正比例函数与一次函数综合练习50题

合集下载

一次函数经典例题

一次函数经典例题

类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函数y=-(m-2)x+(m-4)是一次函数,∴∴m=-2.∴当m=-2时,函数y=-(m-2)x+(m-4)是一次函数.举一反三:【变式1】如果函数是正比例函数,那么().A.m=2或m=0 B.m=2 C.m=0D.m=1【答案】:考虑到x的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C【变式2】已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.解析:(1)由于y-3与x成正比例,所以设y-3=kx.把x=2,y=7代入y-3=kx中,得7-3=2k,∴ k=2.∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=.类型二:待定系数法求函数解析式2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点(2,-1),∴ -l=2×2+b.∴ b=-5,∴所求一次函数的表达式为y=2x-5.总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。

举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.解:设这个一次函数的表达式为y=kx+b.由题意可知,当x=0时,y=6;当x=4时,y=7.2.把它们代入y=kx+b中得∴∴这个一次函数的表达式为y=0.3x+6.【变式2】已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.解析:∵直线y=kx+b与y=2x+l关于y轴对称,∴两直线上的点关于y轴对称.又∵直线y=2x+1与x轴、y轴的交点分别为A(-,0),B(0,1),∴A(-,0),B(0,1)关于y轴的对称点为A′(,0),B′(0,1).∴直线y=kx+b必经过点A′(,0),B′(0,1).把A′(,0),B′(0,1)代入y=kx+b中得∴∴k=-2,b=1.所以(1)点M(0,1)(2)k=-2,b=1【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上.解:设过A,B两点的直线的表达式为y=kx+b.由题意可知,∴∴过A,B两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C(4,2)在直线y=x-2上.∴三点A(3,1),B(0,-2),C(4,2)在同一条直线上.类型三:函数图象的应用3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了___________ km;(2)汽车在行驶途中停留了___________ h;(3)汽车在整个行驶过程中的平均速度为___________ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是___________.思路点拨:读懂图象所表达的信息,弄懂并熟悉图象语言.图中给出的信息反映了行驶过程中时间和汽车位置的变化过程,横轴代表行驶时间,纵轴代表汽车的位置.图象上的最高点就是汽车离出发点最远的距离. 汽车来回一次,共行驶了120×2=240(千米),整个过程用时4.5小时,平均速度为240÷4.5=(千米/时),行驶途中1.5时—2时之间汽车没有行驶.解析:(1)240;(2)0.5;(3) ;(4)从目的地返回出发点.总结升华:这类题是课本例题的变式,来源于生活,贴近实际,是中考中常见题型,应注意行驶路程与两地之间的距离之间的区别.本题图象上点的纵坐标表示的是汽车离出发地的距离,横坐标表示汽车的行驶时间.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。

正比例函数与一次函数综合练习50题

正比例函数与一次函数综合练习50题

正比例函数与一次函数综合练习50题1.如图,已知函数y=﹣x+b 的图象与x轴,y轴分别交于点A、B,与函数y=x 的图象交于点M,点M的横坐标为2,在x轴上有一点P〔a,0〕〔其中a>2〕,过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.〔1〕求点M、点A的坐标;〔2〕假设OB=CD,求a的值,并求此时四边形OPCM的面积.2.如图,在平面直角坐标系中,O为坐标原点,过点B〔6,0〕的直线AB与直线OA相交点A〔4,2〕,动点M在直线OA上运动.〔1〕求直线AB的解析式.〔2〕求△OAC的面积.〔3〕是否存在点M,使△OMC的面积是△OAC的面积的?假设存在求出此时点M的坐标;假设不存在,说明理由.3.如图,一次函数y=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y=x图象交于点P〔2,n〕.〔1〕求m和n的值;〔2〕求△POB的面积;〔3〕在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?假设存在,请求出C点的坐标;假设不存在,请说明理由.4.如图,在平面直角坐标系xOy中,已知直线l1:y=mx〔m≠0〕与直线l2:y=ax+b 〔a≠0〕相交于点A〔1,2〕,直线l2与x轴交于点B〔3,0〕.〔1〕分别求直线l1和l2的表达式;〔2〕过动点P〔0,n〕且平行于x轴的直线与l1,l2的交点分别为C,D,当点C 位于点D左方时,写出n的取值范围.5.如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.〔1〕求正比例函数和一次函数的解析式;〔2〕根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;〔3〕求△MOP的面积.6.在平面直角坐标系xOy中,一次函数y=﹣x+7的图象交y轴于点D,且它与正比例函数y=x的图象交于点A.〔1〕求点D的坐标;〔2〕求线段OA的长;〔3〕设x轴上有一点P〔a,0〕,过点P作x轴的垂线〔垂线位于点A的右侧〕,分别交y=x和y=﹣x+7的图象于点B、C,连接OC,假设BC=OA,求△OBC 的面积.7.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与正比例函数y=kx的图象都经过点B〔3,1〕〔1〕求一次函数和正比例函数的表达式;〔2〕假设直线CD与正比例函数y=kx平行,且过点C〔0,﹣4〕,与直线AB相交于点D,求点D的坐标.〔注:二直线平行,k相等〕〔3〕连接CB,求三角形BCD的面积.8.如图,经过原点的直线l1与经过点A〔0,24〕的直线l2相交于点B〔18,6〕.在x轴上有一点P〔a,0〕〔a>0〕,过点P作x轴的垂线分别交直线l1、l2于点C、D.〔1〕求直线l2的表达式;〔2〕假设线段CD长为12,求此时a的值;9.如图,已知一个正比例函数与一个一次函数的图象交于点A〔3,4〕,且OA=OB 〔1〕求两个函数的解析式;〔2〕直线AB交x轴于点C,求△AOC的面积;〔3〕在x轴上存在一点p,使△AOP是等腰三角形,直接写出所有符合要求的点P的坐标.10.如图,直线y=﹣x+6交直线y=x+6于点A,直线y=﹣x+6与直线y=2x相交于点B,直线y=x+6与直线y=2x相交于点C.〔1〕求点B的坐标;〔2〕求三角形ABC的面积;〔3〕假设点P是直线y=2x上的动点,当△ABP的面积等于△AOC的面积时,求点P的坐标.11.如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.〔1〕点A的坐标是,点B的坐标是,点P的坐标是;〔2〕将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;〔3〕求△PQR的面积.12.如图,直线y=﹣x+3与y轴交于点C,与x轴交于点D,点P是直线y=x+3上的一个动点〔点P在第一象限〕,过P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.〔1〕假设PE=5EF,求m的值;〔2〕过点P作PG∥CD交y轴于点G,判断四边形PECG的形状,并说明理由.13.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点〔1〕求点A的坐标;〔2〕设x轴上一点P〔a,b〕,过点P作x轴的垂线〔垂线位于点A的右侧〕分别交y=x和y=﹣x+7的图象于点B,C,连接OC,假设BC=OA,求△OBC的面枳.14.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.〔1〕分别求出点A、B、C的坐标;〔2〕假设D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;〔3〕在〔2〕的条件下,设P是x轴上的点,使得P到点A、D的距离和最小;求点P的坐标.15.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与数y=x 图象交于点M,点M的横坐标为2,在x轴上有点P〔a,0〕〔其中a>2〕,过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.〔1〕求点A的坐标;〔2〕假设OB=CD,求a的值;〔3〕在〔2〕条件下假设以OD线段为边,作正方形ODEF,求直线EF的表达式.16.如图,平面直角坐标系中,已知直线y=x上一点P〔2,m〕,C〔0,n〕为y 轴上一点,以P为直角顶点作等腰Rt△PCD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A.〔1〕求m的值,并求出直线PC的函数表达式〔用含n的式子表示〕;〔2〕判断线段OB和OC的数量关系,并证明你的结论;〔3〕当△OPC≌△ADP时,求点A的坐标.17.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.〔1〕求A,B两点的坐标;〔2〕求△BOC的面积;〔3〕如图2,假设有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t〔s〕,连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?假设存在,请直接写出t的值;假设不存在,请说明理由.18.如图1,在直角坐标系中,点A坐标为〔0,12〕,经过原点的直线l1与经过点A的直线l2相交于点B〔m,n〕〔1〕假设m=9,n=3,求直线l1和l2的解析式;〔2〕将△BAO绕点B顺时针旋转180°得△BFE,如图2,连接AE,OF;①证明:四边形OFEA是平行四边形;②假设四边形OFEA是正方形,则m=,n=.19.如图,在平面直角坐标系中,点A的坐标为〔3,0〕,B为直线y=x上的一个动点,延长AB至C,使得AB=BC,过点C作CD⊥x轴于点D,交直线OB 于点F,过点A作AE∥OB,交直线CD于点E.〔1〕求直线AE的解析式;〔2〕在点B的运动过程中,线段CF的长是否发生改变?假设不变,请求出线段CF的长;假设改变,请说明理由;〔3〕假设AD=EF,点D在点A的右侧,直接写出tan∠CAD的值;〔4〕连接BE,在点B的运动过程中,是否存在点E,使△ABE为直角三角形?假设存在,直接写出点E的坐标;假设不存在,请说明理由.20.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.〔1〕求点P的坐标;的值;〔2〕求S△OPA〔3〕动点E从原点O出发,沿着O→P→A的路线向点A匀速运动〔E不与点O、A重合〕,过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为〔a,0〕,矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.21.已知如图,直线y=kx+b与x轴、y轴分别交于点A、B,与直线y=3x交于点C,且|OA﹣6|+=0,将直线y=kx+b沿直线y=3x折叠,与x轴交于点D,与y轴交于点E.〔1〕求直线y=kx+b的解析式及点C的坐标;〔2〕求△BCE的面积;〔3〕假设点P是直线y=3x上的一个动点,在平面内是否存在一点Q,使以点A、C、P、Q为顶点的四边形是矩形?假设存在,请直接写出点P、点Q的坐标;假设不存在,请说明理由.22.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.〔1〕点A的坐标是;点B的坐标是;点C的坐标是;〔2〕假设D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;〔3〕在〔2〕的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?假设存在,直接写出点Q的坐标;假设不存在,请说明理由.23.如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P〔x,0〕在OB上运动〔0<x<3〕,过点P作直线m与x轴垂直.〔1〕求点C的坐标,并答复当x取何值时y1>y2?〔2〕设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.〔3〕当x为何值时,直线m平分△COB的面积?24.如图,在平面直角坐标系中,一次函数y=mx+n〔m≠0〕的图象与x轴交于点A〔﹣3,0〕,与y轴交于点B,且与正比例函数y=2x的图象交于点C〔3,6〕.〔1〕求一次函数y=mx+n的解析式;〔2〕点P在x轴上,当PB+PC最小时,求出点P的坐标;〔3〕假设点E是直线AC上一点,点F是平面内一点,以O、C、E、F四点为顶点的四边形是矩形,请直接写出点F的坐标.25.已知:如图1,在△AOB中,OA=AB=,BO=2,点B在x轴上,直线l1:y=kx+3〔k为常数,且k≠0〕过点A,且与x轴、y轴分别交于点D,C,直线l2:y=ax〔a为常数,且a>0〕与直线l1交于点P,且△DOP的面积为.〔1〕求直线l1,l2的解析式;〔2〕如图2,直线l3∥y轴,与直线l1,x轴分别交于点M,Q,且直线l3与线段OA或线段OP交于点N.假设点Q的横坐标为m〔﹣1<m<2〕,求△APN的面积S关于m的函数关系式.26.已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与2:y=x相交于点C.〔1〕求点c的坐标;〔2〕假设平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;〔3〕如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP 之间的位置关系,并证明你的结论.27.如图,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+8与x轴交于点A,与y轴交于点B,直线l2与直线l交于C点,tan∠COA=2.〔1〕求点C的坐标;〔2〕动点P从点A出发,沿线段AB以每秒5个单位的速度向终点B运动,同时动点Q从点B出发,沿线段BO以每秒4个单位的速度向终点O运动.设△PBQ的面积为S,运动时间为t秒,求S与t之间的函数关系式;〔3〕在〔2〕的条件下,假设△BQP与△BOC相似,求出符合题意的t值及点P 坐标.28.如图,已知直线y=﹣x+7与直线y=x交于点A,且与x轴交于点B,过点A 作AC⊥y轴与点C.点P从O点以每秒1个单位的速度沿折线O﹣C﹣A运动到A;点R从B点以相同的速度向O点运动,一个点到终点时,另一个点也随之停止运动.〔1〕求点A和点B的坐标;〔2〕过点R作直线l∥y轴,直线l交线段BA于点Q,设动点P运动的时间为t 秒.①当t为何值时,以A,P,O,R为顶点的四边形的面积为13?②是否存在以A、P、R为顶点的三角形是等腰三角形?假设存在,直接写出t 的值;假设不存在,请说明理由.29.〔1〕如图1,直线AB:y=﹣2x+8分别交x轴、y轴于点A、B,与直线OC:y=x交于点C.求①点C的坐标;②△OAC的面积.〔2〕如图2,已知直线OC:y=x,作∠AOC的平分线ON,△OAC的面积为5,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ 是否存在最小值?假设存在,求出这个最小值;假设不存在,说明理由.30.如图,已知点P〔m,5〕在直线y=kx〔k>0〕上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.〔1〕当m=2时,求tan∠POA的值;〔2〕假设直线x=5交x轴于点C,交线段AB于点D〔异于端点〕,记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.31.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A 〔﹣3,0〕,与y轴交于点B,且与正比例函数y=x的图象交点为C〔m,4〕.求:〔1〕一次函数y=kx+b的解析式;〔2〕假设点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标;〔3〕在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.〔1〕求点A的坐标;〔2〕在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;〔3〕如图、设x轴上一点P〔a,0〕,过点P作x轴的垂线〔垂线位于点A的右侧〕,分别交y=和y=﹣x+7的图象于点B、C,连接OC,假设BC=OA,求△ABC的面积及点B、点C的坐标;〔4〕在〔3〕的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,在平面直角坐标系中,一次函数y=kx+4的图象经过点A〔1,3〕,点B是一次函数y=kx+4的图象与正比例函数y=x的图象的交点.〔1〕求一次函数y=kx+4的表达式;〔2〕求点B的坐标.〔3〕在x轴上找一点P,使PA+PB的值最小,直接写出满足条件的点P的坐标及△PAB的面积.34.如图,已知直线l:y=﹣x+b与x轴、y轴分别交于点A,B,直线l1:y=x+1与y轴交于点C,设直线l与直线l1的交点为E〔1〕如图1,假设点E的横坐标为2,求点A的坐标;〔2〕在〔1〕的前提下,D〔a,0〕为x轴上的一点,过点D作x轴的垂线,分别交直线l与直线l1于点M、N,假设以点B、C、M、N为顶点的四边形为平行四边形,求a的值;〔3〕如图2,设直线l与直线l2:y=﹣x﹣3的交点为F,问是否存在点B,使BE=BF,假设存在,求出直线l的解析式,假设不存在,请说明理由.35.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.〔1〕求P点坐标;〔2〕作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?假设存在,请直接写出这个最小值;假设不存在请说明理由;〔3〕在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.36.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B〔0,﹣1〕,与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为〔1,n〕.〔1〕则n=,k=,b=;〔2〕求四边形AOCD的面积;〔3〕在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?假设存在求出点P的坐标;假设不存在,请说明理由.37.如图,一个正比例函数y1=k1x的图象与一个一次函数y2=k2x+b的图象相交于点A〔3,4〕,且一次函数y2的图象与y轴相交于点B〔0,﹣5〕,与x轴交于点C.〔1〕判断△AOB的形状并说明理由;〔2〕假设将直线AB绕点A旋转,使△AOC的面积为8,求旋转后直线AB的函数解析式;〔3〕在x轴上求一点P使△POA为等腰三角形,请直接写出所有符合条件的点P的坐标.38.如图,在平面直角坐标系中,直线y=﹣x﹣3与x轴、y轴分别交于A、B=9.两点,C为x轴正半轴上一点,S△ABC〔1〕求点C的坐标;〔2〕假设线段AB上一点M到坐标轴的距离相等.①求点M的坐标及直线OM的函数表达式;②假设点P为直线OM上一动点,且∠APM=∠CPM,求点P的坐标.39.如图1,已知直线y=﹣3x+6与x轴、y轴交于A、B两点,点C在x轴负半轴上,S△BOC =3S△BOA〔1〕求直线BC的函数表达式;〔2〕如图2,一条直线y=mx经过原点,与直线AB,BC分别交于点E、F,假设S△BOE=S△BOF,求m的值;〔3〕如图3,将〔2〕中直线EF向上平行移动后经过点B,与x轴交于点G,设H为线段BG上一点〔含端点〕,连接AH,一动点M从点A出发,沿线段AH运动到H,再沿线段HB运动到B后停止,假设点M在AH上的速度为每秒1个单位,在HB上的速度为每秒个单位,当点H的坐标是多少时,点M在整个运动过程中用时最少?40.已知直线y=2x﹣10与直线y=x相交于点A,与x轴相交于点B.〔1〕求△OAB的面积.〔2〕假设OC平分∠AOB交AB于C,在OA上截取OD=OB,连接CD,①证明:△OCD≌△OCB;②求△OAC的面积;③求点C的坐标.41.如图,已知一次函数y=kx+3﹣2k〔k≠0〕,A〔﹣2,1〕,C〔﹣2,﹣3〕,B 〔1,﹣3〕.〔1〕求证:点M〔2,3〕在直线y=kx+3﹣2k〔k≠0〕上;〔2〕当直线y=kx+3﹣2k〔k≠0〕经过点C时,点P是直线y=kx+3﹣2k〔k≠0〕上一点,假设S△CBP =2S△ABC,求点P的坐标;〔3〕当直线y=kx+3﹣2k〔k≠0〕与△ABC有公共点时,直接写出k的取值范围.42.如图1,在平面直角坐标系中,A〔0,4〕,C〔4,0〕且AB平行于x轴,点B在函数y=x的图象上〔1〕求BC的函数解析式;〔2〕如果有一经过B点的直线将四边形ABCO的面积分成两个相等的部分,求这条直线的解析式;〔3〕如图2,M,N分别为线段BC上两点,且OM⊥BC,∠BNA=45°,试判断线段AN,MO,MC三边的数量关系,并证明.43.如图,在平面直角坐标系中,直线y=﹣x﹣与x轴交于点A,与直线y=﹣x交于点B.〔1〕求点B的坐标;〔2〕点B关于x轴的对称点为点C,求△AOC的面积;〔3〕过点B作BD⊥x轴于点D,动点P从点D出发,在射线DB上以每秒1个单位长度的速度向下运动,运动的时间为t秒,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°得线段OP′,连接AP′,△AP′O的面积为S,在点P运动过程中〔不包含点D〕,S的值是否与t的值有关?如果有关,请直接写出S与t 的函数关系式;如果无关,请直接写出S的值.44.如图,直线y=x﹣m与直线y=kx〔k≠0〕交于点A,直线y=x﹣m与x轴交于点B,与y轴交于点C,假设直线y=kx〔k≠0〕与x轴正半轴所成夹角为30°,OB=.〔1〕求k、m的值.〔2〕假设点E为x轴上的动点,连接AE,当△ABE与△OAE相似时求点E的坐标.45.已知:直线y=2x与x=2相交于点A,直线x=2与x轴相交于点Q,点P是射线AQ上的一点,点B是直线OP上的一点,设AP=t,点B的坐标为〔a,b〕.〔1〕求直线OP的解析式;〔用含t的代数式表示〕〔2〕当三点A,O,B构成以OB为斜边的直角三角形时,求a与t之间的关系式;〔3〕将△PAB沿直线PB折叠后,点A的对称点A′恰好落在坐标轴上,请直接写出所有满足条件的t的值,并写出以A,A′,P,B为顶点的四边形为菱形时的点B坐标.46.如图,在平面直角坐标系中,O是坐标原点,直线AB:y=与x,y轴分别相交于点A、B,BC平分∠ABO交x轴于点C.〔1〕求点A、B的坐标和线段AB的长;〔2〕求线段OC的长;〔3〕假设过原点的直线l平行于直线AB,动点P在直线l上运动,当∠OBP=∠OBA时,求点P的坐标.47.如图,已知函数y=﹣的图象与x轴、y轴分别交于点A、B,与函数y=x 的图象交于点E,点E的横坐标为3.〔1〕求点A的坐标;〔2〕在x轴上有一点F〔a,0〕,过点F作x轴的垂线,分别交函数y=﹣和y=x的图象于点C、D,假设以点B、O、C、D为顶点的四边形为平行四边形,求a的值.48.如图,直线OC,BC的函数关系式分别是y1=x和y2=﹣x+6,两直线的交点为C.〔1〕点C的坐标是〔,〕,当x时,y1>y2?〔2〕△COB是三角形,请证明.〔3〕在直线y1找点D,使△DOB的面积是△COB的一半,求点D的坐标.〔4〕作直线a⊥x轴,并交直线y1于点E,直线y2于点F,假设EF的长度不超过3,求x的取值范围.49.如图,直线y=﹣x+4交x轴、y轴于A、C两点,过点C的直线y=2x+4交x轴于点B,过点B作BD⊥AC于点D,直线BD交y轴于点E.〔1〕求直线DE的解析式;〔2〕在直线DE上有一动点P,已知点P的横坐标为t.用含t的式子表示点P 到直线BC的距离;〔3〕在〔2〕的条件下,当点P在x轴上方时,连接PC,当t为何值时,满足∠CPB=45°.50.如图1,在直角坐标系中,直线y=x+m与x轴负半轴交于点A,与y轴正半轴交于点B,且△AOB的面积是8.〔1〕求m的值;〔2〕如图2,直线y=kx+3k〔k<0〕交直线AB于点E,交x轴于点C,点D坐标是〔0,﹣2〕,过D点作DF⊥CD交EC于F点,假设∠AEC=∠CDO,求点F的坐标;〔3〕如图3,点P坐标是〔﹣1,﹣2〕,假设△ABO以2个单位/秒的速度向下平移,同时点P以1个单位/秒的速度向左平移,平移时间是t秒,假设点P落在△ABO内部〔不包含三角形的边〕,求t的取值范围.。

一次函数与正比例函数(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数与正比例函数(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.6一次函数与正比例函数(分层练习)(提升练)一、单选题(本大题共10小题,每小题3分,共30分)1.(2023春·云南昆明·八年级校考阶段练习)下列函数中,属于正比例函数的是()A .22y x =+B .21y x =-+C .1y x=D .5x y =2.(2023秋·安徽蚌埠·八年级统考阶段练习)规定:[]k b ,是一次函数0y kx b k b k =+≠(、为实数,)的“特征数”.若“特征数”是[]44m -,的一次函数是正比例函数,则点22m m +-(,)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.(2022·黑龙江大庆·统考中考真题)平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为()A .4πB .C .8πD .4.(2022春·福建福州·八年级统考期末)若直线1y kx k =++经过点()3m n +,和()121m n +-,,且02k <<,则n 的值可以是()A .3B .4C .5D .65.(2022秋·八年级课时练习)新定义:[],a b 为一次函数y ax b =+(a ,b 为常数,且0a ≠)关联数.若关联数[1,2]m +所对应的一次函数是正比例函数,则关于x 的方程1322x m-=的解为()A .4x =B .2x =-C .1x =D .0x =6.(2020秋·安徽合肥·八年级合肥38中校考阶段练习)A (x 1,y ),B (x 2,y 2)是一次函数y=kx+2(k>0)图像上的不同的两点,若t=(x 1-x 2)(y 1-y 2),则()A .t<1B .t>0C .t=0D .t≤17.(2023·山东济宁·校考三模)从有理数1012-,,,中任选两个数作为点的坐标,满足点在直线1y x =-+上的概率是()A .16B .15C .14D .138.(2023春·八年级课时练习)已知一次函数21y kx k =-+(k 为常数,且0k ≠),无论k 取何值,该函数的图像总经过一个定点,则这个定点的坐标是()A .()0,1B .()2,1C .()1,0D .()1,29.(2022秋·八年级课时练习)如图,Rt ABC ∆在平面直角坐标系内,其中90ABC ∠=︒,5AC =.点B ,C 的坐标分别为(20),,(50),.将Rt ABC ∆沿x 轴向右平移,当点A 落在直线3y x =-时,线段AC 扫过的面积为()A .16B .20C .32D .3810.(2019秋·安徽合肥·八年级校联考阶段练习)已知y ﹣1与x 成正比例,当x =3时,y =2.则当x =﹣1时,y 的值是()A .﹣1B .0C .13-D .23二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·安徽滁州·八年级校考阶段练习)若()12a y a x-=-是x 的正比例函数,则=a .12.(2023·上海·八年级假期作业)如果正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,那么当3x =时,y =.13.(2023秋·全国·八年级专题练习)已知函数3(4)3k y k x -=-+是一次函数,则k 的值为.14.(2023·黑龙江大庆·大庆外国语学校校考模拟预测)若以关于x y ,的二元一次方程组59x y x y k +=⎧⎨-=⎩的解为坐标的点在一次函数243y x =-+的图像上,则k 的值为.15.(2023秋·江苏淮安·八年级校考期末)若一次函数25y x =-的图像过点()a b ,,则21b a -+=.16.(2022秋·八年级课时练习)在平面直角坐标系中,点A (2,m )在直线21y x =-+上,点A 关于y 轴对称的点B 恰好落在直线1y kx =+上,则k 的值为.17.(2022秋·八年级课时练习)“闪送”是1小时同城速递服务领域的开拓者和一对一急送服务标准的制定者.客户下单后,订单全程只由唯一的“闪送员”专门派送,平均送达时间在60分钟以内,同时避免传统快递服务的中转、分拣,配送过程中存在的诸多安全性问题.某闪送公司每月给闪送员的工资为:底薪1700元,超过300单后另加送单补贴(每送一个包裹称为一单),送单补贴的具体方案如下:送单数量补贴(元/单)每月超过300单且不超过500单的部分5每月超过500单的部分7设该月某闪送员送了x 单(500)x >,所得工资为y 元,则y 与x 的函数关系式为.18.(2022秋·江苏·八年级专题练习)为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过36m 时,水费按每立方米a 元收费;超过36m 时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按b 元收费.该市某户今年3、4月份的用水量和水费如下表所示:月份用水量(3m )水费(元)357.54927根据题意可知:b =;设某户该月用水量为()3m 6x x >,应交水费为y (元),写出y 与x之间的关系式.三、解答题(本大题共6小题,共58分)19.(8分)(2023·上海·八年级假期作业)(1)已知2()(3)f x m x =-是正比例函数,求m 的取值范围;(2)若函数2()(3)3f x m x m =-+-是正比例函数,那么m 的值是多少?20.(8分)(2023春·福建福州·八年级校考期末)若点(),m n 在一次函数23y x =-的图象上.(1)求代数式362032n m -+的值;(2)点()56,5A m n -在直线23y x =-上吗?为什么?21.(10分)(2022秋·全国·八年级专题练习)已知3y -与x 成正比例,且2x =时,7y =.(1)求y 与x 的函数关系式;(2)当12x =-时,求y 的值;(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.22.(10分)(2022秋·八年级课时练习)“绿叶”家政服务公司选派16名清洁工去打扫新装修的“海天”宾馆的房间,房间有大、小两种规格,每名清洁工一天能打扫4个大房间或5个小房间.设派x 人去清扫大房间,其余人清扫小房间,清扫一个大房间工钱为80元,清扫一个小房间工钱为60元.(1)写出家政服务公司每天的收入y (元)与x (人)之间的函数关系式:(2)应该怎样安排这16名清洁工清扫?才能一天为“绿叶”家政服务公司创收5000元.23.(10分)(2022秋·全国·八年级专题练习)将长为38cm 、宽为5cm 的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽为2cm .(1)求5张白纸黏合的长度;(2)设x 张白纸黏合后的总长为ycm ,写出y 与x 的函数关系式;(标明自变量x 的取值范围)(3)用这些白纸黏合的长度能否为362cm ,并说明理由.24.(12分)(2019·八年级单元测试)如图,已知在平面直角坐标系中,点A的坐标是()0,3,点C是x轴上的一个动点,点C在x轴上移动时,始终保持ACP∆是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P作第三象限时(如图所示),求证:AOC ABP≌.由此你发现什么结论?∆∆(2)求点C在x轴上移动时,点P所在函数图象的解析式.参考答案1.D【分析】根据正比例函数的定义逐个判断即可.解:A .不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点拨】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b (k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.2.D【分析】根据正比例函数的定义求出m 的值,然后求出点的坐标即可判断.解:由题意得:∵“特征数”是[4,m ﹣4]的一次函数是正比例函数,∴m ﹣4=0,∴m =4,∴2+m =6,2﹣m =﹣2,∴点(6,﹣2)在第四象限,故选:D .【点拨】本题考查了正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.3.B【分析】设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫⎪⎝⎭,,根据8OM ON +=,得出8n m +=,然后分两种情况,80n -≤<或08n ≤≤,得出2m 与2n的函数关系式,即可得出Q 横纵坐标的关系式,找出点Q 的运动轨迹,根据勾股定理求出运动轨迹的长即可.解:设点M 的坐标为(0,m ),点N 的坐标为(n ,0),则点Q 的坐标为22n m ⎛⎫⎪⎝⎭,,∵8OM ON +=,∴8n m +=,(88n -≤≤,08m ≤≤),∵当80n -≤<时,8n m n m +=-+=,∴422n m -+=,即422m n=+,∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的负半轴上,坐标为(-4,0),另一端在y 轴的非负半轴上,坐标为(0,4),∴此时点Q =;∵当08n ≤≤时,8n m n m +=+=,∴422n m +=,即422m n =-,∴此时点Q 在一条线段上运动,线段的一个端点在x 轴的正半轴上,坐标为(4,0),另一端在y 轴的非负半轴上,坐标为(0,4),∴此时点Q =;综上分析可知,点Q 运动路径的长为B 正确.故选:B .【点拨】本题主要考查了平面直角坐标系中的动点问题,根据题意找出点Q 的运动轨迹是两条线段,是解题的关键.4.C【分析】根据题意得出31211n km k n km k k +=++⎧⎨-=+++⎩,求出4k n =-,根据02k <<,求出46n <<,即可得出答案.解:由题意得31211n km k n km k k +=++⎧⎨-=+++⎩,解得:4k n =-,02k << ,042n ∴<-<,46n ∴<<,n ∴可以是5,故C 正确.故选:C .【点拨】本题主要考查了一次函数的性质,利用函数图象上的点满足函数关系式,用n 表示出k ,得到关于n 的不等式是解题的关键.5.C【分析】先依据题意得到函数关系式,然后依据正比例函数的定义求得m 的值,最后解一元一次方程即可.解:∵[a ,b ]为一次函数y =ax +b (a ,b 为实数,且a ≠0)的关联数,∴关联数[1,m +2]所对应的一次函数是y =x +m +2.又∵该函数为正比例函数,∴m +2=0,解得m =-2.∴方程可变形为:13222x -=-,解得:x =1,∴方程的解为x =1.故选:C .【点拨】本题主要考查的是正比例函数的定义,解一元一次方程,求得m 的值是解题的关键.6.B【分析】根据点在一次函数图象上,将点代入解析式,得到112y kx =+,222y kx =+,再代入t 的式子得到()212t k x x =-,根据平方式的非负性得到结果.解:∵()12,A x y 、()22,B x y 在一次函数()20y kx k =+>上,∴112y kx =+,222y kx =+,()()()12121222y y kx kx k x x -=+-+=-,()()()()()21212121212t x x y y x x k x x k x x =--=-⋅-=-,∵12x x ≠,∴()2120t k x x =->.故选:B .【点拨】本题考查一次函数的图象和性质,平方式的非负性,解题的关键是熟练运用一次函数图象上点的性质去列式求解.7.D【分析】先列出数1012-,,,中任取两个数作为点的坐标所有情况,再判断是否在直线上,最后再利用概率公式的求法得出.解:数1012-,,,中任取两个数作为点的坐标可以为()()()()()()()10111201010211-----,、,、,、,、,、,、,、()()()()()1012212021-,、,、,、,、,共12种等可能的情况,依次代入1y x =-+知()()()()1,20,11,02,1--、、、在直线上,故概率为41123=.故选:D .【点拨】此题主要考查一次函数与概率的结合,依次列出各坐标点是解题的关键.8.B【分析】先将一次函数解析式变形为(2)1y x k =-+,即可确定定点坐标.解:∵21(2)1y kx k x k =-+=-+,当2x =时,1y =,∴无论k 取何值,该函数的图像总经过一个定点()2,1;故选:B .【点拨】本题考查了一次函数图像上点的坐标特征,将一次函数变形为(2)1y x k =-+是解题的关键.9.B【分析】根据勾股定理求得AB 的长,进而求得平移的值,根据平行四边形的性质求解即可.解:∵点B ,C 的坐标分别为(20),,(50),∴3BC = 90ABC ∠=︒,5AC =.4AB ∴=当点A 落在直线3y x =-时,43x =-解得7x =∴平移后点B (7,0)∴平移了72=5-个单位∴线段AC 扫过的面积为5420⨯=故选B【点拨】本题考查了平移的性质,求一次函数自变量的值,掌握平移的性质是解题的关键.10.D【分析】设1(0)y kx k -=≠,把x =3,y =2代入求出k 的值,把x =﹣1代入函数解析式即可得到相应的y 的值.解:由题意设1(0)y kx k -=≠,则由x =3时,y =2,得到:2﹣1=3k ,解得:13k =,则该函数解析式为:113y x =+,把x =﹣1代入113y x =+得:12(1)133y =⨯-+=,故选:D .【点拨】本题考查了待定系数法求一次函数的解析式,再根据给定x 的值求y 的值,这是基础题型,务必要掌握.11.2-【分析】根据正比例函数的定义:一般地,形如y kx =(k 是常数,0k ≠)的函数叫做正比例函数,得:11a -=且20a -≠,求解即可.解:根据题意得:11a -=,解得2a =或2-,20a -≠,解得2a ≠,2a ∴=-,故答案为:2-【点拨】本题考查了正比例函数的定义,根据正比例函数的定义求解是解题的关键.12.65-【分析】根据可得当3x =时,3y k =,当8x =时,8y k =,再根据自变量和函数值的变化关系可得32=8k k -,从而求得正比例函数解析式,再把3x =代入求值即可.解:由题意可得,当3x =时,3y k =,∵正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,∴358x =+=时,8y k =,∴32=8k k -,∴25k =-,∴正比例函数解析式为25y x =-.∴当3x =时,26355y =-⨯=-.【点拨】本题主要考查正比例函数的概念及性质,熟练掌握正比例函数的性质是解题的关键.13.2【分析】直接利用一次函数的定义分析得出k 的值即可.解:∵函数3(4)3k y k x -=-+是一次函数,∴40,31k k -≠-=,解得2k =,故答案为:2.【点拨】此题主要考查了一次函数的定义,正确把握定义是解题关键.14.19【分析】解方程组,先用含k 的代数式表示出x 、y ,根据以方程组的解为坐标的点在一次函数243y x =-+的图像上,得到关于k 的一元一次方程,求解即可.解:59x y x y k +=⎧⎨-=⎩①,②①+②得,259x k =+,∴592k x +=;-①②,得:259y k=-∴592k y -=把592k x +=,592k y -=代入243y x =-+,得:25+9435922k k =-⨯+-,解得,19k =,故答案为:19【点拨】本题考查了二元一次方程组的解法,解决本题的关键是用含k 的代数式表示出方程组中的x 、y .15.4-【分析】先把点(),a b 代入一次函数25y x =-,得到25b a =-,然后代入代数式计算即可.解:∵一次函数25y x =-的图像过点()a b ,,∴25b a =-,∴2125214b a a a -+=--+=-.故答案为:4-.【点拨】本题主要考查了一次函数图像上点的坐标特点、代数式求值等知识点,掌握凡是函数图像经过的点必能满足解析式是解答本题的关键.16.2【分析】根据直线21y x =-+的解析式求出m ,再求出点A 关于y 轴的对称点,再将对称点带入1y kx =+求出k .解:点A (2,m )在直线21y x =-+上,∴3m =-,点A (2,-3)关于y 轴对称的点为(-2,-3),∴321k -=-+,∴2k =,故答案为:2.【点拨】本题考查一次函数和轴对称的性质,解题的关键是能够根据轴对称的性质求出对称点的坐标.17.7800y x =-【分析】该员工的工资包括底薪1700元,每月超过300单且不超过500单的部分200×5=1000元,超过500单的7(x-500)元,然后求和即可.解:y=1700+200×5+7(x-500)=7x-800.故答案为:7800y x =-.【点拨】本题主要考查了列函数解析式,正确理解题意成为解答本题的关键.18.6627y x =-【分析】根据3月份用水量与水费的关系可得a 的值,根据4月分用水量和水费的关系即可求得b 的值,根据题意写出y 与x 之间的关系式即可解:3月份的用水量为53m ,水费为7.5元,未超过63m ,则57.5a =解得 1.5a =4月份的用水量为93m ,水费为27元,超过63m∴()27=6 1.596b⨯+-解得6b =设某户该月用水量为()3m 6x x >,应交水费为y =()1.5666x ⨯+-627x =-即627y x =-故答案为:6,627y x =-【点拨】本题考查了一元一次方程的应用,列一次函数关系式是解题的关键.19.(1)m ≠2)3m =【分析】(1)根据正比例函数的定义可得230m -≠,即可求解;(2)根据正比例函数的定义可得30m -=,即可求解.解:(1)∵2()(3)f x m x =-是正比例函数,∴230m -≠,∴m ≠(2)∵函数2()(3)3f x m x m =-+-是正比例函数,∴30m -=,∴3m =.【点拨】考查正比例函数的概念理解,熟练掌握正比例函数的定义是解题的关键.20.(1)2023;(2)在,理由见分析【分析】(1)直接把点(),m n 代入一次函数23y x =-求出m 、n 的关系,代入代数式进行计算即可;(2)把56x m =-代入直线23y x =-,求出y 的值即可.解:(1)∵点(),m n 在一次函数23y x =-的图象上,∴23n m =-,∴362032n m -+,()33362032m m =--+,6962032m m =--+,2023=;(2)点()56,5A m n -在直线23y x =-上.∵当56x m =-时,()2563y m =--,1015m =-,()523m =-,5n =.∴点()56,5A m n -在直线23y x =-上.【点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.21.(1)y=2x+3;(2)2;(3)y=2x-5【分析】(1)根据题意设y 与x 的关系式为y-3=kx (k≠0);然后利用待定系数法求一次函数解析式;(2)把12x =-代入一次函数解析式可求得;(3)因为函数图象平移,所以k 不变,设平移后直线的解析式为y=2x+b ,把点(2,-1)代入求出b 的值,即可求出平移后直线的解析式.解:(1)∵y-3与x 成正比例,∴设y-3=kx (k≠0),把x=2时,y=7代入,得7-3=2k ,k=2;∴y 与x 的函数关系式为:y=2x+3,故答案为:y=2x+3;(2)当12x =-时代入,解得:12()322y =´-+=,故答案为:2;(3)∵函数图像平移,∴k 不变,设平移后的函数解析式为:y=2x+b ,代入点(2,-1),∴-1=2×2+b ,解得b=-5,故平移后的函数解析式为:y=2x-5,故答案为:y=2x-5.【点拨】本题要注意利用一次函数的性质,列出方程组,求出k 值,从而求得其解析式,另外求直线平移后的解析式时要注意平移时k 的值不变,只有b 发生变化.22.(1)()204800016y x x =+≤≤;(2)应该安排这10名清洁工清扫大房间,6名清扫小房间【分析】(1)设派x 人去清扫大房间,则(16)x -人清扫小房间,根据题意列出y (元)与x (人)之间的函数关系式即可;(2)把5000y =,代入204800y x =+求解即可.解:(1)有x 人清扫大房间,则有16x -人清扫小房间∴()()80460516204800016y x x x x =⨯+⨯-=+≤≤(2)2048005000x +=解得:10x =,166x -=答:应该安排这10名清洁工清扫大房间,6名清扫小房间.【点拨】本题考查了列一次函数解析式,已知函数值求自变量x 的值,属于基础题,第(1)问要写出自变量的取值范围是易错点.23.(1)5张白纸黏合的长度为182cm ;(2)362y x =+(x≥1,且x 为整数);(3)能,理由见分析.【分析】(1)5张白纸黏合,需黏合4次,重叠2×4=8cm ,所以总长就可得到;(2)x 张白纸黏合,需黏合(x-1)次,重叠2(x-1)cm ,所以总长可以表示出来;(3)解当y=362时得到的方程,若x 为自变量取值范围内的值则能,反之则不能.解:(1)53842182⨯-⨯=;答:5张白纸黏合的长度为182cm ;(2)382(1)362y x x x =--=+(x≥1,且x 为整数);(3)能,当y=362时,得到:36x+2=362,解得x=10.【点拨】考查了函数关系式和函数值的应用,解题关键是能根据题意列出函数关系式.24.(1)点P 在过点B 且与AB 垂直的直线上或PB AB ⊥或90ABP ∠=︒;(2)3y -【分析】(1)由等边三角形的性质易证AO=AB ,AC=AP ,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO ,即∠CAO=∠PAB .所以根据SAS 证得结论;(2)利用(1)中的结论PB ⊥AB .根据等边三角形的性质易求点B 的坐标为32B ⎫⎪⎪⎝⎭.再由旋转的性质得到当点P 移动到y 轴上的坐标是(0,-3),所以根据点B 、P 的坐标易求直线BP 的解析式.解:(1)AOB ∆ 与ACP ∆都是等边三角形,AO AB ∴=,AC AP =,60CAP OAB ∠=∠=︒.CAP PAO OAB PAO ∴∠+∠=∠+∠.CAO PAB ∴∠=∠.AOC ABP ∴∆∆≌.结论:点P 在过点B 且与AB 垂直的直线上或PB AB ⊥或90ABP ∠=︒.(2)点P 所在函数图象是过点B 且与AB 垂直的直线上,AOB ∆ 是等边三角形,()0,3A,322B ⎛⎫∴ ⎪ ⎪⎝⎭.当点C 移动到使点P 在y 轴上时,得()0,3P -.设点p 所在直线的解析式为:y kx b =+,把B ,P两点的坐标代入得:3,3,2b b =-⎧∴+=解得 3.k b ⎧=⎪⎨=-⎪⎩所以点P所在函数图象的解析式为3y -.【点拨】此题考查一次函数综合题,解题关键在于求出∠CAO=∠PAB .。

2023学年北师大版数学八年级上同步考点训练4-2 一次函数与正比例函数(能力提升)(含详解)

2023学年北师大版数学八年级上同步考点训练4-2 一次函数与正比例函数(能力提升)(含详解)

专题4.2 一次函数与正比例函数(能力提升)(原卷版)一、选择题。

1.(2022春•南关区校级月考)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定2.(2022春•勃利县期末)下列函数中,是一次函数但不是正比例函数的为()A.y=﹣B.y=﹣C.y=﹣D.y=3.(2021春•南通期中)如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+104.(2021春•防城区月考)在①y=﹣8x;②y=﹣;③y=+1;④y=﹣8x2+6;⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个5.(2022•市南区校级二模)若关于x的方程﹣2x+b=0的解为x=2,则直线y=﹣2x+b一定经过点()A.(2,0)B.(0,3)C.(4,0)D.(2,5)6.(2022春•长葛市期末)如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=20B.x=25C.x=20或25D.x=﹣207.(2021•蕉岭县模拟)在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣18.(2021秋•霍邱县期中)在下列函数关系中:①y=kx,②y=x,③y=x2﹣(x﹣1)x,④y=x2+1,⑤y=22﹣x,一定是一次函数的个数有()A.3个B.2个C.4个D.5个9.(2021春•普陀区校级期中)下列函数中,一次函数是()A.B.y=﹣2xC.y=x2+2D.y=mx+n(m,n是常数)10.(2021秋•碑林区校级期中)如图,在平面直角坐标系中,已知点A(2,4),B(1,2),C(5,2),直线l经过点A,它将△ABC分成面积相等的两部分,则直线l的表达式为()A.y=﹣2x+6B.y=﹣2x+8C.y=2x+8D.y=﹣x+6二、填空题。

一次函数与正比例函数练习题

一次函数与正比例函数练习题

一次函数与正比例函数练习题一、选择题1.下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x22.下列函数中,正比例函数是()A.y=﹣8x B.y=﹣8x+1 C.y=8x2+1 D.y=3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.44.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小25.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值等于()A.B.C.或D.或6.已知点A(,1),B(0,0),C(,0),AE平分∠BAC,交BC于点E,则直线AE对应的函数表达式是()A.y=x﹣B.y=x﹣2 C.y=x﹣1 D.y=x﹣27.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)8.已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y=x C.y=x D.y=x+19.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3 10.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1二、填空题11.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为.12.函数是y关于x的正比例函数,则m=.13.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有.14.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.15.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.16.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b(a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k 值共有个.17.矩形ABCO在平面直角坐标系中,且顶点O为坐标原点,已知点B(3,2),则对角线AC所在的直线l对应的解析式为.18.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b =ax﹣2的解为x=.三、解答题19.已知一次函数y=2x﹣3.(1)当x=﹣2时,求y.(2)当y=1时,求x.(3)当﹣3<y<0时,求x的取值范围.20.已知y=(k﹣1)x|k|+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.21.当m,n为何值时,y=(m﹣1)+n.(1)是一次函数;(2)是正比例函数.22.当m,n为何值时,y=(m﹣3)x|m|﹣2+n﹣2.(1)是一次函数;(2)是正比例函数.。

一次函数与正比例函数 练习题

一次函数与正比例函数 练习题

一次函数与正比例函数班级:___________姓名:___________得分:__________一. 填空选择题(每小题8分,40分)1.下列函数中,是一次函数的是( ).A .y =7x 2B .y =x -9C .y =6xD .y =1x +12.下列函数中,是正比例函数的是( ).A .y =-2xB .y =-2x +1C .y =-2x 2D .y =-2x3.乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .4.某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.5.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .二、解答题(每小题10分,60分)1.在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.2.当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?3.已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.4.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨) 运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?5.已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.6.某蒜薹生产基地喜获丰收收蒜薹200吨。

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

一次函数和正比例函数练习试题整理

一次函数和正比例函数练习试题整理

一次函数与正比例函数练习题一.选择题1.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是())3.(2012•陕西)在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()4.(2010•镇江)两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()5.(2005•贵阳)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,能表示这个一次函数的解析式为()6.(2011•潼南县)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x7.(2005•湘潭)如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()y=y=8.(2001•嘉兴)在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:.已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,设x克水可溶解硝酸钾y克,则9.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()B10.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()11.(2010•陕西)一个正比例函数的图象过点(2,﹣3),它的表达式为()B12.(1999•西安)已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()y=y=13.(2012•衡阳)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb= _________ .14.(2010•天津)已知一次函数y=2x﹣6与y=﹣x+3的图象交于点P,则点P的坐标为_________ .15.(2011•厦门)如图,一系列“黑色梯形”是由x轴、直线y=x和过x轴上的正奇数1、3、5、7、9、…所对应的点且与y轴平行的直线围成的.从左到右,将其面积依次记为S1、S2、S3、…、S n、….则S1=_________ ,S n= _________ .16.(2011•内江)在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、…、A n B n C n C n ﹣1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y=kx+b 的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点B 1的坐标为(1,1),点B 2的坐标为(3,2),则点A n 的坐标为 _________ .17.(2010•上海)一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x ≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x ≤2时,y 关于x 的函数解析式为 _________ .18.(2008•荆门)如图,l 1反映了某公司的销售收入与销量的关系,l 2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须 _________ . 19.(2006•北京)如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为 _________ . 20.(2005•上海)点A (2,4)在正比例函数的图象上,这个正比例函数的解析式是 _________ .21.(2012•威海)如图,直线l 1,l 2交于点A ,观察图象,点A 的坐标可以看作方程组 _________ 的解.22.(2006•重庆)如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图次方程组象可得,关于x ,y 的二元一的解是_________ . 三.解答题线分别23.(2012•营口)如图,直交x 轴、y轴于A 、B 两点,线段AB 的垂直平分线分别交x 轴、y 轴于C 、D 两点.(1)求点C的坐标;(2)求△BCD的面积.24.(2012•绥化)如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.25.(2012•牡丹江)如图,OA、OB的长分别是关于x的方程x2﹣12x+32=0的两根,且OA>OB.请解答下列问题:(1)求直线AB的解析式;(2)若P为AB上一点,点P的反比且,求过例函数的解析式;(3)在坐标平面内是否存在点Q,使得以A、P、O、Q为顶点的四边形是等腰梯形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2012•丽水)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.27.(2012•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=﹣x+m 经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G,设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.28.(2012•遵义)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.度,需交电费_________ 元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.29.(2012•镇江)甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.30.(2012•湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔技种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔技种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2012年荔技种植面积为多少万亩?。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

一次函数和正比例函数习题

一次函数和正比例函数习题

一次函数习题一、选择题1.下列关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x y C.2x y = D.221+-=x y 2. 下列函数中,是正比例函数,且y 随x 增大而减小的是( ) A.14+-=x y B. 6)3(2+-=x y C. 6)2(3+-=x y D. 2x y -= 3.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.74.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )A. 1b 大于2bB. 1b 小于2bC. 1b =2bD.不能确定5.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )6.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=7.下面两个变量是成正比例变化的是 ( )A . 正方形的面积和它的边长.B . 变量x 增加,变量y 也随之增加;C . 矩形的一组对边的边长固定,它的周长和另一组对边的边长.D . 圆的周长与它的半径.8.已知点(-4,y 1),(2,y 2)都在直线y= - 12x+2上, 则y 1 与y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较9.下列各图给出了变量x 与y 之间的函数是 ( )10.直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>0二、填空题:x y o A x y o B x y o D x y o C1、函数y=x 21-的图象经过_________象限,y 随x 的增大而____________. 2、正比例函数的图像经过(1,-5)点,它的解析式是__ ______.3、若点(3,a )在一次函数13+=x y 的图像上,则=a 。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。

7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。

函数正比例函数一次函数测试题

函数正比例函数一次函数测试题

一次函数测试题一、函数与正比例函数1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

4、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

5、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个6、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)7、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y8、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C ) (D )9、已知一个正比例函数图象过点A(1,4)(1)求这个函数的解析式;(2)画出它们的图象;10、已知y -2与x 成正比,且当x=1时,y= -6(1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值11、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费。

(1)写出该单位水费y (元)与每月用水量x (吨)之间的函数关系式:_________________ ①当用水量小于等于3000吨 ;②当用水量大于3000吨 。

(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。

(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?二、一次函数1、已知一次函数y=kx+5的图象经过点(-1,2),则k=。

高中数学《一次函数》练习题

高中数学《一次函数》练习题

高中数学《一次函数》练习题【小编寄语】查字典数学网小编给大家整理了高中数学《一次函数》练习题,希望能给大家带来帮助!【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b 中b=0时特殊的一次函数。

2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。

3.一次函数的图像:正比例函数y=kx(k&ne;0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k&ne;0)是过(0,b),(,0)两点的一条直线。

4.直线y=kx+b(k&ne;0)的位置与k、b符号的关系:当k&gt;0是直线y=kx+b过第一、三象限,当k&lt;0时直线过第二、四象限;b 决定直线与y轴交点的位置,b&gt;0直线交y轴于正半轴,b&lt;0直线交y轴于负半轴。

5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。

6.一次函数经常与一次方程、一次不等式相联系。

【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2019&middot;福州)已知正比例函数y=kx(k&ne;0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x&lt;0时,y随x的增大而增大;当x&gt;0时,y随x 的增大而减小D.不论x如何变化,y不变3.(2019&middot;甘肃)结合正比例函数y=4x的图像回答:当x&gt;1时,y的取值范围是( )A.y=1B.1&le;y&lt;4C.y=4D.y&gt;44.(2019&middot;哈尔滨)直线y=x-1与坐标轴交于A、B 两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的电话费是38.7元,则通话时间是分钟,若通话时间62分钟,则电话费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x 之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD&perp;x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v&gt;0,表示汽车向数轴正方向行驶;速度c&lt;0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s&gt;0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s&lt;0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图像的形式画在了同一直角坐标系中,如图.请解答下列问题:(1)就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格.行驶方向速度的大小(km)h出发前的位置甲车乙车(2)甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.参考答案:1.B2.A3.D4.C5.y =0.15x+24,98,33.36.①,亏损②3 ③y1=x ④y=x—27.(1)超过3000千米,(2)3000千米(3)个体8.(1)(2)当a&le;—1时,S=2;当—1或10.(1)设直线L1的解析式为y1=k1x+2,由图像得17=500k1+2,解得k1=0.03.&there4;y1=0.03x+2(0&le;x&le;2 000).设直线L2的解析式为y2=k2x+20,由图像得26=500k2+20,解得k2=0.012,y=0.012x+20(0&le;x&le;2 000).(2)当y1=y2时,两种灯的费用相等.0.03x+2=0.012x+20,解得x=1 000.&there4;当照明时间为1 000小时时,两种灯的费用相等.(3)节能灯使用2 000小时,白炽灯使用500小时.11.解:(1)甲车:x轴负方向(向左),40,零千米路标右侧190千米;乙车:x轴正方向(向右),50,零千米路标左侧80千米处.(2)甲乙两车相遇设经过t小时两车相遇,由得所以经过3小时两车相遇,相遇在零千米路标右侧70千米处.。

一次函数之正比例函数的习题

一次函数之正比例函数的习题

一次函数之正比例函数的习题一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣12.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣24.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠15.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.86.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣48.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<19.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>011.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是.18.(2015•铁力市二模)函数中,自变量x的取值范围是.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k时,它是一次函数.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家千米,小刚在体育场锻炼了分钟.(2)体育场离文具店千米,小刚在文具店停留了分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需小时,(2)小明出发两个半小时离家千米.(3)小明出发小时离家12千米.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为.(2)并求自变量的取值范围为.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?一次函数之正比例函数的习题参考答案与试题解析一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣1【解答】解:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<﹣1;故选A.2.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.【解答】解:A、根据图象知给自变量一个值,有且只有一个函数值与其对应,故A是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B是函数,C、根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D是函数,故选C.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.4.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.5.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.8【解答】解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.6.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B8.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1【解答】解:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.9.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限【解答】解:A、当x=1时,y=﹣5,错误;B、正比例函数的图象是一条经过原点的直线,正确;C、根据k<0,得图象经过二、四象限,y随x的增大而减小,错误;D、图象经过二四象限,错误;故选B.10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.11.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,﹣3),所以﹣3=2k,解得:k=﹣,所以y=﹣x,把这四个选项中的点的坐标分别代入y=﹣x中,等号成立的点就在正比例函数y=﹣x的图象上,所以这个图象必经过点(﹣2,3).故选D.12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.【解答】解:∵函数y=kx的图象过点(2,1),∴把点的坐标代入函数解析式可得1=2k,解得k=,故选D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2【解答】解:由“上加下减”的原则可知,直线y=﹣2x向下平移2个单位,得到直线是:y=﹣2x﹣2.故选C.二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是x >﹣2且x≠1.【解答】解:根据题意得:x+2≥0且x﹣1≠0,解得:x>﹣2且x≠1.故答案是:x>﹣2且x≠1.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣4),∴﹣4=2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是y=x2.【解答】解:y=x2经过点(﹣1,1);在x>0时,y随x的增大而增大,故答案为:y=x2.18.(2015•铁力市二模)函数中,自变量x的取值范围是3≤x≤5.【解答】解:根据题意,得,解得3≤x≤5.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数.【解答】解:根据一次函数定义得,k﹣1≠0,解得k≠1.故答案为:≠1.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).【解答】解:当x=1时,y1=x=1;当x=2时,y2=x=2,所以y1<y2.故答案为<.21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=﹣7.【解答】解:∵点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,∴1﹣a=6﹣1,3=2﹣(b+2),∴a=﹣4,b=﹣3,∴a+b=﹣7.故答案为:﹣7.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家 2.5千米,小刚在体育场锻炼了15分钟.(2)体育场离文具店1千米,小刚在文具店停留了20分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店2.5﹣1.5=1(千米),由横坐标看出小刚在文具店停留了65﹣45=20(分).故答案为:2.5,15,1,20;(3)由纵坐标看出文具店距张强家1.5千米,由横坐标看出从文具店回家用了100﹣65=35(分钟),张强从文具店回家的平均速度是1.5÷35=(千米/分).答:张强从文具店回家的平均速度是千米/分钟.23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需3小时,(2)小明出发两个半小时离家22.5千米.(3)小明出发小时或小时小时离家12千米.【解答】解:(1)由图象可知小明到达离家最远的地方需3小时;(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x﹣15,(2≤x≤3)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米;(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=﹣15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15)∴y=15x(0≤x≤1)分别令y=12,得x=(小时),x=(小时)答:小明出发小时或小时距家12千米.故答案为:3;22.5;小时或小时.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35.(2)并求自变量的取值范围为8.5≤x<.【解答】解:(1)根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;(2)题中有18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>x,∴﹣2x+35>x,解得x<,则自变量的取值范围为8.5≤x<;故答案为:(1)y=﹣2x+35;(2)8.5≤x<.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.设C1(x,2x),则得x2+(2x﹣2)2=22,解得,得C1(),若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,∴C2(),又由点C3与点C2关于原点对称,得C3(),若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4(),(),(),(),所以,满足题意的点C有4个,坐标分别为:C4().26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,∴当x=267时,y有最小值,y最小=9000+5×267=10335元.27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【解答】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1<x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是y=﹣x+6.【解答】解:函数y=﹣x+3与坐标轴的交点的坐标为(6,0),(0,3),经过点(6,0),(0,3)画直线,得到函数y=﹣x+3的图象,如图所示:(1)点A的坐标是(﹣4,5);(2)将y=﹣x+3向上平移三个单位后即可得到y=﹣x+6.故答案为y=﹣x+6.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?【解答】解:(1)∵函数y=(1﹣3k)x+2k﹣1的图象过原点,∴,解得k=;(2)∵y随x增大而增大,∴1﹣3k>0,解得k<.30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?【解答】解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.。

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(一)(含解析)一.选择题(共12小题)1.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.8.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.二.填空题(共11小题)13.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.14.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC 所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=.三.解答题(共17小题)24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.31.已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)36.已知正比例函数y=kx的图象经过点P(1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C(0,﹣1),与x轴交于点D,过点B作BE⊥CD,垂足为E.(1)求直线CD的解析式;.(2)求S△BEC38.(1)点(0,7)向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.(2)直线y=2x+7向右平移2个单位后的解析式是.(3)如图,已知点C(a,3)为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:(1)求线段AB的解析式;(2)求此人回家用了多长时间?40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2015春•期末)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±2【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故选A.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.(2016春•昌江县校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.(2016春•期末)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.(2016春•十堰期末)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).5.(2015秋•期末)已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.【点评】主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.(2015春•期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(2014秋•深圳期末)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.(2014春•临沂期末)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】根据一次函数的定义求解.【解答】解:(1)y=3πx (2)y=8x﹣6 (4)y=﹣8x是一次函数,因为它们符合一次函数的定义;(3)y=,自变量次数不为1,而为﹣1,不是一次函数,(5)y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉(1)y=3πx,它也是一次函数.9.(2015秋•西安校级期末)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.(2015春•期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.(2015秋•期末)函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a ≠0和b﹣1=0是解此题的关键.12.(2015春•期末)当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.【分析】利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.【解答】解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.【点评】此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题(共11小题)13.(2016秋•期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.(2016春•罗平县期末)若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.15.(2011秋•期末)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n.【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.(2013秋•校级期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a >0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.(2015春•上海校级期末)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2.【分析】根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【解答】解:∵矩形ABCD中,B(3,2),∴C(0,2),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.(2013秋•长校级期末)一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0.【分析】直接根据一次函数的图象即可得出结论.【解答】解:由函数图象可知,当y<5时,x>0.故答案为:x>0.【点评】本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.(2016春•简阳市校级期中)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.【点评】本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a ﹣b、c﹣d的因式的形式,然后求值.20.(2014秋•源城区校级期末)如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2.【分析】根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.【解答】解:设该直线方程是:y=kx+b(k>0).根据图象知,该直线经过点(﹣1,0)、(0,2),则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.【点评】本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.(2015秋•期末)若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.(2015秋•期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.(2015春•淮南期末)一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=1或9.【分析】因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.【解答】解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.【点评】本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题(共17小题)24.(2016春•期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.(2015春•校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求得△OPA的面【分析】(1)根据三角形的面积公式S△OPA积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.(2014春•期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【分析】当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P (2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.【分析】(1)过点P作PF⊥y轴于点F,则PF=2.求出S△COP 和S△COA,即OA×2=4,则A(﹣4,0),则|p|=3,由点P在第一象限,得p=3;(2)根据S△BOP =S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+b(k≠0),求得k,b.得出直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP =6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP =S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.(2016春•期末)在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.【分析】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【解答】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【点评】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.(2015春•期末)已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.【分析】用待定系数法求出函数的关系式,再把点(a,2)代入即可求得a的值.【解答】解:(1)∵y与x+2成正比例∴可设y=k(x+2),把当x=1时,y=﹣6.代入得﹣6=k(1+2).解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.(2)把点(a,2)代入得:2=﹣2a﹣4,解得:a=﹣3【点评】本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.(2015春•期末)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.【分析】(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.【解答】解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.【点评】此题主要考查了一次函数图象与几何变换以及一次函数与坐标轴交点求法,得出各边。

4.2+一次函数与正比例函数+同步练习2024-2025学年北师大版数学八年级上册

4.2+一次函数与正比例函数+同步练习2024-2025学年北师大版数学八年级上册

4.2 一次函数与正比例函数基础题目1.下列函数是关于自变量x的一次函数的是( )+2B.y=2x²−4A.y=2x−2 D. y=3C.y=x32. 下列关系中,属于成正比例函数关系的是( )A.正方形的面积与边长B.三角形的周长与边长C.圆的面积与它的半径D.速度一定时,路程与时间3.下列说法正确的是( )A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.一个函数不是正比例函数就不是一次函数4.一次函数y=10-2x的比例系数是.5.已知函数y=(m−2)x3−|m|+m+7.(1)当m为何值时,y是x 的一次函数?(2)若函数是一次函数,则x为何值时,y的值为3?6. 甲、乙两地相距520 km,一辆汽车以80km/h的速度从甲地开往乙地,行驶t h后停车在途中加水.(1)写出汽车距乙地路程s( km)与行驶时间t(h)之间的函数关系式:;(2)求出自变量t的取值范围.综合应用题7.下列函数:①y=4x;②y=−x4;③y=4x④y=-4x+1,其中一次函数的个数是( )A.1B.2C.3D.48.若y 关于x 的函数y=(a-2)x+b是正比例函数,则a,b应满足的条件是( )A. a≠0B. b=0C. a=2且b=0D. a≠2且b=09. 某学校要建一块长方形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40 m.如图所示,设长方形一边长为x m,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y 与x 满足的函数关系式是( )A. y=20xB. y=40-2xC.y=40xD.y=x(40-2x)10.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗15₅,如果加满汽油后汽车驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数关系式和自变量x 的取值范围分别是( )A. y=0.12x,x>0B. y=60-0.12x,x>0C. y=0.12x,0≤x≤500D. y=60—0.12x,0≤x≤50011.学校食堂按如图方式摆放餐桌和椅子.若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式:.12.已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x 的函数关系式,并直接写出自变量x的取值范围;(2)当x=5时,求出函数值.13.高新开发区某企业生产的产品每件出厂价为50元,成本价为25元,在生产过程中,平均每生产一件产品有0.5m³污水排出,为了达到排污标准,工厂设计两种处理污水的方案.方案一:工厂污水先净化处理后再排出,每处理1 m³污水的费用为2元,并且每月排污设备损耗为30 000元.方案二:工厂将污水排到污水厂统一处理,每处理1 m³污水的费用为14 元.设工厂每月生产x件产品,每月利润为y元,分别写出依据方案一和方案二处理污水时,x与y 的关系式.创新拓展题14. 如图是用棋子摆成的“上”字图案,按照这种规律继续摆下去,通过观察、对比、总结,找出规律,解答下列问题.(1)摆成图①需要枚棋子,摆成图②需要枚棋子;(2)设摆成图①需要的棋子数为m,请用含n的代数式表示m,并判断m关于n的函数关系是不是一次函数.(3)计算一下摆第50个图形需要多少枚棋子?(4)七(1)班有 46 名学生,把每名学生当成一枚“棋子”,能否让这 46枚“棋子”按照以上规律恰好站成一“上”字? 若能,请问能站成图几?并计算最下面一“横”的学生数.2 一次函数与正比例函数1. C2. D3. A4.-25.【解】(1)由 y =(m −2)x 3−|m|+m +7是一次函数,得 {3−|m|=1,m −2≠0,解得m=-2. 故当m=-2时, y =(m −2)x 3−|m|+m +7是一次函数.(2)由(1)知y=-4x+5,当y=3时,3=-4x+5,解得x= 12₂,故 x =12时,y 的值为3. 6. 【解】(1)s=520-80t(2)依题意得 t>0,80t<520,所以0<t<6.5,所以自变量 t 的取值范围为0<t<6.5.7. C 8. D 9. B10. D 【点拨】由题意得 15×60÷100=0.12(L/km ),60÷0.12=500( km),所以y 与x 之间的函数关系式和自变量x 的取值范围是y=60-0.12x,0≤x≤500.11. y=2x+2 【点拨】观察题图知x=1时,y=4;x=2时,y=6;x=3时,y=8;…;可见每增加一张桌子,便增加 2把椅子,所以x 张餐桌共有(2x+2)把椅子.故函数关系式为 y=2x+2.12.【解】(1)由题意得12=2x+y,所以 y=12-2x,其中3<x<6.(2)由(1)得y=12-2x,所以当x=5时,函数值y=2.13. 【解】方案一:y=50x-25x-(0.5x×2+30 000)=24x-30000;方案二:y=50x-25x-0.5x×14=18x.14. 【解】(1)6;10(2)m=4n+2,m关于n的函数关系是一次函数.(3)因为4×50+2=202(枚),所以摆第50个图形需要202枚棋子(4)能.4n+2=46,解得n=11.根据图①最下面的一“横”需要3枚棋子,图②最下面的一“横”需要5枚棋子,图③最下面的一“横”需要7 枚棋子,图④最下面的一“横”需要9枚棋子,可以推出图n最下面的一“横”需要(2n+1)枚棋子,所以图⑪最下面的一“横”需要2×11+1=23(枚)棋子.所以能站成图⑪.最下面一“横”有23名学生。

一次函数图像练习题

一次函数图像练习题

考点一:正比例函数y=k x 与一次函数y=k x+b 的一般式1.一次函数4)2(2-++=k x k y 的图象经过原点,那么k=_____。

2、函数y =〔2m -2〕x +m +1,〔1〕m 为何值时,图象为过原点的直线.〔2〕m 为何值时,图像为一条不过原点的直线。

.3.一次函数y =5kx -5k -3,当k =___时,图象过原点;当k ______时,y 随x 的增大而增大.4.m x m y m +-=-32)2(是一次函数,那么m=___。

考点二:图像所经过的象限〔k 和b的含义〕1、正比例函数y=〔m -1〕x 的图象经过一、三象限,那么m 的取值围是2.在平面直角坐标系中,一次函数y =2x +1的图象不经过________。

3.点P 〔m ,n 〕在第四象限,那么直线y =nx +m 图象大致是以下的〔〕A.B.C.D.4.一次函数y=kx+k〔k<0〕的图象大致是〔〕A.B.C.D.5.在平面直角坐标系中,假设直线y=kx+b经过第一、三、四象限,那么直线y=bx+k不经过的象限是〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限6.关于x的一次函数y=m(x-n)的图象经过第二、三、四象限,那么有( )A.m>0,n>0 B.m<0,n>0C.m>0,n<0 D.m<0,n<07.在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )A、交于同一个点B、互相平行C 、有无数个不同的交点D 、交点的个数与k 的具体取值有关8.函数y=3x+b,当b 取一系列不同的数值时,它们图象的共同点是( )A 、交于同一个点B 、互相平行C 有无数个不同的交点D 、交点个数的与b 的具体取值有关9.无论m 为何实数,直线m x y 2+=与 4+-=x y 的交点不可能在〔 〕.A.第一象限B.第二象限C.第三象限D.第四象限考点三:平移1.将以下函数的图象沿y 轴向下平移3个单位长度后,图象经过原点的是〔 〕A .y =-x -3B .y =3xC .y =x +3D .y =2x +52.将一次函数y =-2x +4的图象平移得到图象的函数关系式为y =-2x ,那么移动方法为〔 〕A .向左平移4个单位B .向右平移4个单位C .向上平移4个单位D .向下平移4个单位3.y=3x 与y=3x-3的图象在同一坐标系中位置关系是〔 〕A .相交 B .互相垂直 C .平行 D .无法确定4.直线y =(5-3m )x +32m -4与直线y =21x +6平行,求m 的值.考点四:增减性1.点A 〔-5,y 1〕和点B 〔-6,y 2〕都在直线y=-9x 的图像上那么y 1__y 2。

一次函数综合测试题及答案

一次函数综合测试题及答案

1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-1,a), B(2,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高1000m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 12、下面哪个点不在函数32+-=x y 的图像上( ) (A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1) 13、直线y=kx+b 在坐标系中的位置如图,则(A)1,12k b =-=- (B )1,12k b =-=(C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( ) (A) k>0,b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<016、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34m <(B )314m -<< (C )1m <- (D )1m >-18、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( )19.一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于A.21B.21-C.23D.以上答案都不对20.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28021、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值23、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例函数与一次函数综合练习50题1.如图,已知函数 y=﹣x+b 的图象与x轴,y轴分别交于点A、B,与函数y=x 的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点M、点A的坐标;(2)若OB=CD,求a的值,并求此时四边形OPCM的面积.2.如图,在平面直角坐标系中,O为坐标原点,过点B(6,0)的直线AB与直线OA相交点A(4,2),动点M在直线OA上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.3.如图,一次函数y=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0)与直线l2:y=ax+b(a≠0)相交于点A(1,2),直线l2与x轴交于点B(3,0).(1)分别求直线l1和l2的表达式;(2)过动点P(0,n)且平行于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D左方时,写出n的取值围.5.如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值围;(3)求△MOP的面积.6.在平面直角坐标系xOy中,一次函数y=﹣x+7的图象交y轴于点D,且它与正比例函数y=x的图象交于点A.(1)求点D的坐标;(2)求线段OA的长;(3)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC,若BC=OA,求△OBC的面积.7.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与正比例函数y=kx 的图象都经过点B(3,1)(1)求一次函数和正比例函数的表达式;(2)若直线CD与正比例函数y=kx平行,且过点C(0,﹣4),与直线AB相交于点D,求点D的坐标.(注:二直线平行,k相等)(3)连接CB,求三角形BCD的面积.8.如图,经过原点的直线l1与经过点A(0,24)的直线l2相交于点B(18,6).在x轴上有一点P(a,0)(a>0),过点P作x轴的垂线分别交直线l1、l2于点C、D.(1)求直线l2的表达式;(2)若线段CD长为12,求此时a的值;9.如图,已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB (1)求两个函数的解析式;(2)直线AB交x轴于点C,求△AOC的面积;(3)在x轴上存在一点p,使△AOP是等腰三角形,直接写出所有符合要求的点P的坐标.10.如图,直线y=﹣x+6交直线y=x+6于点A,直线y=﹣x+6与直线y=2x相交于点B,直线y=x+6与直线y=2x相交于点C.(1)求点B的坐标;(2)求三角形ABC的面积;(3)若点P是直线y=2x上的动点,当△ABP的面积等于△AOC的面积时,求点P的坐标.11.如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.(1)点A的坐标是,点B的坐标是,点P的坐标是;(2)将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;(3)求△PQR的面积.12.如图,直线y=﹣x+3与y轴交于点C,与x轴交于点D,点P是直线y=x+3上的一个动点(点P在第一象限),过P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)若PE=5EF,求m的值;(2)过点P作PG∥CD交y轴于点G,判断四边形PECG的形状,并说明理由.13.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧)分别交y=x和y=﹣x+7的图象于点B,C,连接OC,若BC=OA,求△OBC的面枳.:y=﹣x+6分别与x轴、y轴交于点B、14.如图,在平面直角坐标系中,直线l1C,且与直线l:y=x交于点A.2(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是x轴上的点,使得P到点A、D的距离和最小;求点P的坐标.15.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与数y=x 图象交于点M,点M的横坐标为2,在x轴上有点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值;(3)在(2)条件下若以OD线段为边,作正方形ODEF,求直线EF的表达式.16.如图,平面直角坐标系中,已知直线y=x上一点P(2,m),C(0,n)为y 轴上一点,以P为直角顶点作等腰Rt△PCD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A.(1)求m的值,并求出直线PC的函数表达式(用含n的式子表示);(2)判断线段OB和OC的数量关系,并证明你的结论;(3)当△OPC≌△ADP时,求点A的坐标.17.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;(2)求△BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.18.如图1,在直角坐标系中,点A坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B(m,n)(1)若m=9,n=3,求直线l1和l2的解析式;(2)将△BAO绕点B顺时针旋转180°得△BFE,如图2,连接AE,OF;①证明:四边形OFEA是平行四边形;②若四边形OFEA是正方形,则m= ,n= .19.如图,在平面直角坐标系中,点A的坐标为(3,0),B为直线y=x上的一个动点,延长AB至C,使得AB=BC,过点C作CD⊥x轴于点D,交直线OB于点F,过点A作AE∥OB,交直线CD于点E.(1)求直线AE的解析式;(2)在点B的运动过程中,线段CF的长是否发生改变?若不变,请求出线段CF的长;若改变,请说明理由;(3)若AD=EF,点D在点A的右侧,直接写出tan∠CAD的值;(4)连接BE,在点B的运动过程中,是否存在点E,使△ABE为直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.20.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S的值;△OPA(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.21.已知如图,直线y=kx+b与x轴、y轴分别交于点A、B,与直线y=3x交于点C,且|OA﹣6|+=0,将直线y=kx+b沿直线y=3x折叠,与x轴交于点D,与y轴交于点E.(1)求直线y=kx+b的解析式及点C的坐标;(2)求△BCE的面积;(3)若点P是直线y=3x上的一个动点,在平面是否存在一点Q,使以点A、C、P、Q为顶点的四边形是矩形?若存在,请直接写出点P、点Q的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系中,直线l:y=﹣x+6分别与x轴、y轴交于点B、1:y=x交于点A.C,且与直线l2(1)点A的坐标是;点B的坐标是;点C的坐标是;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.23.如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?24.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=2x的图象交于点C(3,6).(1)求一次函数y=mx+n的解析式;(2)点P在x轴上,当PB+PC最小时,求出点P的坐标;(3)若点E是直线AC上一点,点F是平面一点,以O、C、E、F四点为顶点的四边形是矩形,请直接写出点F的坐标.25.已知:如图1,在△AOB 中,OA=AB=,BO=2,点B 在x 轴上,直线l 1:y=kx+3(k 为常数,且k ≠0)过点A ,且与x 轴、y 轴分别交于点D ,C ,直线l 2:y=ax (a 为常数,且a >0)与直线l 1交于点P ,且△DOP 的面积为. (1)求直线l 1,l 2的解析式;(2)如图2,直线l 3∥y 轴,与直线l 1,x 轴分别交于点M ,Q ,且直线l 3与线段OA 或线段OP 交于点N .若点Q 的横坐标为m (﹣1<m <2),求△APN 的面积S 关于m 的函数关系式.26.已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与2:y=x相交于点C.(1)求点c的坐标;(2)若平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;(3)如图2,点P是第四象限一点,且∠BPO=135°,连接AP,探究AP与BP 之间的位置关系,并证明你的结论.27.如图,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+8与x轴交于点A,与y轴交于点B,直线l2与直线l交于C点,tan∠COA=2.(1)求点C的坐标;(2)动点P从点A出发,沿线段AB以每秒5个单位的速度向终点B运动,同时动点Q从点B出发,沿线段BO以每秒4个单位的速度向终点O运动.设△PBQ 的面积为S,运动时间为t秒,求S与t之间的函数关系式;(3)在(2)的条件下,若△BQP与△BOC相似,求出符合题意的t值及点P坐标.28.如图,已知直线y=﹣x+7与直线y=x交于点A,且与x轴交于点B,过点A 作AC⊥y轴与点C.点P从O点以每秒1个单位的速度沿折线O﹣C﹣A运动到A;点R从B点以相同的速度向O点运动,一个点到终点时,另一个点也随之停止运动.(1)求点A和点B的坐标;(2)过点R作直线l∥y轴,直线l交线段BA于点Q,设动点P运动的时间为t 秒.①当t为何值时,以A,P,O,R为顶点的四边形的面积为13?②是否存在以A、P、R为顶点的三角形是等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.29.(1)如图1,直线AB:y=﹣2x+8分别交x轴、y轴于点A、B,与直线OC:y=x交于点C.求①点C的坐标;②△OAC的面积.(2)如图2,已知直线OC:y=x,作∠AOC的平分线ON,△OAC的面积为5,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.30.如图,已知点P(m,5)在直线y=kx(k>0)上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.(1)当m=2时,求tan∠POA的值;(2)若直线x=5交x轴于点C,交线段AB于点D(异于端点),记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.31.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A (﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标;(3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P 的坐标.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=和y=﹣x+7的图象于点B、C,连接OC,若BC=OA,求△ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,在平面直角坐标系中,一次函数y=kx+4的图象经过点A(1,3),点B是一次函数y=kx+4的图象与正比例函数y=x的图象的交点.(1)求一次函数y=kx+4的表达式;(2)求点B的坐标.(3)在x轴上找一点P,使PA+PB的值最小,直接写出满足条件的点P的坐标及△PAB的面积.:y=x+1 34.如图,已知直线l:y=﹣x+b与x轴、y轴分别交于点A,B,直线l1的交点为E与y轴交于点C,设直线l与直线l1(1)如图1,若点E的横坐标为2,求点A的坐标;(2)在(1)的前提下,D(a,0)为x轴上的一点,过点D作x轴的垂线,分于点M、N,若以点B、C、M、N为顶点的四边形为平行四边别交直线l与直线l1形,求a的值;(3)如图2,设直线l与直线l:y=﹣x﹣3的交点为F,问是否存在点B,使2BE=BF,若存在,求出直线l的解析式,若不存在,请说明理由.35.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.36.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B (0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n).(1)则n= ,k= ,b= ;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.37.如图,一个正比例函数y1=k1x的图象与一个一次函数y2=k2x+b的图象相交于点A(3,4),且一次函数y2的图象与y轴相交于点B(0,﹣5),与x轴交于点C.(1)判断△AOB的形状并说明理由;(2)若将直线AB绕点A旋转,使△AOC的面积为8,求旋转后直线AB的函数解析式;(3)在x轴上求一点P使△POA为等腰三角形,请直接写出所有符合条件的点P 的坐标.38.如图,在平面直角坐标系中,直线y=﹣x﹣3与x轴、y轴分别交于A、B两点,C为x轴正半轴上一点,S=9.△ABC(1)求点C的坐标;(2)若线段AB上一点M到坐标轴的距离相等.①求点M的坐标及直线OM的函数表达式;②若点P为直线OM上一动点,且∠APM=∠CPM,求点P的坐标.39.如图1,已知直线y=﹣3x+6与x轴、y轴交于A、B两点,点C在x轴负半轴上,S△BOC =3S△BOA(1)求直线BC的函数表达式;(2)如图2,一条直线y=mx经过原点,与直线AB,BC分别交于点E、F,若S△BOE =S△BOF,求m的值;(3)如图3,将(2)中直线EF向上平行移动后经过点B,与x轴交于点G,设H为线段BG上一点(含端点),连接AH,一动点M从点A出发,沿线段AH运动到H,再沿线段HB运动到B后停止,若点M在AH上的速度为每秒1个单位,在HB上的速度为每秒个单位,当点H的坐标是多少时,点M在整个运动过程中用时最少?40.已知直线y=2x﹣10与直线y=x相交于点A,与x轴相交于点B.(1)求△OAB的面积.(2)若OC平分∠AOB交AB于C,在OA上截取OD=OB,连接CD,①证明:△OCD≌△OCB;②求△OAC的面积;③求点C的坐标.41.如图,已知一次函数y=kx+3﹣2k(k≠0),A(﹣2,1),C(﹣2,﹣3),B (1,﹣3).(1)求证:点M(2,3)在直线y=kx+3﹣2k(k≠0)上;(2)当直线y=kx+3﹣2k(k≠0)经过点C时,点P是直线y=kx+3﹣2k(k≠0)上一点,若S△CBP =2S△ABC,求点P的坐标;(3)当直线y=kx+3﹣2k(k≠0)与△ABC有公共点时,直接写出k的取值围.42.如图1,在平面直角坐标系中,A(0,4),C(4,0)且AB平行于x轴,点B在函数y=x的图象上(1)求BC的函数解析式;(2)如果有一经过B点的直线将四边形ABCO的面积分成两个相等的部分,求这条直线的解析式;(3)如图2,M,N分别为线段BC上两点,且OM⊥BC,∠BNA=45°,试判断线段AN,MO,MC三边的数量关系,并证明.43.如图,在平面直角坐标系中,直线y=﹣x﹣与x轴交于点A,与直线y=﹣x交于点B.(1)求点B的坐标;(2)点B关于x轴的对称点为点C,求△AOC的面积;(3)过点B作BD⊥x轴于点D,动点P从点D出发,在射线DB上以每秒1个单位长度的速度向下运动,运动的时间为t秒,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°得线段OP′,连接AP′,△AP′O的面积为S,在点P 运动过程中(不包含点D),S的值是否与t的值有关?如果有关,请直接写出S 与t的函数关系式;如果无关,请直接写出S的值.44.如图,直线y=x﹣m与直线y=kx(k≠0)交于点A,直线y=x﹣m与x轴交于点B,与y轴交于点C,若直线y=kx(k≠0)与x轴正半轴所成夹角为30°,OB=.(1)求k、m的值.(2)若点E为x轴上的动点,连接AE,当△ABE与△OAE相似时求点E的坐标.45.已知:直线y=2x与x=2相交于点A,直线x=2与x轴相交于点Q,点P是射线AQ上的一点,点B是直线OP上的一点,设AP=t,点B的坐标为(a,b).(1)求直线OP的解析式;(用含t的代数式表示)(2)当三点A,O,B构成以OB为斜边的直角三角形时,求a与t之间的关系式;(3)将△PAB沿直线PB折叠后,点A的对称点A′恰好落在坐标轴上,请直接写出所有满足条件的t的值,并写出以A,A′,P,B为顶点的四边形为菱形时的点B坐标.46.如图,在平面直角坐标系中,O是坐标原点,直线AB:y=与x,y轴分别相交于点A、B,BC平分∠ABO交x轴于点C.(1)求点A、B的坐标和线段AB的长;(2)求线段OC的长;(3)若过原点的直线l平行于直线AB,动点P在直线l上运动,当∠OBP=∠OBA 时,求点P的坐标.47.如图,已知函数y=﹣的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点E,点E的横坐标为3.(1)求点A的坐标;(2)在x轴上有一点F(a,0),过点F作x轴的垂线,分别交函数y=﹣和y=x 的图象于点C、D,若以点B、O、C、D为顶点的四边形为平行四边形,求a的值.48.如图,直线OC,BC的函数关系式分别是y1=x和y2=﹣x+6,两直线的交点为C.(1)点C的坐标是(,),当x 时,y1>y2?(2)△COB是三角形,请证明.(3)在直线y1找点D,使△DOB的面积是△COB的一半,求点D的坐标.(4)作直线a⊥x轴,并交直线y1于点E,直线y2于点F,若EF的长度不超过3,求x的取值围.49.如图,直线y=﹣x+4交x轴、y轴于A、C两点,过点C的直线y=2x+4交x 轴于点B,过点B作BD⊥AC于点D,直线BD交y轴于点E.(1)求直线DE的解析式;(2)在直线DE上有一动点P,已知点P的横坐标为t.用含t的式子表示点P 到直线BC的距离;(3)在(2)的条件下,当点P在x轴上方时,连接PC,当t为何值时,满足∠CPB=45°.50.如图1,在直角坐标系中,直线y=x+m与x轴负半轴交于点A,与y轴正半轴交于点B,且△AOB的面积是8.(1)求m的值;(2)如图2,直线y=kx+3k(k<0)交直线AB于点E,交x轴于点C,点D坐标是(0,﹣2),过D点作DF⊥CD交EC于F点,若∠AEC=∠CDO,求点F的坐标;(3)如图3,点P坐标是(﹣1,﹣2),若△ABO以2个单位/秒的速度向下平移,同时点P以1个单位/秒的速度向左平移,平移时间是t秒,若点P落在△ABO 部(不包含三角形的边),求t的取值围.。

相关文档
最新文档