最新0767余角和补角教学讲义ppt课件
合集下载
余角和补角ppt课件
15o
24o 46o
66o
75o
44o
截图一
截图二
请你为互为补角的两个角配对
练习三
∠α
20° 35° 60° 48°
∠α的余角
70° 55° 30° 42° 90°
∠α的补角
160° 145° 120° 132° 180°
课堂小结
用几何语言怎 叙述呢?
必选作业
D
如图,点A,O,B 在同一直线上,
遮罩
班优
播放视频
倒计时 拍照上传
放大镜 截图 在线画板
课堂活动 知识配对
遮罩 画笔
思维导图
超链接
课前复习
我们之前学过那些角?
新课导入
1.视频中涉及的是几个角之间的关系? 2.具有什么关系的角叫做互为余角(或补角)?
其中的“互为”是什么意思? 3.900和1800分别与谁有关?你是怎样区分记忆的?
4.2 余 角 和 补 角
教材分析
这是在学生学习了角的大小 比较的基础上,对角之间关系的 进一步深入和拓展;同时又为今 后证明角的相等提供了一种依据 和方法,起着承前启后的作用。
教学过程
一
二
三
四
五
六
课课前前复复习习 新课导入 讲授新课 课堂练习 归归归纳纳纳总总总结结结 作作作业业业布布布置置置
射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为
余角?
AO
C E
B
哪些角互为 补角呢?
自选作业Eຫໍສະໝຸດ C如图所示,直线AB,CD相交于点 O,∠BOE=90°,若∠COE=55°,求∠BOD的 度数 ?
A
B
余角和补角课件(共23张PPT)
6.3.3
余角和补角
符号语言:
因为∠3 +∠4 = 180°,
所以∠3 与∠4 互为补角.
3
注意:(1) 补角是指两个角的关系;
(2) 补角只考虑两个角的数量关系,与位置无关.
4
6.3.3
余角和补角
思考
∠1 与∠2 、∠3 都互为补角,那么∠2 与∠3 的大小有什么关系?
∠1 与∠2 、∠3 都互为补角,那么∠2 = 180° -∠1,∠3 = 180° -∠1.
6.3.3
余角和补角
七年级上
6.3.3
余角和补角
学习目标
1. 了解余角、补角的概念.
重点
2. 掌握余角和补角的性质,并能利用余角、补角的性质解决相关问题.
重点
6.3.3
余角和补角
新课引入
问题1:下图中的∠A 和∠B 有怎样的数量关系?
A
A
30°
45°
90° 45°
C
B
∠A +∠B = 90°
90° 60°
6.3.3
余角和补角
例3 如图,点A,O,B在同一直线上,射线 OD 和射线 OE 分别平分
∠AOC 和∠BOC,图中哪些角互为余角?
解:因为点A,O,B在同一直线上,所以∠AOC 和∠BOC
互为补角.
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC,
所以∠COD+∠COE= ∠AOC+ ∠BOC= (∠AOC+∠BOC )
6.3.3
余角和补角
3.如图,要测量两堵围墙所形成的∠AOB 的度数,但人不能进入围墙
,如何测量?
余角和补角 课件(共16张PPT)
课堂小结
余角和补角的定义 定义:两个角的和等于90°(直角),就说这两个角互为余
角,简称互余.如果两个角的和等于180°(平角),就说这两个 角互为补角,简称互补.
余角和补角都是相互的,不能说哪一个角是余角或补角.
请同学们比较互余与互补的概念,说说它们的区别和共同之处.
区别 互余是两个角的和是90°(直角), 互补是两个角的和是180°(平角).
3 1
获取新知
2 1
两个角的和等于90°(直角),就说这两个角互为余角,简称互余. 如图,∠1+∠2=90°,那么∠1是∠2的余角,∠2也是∠1的余角.
4 3
如果两个角的和等于180°(平角),就说这两个角互为补角,简称互补. 如图,∠3+∠4=180°,那么∠3是∠4的补角,∠4也是∠3的补角.
【分析】因为∠1+∠2=180°,∠2+∠3=180°, 所以∠3=∠1=50°.故选A.
同角的补 角相等.
随堂演练
1. 已知∠A=55°,则它的余角是( B )
A.25°
B.35° C.45°
D.55°
2.如果两个角互补,那么这两个角( D为钝角 D.均为直角,或一个为锐角,另一个为钝角
3.若一个锐角和它的余角相等,则它的补角为( C )
A.75°
B.120°
C.135°
D.150°
4. 如图,在三角形ABC中,∠C=90°,点D,E 分别在边AC、AB上,若∠B=∠ADE,则下列 结论正确的是( C ) A.∠A和∠B互为补角. B.∠B和∠ADE互为补角. C.∠A和∠ADE互为余角. D.∠AED和∠DEB互为余角.
1
3
2
同角的余角相等.
探究: 已知∠1与∠2互余,∠3与∠4互余,如果∠1=∠3, 那么∠2与∠4相等吗?为什么?
余角和补角PPT课件(华师大版)
3 (中考·厦门)如图,在三角形ABC中,∠C=90°,点 D,E分别在边AC,AB上.若∠B=∠ADE,则下列 结论正确的是( ) A.∠A和∠B互为补角 B.∠B和∠ADE互为补角 C.∠A和∠ADE互为余角 D.∠AED和∠DEB互为余角
4 (中考·绥化)将一副三角尺按下列方式进行摆放,∠1, ∠2不一定互补的是( )
总结
“同角(或等角)的余角相等”“同角(或 等角)的补角相等”的实质是等量代换,只不 过在特定的背景下使用起来更便利罢了.
1 如图,有两堵围墙,有人想测量地面上所形成的 ∠AOB的度数,但人又不能进入围墙,只能站在 墙外,请问该如何测量?
中∠1与∠2的 关系是( ) A.互补 B.互余 C.相等 D.无法确定
导引:因为∠1+∠2=180°,∠2+∠3=180°, 所以∠3=∠1=50°.故选A.
总结
由∠1、∠3都与∠2互补,应想到用补角 的性质,即同角的补角相等来解题.
1 若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关 系是( )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ 2 如图,直线AB,CD交于点O,因为
1.余角的性质:同角的余角相等,即:若∠A+∠B= 90°,∠A+∠C=90°,则∠B=∠C.等角的余角相 等,即:若∠A+∠B=90°,∠D+∠C=90°,∠A =∠D,则∠B=∠C.
知识点
2.补角的性质:同角的补角相等,即:若∠A+∠B= 180°,∠A+∠C=180°,则∠B=∠C.等角的补角 相等,即:若∠A+∠B=180°,∠D+∠C= 180°,∠A=∠D,则∠B=∠C.
∠1+∠3=180°,∠2+∠3=180°, 所以∠1=∠2的根据是( ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
《余角和补角》图形认识初步PPT课件 (共7张PPT)
⑴如果两个角的和等于 ,就说这两个角互 为余角。 ⑵如果两个角的和等于 ,就说这两个角互 为补角。 ⑶如果∠a=61°38',则∠a得余角为 , ∠a的补角为 。 ⑷如果一个角与它的余角之比是1:2,那么 这两个角是 ,这个角与它的补角之比是 。
⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。 ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。 ⑺已知∠1=120°-3m,∠2=3m-30°,则∠1 与∠2得关系是 。 1 ⑻已知一个角的余角是这个角的 ,求这个角 5 的度数 。
课 堂 作 业:
①P140 13题。 ②已知∠1=35°19´,则∠1的余角等于 度。 ③若∠1=30°,则∠1的补角为 度。 ④一个锐角的补角和它的余角之差为 度。 ⑤已知∠A是它补角的4倍,那么∠A为 度。 ⑥已知∠1与∠2互余,且∠1=15°、则∠2的 补角为 度。
第四章 图形认识初步
4.3.3.余角和补角
学习目标
理解余角和补角的定义。 会运用互余、互补P137思考前) 结合图形理解余角、补角的概念。 思考如何求一个角的余角和补角。 4分钟后,比谁能创造性地做出与例题类似 的习题。
检 测 题:
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
⑸一个角等于它的补角的3倍,则这个角的补角 的余角是 。 ⑹已知∠1与∠2互为余角,则∠1与∠2的补角 之和是 。 ⑺已知∠1=120°-3m,∠2=3m-30°,则∠1 与∠2得关系是 。 1 ⑻已知一个角的余角是这个角的 ,求这个角 5 的度数 。
课 堂 作 业:
①P140 13题。 ②已知∠1=35°19´,则∠1的余角等于 度。 ③若∠1=30°,则∠1的补角为 度。 ④一个锐角的补角和它的余角之差为 度。 ⑤已知∠A是它补角的4倍,那么∠A为 度。 ⑥已知∠1与∠2互余,且∠1=15°、则∠2的 补角为 度。
第四章 图形认识初步
4.3.3.余角和补角
学习目标
理解余角和补角的定义。 会运用互余、互补P137思考前) 结合图形理解余角、补角的概念。 思考如何求一个角的余角和补角。 4分钟后,比谁能创造性地做出与例题类似 的习题。
检 测 题:
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
《余角与补角》课件
什么是补角?
补角也是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个 角相加等于90°的角。 举例说明:角C和角D相交,角C的补角是90°减去角D的度数。
余角与补角的性质和关系
性质
余角与原角相加等于180° 补角与原角相加等于90°
关系
一个角的余角与补角的差是90° 一个角的余角与另一个角的补角互为对角
《余角与补角》PPT课件
欢迎来到《余角与补角》PPT课件!在本课程中,我们将探讨余角与补角的概 念、性质和应用,并深入探究它们之间的关系。
什么是余角?
余角是角度的一种重要概念。它指的是两角相交时,其中一个角与另一个角相加等于180°的角。 举例说明:角A和角B相交,角A的余角是180°减去角B的度数。
余角与补角的应用
在解题中,我们可以利用余角与补角的概念和性质来简化问题并找到解题的思路。 举例说明:通过确定角的余角或补角,我们可以推导出其他角度的关系,从而解决复杂的几何问题。
ቤተ መጻሕፍቲ ባይዱ
总结
1 概念和性质
余角与补角的定义和计算 方法
2 关系
余角与补角的关系及其重 要性
3 应用
在解题中如何利用余角与 补角简化问题
余角和补角(57张PPT)数学
13
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
余角和补角ppt课件
综合素养训练
(2)若∠ AOE 与∠ DOB 互补,求∠ DOE的度数.
解:因为∠AOE+∠AOC=180°,
∠AOE+∠DOB=180°,所以∠AOC=∠BOD.
因为∠BOC+∠AOC=90°,
所以∠BOC+∠BOD=90°.
所以∠EOD=180°-(∠BOC+∠BOD)=90°.
④,∠α + ∠β =180 °,则∠α和∠β 互补.答案:A
综合素养训练
1.[中考·武威] 若∠α =70 °,则∠α的补角的度数是( B )
A.13 0 °
B.110 °
C.30 °
D. 20 °
综合素养训练
2. 如图,一副三角尺按不同的位置摆放,摆放位置中∠α
与∠β 一定相等的图形个数共有( B )
∠2+
(∠1 - ∠2)=
∠1+
∠2 的余角.D 选项是∠2 的余角.
∠2 =9 0 °,故C 选项不是
答案:D
综合应用创新
方法点拨
识别两个角是否互余,只需要计算两个
角的和是否等于90°即可.
综合应用创新
题型
2 利用角平分线的定义探究互余、互补
例 6 [新视角 操作探究题]如图6.3-26,把一张长方形纸片
FG 是∠CFC′的平分线,
所以∠EFB′=
∠BFB′,∠GFC′= ∠CFC′.
因为∠BFC=180°,所以∠GFC′+∠EFB′=
(∠CFC′+
∠BFB′)= ∠CFB= ×180°=90°.
所以∠GFC′与∠EFB′互为余角.
余角和补角-完整版PPT课件
∠α的余角
85° 58° 45° 27°37′ 无
135° α
无 90°-α
∠α的补角
175° 148° 135° 117°37′ 90°
45° 180°-α
练习
判断
1、90度的角叫余角,180度的角叫补角。
×
2、若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为余角 ×
3、如果一个角有补角,那么这个角一定是钝角
1
(1)写出图中所有的直角_____A__O_D_,_____B_O_D_,__ EOC
A
(2)写出图中与 AOE相等的_____3______________
(3)写出图中 DOE所有的余角_____1_,____3_________
(4)写出图中 AOE所有的余角_____2_,____4_________
2画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C
∠1∠2=90°, ∠2∠3(2)你能发现哪几个角是相等的(直角除外)?
∠1=∠3 B
(3)你能用一句话概括以上规律吗?
同角的余角相等
互为余角
互为补角
对应图形 数量关系 性质
1 2
21
∠1 ∠2 = 90 ° ∠1 ∠2 = 180 °
2
1
1 2
43
互为余角 如果两个角的和等于90°,那 么这两个角互为余角。(简称 互余)
几何语言:∵∠1∠2=900 ∴∠1与∠2互为余角
互为补角 如果两个角的和等于180°, 那么这两个角互为补角。(简 称互补)
几何语言:∵∠3∠4=1800 ∴∠3与∠4互为补角
帮∠ α 找朋友:
∠α
5° 32° 45° 62°23′ 90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方位角
例4:货轮O在航行过程中,发现灯塔A在它南偏
东60°的方向上,同时,在它北偏东40°、南
偏西10°、西北(即北偏西45°)方向上又
分别发现了客轮B、货轮C和海岛D,仿照表
示灯塔方位的方法,画出表示客轮B、货轮C
和海岛D方向的射线。
北
D 海岛
B 客轮
西
O
货轮 C 南
东 A 灯塔
点滴收获
● 本节课你学到了哪些知识?
20170767余角和补角
复习: ∠AOD=60°∠AOC=23°32′
则∠COD=?
A C
60°-23°32′
=36°28′
OA
D
C 若OC是角平分线,∠AOD=60°
则你能算出其他的角吗?
O
D
意大利首都罗马著名的比萨斜塔建于是12 世纪,由于地面下沉,它已经倾斜.已知斜塔与 地面所成的角中较小的角是85度,则较大的 角是多少度?比萨斜塔已经倾斜了多少度?
∠1和∠2有什么关系?
21
讨论:1、定义中的“互为”一词如何理解? 如果1与2互补,那么1的补角是2 , 而2的补角是1 ;如是1与2互余, 那么1的余角是2 , 2的余角是1。
2、互补、互余的两角是否一定有公共 顶点或公共边?
互补或互余的两角不一定有公共顶点或公共边
3、1与2互补,除用符号语言表示为 1+ 2=180°外,用符号语言还可以 表示为_________ 还可以表示为: 1=180°- 2,或
A
O C
D
B
解: ∠ AOD =∠ BOD。 由角平分线的定义,知 ∠ AOC=∠ BOC。由图 ,
知 ∠ AOD与 ∠ AOC互补, ∠ BOD 与∠ BOC互补, 而等角的补角相等,所以∠ AOD =∠ BOD。
已知:∠1=40°,画出这个角的余角和补角 1
已知:∠AOB=40°, 以OB为边画出这个角的余角和补角
执行器
被控参数
被控对象
被控介质
简单控制系统方框 图
➢ 被控对象 - 需要调节其工艺参数的生产设备。 ➢ 变送器 - 把工艺参数转换成标准统一信号的装置。
➢ 控制器 - 将来自变送器的测量值与给定信号相比较 后产生的偏差信号, 按照预先设定好的控制规律进行 运算后,输出一个控制信号去执行器。
➢ 执行器 - 把控制器的输出信号转换成直线位移或角 位移,以控制阀门的开度。
数字仪表
传输信号为断续变化的数字量,这类仪表与装置 以微型计算机为核心,功能完善,性能优越,能解 决模拟仪表难以解决的问题。如可编程调节器、控 制器、 DCS、 FCS 等。
我来试一试:
∠α
∠α的余角 ∠α的补角
5° 32°
85° 58°
175° 148°
45° 77°
45° 13°
135° 103°
62°23′
27°37′ 117°37′
x
90° x 180° x
从上面这张表格中,你还能得到什么信息?
如果∠1与∠2互余, ∠3与∠4互 余,∠1=∠3,
那么∠2与∠4 什么关系?
2=180°- 1.
找朋友:图中给出的各角中,哪些互为余角?
哪些互为补角?
1°0
30°
60°
80 °
° 100
° 120
° 150
° 170
例1:
填空:° 1、 47°18’的余角是 42°42’,补角是 132°42’ . 2、 ∠a(0°<∠a<90°)的余角是 90°- ∠a . 3、∠β(0°<∠ β <180°)的补角是 180°- ∠.β
例题:一个角的补角是这个角的余角的4倍, 求这个角.
如图,∠A+∠B=90°,∠BCD+∠B=90°,∠A与 ∠BCD 有什么大小关系?为什么?
B D
C
A
解: ∠ A= ∠ BCD。
因为∠ A与∠ B互余, ∠ BCD与∠ B互余,而同角 的余角相等,所以∠ A= ∠ BCD。
如图,直线CD经过点O,且OC平分AOB,试判断AOD 与BOD的大小关系,并说明理由。
3
4
等角的补角相等
如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之 间的关系?并试着说明理由?
B
E
等(同)角的补角相等, 等(同)角的余角相等.
D
A
2
3 4
1
C
O
例2:
已知一个角是它补角的3倍,求这个角. 解:设这个角的补角为x,依题意得: 3x+x=180
2
1
3
4
等角的余角相等
如图,∠1与∠2互补, ∠1=∠3,
∠3与∠4 互补, 那么∠2与∠4 什么关系?
分析:由∠1与∠2互补,可得∠2=180°-__∠_1__ 由∠3与∠4互补,可得∠4=180°- ∠3
答:因为_∠__1_=_∠3, 所以180°-∠1= 180°-∠3,
这就是∠2=∠4
21
● 通过这节课的学习后,你有什么 感受?
互余
数量 关系
∠1+∠2=90°
互补
∠1+∠2=180°
对
应
图
形
21
21
性
等角的余角相等 等角的补角相等.
质
概论
第一节 控制仪表与控制系统
> 控制仪表与控制系统
自动控制系统一般由被控对象、变送器、控制器和执 行器构成,其方框图如下所示:
给定值
控制器
变送器
以OA为边画出这个角的余角和补角
B
A
O
O
入反 射射 角角
数学小知识
打台球时,球的反射角总是等于入射角.
A
B
1 67 2 83 94
5 40°
C
D
学以致用:如果∠5=40°,那么∠1应等于多少
度,才能保证蓝色球准确入袋?请说明理由.
方位角
例4:货轮O在航行过程中,发现灯塔A在 它南偏东60°的方向上,同时,在它北偏 东40°、南偏西10°、西北(即北偏西 45°)方向上又分别发现了客轮B、货 轮C和海岛D,仿照表示灯塔方位的方法, 画出表示客轮B、货轮C和海岛D方向的 射线。
此外,根据需要还可设有显示、转换、计算、辅助、 给定装置。
概论
第二节 控制仪表及装置分类
> 控制仪表及装置的分类
❖ 按所用能源形式:气动、电动、液动。工业上主要
使用电动和气动控制仪表。
电动控制仪表和气动控制仪表的比较
电动控制仪表
气动控制仪表
能源
电源(220V AC/24V DC) 气源(140kPa)
传输信号
电信号(电压、电流、数字) 气压信号
元、器件
电子元器件
气动元件
接线
导线
导管
电磁干扰与防爆 受电磁干扰影响 须采取抗干扰、防爆措施
不受电磁干扰影响 本质上安全防爆
❖ 按信号类型:模拟式和数字式。
模拟仪表
传输信号为连续变化的模拟量,,这类仪表线路较 简单, 操作方便,价格较低。 如气动仪表,电动单 元组合仪表Ⅰ、Ⅱ、Ⅲ型等。