高超声速飞机
高超音速飞行器

高超音速飞行器高超音速高超音速,指物体的速度超过5倍音速(约合每小时移动6000公里)以上。
高超音速飞行器主要包括3类:高超音速巡航导弹、高超音速飞机以及空天飞机。
它们采用的超音速冲压发动机被认为是继螺旋桨和喷气推进之后的“第三次动力革命”。
高超音速飞行器高超音速飞行器被视为下一代飞行技术,根据俄亥俄州空军研究实验室高速系统分部的负责人罗伯特·梅谢尔(Robert Mercier)介绍:“我们取得对高超音速飞行技术的掌握,就如同从螺旋桨式的飞行时代过渡到喷气式飞行时代,自莱特兄弟(Wright brothers)以来,我们一直在研究如何使飞行变得更好、更快。
目前,高超音速飞行技术就是航空界潜在的前沿领域之一,我相信我们正在等待着进入这个舞台。
”X-43X-43系列高超音速飞机是美国航空航天总署秘密研制的无人驾驶飞机,看上去很像一块漂亮的冲浪板。
1996年开始研制,2004年第二次试飞成功,并突破7被音速。
X-43X-51X-51A是美国空军研究实验室(AFRL)与国防高级研究计划局(DARPA)联合主持研制的超燃冲压发动机验证机——乘波飞行器(SED-WR,Scramjet Engine Demonstrator-Waverider)。
它由波音公司与普拉特·惠特尼(简称普惠)公司共同开发,由一台JP-7碳氢燃料超燃冲压发动机推动,设计飞行马赫数在6~6.5之间。
这个计划的终极目标就是要发展一种比美国原武器库中任何一种导弹的速度都要快5倍以上,可以在1小时内攻击地球任意位置目标的新武器。
[1]X-51美军的挚爱屡试屡败的X-51高超音速飞行器,究竟是省钱利器还是吞金猛兽?包括其东家美国空军在内,人们至今找不到明确的答案。
8月14日,被美国空军寄予厚望的X-51高超音速飞行器再度亮相,由B-52轰炸机在太平洋上空投放后进行测试。
然而,由于一片尾舵突发故障,通体细长的X-51仅坚持了16秒便失控坠海,不知所踪,它的第三次飞行试验只得草草收场。
高超声速飞行器动力技术介绍及部分国家发展现状

一、高超声速飞行器技术发展路径及动力技术介绍1.1 高超声速飞行器技术发展路径高超声速飞行器区别与其他飞行器最大的特点是高度一体化,使得飞行器机身与推进系统密不可分,从某种意义上来说是无法划分出一个所谓的“发动机”进行研制的,这样的“发动机”也只有在与机身合二为一才能发挥其真实的性能,也才能真正的运行起来。
因此,高超声速飞行器首先是“自顶而下”地分解研究对象和研究阶段,随着技术的发展再逐步地整合各部分的研究,逐级、逐步形成一个完整的飞行器研究对象。
从总体方案设计的完整的飞行器作为研究对象可划分为四个层次的研究:气动/推进一体化研究、全流动通道推进系统研究、超然冲压模型发动机研究、超然冲压发动机部件研究,将高超声速飞行器自顶而下分解后就,再从分解出来的底层部件逐步发展“自下而上”到顶层飞行器。
同时“自顶而下”的技术分解和“自下而上”的技术集成这两条路线又是有交互的,在试验研究的任何阶段发现问题,都应当反馈到飞行器总体的设计,重新定义部件、子系统的研究对象。
图1.11.2 高超声速飞行器动力技术介绍气动/推进一体化研究 全流动通道推进系统研究 超然冲压模型发动机研究超然冲压发动机部件研究高超声速飞行器的核心关键技术包括超燃冲压发动机技术、高超声速飞行器组合推进系统技术、高超声速飞行器机身推进一体化设计技术、高超声速飞行器热防护技术、高超声速飞行器导航制导与控制技术、高超声速飞行器风洞实验技术。
下面的篇幅分别对超燃冲压发动机和组合推进系统技术做简要介绍:(1)超然冲压发动机概念介绍超燃冲压发动机是高超声速飞行器推进技术的核心技术,超然冲压发动机与亚燃冲压发动机同属于吸气式喷气发动机,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室和燃料混合燃烧,产生高温燃气经尾喷管加速后排出,从而产生推力。
超燃冲压发动机通常可以分为双模态冲压发动机和双燃烧室冲压发动机。
X-51及高超声速飞行器简介

美国X-51A飞行器及总体设计及其关键技术简介Xxx摘要:从计划的背景、飞行器的构造、热防护材料研发测试以及实际飞行试验等方面对X-51A 的发展计划作了较为详细的介绍,并据此对美国发展高超声速飞行技术的研究流程和理念有个一定的了解与认识。
关键词:X-51A 高超声速导弹热防护系统结构材料飞行器引言:美国自二十世纪九十年代启动“全球敏捷打击”计划以来,一直处于低速发展过程中,该计划近期开始迅速升级,从改造“三叉戟”导弹开始,美国正推出一系列先进攻击武器概念,包括飞机、无人机和导弹。
其中,X-51高超声速巡航导弹是美国武器库目前速度最快的全球打击武器,可以在一小时内攻击地球上任一目标。
1项目概况巡航导弹在美国武器系统中具有特殊的地位,在未来信息化战争中,巡航导弹不要要成为首选的打击武器,也是美军实行远程军事打击的必备武器。
美国于20世纪90年代启动的“全球敏捷打击”计划自推出以来一直处于低速发展过程中,直至近年该计划开始迅速发展。
美国从改造三叉戟导弹开始,陆续推出一系列的先进攻击武器概念,包括新一代的飞机、无人机和导弹。
X-51A计划是由美国空军研究试验室(AFRL)、国防高级研究计划局(DARPA)、NASA、波音公司和普惠公司联合实施的旨在验证高超声速飞行能力的计划。
终极目标是发展一种马赫数达到5~7的可以在1 h内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。
X-51A于2010年2月中旬进行了首次高超声速飞行试验。
X-51A的首飞创造了又一个人类历史记录———超燃冲压发动机推进的历时最长的高超声速飞行,刷新了X2 43创造的12 s的记录。
X2 51A首飞的成功意味着, 超燃冲压发动机将提供一种全新的快速全球打击能力。
据称,该高超声速导弹将能够在60 min内实施全球打击。
美国国防部/NASA的X2 51A项目则是这一新型武器系统方案的关键部分。
X2 51A 的飞行试验对于空间进入、侦察、打击、全球到达以及商业运输等都有重要意义。
高超声速飞行器讲解学习

About Conclusion
About Conclusion
高超音速飞行器的一些特性类似于超音速飞机,但是它仍有许多独特的 特点,使高超音速飞行器的设计特别具有挑战性。高超声速飞机通常具有更 流畅,楔形的几何外形。因为它们在大气中维持高速,因此最小化阻力是重 要的。许多设计也参考了乘波者外形,这样冲击波可以产生额外的升力。而 航天器倾向于更钝,依靠分离的弓形冲击波以尽可能快地减速。
About Aerodynamic Issues
About Hypersonic
我们对两种不同类型的飞行器进行评估:高超 声速运载器和航天器,他们的共有特点和不同之 处将被对比。
高超声速飞行器设计最大的问题之一就是空气 动力学问题。由于飞行器的速度范围非常广,设 计必须满足几个经常会互相矛盾的要求。
About Hypersonic Lift
近年来,有很多解决不同几何形状绕流问 题的方法被发明。例如激波膨胀法。
但是没有任何一种方法普遍适用于任何飞 行器外形,设计师需要对各种方法的基本原 理和基本假设有良好的理解。
左表展示了用于估算高超音速空气动力学 性能的各种压缩和膨胀方法的列表。这些方 法构成SHABP软件的一部分。
然而,我们重点关注的是减少飞行器上升段的 空气阻力(以及高超声速飞机的巡航段)。左图 是多种不同航天器的最大飞行速度。
About Hypersonic
只要发动机动力足够强大,飞行器可以只依靠推 力。无升力(弹道式)飞行器不依赖气动升力,因 此造成了流线型、低阻力外形,但是它们的横向稳 定性和操纵性很差。
----P. L. Roe
About Hypersonic
X-51
Space Ship
Aircraft
高超声速飞行器设计与研发的关键问题

高超声速飞行器设计与研发的关键问题高超声速飞行器(Hypersonic Aircraft)是指在大气层中飞行时速度超过5马赫(即每小时约6100公里)的飞行器。
随着科技的不断发展,高超声速飞行器的研发成为当前领域的热点之一。
本文将围绕高超声速飞行器的设计与研发,探讨其关键问题和挑战,并分析可能的解决方案。
一、材料选择与热防护高超声速飞行器面临的第一个关键问题是材料的选择和热防护。
由于飞行速度非常快,飞行器会受到极高温度的影响,这对材料的性能提出了极高的要求。
传统的金属材料往往难以承受高超声速飞行时产生的巨大热量,因此需要开发新的热防护材料。
炭化硅陶瓷材料等新型复合材料被认为是理想的选择,具有良好的抗高温性能。
二、空气动力学特性高超声速飞行器的空气动力学特性是其设计与研发过程中的另一个关键问题。
高超声速飞行时,飞行器将遭遇极大的空气阻力和压力,必须具备良好的空气动力学性能才能保持稳定和安全的飞行。
优化飞行器的外形、减少阻力、提高升力,采用气动热管理技术等方法可以改善其空气动力学性能。
三、推进系统推进系统是高超声速飞行器设计与研发的另一个关键问题。
由于高超声速飞行速度非常快,要求推进系统能够提供足够的推力。
目前常用的推进系统包括火箭发动机和超燃冲压发动机。
火箭发动机提供了巨大的推力,适合于高超声速飞行器的起飞和初段加速。
而超燃冲压发动机则具有较高的燃烧效率和较长的续航能力,适合高超声速飞行器的巡航和长程飞行。
四、飞行控制与导航飞行控制与导航是高超声速飞行器设计与研发的重要问题。
由于高超声速飞行器的速度极快,对飞行控制和导航系统的要求也很高。
需要采用先进的飞行控制算法、高精度的导航设备以及实时的飞行状态监测系统,确保高超声速飞行器能够精确控制航向、高度和速度。
五、飞行安全高超声速飞行器的飞行安全是设计与研发过程中的最终关键问题。
高超声速飞行器面临着由于飞行速度快、温度高、气动力复杂等因素带来的各种飞行安全挑战。
高超声速飞行器发展综述及飞行试验测控需求

体化的轴对称高超声速导弹气动布局。
图1X-43A高超声速飞行器X-43A(如图1)计划是由DRAPA主导的以氢燃料为。
Science&Technology Vision科技视界9将提供一种全新的快速全球打击能力。
图2X-51A高超声速飞行器1.2无动力高超声速计划无动力高超声速计划通常采用助推器将高超声速无动力滑翔飞行器助推到预定的分离点,无动力滑翔飞行器通过长时间的高超声速滑翔飞行实现快速的投送和打击。
. All Rights Reserved.HTV-2(Falcon)计划是由DRAPA主导用来验证全球快速打击武器的关键技术,驻澳包括远程高超声速助推滑翔飞行器气动布局技术、热防护技术、先进GPS制导技术和碳/碳减速伞技术等。
HTV-2计划的目标是通然要求;图3高超音速飞行器典型弹道(3)精确打击能力,对点目标、机动目标的直接命中打击能力,对目标"点穴式"小附带损伤打击能力,是现代战争和未来信息化战争的基本要求,是精确打击和常规威慑的技术保证;(4)有效突防能力:导弹速度越高,其突防能力越强;关于飞行高度,其突防能力与拦截武器类型有关,对于靠气动力控制的拦截弹而言,其拦截能力随导弹飞行高度增高而下降,对于靠直接力控制的拦截弹而言,其拦截能力随导弹飞行高度增高而增强(5)高作战效能,具备包括高射前生存能力、有效Science &Technology Vision科技视界(上接第11页)基、海基或空基)需根据航区特点合理布置。
弹上测量参数种类、数量非常多,主要包括热流参数、压力参数、温度参数、过载参数、缓变电压模拟量、开关量等,数据的数据量非常大,因此遥测需满足大容量数据传输要求。
靶场地面站应能满足相关的保密保密要求。
(2)外测需求对导弹飞行试验全程进行外弹道测量,测量导弹位置参数及运动参数,如高度、距离、侧偏、速度、加速度等。
并能够按要求实时传送到指挥控制中心,用于监测和安控判决。
吸气式高超声速飞行器控制

经验教训与启示
总结实际案例中的经验教训与启示,为后 续吸气式高超声速飞行器控制系统的设计 与实践提供借鉴与参考。
06
未来展望与挑战
吸气式高超声速飞行器控制技术的发展趋势
智能化控制
随着人工智能技术的进步,吸气式高超声速飞行器的控制技术将越来越智能化。先进的算 法和机器学习技术可用于实时决策和优化控制策略,提高飞行器的自主性和适应性。
导航与制导协同优化
综合考虑飞行器性能、任务需求和约束条件,对导航与制 导策略进行协同优化,实现任务成功率和效费比的最大化 。
智能导航与制导
引入人工智能、深度学习等技术,实现导航与制导系统的 自主学习、自适应和自主决策能力,提高复杂环境下的任 务执行能力。
05
吸气式高超声速飞行器的 控制系统设计与实践
终端制导
在接近目标时,通过高精度传感器对目标进行捕获和跟踪,实现精 确打击。要求传感器具有高分辨率、快速捕获和抗干扰能力。
复合制导
综合运用多种制导方式,根据不同飞行阶段和任务需求,实现优势互 补,提高制导精度和抗干扰能力。
导航与制导的集成技术
导航与制导信息融合
将不同导航系统和制导方式提供的信息进行有效融合,提 高导航与制导的整体性能。采用卡尔曼滤波、联邦滤波等 信息融合算法进行处理。
控制系统的鲁棒性问题
吸气式高超声速飞行器的控制系统需要具有很高的鲁棒性,以应对各种不确定性因素(如模型误差、外 部干扰等)。提高控制系统的鲁棒性将有助于保证飞行器的安全性和稳定性。
提高吸气式高超声速飞行器控制性能的建议和前景
加强跨学科合作
加大研发投入
建立开放合作机制
吸气式高超声速飞行器控制技术涉及 多个学科领域,包括航空航天、控制 理论、人工智能等。加强跨学科合作 ,促进不同领域专家的交流与合作, 有助于推动控制技术的创新与突破。
超高声速飞行器

超高声速飞行器摘要:高超声速飞行器一般是指飞行速度超过5倍音速的飞机、导弹、炮弹之类的有翼或无翼飞行器,具有较高的突防成功率和侦查效能,能大大扩展战场空间。
高超声速飞行器潜在的巨大军事和经济价值使得当前世界各军事大国纷纷投巨资到该领域,成为21世纪世界航空航天事业发展的一个主要方向。
近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,对高超声速飞行器未来的发展奠定了基础。
关键字:超高声速、飞行器、推进技术。
一、飞行器的发展历程人类向往飞行的理想几乎伴随这整个人类的历史。
最初,人们受到鸟类的启发而使用人造翅膀,但是发现这并不现实。
人类的身体对于人造翅膀而言过于的沉重。
并且在探索的早期人类并不了解鸟类飞行的空气动力学原理。
经过一系列的探索,到了18世纪后期,人类发明了热气球。
1783年热气球首次载人升空。
随后出现了飞艇。
相比于热气球,带有推进装置、载重更大的飞艇更具实用性。
飞艇的出现并未宣告飞行器的发展并未就此停歇。
人类还是研制机动性更好的飞行器。
1903年,由莱特兄弟制造的人类第一架飞机——飞行者1号,并成功升空。
莱特兄弟总共制造了三架“飞行者”号飞机。
“飞行者”三号是其中最成功的一架,其飞行成绩为38分钟飞行38.6km。
“飞行者”三号飞机的成功宣布飞机终于具有了实用性。
至此人类迎来的飞机时代。
自飞行者之后活塞式螺旋桨飞机得到了极大的发展,飞行时速不断地提高。
但是螺旋桨式飞机存在着速度上限。
当螺旋桨尖端线速度接近声速时,空气会被极具压缩,而这部分压缩空气来不及散开,在桨端形成一个巨大的阻力,称为激波阻力。
此时桨端的空气将粘滞在桨叶表面,使螺旋桨的效率降低。
这便是螺旋桨飞机不能飞得更快的原因。
为了克服螺旋桨飞机的这一速度上限,人们研制了喷气发动机。
喷气发动机构造不同于活塞式螺旋桨,因此飞机可以飞得更快。
随着发动机性能的提升以及飞行器气动外形的升级,飞机的速度已经能达到2马赫。
高超声速飞行器概念及发展动态

引言
飞得更快、更高、更远,是
人类永恒的追求。人类突破飞行
速度经历了艰难的历程。
早在20世纪60年代,在人
类尚未突破3倍声速前,就已经
开始研究高超声速飞行技术。高
超声速飞行技术将是21世纪航
空航天领域的研究热点之一。高
超声速飞行器具有重要的战略意
义和极高的应用价值。
单动力或复合动力“冲跃”方
式:飞行器将从跑道上水平起飞
或由专用的大型运输机挂载空中
投放,然后自主加速到马赫数
10,同时爬升到40 000m的高度,
然后关闭发动机,依靠惯性向上
冲跃滑翔飞出大气层,向前飞行
同时回落到大气层后发动机将短
时重新起动,使飞行器加速并爬
升完成下一周期的“冲跃”方式
的增加特别是载人航天的发展,
一次性使用火箭、飞船和航天飞
机的高额发射费用日益成为大规
模开展空间活动的“瓶颈”,需要
一种既能像普通飞机一样起降又
能往返于天地之间的经济、安全
的飞行器,这就是空天飞机。
20世纪80年代初,美、苏、
英、法、德、日、印等国都把探
索与发展空天飞机作为航空航天
推进技术
本文2003-11-28收到,解发瑜、徐忠昌系海军工程大学文理学院讲师、副教授;李刚系空军工程大学导弹学院副教授
高超声速飞行器概念及发展动态
解发瑜 李 刚 徐忠昌
摘 要 介绍了高超声速飞行
技术的基本概念、关键技术;同时介
绍了高超声速飞行技术的发展动态。
主题词 高超声速 关键技
动弹性振动。飞行器飞行过程中
的各种复杂的力学过程不可能完
美国X-43高超声速飞行器调研

美国X-43高超声速飞行器调研一、高超声速飞行器背景 (1)1.1美国在高超声速技术领域独占鳌头 (1)1.2 欧洲国家积极推进高超声速技术开发 (3)1.3 日本实施高超声速飞行器发展计划 (4)二、高超声速飞行器特点 (4)2. 1 推进技术 (4)2. 2 材料技术 (5)2. 3 空气动力学技术 (5)2. 4 飞行控制技术 (6)2.5 X-43在技术方面有如下特显 (7)三、气动外形设计方法 (8)四、高超声速飞行器制导原理 (9)五、执行机构的选择及配置 (12)5.1 推进系统 (12)5.2 控制系统的执行机构 (14)六、X—43控制原理 (16)6.1 高超声速控制技术发展 (16)6.2 高超声速控制分析 (16)6.3 X-43A控制方法及分析 (17)6.4 高超声速控制技术新技术 (18)(1)非线性控制方法 (18)(2)鲁棒自适应控制方法 (19)七、总结 (19)一、高超声速飞行器背景高超声速飞行器是指在大气层内飞行速度达到M a = 5以上的飞行器。
自20世纪60年代以来, 以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器, 而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术, 它的航程更远、结构质量轻、性能更优越。
实际上, 吸气式高超声速技术的发展始于20世纪50 年代,通过几十年的发展, 美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展, 并相继进行了地面试验和飞行试验。
高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。
1.1美国在高超声速技术领域独占鳌头从1985 年至1994 年的10年间, 美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。
通过试验设备的大规模改造和一系列试验, 仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3 200次试验。
高超声速飞行器发展探析

高超声速飞行器的发展探析1引言高超声速飞行器一般是指以火箭发动机或超燃冲压发动机为主要动力,在大气层内或跨大气层以Ma5以上的速度飞行的飞行器。
我国著名科学家钱学森先生最早提出“高超声速”这一概念,他在1945年发表的论文《论高超声速相似律》中,首次使用了“Hypersonic”来表述“高超声速”,后来该词得到广泛认可。
高超声速飞行器综合了航空航天领域众多学科的新技术,代表了未来航空航天领域的研究发展方向,被认为是继隐身技术之后的又一重点技术领域。
高超声速飞行器具有飞行高度高、速度快、侧向机动性好的优点,能在很短的时间内抵达地球上任何一点,迅速打击数千或上万公里外的各类军事目标。
因此,美国、俄罗斯、欧洲、日本、以色列等国均投入大量的人力、物力对其进行研究。
同时,近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,这也为高超声速飞行器未来的发展奠定了基础。
2高超声速飞行器基本概念及特点[1-3]高超声速飞行器主要在临近空间,以Ma6~15 的高速度巡航飞行, 其巡航速度及飞行高度数倍于现有的飞机;同时由于采用吸气式发动机,其燃料比冲远高于传统火箭发动机,而且能实现水平起降与可重复使用,因此空间运输成本将大大降低。
高超声速飞行器技术的发展将导致高超声速巡航导弹、高超声速飞机和空天飞机等新型飞行器的出现,成为人类继发明飞机、突破音障、进入太空之后又一个划时代的里程碑。
高超声速飞行器具有飞行高度高、速度快、侧向机动性好的优点,能在很短的时间内抵达地球上的任何一点,迅速打击数千或上万公里外的各类军事目标。
这主要是因为它具有高性能动力推进系统。
超燃冲压发动机、脉冲爆震发动机是高超声速飞行器的关键技术。
目前,各国发展高超声速技术主要选用燃料可在高超声速内流中稳定燃烧的超燃冲压发动机。
超燃冲压发动机的适用范围为Ma5~16,飞行时不需要自身携带氧化剂,直接从大气中吸收氧气,作为助燃剂。
超声速飞机空气动力学和飞行力学

超声速飞机空气动力学和飞行力学超声速飞机是一种可以飞行速度超过音速的飞行器,它的出现对航空工业和航空运输领域产生了深远的影响。
要理解超声速飞机的空气动力学和飞行力学,需要从机翼设计、气动外形、飞行控制等方面进行全面评估。
在本文中,我们将深入探讨超声速飞机的空气动力学和飞行力学,并共享个人的观点和理解。
一、机翼设计超声速飞机的机翼设计是空气动力学和飞行力学中的关键问题。
在超声速飞行条件下,机翼需要具有较小的厚度和较大的横截面积,以减小飞机的阻力和提高升力。
机翼的前缘通常采用锥形或凸出的设计,以减小激波对机翼表面的影响,提高飞行效率。
二、气动外形超声速飞机的气动外形对其空气动力学性能有着重要影响。
通常情况下,超声速飞机采用尖嘴和尾巴翼的设计,以减小阻力和增大升力。
在设计中,还需要考虑到激波的影响,合理设计激波的位置和强度,以减小激波对飞机的阻力和干扰。
三、飞行控制超声速飞机的飞行控制是飞行力学中的重要问题。
在超声速飞行条件下,飞机需要具有较强的稳定性和操纵性,以保证飞行安全和飞行品质。
飞机的操纵面需要具有较大的偏转角度和灵活的控制系统,以满足超声速飞行时的飞行需要。
在总结回顾本文所述内容时,超声速飞机的空气动力学和飞行力学对飞机的设计和飞行性能有着重要影响。
合理的机翼设计、气动外形和飞行控制是超声速飞机能够安全、高效地进行超音速飞行的关键。
个人认为,超声速飞机的空气动力学和飞行力学是航空工程领域中的重要课题,需要不断进行研究和探索,以推动航空工业和航空运输的发展。
通过本文的探讨,相信读者能够对超声速飞机的空气动力学和飞行力学有更全面、深入的理解。
在未来的研究和实践中,希望能够更加注重这一领域的发展,推动超声速飞机技术的不断创新和进步。
以上就是本文关于超声速飞机空气动力学和飞行力学的论述,希望对读者有所启发。
超音速飞机是一种能够飞行速度超过音速的飞行器,通常指的是飞行速度在1.2至5马赫之间的飞行器。
高超声速飞行器多物理场耦合问题建模与分析

2023-11-06CATALOGUE目录•引言•高超声速飞行器多物理场耦合模型•高超声速飞行器多物理场耦合数值模拟•高超声速飞行器多物理场耦合问题分析•高超声速飞行器多物理场耦合问题优化设计•结论与展望01引言研究背景与意义高超声速飞行器在国防、科技和商业领域具有重要应用价值,如高超声速巡航导弹、高超声速飞机等。
多物理场耦合问题是高超声速飞行器设计面临的重大挑战之一,涉及气动、热、结构等多个物理场的相互影响。
研究多物理场耦合问题对提高高超声速飞行器的性能、安全性和可靠性具有重要意义。
010203研究现状与发展国内外学者针对高超声速飞行器多物理场耦合问题开展了广泛研究,提出了许多建模与求解方法。
然而,由于高超声速飞行器多物理场耦合问题的复杂性,仍存在许多挑战需要进一步解决。
随着计算技术和数值方法的不断发展,多物理场耦合问题的研究将更加深入,为高超声速飞行器的设计提供更加有效的手段。
02高超声速飞行器多物理场耦合模型建模方法与原理耦合模型分类根据耦合程度和物理场类型,可将高超声速飞行器多物理场耦合模型分为强耦合模型、弱耦合模型和混合耦合模型。
建模原理利用物理和数学方法,建立能够描述各物理场之间相互作用和影响的数学模型,并进行数值模拟和实验验证。
常用软件ANSYS、FLUENT、MATLAB、COMSOL等。
气动-热-结构耦合模型热效应对气动性能的影响结构变形会改变飞行器的气动外形,进而影响飞行器的气动性能。
建模方法采用有限元法和有限差分法等数值方法,进行耦合求解。
气动外形对温度场的影响高超声速飞行时,气动加热会导致飞行器表面温度升高,进而影响结构强度和刚度。
03建模方法采用多学科耦合方法和控制理论进行建模和仿真分析。
气动-推进-控制耦合模型01推进系统对气动性能的影响火箭发动机的推力、燃料消耗等会影响飞行器的气动外形和气动性能。
02控制系统的气动效应控制面、控制机构等的气动效应会影响飞行器的气动性能和控制精度。
高超声速空天飞行器研究现状汇总

高超声速空天飞行器研究现状摘要高超声速飞行器一般是指飞行马赫数大于5且能够在大气层和跨大气层中实现远程飞行的飞行器。
这种飞行器在高度和速度上都具有相当大的优势,在军民领域具有巨大的应用潜力。
高超声速飞行器是21世纪航空航天技术新的制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟人类进入太空的新方式。
本文首先阐述了高超声速空天飞行器的概念,强调了其主要的军事用途。
其次,分析了空天飞行器的主要气动布局形式和特点。
最后,对国外航空航天大国的空天飞行器相关发展情况进行了综述,包括美国、俄罗斯、澳大利亚和法国等国家。
1. 引言未来的高超声速飞行器能够在2个小时之内到达地球任何地方,能够像普通的飞机一样水平起飞水平降落,并以廉价的成本完成天地往返的运输任务,从而可在空间控制和空间作战中发挥重要的作用,而这些要求的实现从根本上都取决于高超声速飞行器技术的发展。
高超声速飞行器所具有的全球实时侦查、快速部署和远程精确打击能力,将改变未来战争的作战样式,对国家安全产生战略性的影响。
高超声速飞行器还具有显著的军民两用性,能为民用运输和航天运载等领域提供全新的途径,进而对社会进步及国民经济产生带动作用。
2. 空天飞行器随着现代科学技术的进步和未来战场的不断拓展,世界各国正在逐步把航空和航天飞行器朝着有机结合成一体的方向推进。
空天飞行器是指既能够进入太空飞行,又能较长时间在大气层内飞行的一种飞行器。
空天飞机是在航空和航天技术相结合方面的初步尝试,可实现航天运载系统的部分重复使用、提高操作效率和大幅度降低航天运输费用的目的,同时更具有广阔的军事运用前景。
虽然目前单级入轨或多级入轨的空天飞机还处于探索研究阶段,但它可望成为世纪最先进、最经济有效的航天运载工具,代表了今后数十年内航天运载技术的发展方向,并且将成为未来控制空间、争夺制天权的关键武器装备之一。
空天飞行器的飞行过程可分成三段:一是发射上升段,二是轨道飞行段,三是再入返回段。
高超声速飞行器

“普罗米修斯(Promethee)”计划
法国的航空航天研究院和宇航 - 马特拉公司正 在开展“普罗米修斯(Promethee)”计划。目的是研 究碳氢燃料双模态超燃冲压发动机推进的高超声 速空地导弹。该空射型导弹采用的是半椭圆外形 的 “ 南瓜子型 ” 无翼乘波体方案 , 弹长 6m, 总发射质 量为 1700kg, 航程大于 1000km, 最大速度可达 8 马 赫。
印度正在研制一种可重复使用的高超声 速巡航导弹系统 , 其飞行高度为 30 ~ 40km, 巡航速度为 7 马赫。除水平发射外 , 该导弹 还设计成可垂直发射。冲压发动机先工作 在亚燃模态 ,速度达到 3马赫,然后转入超燃 模态,加速到7马赫。
德国高超声速导弹的主要性能指标为:飞 行马赫数 6.5, 采用高能、高密度的吸热 型碳氢燃料超燃冲压发动机,惯性加全球 定位系统复合制导 , 射程为 1000km 左右 , 命中精度在 15m以内,可从空中、水面或 水下发射。
超燃冲压发动机原理
热防护
高超声速飞行器在飞行过程与空气摩擦 会产生高温。因此,热防护是保证飞行 器稳定安全飞行的一个重要课题。
• 在高超声速飞行器研 发过程中遇到的一大 技术难题叫“热障” ,它是飞行器飞行时 由于激波和粘性的作 用,其周围空气温度 急剧升高(可达几千摄 氏度),形成严酷的气 动加热环境。这是一 般飞行器结构无法承 受的。
高超声速巡航导弹已成为远程 精确打击的主力巡航导弹,目前 正在向高速度、高精度、隐形 化的方向发展。高超声速巡航 导弹装有多燃料仓超燃烧冲压 喷气发动机推进系统,采用易存 储的液态碳氢燃料,甚至是纯液 图为美国正在研制的 X-51 高超声 态氢 , 能在 24km 以上高空、以 速巡航导弹。 X-51 长 3.5m ,射程 马赫数 4 ~ 8 的速度机动飞行 , 为 1000km ,时速为 5 马赫。 X-51 并能在 6h 内环绕地球一周 , 迅 由 B - 52 轰炸机带到 3.5 万英尺的 速打击地球上任意地点的目标 高空发射,然后加速到5马赫。
高超音速飞行器

高超音速飞行器高超音速飞行器是本世纪正在研发的前沿科技的新项目。
它又被称作“近空间高超音速飞行器”(NSHV)。
这种飞行器飞行高度可离地面20~100km的大气层空间,这一空间位于低轨卫星轨道的下方、一般飞机的飞行高度的上方,包括大气平流层、中间层和部分热层。
是尚待开发的近空间区域。
20世纪60年代,洲际弹道导弹的出现、载人航天飞机的升空、载人飞船的成功返回等一系列重大科技成果问世,标志着人类进入了超高音速飞行器的新时代,也意味着航天器和航空器也要迈入高超音速飞行器时代。
高超音速飞行器的飞行速度是高于5倍音速,即5马赫(MH),或超过6000千米/小时。
据报道,高超音速武器飞行6000千米约用35分钟,飞行时速约10285千米,是音速的8.4倍。
从科技的角度分析,高超音速飞行器同时融合了航天和航空的诸多前沿技术,这些前沿技术与传统飞行器技术比较,主要有以下几方面特点:复杂的气动特性;用超燃冲压发动机;飞行器机体与发动机一体化;飞行器机体与推进系统和飞行器结构动态之间耦合强;飞行器模型非线性度高;飞行器飞行高度、速度跨度大;飞行环境复杂,瞬间多变;气动特性和气热特性变化剧烈;控制精度高,末制导难度大。
动力系统可移植巡航导弹《大公报》文章称,如果高超音速导弹研制成功,可以将此动力系统移植到巡航导弹上,大大提高它的机动速度,使导弹的战斗力显著提高。
高超音速巡航导弹较现有的巡航导弹主要有以下优势:一、反应速度快,亚音速巡航导弹打击1000公里外的目标需要1个多小时,高超声速巡航导弹不需要10分钟。
二、突防能力强,现有巡航导弹主要依靠超低空飞行与隐身技术突破防御,由于速度相对较慢,暴露后很容易被拦截,对于在高空飞行的高超音速巡航导弹来说,现有的防空武器基本无计可施。
三、破坏能力大,高超音速武器具有惊人的动能,对钢筋混凝土的侵袭深度可达十几米,特别适合打击深埋地下的指挥中心等坚固目标。
超音速飞机发展现状及未来趋势分析图片

超音速飞机发展现状及未来趋势分析图片随着科技的不断发展,超音速飞机正逐渐成为航空工业的瞩目焦点。
本文将对超音速飞机的发展现状及未来趋势进行分析。
超音速飞机是指能够在大气层中以超过音速飞行的飞机。
与传统亚音速飞机相比,超音速飞机具有更快的速度和更高的飞行高度,能够更快地到达目的地,并且能够利用地球的曲率进行更高效的航线规划。
同时,超音速飞机还具备其他优点,如在太阳辐射强烈的高空中进行高效的太阳能利用,以及能够从较大高度观察地球的能力。
目前,世界上已有一些超音速飞机的研发项目在进行中。
其中最著名的无疑是美国的“超音速风洞”项目。
该项目由美国国家航空航天局(NASA)领导,旨在开发一种新的超音速飞机,以满足未来长程太空探索的需求。
另外,其他国家如英国、俄罗斯、中国等也在超音速飞机的研发上取得了一定的进展。
然而,超音速飞机的发展面临着一些挑战和限制。
首先,超音速飞机的高速飞行会产生巨大的空气阻力和振动,给机身和发动机带来较大的压力和磨损。
这就要求飞机的材料和设计必须具备足够的强度和稳定性。
其次,超音速飞机的高速飞行会产生巨大的气动热效应,使飞机表面温度大幅上升,需要采用特殊材料和散热系统来解决。
为了克服这些挑战和限制,超音速飞机的未来发展将面临以下几个趋势。
首先,材料科学和工程技术的不断进步将为超音速飞机提供更好的材料和结构设计方案。
新材料的应用可以减轻飞机的重量,提高飞行效率,同时提供更好的抗磨损和抗热性能。
其次,先进的飞行控制系统和自动驾驶技术将使超音速飞机更加安全和可靠。
这些技术可以提高飞机的稳定性和操控性,降低事故发生的概率。
第三,燃料技术的改进将使超音速飞机更加环保和节能。
采用新型燃料和推进系统,可以减少飞机的碳排放和环境污染。
此外,超音速飞机的未来发展还可能涉及到其他领域的交叉应用。
例如,航天技术的发展有望为超音速飞机提供更好的推进和空气动力学性能。
人工智能和机器学习技术的应用可以提高超音速飞机的智能化水平,使其能够更好地适应多变的环境和任务要求。
高超声速飞行器发展现状

高超声速飞行器一、国内外高超声速飞行器研制现状高超声速飞行器技术是21世纪航空航天技术的新制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟进入太空的新方式。
高超声速飞行器技术的突破,将对国际战略格局、军事力量对比、科学技术和经济社会发展以及综合国力提升等产生重大和深远的影响。
因此,世界主要国家一直把高超声速飞行器研制作为科技发展的最前沿阵地,从人力、物力、财力等各方面给予大力支持。
自20世纪50年代末开始探索超声速燃烧冲压发动机技术以来,经过几十年的探索,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。
这表明高超声速技术从进行概念和原理探索的基础研究阶段,进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。
各国技术开发的主要应用目标近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器、空天飞机。
高超声速飞行器技术是21世纪航空航天技术的制高点,也是重要的军民两用技术。
虽然目前仍存在不少技术难题,而且耗费巨大,但从世界各研制国目前的发展势头来看,以超燃冲压发动机为动力的高超声速巡航导弹有可能在2010年前后问世。
预计到2025年,以超燃冲压发动机为动力的高超声速飞机和空天飞机也有可能投入使用,并将在军事、政治和经济等领域产生重大影响。
1 美国1.1 Hyper2X计划经过较长时间的研究和实践,美国在高超声速飞行器的设计研制方面积累了丰富的经验。
作为试验性高超声速飞行研究计划,Hyper2X计划是对以往所做工作的一次检验。
Hyper2X计划是美国国家航空航天局(NASA)近年来重点开展的高超声速技术研究计划,主要目的是研究并验证可用于高超声速飞机和可重复使用的天地往返系统的超燃冲压发动机技术,并验证高超声速飞行器的设计方法和试验手段。
1997年1月,NASA与兰利研究中心、德莱顿飞行研究中心签订合同,Hyper2X计划正式启动。
论文关于超声速飞机

超声速飞机测控系统姓名:王志勇___________班级:12208-6班学号:2012261367扌旨导教师:李立新 _______完成时间:2013 年1、17超声速飞机是人类飞机探索的最新领域。
超声速飞机潜在的巨大军事和经济价值使得当前世界各军事大国纷纷投巨资到该领域,成为21世纪世界航空航天事业发展的一个主要方向。
近年来,各军事大国在推进技术、结构材料、空气动力和飞行控制等关键技术研究方面积累了丰富经验,对超声速飞机未来的发展奠定了基础。
今天,超声速飞行技术已成为衡量一个国家空间技术先进程度的标志,被称为航空史上继飞机发明、突破声障飞行后第三个划时代的里程碑。
2超声速飞机飞行技术发展现状及难点、特点国防需求是各国竞相研发超声速技术的源动力。
理论计算表明,飞行器的速度从0.9马赫提高到5马赫,突防概率可提高100倍以上。
超声速武器缩短了突防时间,提高了突防概率。
另一方面,反导导弹飞行速度越快,其拦截成功的概率就越高。
因此,自20世纪60年代以来,以火箭为动力、应用于各类导弹的超声速技术获得了快速发展,并取得了部分成功如爱国者等导弹,飞行速度均在6马赫以上。
在国内,超声速技术的重大国防、民用价值受到了政府及学术界的高度重视,中科院力学研究所、航天空气动力技术研究院、南京航空航天大学、西北工业大学等科研院所,在国家载人航天工程、“ 863计划”等资金资助下,在地面高超声速试验设备、计算机流体数字模拟等方面取得了一定的研究成果。
喷气发动机通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。
部分军用发动机的涡轮和尾喷管间还有加力燃烧室。
喷气式发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
制造出优良的发动机是一大难点。
同时为克服热障,科研人员首先精心设计飞行器的飞行轨道和气动外形,使其在不影响或较少影响飞行器性能的情况下,尽可能降低进入飞行器的气动加热率,即热流。
克服热障更主要的手段是对飞行器进行热防护,希望以较小的代价保证飞行器及其有效载荷(战斗部或乘员)的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高超声速飞机
(1)高超声速侦察机
这种侦察机速度可达马赫数5~9,航程超过1 800km,装有超燃冲压发动机,有人或无人驾驶。
主要用于侦察敌方对空防御系统阵地情况,还能执行电子情报搜集等多种任务。
据悉,法国正在研制HAHV 高超声速无人侦察机,其速度将达6~8马赫,航程超过2000 km,飞行高度为30 km,隐身能力很强。
美国的“曙光女神”高超声速侦察机(Aurora),又名“极光”,是SR一71“黑鸟”战略侦察机之后新一代战略侦察机(图3)。
据推测,“曙光女神”侦察机全机长为32 m,高为7 In,全载重为83吨,其中三分之二以上是燃料,具有超大功率发动机和流线型机身,飞行高度40 km以上,飞行速度马赫数6,甚至更快。
美国的高超声速侦察机“黑燕”如战斗机般大小,动力系统由使用氢燃料的一台涡轮喷气发动机和一台冲压式喷气发动机组合而成。
首先涡轮喷气发动机把飞机的速度提升到3倍音速,冲压式喷气发动机开始工作,并将巡航速度提升到6倍音速。
组合循环发动机取代火箭助推器提供动力,因此它可以像飞机一样起降。
“黑燕”将是一种集很强的隐形、速度和高度于一身的无人侦察机。
(2)高超声速轰炸机
计划研制中的高超声速轰炸机能把炸弹投到地球上任何地点并返回到原起飞点,能精确投掷高爆穿甲弹或动能武器来实施打击,下一步将配载高能激光武器或粒子束武器攻击目标,不需中途加油和在国外设置前进基地,飞行高度高、速度快、侧向机动性好,目前的防空武器很难打到它。
“B一3”是美国第一种高超声速“B”式隐形战略轰炸机(图4),是近年来开始研制的可带核弹、5倍音速的新一代远程隐形战略轰炸机。
其在性能指标上,要求隐形、高超声速、远程飞行等能力更强,飞行高度大于30 km,速度达到马赫数5~6,航程大于11 100 km,载弹量要达到或超过B一52的水平。
B一3采用了一系列新技术和新设备,具有跟踪地形及抗核能力的机载雷达,并可在高超声速情况下使用远程导弹或激光波束武器。
(3)高超声速验证机
从1997年3月起,美国波音公司开始研制x一43验证机。
X一43验证机有A、B、C、D系列型号。
X一43A高超声速验证机是为探索航空航天领域新问题、验证新理论、检验新技术而专门研制或改装的飞行器。
机身长3.6 In,翼展1.5 In,重量约1吨。
安装在“飞马”空射型火箭上,机头使用了钨,机翼用耐热合金,外表面覆盖了耐热陶瓷瓦片,机翼和垂尾前缘使用了碳材料。
发动机采用与飞行器结构集成的超声速燃烧冲压喷气发动机,燃料为气态氢。
2004年11月16日,X一43A进行试飞并取得成功,飞行马赫数为1O,加速时间10 S,是目前最快飞机速度的3倍j。
x一51A超燃冲压发动机验证器(SED)计划也是高速打击要求的产物。
x一51A验证机采用了SJX61—2(简称X一2)超燃冲压发动机,用于验证吸气式高超声速推进技术的可行性。
该机采用了楔形头部、升力体机身和腹部进气道,后部采用了4个控制面,长度为4.26 In,空重约635 kg,采用了乘波构型,通过专门设计的尖锐头部,精确组织和分布所需的激波系,所产生的压力直接作用于机体下方,从而提供升力。
头部采用了钨材料,外部覆盖了二氧化硅隔热层,以承受高温载荷。
2009年1O月27日,X一51A乘波体巡航飞行器在同一领域创造了新的飞行记录,它在超燃冲压发动机推进下飞行 5 min,飞行马赫数从4.7加速到超过6,验证了持续高超声速飞行是可行的。
(4)高超声速无人机
无人机已经广泛应用于战场,执行侦察、监视与搜索的任务。
未来战场上,高超声速无人机飞行马赫数将达到12~15,飞行高度26~38 km,可以快速到达出事地点,向后方传出最新的战场态势,从而取代远程高速侦察机。
另一方面,还可以在高超声速无人机上装载侦察设备和精确制导武器,用于侦察和攻击世界各地的重要目标,或伴随高超声速巡航导弹执行战场毁伤评估与侦察任务。