势下降 -(Wm—Ws)/q。空间电荷区的正电荷等于 表面受主态上留下的负电荷与金属表面负电荷之和。紧密 接触时电子可自由地穿过,极限情形下的能带如图(c)
电子依旧与金属保持平衡状态 而与近似等于平衡状态电子浓 度
已接近半导体体内电子浓度
于是
J
xd 0
q[ns (Vs )0 ] qV ( x) qV exp[ ]dx qDn n0 exp{ }[exp[ ] 1] k0T k0T k0T
半导体物理学第七章知识点
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
金属和半导体的接触
1 ( )扩散 理论 (kuòsàn)
n型阻挡层,当势垒的宽度比电子的平均自
由程大得多时(xd>>Ln ),电子通过势垒区要发
生(fāshēng)多次碰撞,这样的阻挡层称为 厚阻挡层--适用于扩散理论
Ln:电子的平均自由(zìyóu)程 Xd:势垒宽度
第十九页,共三十一页。
势垒区存在电场,有电势的变化,载流子浓度不均 匀。计算通过势垒的电流时,必须同时考虑漂移和扩 散运动。
金属电势降低 半导体电势(diànshì)提高
肖特基势垒高度
金属和n型半导体接触能带图(Wm>Ws)
(a)接触前;(b)间隙很大; (c)紧密(jǐnmì)接触;(d)忽略间隙
金半间距D远大于原子间距时
平衡态,费米能级相等
(b )接触 V m 电 sV m 势 V s' W 差 s q W m
D 正负电荷密度增加 空间电荷区形成(why),表面势,能带弯曲
(
E
s F
)
巴丁模型
第九页,共三十一页。
Rectification Theory of Metal-Semiconductor Contact
1、阻挡层的整流特性
——外加(wàijiā)电压对阻挡层的作用
第十页,共三十一页。
▪ 概念
➢ 整流理论是指阻挡层的整流理论 ➢ 紧密接触的金属和半导体之间有外加电压
第七章 金属(jīnshǔ)和半导体的接触
§7.1 金属(jīnshǔ)半导体接触
及其能带图 E-mail:
第一页,共三十一页。
本章(běn zhānɡ)内容提要
▪ 金半接触(jiēchù)及其能级图
▪ 整流特性
▪ 少子注入和欧姆接触
半导体物理学第七章知识点
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
材料χ (eV) W S (eV)N D (cm-3)N A (cm-3)10141015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs4.074.294.234.175.205.265.32二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
半导体物理第七章金属和半导体接触
§7.2 金属-半导体接触整流理论
Rectification Theory of Metal-Semiconductor Contact
学习重点:
• 阻挡层的整流特性和整流理论 • 欧姆接触
哈尔滨工业大学微电子科学与技术系
1、阻挡层的整流特性
—— 外加电压对阻挡层的作用
I
0
V
• 接触前
• 接触后(V=0)
金属与半导体材料紧密接触。
热平衡条件下,两种材料具有统 一的费米能级,同时真空能级具 有连续性。金属-半导体接触能 带结构如图所示。
Wm
qφns = Wm -χ
EFm
Ws En
E0 χ
Ec EFs
Ev
导带底电子向金属运动时必 须越过的势垒高度:
qVD = Wm – Ws 金属一侧的电子运动到半导
E0
0 xd E(x)
x
• 空间电荷区电势分布
0 xd
x
V(x)2qrN D 0(x22xdxxd2) 0xxd
V(x) 0
xd
x
V(x)0 xxd
qVD
• 空间电荷区宽度
xd
2r0VD qND
ND n(x)
ni2/ND
p(x) 0 xd
n0
p0 x
• 空间电荷区载流子分布
qV ( x ) n ( x ) N D exp k 0T x 0:
学习重点:
• 功函数 • 电子亲和势 • 接触电势势垒 • 阻挡层与反阻挡层
哈尔滨工业大学微电子科学与技术系
Metal Insulator Semiconductor
(a) 基于平面工艺的金属-半导体接触结构透视图 Metal
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wm WS
电子的阻挡层 ——整流接触
Wm WS
电子的反阻挡层 ——欧姆接触
接触情况对比
实际接触
由于存在表面态,接触时 总是形成势垒,且势垒高 度受金属功函数影响不大
7.2 M-S接触的整流理论
1、V 0
一、势垒高度随外加电压的变化
E JSM JM S
2、V 0
以金属和n型半导体的接触为例
1、WS Wm
二、理想的M-S接触势垒模型
电子系统在热平衡状态时应有统一的费米能级
电子转移
半导体体内载流子重新分布引 起载流子的积累或耗尽,导致 能带弯曲;但金属体内的载流 子和浓度基本没有变化
E 空间电荷区
二、理想的M-S接触势垒模型
半导体一侧的电子所面临的势垒:
qVD qVS Wm Ws
表面态的费米能级
q0
1 3
Eg
三、表面态对接触势垒的影响
金属和半导体接触前
态密度较大
态密度很大
电子转移
qVD Eg En q0
存在表面态,即使不与金属接触,半导体一侧产生电子势垒
三、表面态对接触势垒的影响
金属和半导体接触
Wm Ws 半导体向金属转移电子
①表面态密度很大,以表面电子转移为主
第七章 金属和半导体的接触
第七章 Part 1
7.1 M-S接触的势垒模型 7.2 M-S接触的整流理论 7.3 少数载流子的注入和欧姆接触
前言
金属——半导体接触 由金属和半导体互相接触而形成的结构,简称M-S接触。
典型接触:
1、半导体掺杂浓度低,单向导电Βιβλιοθήκη ——整流接触肖特基势垒器件
2、半导体掺杂浓度高,双向导电性——欧姆接触
金属一侧的势垒高度没有变化
J JSM JMS
净电流密度很大,为正向偏置
E外
E内
1、扩散理论的适用范围
二、扩散理论
——适用于厚阻挡层; 势垒宽度比载流子的平均自由程大得多,即
d ln
——势垒区是耗尽区; ——半导体是非简并的
2、扩散理论的基本思想
二、扩散理论
在势垒区边界,电子的浓度分别为:
nd n0
提供低阻互联
7.1 M-S接触的势垒模型
一、功函数和电子亲和能
真空中静止电子的能量
金
半
属
导
体
Wm E0 EFm
WS E0 EFS
电子亲和能
E0 EC
WS En
二、理想的M-S接触势垒模型
理想接触: ——在半导体表面不存在表面态 ——M-S之间没有绝缘层或绝缘层很薄的紧密接触
1、热电子发射理论的适用范围
——适用于薄阻挡层 ln >>d
——势垒高度 >>k0T
——非简并半导体
2、热电子发射理论的基本思想
薄阻挡层,势垒高度起主要作用。
能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。
3、势垒区的伏安特性
三、热电子发射理论
半导体一侧,只有能量大于势垒的电子才能越过势垒:
Wm WS
表面处能带向下弯曲
N 型: ——电子的反阻挡层 ——欧姆接触
P型: ——空穴的反阻挡层 ——欧姆接触
P型: ——空穴的阻挡层 ——整流接触
三、表面态对接触势垒的影响
巴丁提出表面态对M-S接触的影响——巴丁势垒模型
受主型:有电子 带负电;空着为 电中性
表面态,表面能级
施主型:有电子呈电 中性;空着带正电
表面势:从半导体表面 到内部的电势差
电子阻挡层;高阻区 ——整流接触
金属一侧的电子所面临的势垒:
qns qVD En Wm
2、Wm WS
二、理想的M-S接触势垒模型
电子反阻挡层;低阻 ——欧姆接触
电子转移 E
二、理想的M-S接触势垒模型
Wm WS
表面处能带向上弯曲
N 型: ——电子的阻挡层 ——整流接触
2r0 ns n V
qND
EF d0
1、无外加电压,即
V 0
d
2r0VD
qND
2r0 VS 0
qND
qVD
qEnC
2、有外加电压,即
V 0
ns VD n
d
2r0 VD V
qND
V 0
d正
正向电压使势垒区变窄
V<0
d反
反向电压使势垒区变宽
势垒的高度和宽度都随外加电压变化:
4、势垒区的伏安特性
只转移表面态中的电子就 可使整个系统达到平衡。
接触前后,半导体一侧的空间电荷不发生变化,表面势不变 ——势垒高度被钉扎
三、表面态对接触势垒的影响
②表面态密度较大,表面、体内电子均转移
表面态中的电子和半导体体内的电子都要向金属转移,才能使系统平衡 金属功函数对势垒有影响,但影响不大——实际情况
理想接触
二、扩散理论
根据扩散理论,势垒区的电流是由半导体一侧电子的扩散和漂移
运动形成的:
J
qn x n
Ex
qDn
dn x
dx
Ex
dV x
dx
n
Dn
q k0T
J
qDn
qn x
k0T
dV x
dx
dn x
dx
exp
qV x
k0T
对x积分
d
0
J
exp
qV x
k0T
dx
d
0
qDn
qn x
n0
n0
exp
qVD k0T
电子从体内向界面处扩散;
在内建电场的作用下,电子做 漂移运动;
扩散方向与漂移方向相反
无外加电压: 扩散与漂移相互抵消——平衡; 反向电压: 漂移增强——反偏; 正向电压: 扩散增强——正偏
二、扩散理论
扩散 漂移
二、扩散理论
3、势垒宽度与外加电压的关系
qns
势垒区的宽度: d
k0T
dV x
dx
dn x
dx
exp
qV x
k0T
dx
二、扩散理论
J
qDn
n
x
exp
qV x
k0T
d
0
exp
qV x
k0T
dx
d 0
解出
边界条件
k0T r 0
q2 NDd
exp
qns
k0T
xd
x0
nd n0
V
d
qND
2 r 0
d2
ns
n
0
n0exp
q
Vs 0
k0T
V 0 ns
二、扩散理论
J
J SD
exp
qV k0T
1
1
其中
JSD
q0n0
2qND
r0
VD
V
2
exp
qVD k0T
V 0 V<0
J
J SD
exp
qV k0T
1
J JSD VD V 2
该理论是用于迁移率较小,平均自由程较短的半导体,如氧化亚铜。
三、热电子发射理论
1 2
一、势垒高度随外加电压的变化
金属接负极,半导体接正极
外加电压增强了内建电场的作用,势垒区电势增强,势垒增高; 金属一侧的势垒高度没有变化;
J JMS JSM 0
E外 电流很小,为反向偏置
E内
一、势垒高度随外加电压的变化
3、V 0
金属接正,半导体接负
外加电压削弱了内建电场的作用,半导体势垒降低;