电压型逆变电路

合集下载

单相全桥电压型逆变电路

单相全桥电压型逆变电路

单相全桥电压型逆变电路单相全桥电压型逆变电路是一种常用的电力电子变换器,它能将直流电源转换为交流电源,广泛应用于各种电力供应系统和电力调节系统中。

本文将对单相全桥电压型逆变电路的工作原理、优缺点以及应用领域进行详细介绍。

一、工作原理单相全桥电压型逆变电路由四个开关管和相应的控制电路组成。

开关管分别为Q1、Q2、Q3和Q4,通过适当的控制,可以实现对开关管的导通和关断。

在工作过程中,当Q1和Q4导通,Q2和Q3关断时,直流电源的正极连接到电路的A相,负极连接到电路的B 相,此时输出的是正半周的交流电压。

当Q1和Q4关断,Q2和Q3导通时,正负极的连接情况反转,输出的是负半周的交流电压。

通过不断交替导通和关断,可以在输出端获得一段完整的交流电压波形。

二、优缺点单相全桥电压型逆变电路具有以下优点:1. 输出电压稳定:由于采用全桥结构,能够有效地消除直流电源的波动和噪声,输出电压稳定可靠。

2. 输出功率大:全桥结构能够充分利用电源能量,输出功率相对较大。

3. 输出电压可调:通过控制开关管的导通和关断时间,可以实现对输出电压的调节,满足不同需求。

4. 抗干扰能力强:逆变电路可有效抑制外界干扰信号,提高系统的抗干扰能力。

然而,单相全桥电压型逆变电路也存在一些缺点:1. 成本较高:由于需要四个开关管,控制电路和保护电路等,相对于其他逆变电路而言,成本较高。

2. 效率较低:由于开关管的导通和关断需要一定的时间,逆变过程中会产生一定的开关损耗,导致转换效率有所降低。

三、应用领域单相全桥电压型逆变电路具有广泛的应用领域,包括但不限于以下几个方面:1. 电力供应系统:逆变电路可以将直流电源转换为交流电源,用于电力供应系统中的电压和频率调节,满足不同负载的需求。

2. 电动机控制:逆变电路可将直流电源转换为交流电源,用于电动机的控制和驱动,实现电机的速度调节和方向控制等功能。

3. 新能源应用:逆变电路可以将太阳能、风能等新能源转换为交流电源,供应给家庭、工厂等用电设备。

三相电压型逆变电路120°导电方式_概述及解释说明

三相电压型逆变电路120°导电方式_概述及解释说明

三相电压型逆变电路120°导电方式概述及解释说明1. 引言1.1 概述三相电压型逆变电路是一种常见且重要的逆变器拓扑结构,通常被广泛应用于工业控制、电力传输以及可再生能源领域等。

其中,其中采用120°导电方式的三相电压型逆变电路是一种常见的工作模式。

1.2 文章结构本文将按照以下结构进行介绍和说明:首先,在"2. 三相电压型逆变电路120°导电方式"部分中,我们将详细解释该逆变器的定义、原理以及构成元件,并深入探讨其工作原理。

接着,在"3. 概述及解释说明"部分中,我们将针对120°导电方式的三相电压型逆变电路进行特点介绍,同时与其他导通方式进行比较。

最后,在"4. 结论"部分中,我们将对整篇文章进行总结概要,并提供对三相电压型逆变电路未来发展的展望和建议。

1.3 目的本文旨在全面介绍和解释三相电压型逆变电路中采用的120°导通方式,并通过比较不同的导通方式来说明其在实际应用中的优势。

此外,本文还将从技术角度出发,展望该逆变电路的未来发展趋势,并提供相关的建议和改进方向。

通过对三相电压型逆变电路120°导通方式的深入理解,读者将能够更好地应用该技术并在实践中取得更好的效果。

2. 三相电压型逆变电路120°导电方式:2.1 定义及原理:三相电压型逆变电路是一种将直流电转换为交流电的装置,它通过采用特定的脉宽调制技术来实现。

而120°导通方式是其中常用的一种导通控制方式。

在三相电压型逆变电路中,通过控制开关器件(如晶闸管或功率场效应管等)的导通和断开,使得输入直流侧的正、负源极之间交替连接到输出交流侧的不同相,从而产生所需频率和幅值的交流信号。

而120°导通方式则是指通过改变三个开关器件之间的导通角度来实现对交流输出波形进行控制。

此方法将每个周期分为6个相同时间间隔(即360°/6 = 60°),其中A、B、C三相各自占据两个相邻时间间隔。

电力电子技术-第4章逆变电路讲解

电力电子技术-第4章逆变电路讲解
(4)直流侧电感起到缓冲无功能量的作用。
4.3.1 单相电流型逆变电路
(1)电路结构
①用④阻载② 载来③ 联 确4并抗电个采 电限应C谐联,压桥和用 压制称振谐谐波臂L负 (晶之式振波形、,载 呈闸为逆回在接R每换 容管容变构路负近桥相性开性电成对载正臂方)通小路并基上弦晶式。时失(联波产波闸,的谐但谐呈生。管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
4.2.1 单相电压型逆变电路
1、 半桥逆变电路 •(1)电路图
+
Ud 2
Ud
Ud 2
-
V1 io R L
u o V 2
a)
VD 1
VD 2
*导电方式:
V1,V2信号互补,
各导通180゜。
•半桥逆变电路有两个桥臂, 每个桥臂有一个可控器件和一 个反并联二极管组成。 •在直流侧接有两个相互串联 的足够大的电容,两个电容的 联结点是直流电源的中点。 •负载联结在直流电源中点和 两个桥臂联结点之间。
能否不改变直 流电压,直接进行 调制呢?为此提出 了导电方式二:
移相导电方式。
*导电方式二:移相调压 调节输出电压脉冲的宽度
采用移相方式调节逆变电路的输出电压
• 各IGBT栅极信号为180°正偏, 180°反偏,且V1和V2栅极信号互补, V3和V4栅极信号互补; • V3的基极信号不是比V1落后180°,
而是只落后q ( 0< q <180°);
• 也就是:V3、V4的栅极信号分别比
V2、V1的前移180°-q 。
工作过程
•t1时刻以前V1,V4通,u0=ud, io 从 0 增加; •t1时刻V4断,V1,VD3续流,u0=0,io 下降; • t2时刻V1也关断,io 还未下降到0,于是VD2,VD3续流,u0=-ud。 •直到io过0变负,V2,V3通,u0=-ud, io从0负增加; •t3时刻V3断,V2,VD4续流,u0=0,io 负减小; • t4时刻V2也关断,io 还未减小到0,于是VD1,VD4续流,u0=ud。

单相半桥电压型逆变电路的工作原理

单相半桥电压型逆变电路的工作原理

单相半桥电压型逆变电路的工作原理
单相半桥电压型逆变电路是一种常见的逆变电路拓扑结构,常用于单相交流电源到直流电源的转换,适用于小功率应用。

以下是单相半桥电压型逆变电路的基本工作原理:
1.电源输入:单相半桥逆变电路通常接收单相交流电源作为输入。

这可以是来自电网的交流电,例如家用电源。

2.整流桥:输入的交流电源首先经过整流桥,将交流电转换为直
流电。

整流桥可以采用二极管桥或可控硅桥等。

3.滤波电容:为了减小直流电的脉动,逆变电路的输出端连接一
个滤波电容,用于平滑直流电压。

4.半桥逆变器:接下来是半桥逆变器部分,由两个功率开关(通
常是可控硅或晶闸管)组成。

这两个功率开关分别连接到正负
直流电压源和负载。

5.PWM控制:半桥逆变器通过PWM(脉宽调制)控制方式来
实现输出波形的控制。

通过调整开关的导通时间,可以控制输
出波形的幅值。

6.输出变压器:在半桥逆变器的输出端连接一个输出变压器,用
于改变输出电压的大小,以适应负载的需要。

7.输出负载:最终,经过输出变压器调整后的交流电源输出到负
载,可以是各种电器设备或电动机。

总体而言,半桥电压型逆变电路通过控制功率开关的导通时间,实现对输出交流电压幅值的调节,从而满足负载的电源需求。

这种逆变
电路通常用于小功率、单相电源的应用,例如家用电器、电子设备等。

《电力电子技术》电子课件(高职高专第5版) 4.3 电压型逆变电路

《电力电子技术》电子课件(高职高专第5版)  4.3 电压型逆变电路

0 2
2
(4.3.1)
输出电压瞬时值为:
uo
n 1, 3 , 5 ,
2U d n
s in nt
(4.3.2)
其中, 2f s 为输出电压角频率。
当 n=1时其基波分量的有效
值为:
U O1
2U d
2
0.45U d
(4.3.3)
图4.3.1 电压型半桥逆变电路及 其电压电流波形
4.3.1 电压型单相半桥逆变电路
图4.3.1 电压型半桥逆变电路 及其电压电流波形
4.3.1 电压型单相半桥逆变电路
2、工作原理:
在一个周期内,电力晶体 管 周正T1和偏T,2的半基周极反信偏号,各且有互半补。
若负载为纯电阻,在[0,π] 期 T2通π2截间 ,]期止,T间1,T截1,则有止T驱,u20有动则=U驱信ud0动。号=-信在导Ud号[通π。导,, 动 信信 号若号 ,负截 由载止于为,感纯尽性电管负感载T,1有中T驱的2无动电驱 流i。不能立即改变方向,于 是 D1导通续流,u0=-Ud /2 。
3、特点: 优点: 简单,使用器件少;
缺点:
1)交流电压幅值仅为Ud/2; 2)直流侧需分压电容器; 3)为了使负载电压接近正弦波通常在输出端要接LC 滤波器,输出滤波器LC滤除逆变器输出电压中的高次 谐波。 4、应用:用于几kW以下的小功率逆变电源;
4.3.2 电压型单相全桥逆变电路
电路工作原理:
(4.3.7)
图4.3.2 电压型单相全桥逆变 电路和电压、电流波形图
4.3.2 电压型单相全桥逆变电路
3)阻感负载RL
0≤ ωt ≤ θ期间,T1和T4有驱动信号, 由于电流i0为负值,T1和T4不导通,D1、

电压型和电流型逆变电路特点

电压型和电流型逆变电路特点

电压型逆变电路和电流型逆变电路是两种常见的逆变电路类型,它们在不同的应用领域中具有各自的特点。

下面我将详细介绍这两种逆变电路的特点。

一、电压型逆变电路1. 工作原理:电压型逆变电路通过将直流电压转换为交流电压输出。

其基本原理是通过控制开关管的导通和断开,使电源电压经过滤波电容和变压器转换为所需的输出交流电压。

2. 特点:(1)输出电压稳定性高:电压型逆变电路通过反馈控制,实现对输出电压的精确调节,能够提供稳定的输出电压。

(2)负载适应性好:电压型逆变电路输出电压与负载电流无关,能够适应不同负载条件下的工作要求。

(3)输出电压范围广:电压型逆变电路可以实现从几伏到几千伏的宽范围输出电压。

(4)输出电流能力较弱:电压型逆变电路输出电流能力相对较弱,适用于对输出电流要求不高的应用场景。

(5)逆变效率较高:电压型逆变电路由于采用了高频开关技术和功率调制控制策略,能够实现较高的逆变效率。

3. 应用领域:电压型逆变电路广泛应用于电力电子变频器、太阳能发电系统、风力发电系统、UPS电源等领域,以及需要稳定交流电源的工业控制系统中。

二、电流型逆变电路1. 工作原理:电流型逆变电路通过将直流电流转换为交流电流输出。

其基本原理是通过控制开关管的导通和断开,使电源电流经过滤波电感和变压器转换为所需的输出交流电流。

2. 特点:(1)输出电流稳定性高:电流型逆变电路通过反馈控制,实现对输出电流的精确调节,能够提供稳定的输出电流。

(2)负载适应性好:电流型逆变电路输出电流与负载电压无关,能够适应不同负载条件下的工作要求。

(3)输出电流范围广:电流型逆变电路可以实现从几毫安到数千安的宽范围输出电流。

(4)输出电压能力较弱:电流型逆变电路输出电压能力相对较弱,适用于对输出电压要求不高的应用场景。

(5)逆变效率较高:电流型逆变电路由于采用了高频开关技术和功率调制控制策略,能够实现较高的逆变效率。

3. 应用领域:电流型逆变电路广泛应用于电力电子变频器、电动汽车充电桩、工业焊接设备、电源适配器等领域,以及需要稳定交流电流的工业控制系统中。

三相电压型逆变电路原理

三相电压型逆变电路原理

三相电压型逆变电路原理
三相电压型逆变电路是一种能够将直流电能转换为交流电能的电路。

它主要由三相全桥逆变器、输出滤波器和控制电路组成。

在三相电压型逆变电路中,输入信号为直流电源,通过三相全桥逆变器将直流电压转换为交流电压。

三相全桥逆变器由六个功率开关管和反并联二极管组成,通过控制这些功率开关管的导通和关断,可以实现对输出交流电压的控制。

输出滤波器主要用于平滑转换后的交流电压,去除其中的谐波成分,并提供稳定的输出电压。

常见的输出滤波器包括电感滤波器和电容滤波器。

控制电路通过对逆变器的控制,实现对输出电压的调节和保护功能。

常见的控制方法包括PWM控制和SPWM控制。

PWM
控制通过不同占空比的脉宽调制,实现对输出电压的调节;SPWM控制则通过不同频率的正弦波形来控制输出电压的形
状和频率。

三相电压型逆变电路广泛应用于工业生产中,可以将直流电源转换为三相交流电源,满足各种电气设备的供电需求。

同时,由于逆变电路具有高效、可靠和稳定的特性,被广泛应用于太阳能发电、风力发电等可再生能源领域。

第5章-逆变电路

第5章-逆变电路
(2)当S1、S4闭合,S2、S3断开时,负载电压uo为正。 (3)当S1、S4断开,S2、S3闭合时,负载电压uo为负。
当变化两组开关切换频率,就可变化输出交流电频
率相也;位不若也同接相。电同阻;负若载阻时感,负负载载时电,i流o相io和位u滞o旳后波于形uo相,同波,形
如图所示,设t1前S1、S4通,则uo和io均为正。 若在t1时刻断开S1、S4,合上S2、S3,则uo旳极性变负,但io 不能立即反向且仍维持原方向;
交直交变频电路由交直变换(整流)和直交变换两部分构成, 后一部分就是逆变。
3. 应用
多种直流电源,如蓄电池、干电池、太阳能电池等在向交流 负载供电时就需要逆变电路。
交流电机调速用变频器、不间断电源、感应加热电源等电力 电子装置旳关键部分都是逆变电路。
2024/9/22
5.1 换流方式
5.1.1 逆变电路旳基本工作原理 5.1.2 换流方式分类
优点:电路简朴,使用器件少。
缺陷电:容输器出串交联流,电须压控幅制值两仅者为电压Ud均/2衡,。且直流侧需要两个
应用: 常用于几kW下列旳小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电路 旳组合。
2024/9/22
5.2.1 单相电压型逆变电路
2. 全桥逆变电路
共四个桥臂,可看成两个 半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半 桥电路形状相同,但幅值 高出一倍。 变化输出交流电压旳有效 值只能经过变化直流电压 Ud来实现。
2024/9/22
5.1.2 换流方式分类
4. 逼迫换流 举例:
设置附加旳换流电路,给欲关断旳晶闸管逼迫施加 反向电压或反向电流旳换流方式称为逼迫换流 (forced commutation), 这一般是利用附加电容上储存 旳能量来实现,故也称为电容换流。

电压型逆变电路工作原理

电压型逆变电路工作原理

电压型逆变电路工作原理
电压型逆变电路是一种将直流输入电源转化为交流输出电源的电子电路。

其工作原理是通过逆变器来改变电源的电压频率。

电压型逆变电路主要由一个开关器件(如晶体管或功率MOSFET)、滤波电容、输出变压器、输出滤波器等组成。

工作原理如下:
1. 当输入电源为直流电压时,开关器件处于导通状态。

电源正极连接到开关器件的集电极或源极,电源负极接地。

2. 在导通状态下,输入电源的直流电压经过开关器件被传送到输出变压器的一侧。

由于变压器的存在,输出侧产生交流电压。

3. 输出侧的交流电压通过输出滤波器进行滤波,使得输出波形更加平滑。

4. 当开关器件进入非导通状态时,输出变压器的能量储存会通过电感和滤波电容回馈回开关器件,从而使其继续导通。

5. 控制开关器件的开关频率和占空比可以改变输出波形的频率和幅值。

通过适当的控制开关器件的导通和非导通时间,可以得到所需要的交流输出电压。

总体而言,电压型逆变电路通过适时地打开和关闭开关器件来改变电源的电压频率,从而实现直流到交流的转换。

三相电压型桥式逆变电路的工作原理及过程

三相电压型桥式逆变电路的工作原理及过程

三相电压型桥式逆变电路的工作原理及过程三相电压型桥式逆变电路,听起来好像很高大上,其实呢,它就是个“变魔术”的小东西。

今天,我就来给大家揭开这个“变魔术”的神秘面纱,让大家看看它的工作原理及过程。

我们要明白什么是三相电压。

三相电压就是由三个交流电信号组成的电压波形,它们之间的关系就像是一个家庭的三个成员,虽然各自有各自的工作时间,但是总体上还是要保持和谐相处的。

而桥式逆变电路,就是利用这三个交流电信号,把直流电转换成交流电的过程。

那么,桥式逆变电路到底是怎么工作的呢?咱们先来看看它的结构。

桥式逆变电路主要由四个二极管、两个开关、一个变压器和一个滤波器组成。

这四个二极管就像是四个守门员,负责把输入的交流电信号过滤掉不需要的部分;两个开关则是负责控制电流的方向;变压器则是负责升压降压;滤波器则是负责去除输出电流中的杂波。

接下来,我们就要看看这个“变魔术”是如何进行的了。

当输入的交流电信号通过变压器升压后,会进入到四个二极管组成的电路中。

这时,二极管会根据电流的方向,只让电流通过其中一个二极管。

这样一来,就实现了单向导电的功能。

接着,经过二极管后的电流会被送到开关处。

此时,开关会根据预设的条件,控制电流的通断。

如果条件满足,电流就会继续流向下一关;如果条件不满足,电流就会被切断。

这样一来,就实现了对电流的控制。

经过开关和变压器处理后的交流电信号,会通过滤波器去除杂波,然后输出成为我们需要的交流电信号。

这个“变魔术”并不是一帆风顺的。

在实际操作过程中,可能会遇到各种各样的问题,比如说输入的交流电信号不稳定、变压器的效率不高等等。

但是,只要我们认真对待这些问题,不断学习和改进,就一定能够让这个“变魔术”变得更加完美。

三相电压型桥式逆变电路就是一个非常有趣的“变魔术”。

它利用了交流电信号的特性,把直流电转换成了我们需要的交流电。

虽然它看起来有点复杂,但是只要我们用心去理解和掌握,就一定能够把它变得简单易懂。

单相全桥电压型逆变电路的工作原理

单相全桥电压型逆变电路的工作原理

单相全桥电压型逆变电路是一种常用于将直流电源转换为交流电源的电路。

它通过控制开关器件的开关状态来实现对输出电压的调节。

该电路由四个开关器件(一般为可控硅或晶闸管)和一个中心点连接到输出负载的变压器组成。

工作原理如下:
1. 输入:直流电源通过一个滤波电容提供给变压器的两个输入端,同时接地。

2. 开关控制:四个开关器件被分为上下两组,每组包含两个对称的开关。

这些开关器件通过控制电流的导通和截断来控制电路的工作方式。

3. 上半桥工作:在某个时刻,上半桥的两个开关器件之一导通,另一个截断。

这样,直流电源的正极与变压器的中点连接,产生一个正脉冲,使得变压器的一侧输出高电平。

4. 下半桥工作:在另一个时刻,下半桥的两个开关器件之一导通,另一个截断。

这样,直流电源的负极与变压器的中点连接,产生一个负脉冲,使得变压器的一侧输出低电平。

5. 输出:通过交替切换上半桥和下半桥的工作状态,可以产生一个周期性的方波输出。

通过变压器的绕组比例,可以将方波转换为所需的交流电压,并将其提供给负载。

6. 控制:通过调节开关器件的导通和截断时间,可以改变输出的频率和有效值。

常用的控制方法包括脉宽调制(PWM)和谐波控制等。

总结来说,单相全桥电压型逆变电路利用四个开关器件以及变压器的绕组比例,将直流电源转换为交流电源,并通过控制开关器件的导通和截断来实现对输出电压的调节。

1。

什么是电压型逆变电路?什么是电流型逆变电路?二者各有何特点?

什么是电压型逆变电路?什么是电流型逆变电路?二者各有何特点?

什么是电压型逆变电路?什么是电流型逆变电路?二
者各有何特点?
电压型逆变电路和电流型逆变电路是逆变器的两种常见控制方式,它们在控制策略和特点上有所不同。

电压型逆变电路:
1.电压型逆变电路是通过控制输出电压的大小和波形来实现
逆变操作的方式。

2.在电压型逆变电路中,控制变量是输出电压,通常通过比
较输出电压与参考电压来生成控制信号。

3.电压型逆变电路具有输出电压精度高、输出电压波形好的
特点。

它适用于精确控制输出电压、要求较高的电压波形质量的应用,如UPS电源、电动车驱动器等。

电流型逆变电路:
1.电流型逆变电路是通过控制输出电流的大小和波形来实现
逆变操作的方式。

2.在电流型逆变电路中,控制变量是输出电流,通常通过比
较输出电流与参考电流来生成控制信号。

3.电流型逆变电路具有输出电流响应快、对负载变化适应性
强的特点。

它适用于需要实现精确控制输出电流、对负载变动响应要求高的应用,如电动车制动能量回馈、太阳能微网等。

需要注意的是,电压型和电流型逆变电路并不是互斥的,实际
的逆变器控制系统中也可以结合两种控制方式。

控制方式的选择取决于具体的应用需求、系统要求和设计考虑。

单相电压型逆变电路工作原理

单相电压型逆变电路工作原理

单相电压型逆变电路工作原理一、引言逆变电路是将直流电转换为交流电的一种电路,逆变电路的应用非常广泛,例如变频器、UPS等。

单相电压型逆变电路是一种常见的逆变电路,本文将详细介绍其工作原理。

二、单相电压型逆变电路结构单相电压型逆变电路由直流输入端、滤波器、开关管和输出端组成。

其中,直流输入端提供直流输入信号;滤波器用于过滤掉直流信号中的高频噪声;开关管用于控制输出信号的频率和幅值;输出端则输出经过处理后的交流信号。

三、单相电压型逆变电路工作原理1. 直流输入信号经过滤波器在单相电压型逆变电路中,直流输入信号首先通过滤波器进行滤波处理。

滤波器主要由一个大容量的滤波电容和一个小阻值的滤波电阻组成,在这个过程中,高频噪声被短时间内充放电而被消除。

2. 交错控制开关管在单相逆变器中,开关管是最重要的元件之一。

在正半周期和负半周期中,开关管的控制是不同的。

在正半周期,当开关管导通时,输出端的电压为正;当开关管断开时,输出端的电压为零。

在负半周期中,当开关管导通时,输出端的电压为零;当开关管断开时,输出端的电压为负。

3. 输出信号经过滤波器在单相逆变器中,输出信号需要通过滤波器进行处理。

滤波器主要由一个大容量的滤波电容和一个小阻值的滤波电阻组成,在这个过程中,高频噪声被短时间内充放电而被消除。

4. 输出信号经过变压器在单相逆变器中,输出信号需要通过变压器进行处理。

变压器主要由一个铁芯和两个绕组组成。

其中一个绕组接收逆变器产生的交流信号,并将其转换为所需的交流信号;另一个绕组则将交流信号传输到负载上。

四、总结单相电压型逆变电路是一种将直流转换为交流的常见逆变电路。

其工作原理主要包括直流输入信号经过滤波器、交错控制开关管、输出信号经过滤波器和输出信号经过变压器等步骤。

逆变电路的应用非常广泛,例如变频器、UPS等。

第4章 逆变电路

第4章  逆变电路

本章换流及换流方式问题最为全面集中,因此安排在 本章集中讲述。
1-10
4.1.2 换流方式分类
1) 器件换流(Device Commutation) ( )
利用全控型器件的自关断能力进行换流。 在采用IGBT 、电力MOSFET 、GTO 、GTR等全控型器 件的电路中的换流方式是器件换流。
2) 电网换流(Line Commutation) ( )
uo io O
uo a)
io i O i O uVT O iVT iVT
1 4
?t
iVT
2
iVT
3
?t ?t ?t
t1
uVT
1
uVT b)
4
图4-2 负载换流 电路及其工作波形
1-12
4.1.2 换流方式分类
4)强迫换流(Forced Commutation) ( )
设置附加的换流电路,给欲关断的晶闸管强迫 施加反压或反电流的换流方式称为强迫换流 强迫换流。 强迫换流 通常利用附加电容上所储存的能量来实现,因 电容换流。 此也称为电容换流 电容换流 分类 由换流电路内电容 直接提供换流电压 通过换流电路内的 电容和电感的耦合 来提供换流电压或 换流电流 直接耦合式 强迫换流 电感耦合式 强迫换流
电容器串联,要控制两者电压均衡。
应用: 应用
用于几kW以下的小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电 路的组合。
1-20
4.3 电流型逆变电路
直流电源为电流源的逆 变电路称为电流型逆变 电流型逆变 电路。 电路 电流型逆变电路主要特点 特
(1) 直流侧串大电感,电流基 本无脉动,相当于电流源。 因负载不同而不同。 (3)直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管。 图4-11 电流型三相桥式逆变电路 (2) 交流输出电流为矩形波,与负载阻抗角无关。输出电压波形和相位

三相电压型逆变电路中变频变压的控制方式

三相电压型逆变电路中变频变压的控制方式

三相电压型逆变电路中变频变压的控制方式1.引言1.1 概述随着现代电力系统及电子技术的发展,逆变电路在工业和家庭领域的应用越来越广泛。

三相电压型逆变电路是一种常见的逆变电路类型,可以将直流电源转换为交流电源,用于驱动交流电动机或供电给交流负载。

三相电压型逆变电路的基本原理是利用逆变器将直流电源的电压转换为三相交流电压。

这种逆变电路由三相桥式逆变器、LC滤波器和负载组成。

逆变器通过控制开关管的开关动作,将直流电源的电压逆变为可控制的三相交流电压。

LC滤波器用于平滑交流输出电压,提高电路的稳定性和纹波滤波效果。

变频变压则是指逆变电路通过改变交流输出电压的频率和幅值,实现对交流电机速度和转矩的精确控制。

变频变压的控制方式有多种,包括PWM(脉宽调制)控制、SPWM(正弦PWM)控制、SVPWM(空间矢量PWM)控制等。

这些控制方式通过调整逆变器中开关管的开关时间和频率,以及调节控制信号的幅值,实现对输出交流电压的精确控制。

本文将重点探讨三相电压型逆变电路中变频变压的控制方式。

通过深入分析这些控制方式的原理和特点,我们可以更好地理解逆变电路的工作原理,为逆变电路的设计和应用提供参考。

同时,本文将对当前变频变压控制方式的研究进展和未来发展方向进行展望,以为相关领域的研究者提供参考和启示。

1.2 文章结构文章结构决定了文章的布局和组织方式,对读者理解文章内容和观点的逻辑顺序起到重要的指导作用。

本文将按照以下结构进行阐述和探讨三相电压型逆变电路中变频变压的控制方式。

首先,我们将在引言部分概述本文的目的和主要内容,并简要介绍三相电压型逆变电路的基本原理,为后续的内容奠定基础。

通过引言的概述,读者可以对本文的主题和结构有一个整体的把握。

接下来,正文部分将分为两个主要章节展开讨论。

第一章节将详细阐述三相电压型逆变电路的基本原理,包括其工作原理、电路组成和工作状态等方面的内容。

通过对三相电压型逆变电路的基本原理的介绍,读者可以全面了解这种电路的特点和原理,为后续的控制方式讨论提供理论基础和背景知识。

电压型逆变电路在不同负载中的应用

电压型逆变电路在不同负载中的应用

电压型逆变电路在不同负载中的应用电压型逆变电路是一种将直流电转换为交流电的电路,广泛应用于各种负载中。

不同的负载对电压型逆变电路的要求不同,因此在不同负载中有不同的应用。

电压型逆变电路在家庭电器中的应用非常广泛。

家庭电器通常需要交流电才能正常工作,而电压型逆变电路可以将直流电转换为符合家庭电器工作要求的交流电。

比如,家庭中的电视、空调、冰箱等电器都需要交流电才能运行。

通过使用电压型逆变电路,直流电可以被转换为适合这些家庭电器使用的交流电,从而使得家庭电器能够正常工作。

电压型逆变电路在太阳能光伏发电系统中也有重要的应用。

光伏发电系统通过太阳能电池板将太阳能转化为直流电,然而大多数家庭和商业设备使用交流电。

为了将太阳能发电系统产生的直流电转换为交流电供电,需要使用电压型逆变电路。

这样,太阳能光伏发电系统就可以为家庭和商业设备提供所需的交流电能。

电压型逆变电路也被广泛应用于工业生产中。

许多工业设备需要使用交流电才能正常工作,而工业生产中通常使用的是直流电。

因此,在工业生产中使用电压型逆变电路将直流电转换为交流电是非常必要的。

例如,电动机、电焊机、UPS系统等工业设备都需要交流电才能正常运行。

通过使用电压型逆变电路,这些设备可以从直流电源中获取所需的交流电,从而实现正常工作。

电压型逆变电路还在交通工具中的应用中起着重要的作用。

现代交通工具中使用的许多电子设备需要使用交流电才能正常工作,而车辆电池提供的是直流电。

因此,在交通工具中使用电压型逆变电路将直流电转换为交流电是必要的。

比如,电动汽车中的电动机、空调、音响等设备都需要交流电才能正常运行。

通过使用电压型逆变电路,这些设备可以从电动汽车的直流电池中获得所需的交流电,从而实现正常工作。

电压型逆变电路在不同负载中的应用非常广泛。

无论是家庭电器、太阳能光伏发电系统、工业生产还是交通工具,都需要使用电压型逆变电路将直流电转换为交流电。

电压型逆变电路的应用使得这些设备能够正常工作,满足人们的各种需求。

53三相全桥电压型逆变电路

53三相全桥电压型逆变电路

5.5 无换向器电动机电流型逆变电路
利用反电势 换流属负载
vT3
换流
时U
相电
压比
V相

vT3
正偏
5.5电压型-电流型逆变电路对比
电压型
直流侧电压源-电容滤波 同一相内上下桥臂间纵向换流 上下桥臂采取先通后断 -留“死区” 防电压源短路
单相每个臂导通时间稍小于180度
三相每个臂导通时间稍小于180度
L 等效为钢料及线 圈构成的电感
R 等效为钢料中产 生涡流损耗的电阻
1000~2500Hz中 频
5.5三相电流型逆变电路
采用全控型器件 任何时刻上下桥臂各仅有一个通 导通时间120度。横向换流
导通顺序:上桥臂VT1->VT3->VT5 下桥臂VT2->VT4->VT6
5.5串联二极管式电流型逆变电路(1)
5.5串联二极管式电流型逆变电 路(2)
由于C3与C5串联,后与 C1并联。 C3与C5电流为 C1一半,其电压变化(Uco) 也为C1一半(2Uco)。
5.5串联二极管式电 流型逆变电路下次强迫换流: 由C3充电电压为正的一端晶闸管VT3向为负的一端VT5换流。 当然也由C1充电电压为正的一端晶闸管VT3向为负的一端VT1换流。 这给那个晶闸管触发脉冲而定,本次给VT5 触发脉冲。
强迫换流: 由C1充电电压为正的一端晶闸管VT1向为负的一端VT3换流。 当然也可由C5为正的一端晶闸管VT1向为负的一端VT5换流。 这由给那个晶闸管触发脉冲而定,本次给VT3 触发脉冲。
t1~t2 恒流 放电
强 迫 换 流
t2~t3 二 极管换流
稳定导通 阶段
二极管VD3(VD1)在iU( iV )导通期间 象一个“水坝”防止C13电荷泄掉。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 电压型逆变电路
1)逆变电路的分类 —— 根据直流侧电源性质 的不同
直流侧是电压源
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-VSTI
负载相电压
uUN uUN' uNN'
uVN
uVN'
uNN'
uWN
uWN'
uNN
'
u UN'
a)
O
Ud
t
u VN'
2
b)
O
t
u WN'
c)
O
t
u UV
Ud
d)
O
t
e) u NNO' u UN
f)
O
2Ud 3
Ud 6
t
Ud 3
t
iU
g)
O
t
id
h)
O
t
图5-10电压型三相桥式逆
变电路的工作波形
与全桥电路的比较:
比全桥电路少用一半开关器件。 器件承受的电压为2Ud,比全桥电路高 一倍。 必须有一个变压器 。
5.2.2 三相电压型逆变电路
三个单相逆变电路可组合成一个三相逆变电 路 应用最广的是三相桥式逆变电路
图5-9 三相电压型桥式逆变电路
5.2.2 三相电压型逆变电路
基本工作方式—— 180°导电方式
5.2 电压型逆变电路
5.2.1 单相电压型逆变电路 5.2.2 三相电压型逆变电路
5.2.1 单相电压型逆变电路
1)半桥逆变电路
工作原理
V1和V2栅极信号在一周期内 各半周正偏、半周反偏,两
者互补,输出电压uo为矩形
波,幅值为Um=Ud/2。
V1或V2通时,io和uo同方向,
直流侧向负载提供能量;
5.2.1 单相电压型逆变电路
优点:电路简单,使用器件少。 缺点:输出交流电压幅值为Ud/2,且直流
侧需两电容器串联,要控制两者电压均衡。
应用:
用于几kW 以下的小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥 逆变电路的组合。
5.2.1 单相电压型逆变电路
2) 全桥逆变电路
共四个桥臂,可看成两个半 桥电路组合而成。
• 阻感负载时,还可采 用移相得方式来调节 输出电压-移相调压。
V3的基极信号比V1落后q
uG1
a)
(0< q <180 °)。V3、
O u
G2
t
V4的栅极信号分别比V2、
V1的前移180°-q。输 出电压是正负各为q的脉
O
u G3
?
O
u G4
t t
冲。
改变q就可调节输出电压。
O
u o
io
i
o
u to
O
t
1
t2
3
t t
图5-7 单相全桥逆变
b)
电路的移相调压方式
5.2.1 单相电压型逆变电路
3) 带中心抽头变压器的逆变 电路
交替驱动两个IGBT,经变压 器耦合给负载加上矩形波交 流电压。
两个二极管的作用也是提供 无功能量的反馈通道。
图5-8 带中心抽头变压器的逆变电路
Ud 和负载参数相同 ,变压器匝比为1 :1 :时,uo和io 波 形及幅值与全桥逆变电路完全相同。
每桥臂导电180°, 同一相上下两臂交替 导电,各相开始导电 的角度差120 °。
任一瞬间有三个桥臂 同时导通。
每次换流都是在同一 相上下两臂之间进行, 也称为纵向换流。
u UN'
a)
O
Ud
t
u VN'
2
b)
O
t
u WN'
c)
O
t
u UV
Ud
d)
O
t
e) u NNO' u UN
f)
O
iU
g)
O
id
h)
5.2 电压型逆变电路
2)电压型逆变电路的特 点(1)直流侧为电压源或
并联大电容,直流侧电压 基本无脉动。
(2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
(3)阻感负载时需提供 无功功率。为了给交流侧 向直流侧反馈的无功能量 提供通道,逆变桥各臂并 联反馈二极管。
图5-5 电压型全桥逆变电路
O
2Ud 3
Ud 6
t
Ud 3
t
t
图5-10电压型三相桥式逆t 变电路的工作波形
5.2.2 三相电压型逆变电路
• 波形分析
负载各相到电源中点N' 的电压:U相,1通, uUN'=Ud/2,4通,uUN'=Ud/2。 负载线电压
uUV uUN' uVN'
uVW
uVN'
uWN'
uWU uWN' uUN'
5.2.2 三相电压型逆变电路
负载中点和电源中点间电压
1
1
uNN' 3 (uUN' uVN' uWN' ) 3 (uUN uVN uWN )
(5-6)
负载三相对称时有uUN+uVN+uWN=0,于是
u NN'
1 3
(uUN'
uVN'
uWபைடு நூலகம்' )
负载已知时,可由uUN波形求出iU波形。
VD1或VD2通时,io和uo反向,
电感中贮能向直流侧反馈。 VD1、VD2称为反馈二极管, 它又起着使负载电流连续的 作用,又称续流二极管。
u
a)
o
U m
O
t
-Um
io
tt
O
3
t1 t2
4
t5 t6
t
ON V1 V2 V1 V2
VD VD VD VD
1
2 b) 1
2
图5-6 单相半桥电压型逆变
电路及其工作波形
两对桥臂交替导通180°。 uG1
输出电压合电流波形与半桥
O u
t
G2
电路形状相同,幅值高出一 O
t
倍。
u G3
?
O
t
改变输出交流电压的有效值 uG4
O
只能通过改变直流电压Ud来
u o
实现。
io O
i
o
u to
3
t
1
t2
t t
图5-7 单相全桥逆变
b)
电路的移相调压方式
5.2.1 单相电压型逆变电路
一相上下两桥臂间的换流过程和半桥电路相似。
(5-7)
桥臂1、3、5的电流相加可得直流侧电流id的波形,id每60°脉动一次, 直流电压基本无脉动,因此逆变器从交流侧向直流侧传送的功率是脉
动的,电压型逆变电路的一个特点。
防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源短路, 应采取“先断后通”
数量分析见教材。
相关文档
最新文档