一个单片机小程序编写

合集下载

单片机控制程序

单片机控制程序

单片机控制程序你想想啊,单片机就像一个小脑袋瓜,控制程序呢,就像是这个小脑袋瓜里的想法和指令。

有了这些指令,单片机才能干各种事儿。

单片机控制程序是咋来的呢?一般都是程序员们用专门的编程语言写出来的。

就跟咱说话一样,得有个规则,编程语言就是程序员和单片机交流的规则。

他们用这些语言告诉单片机啥时候干啥,怎么干。

比如说,咱要让单片机控制一个小灯亮起来。

那程序员就得用编程语言告诉单片机,啥时候给小灯通电,啥时候断电。

这就像咱开灯关灯一样,得有个开关。

在单片机控制程序里,这个开关就是一些指令。

单片机控制程序还能做很多复杂的事儿呢。

比如控制电机转起来,或者读取传感器的数据。

要是想控制电机,就得告诉单片机转多快,转多久,往哪个方向转。

这就跟咱开车似的,得有个油门、刹车和方向盘。

在单片机控制程序里,这些就是不同的指令。

读取传感器的数据也很重要。

比如说温度传感器,单片机控制程序可以让单片机定期去读取温度传感器的数据,然后根据这个数据来做一些决定。

要是温度太高了,就可以打开风扇降温;要是温度太低了,就可以打开加热器升温。

这就像咱感觉热了就脱衣服,冷了就穿衣服一样。

单片机控制程序还得考虑稳定性和可靠性。

不能说一会儿好用,一会儿不好用。

就像咱的手机,要是老是死机或者出问题,那可就麻烦了。

所以程序员们在写单片机控制程序的时候,得考虑各种情况,保证程序能够稳定运行。

比如说,要是电源不稳定怎么办?程序得能检测到电源的变化,然后采取相应的措施。

要是传感器出故障了怎么办?程序得能判断出传感器出了问题,然后给出一个错误提示。

这些都需要程序员们有丰富的经验和细心的设计。

单片机控制程序还可以不断升级和改进。

就像咱的手机软件一样,随着时间的推移,程序员们可以发现一些问题,然后改进程序,让它变得更好用。

或者根据新的需求,给程序增加一些新的功能。

比如说,一开始这个单片机控制程序只能控制一个小灯亮灭,后来客户要求能控制多个小灯,还能让小灯闪烁不同的颜色。

单片机C语言小程序

单片机C语言小程序

单片机C语言小程序#include <at89x51.h>#include <absacc.h>#define V AR XBYTE[0x00] /*V AR为外部位址0000*/#define read 0 /*93c46读取的识别码READ=0*/#define write 2 /*93c46写入的识别码WRITE=2*/#define ewen 4 /*93C46写致能的识别码EWEN=4*/#define ewds 6 /*93C46写除能的识别码EWDS=6*/#define cs INT0 /*93C46 CS接脚=8051 RD P3.2*/#define clk INT1 /*93C46 CLK接脚=8051 WR P3.3*/#define di T0 /*93C46 DI接脚=8051 T1 P3.4*/#define d0 T1 /*93C46 DO接脚=8051 T0 P3.5*/#define LOW 0x49 /*存放测试温度的下限值*/#define HIGH 0x51 /*存放测试温度的上限值*/bit FLAG0=0; /*宣告TIMER0响应旗号*///外接工业专用温度传感器时,目前设置测量温度为0-99度:static const char tab[13]={0x3a,0x53,0x6f,0x8a,0xa3, /*0度,10度,20度,30度,40度*/0xB8,0xC8,0xD5,0xDE,0xE5, /*50度,60度,70度,80度,90度*/0xEA,0xEE}; /*100度,110度*///使用板上AD590温度传感器时,目前设置测量温度为0-99度://static const char tab[13]={0x88,0x8d,0x92,0x97,0x9c, /*0度,10度,20度,30度,40度,*/// 0xa1,0xa6,0xab,0xb0,0xb5, /*50度,60度,70度,80度,90度*/// 0xba,0xc0}; /*100度,110度*/char data1[2];char C,S,k=0;char MEP[7]; /*显示器值存放阵列*///MEP[0]=数码管最低位显示值,温度指示小数点后位//MEP[1]=数码管次低位显示值,温度指示个位数//MEP[2]=数码管高位显示值,温度指示十位数//MEP[3]=数码管最低位显示值,功能显示目前定为1,2,3,4,5//MEP[4]=//MEP[5]=暂放置温度显示值,高4位为温度指示十位数值,低4位为温度指示个位数值//MEP[6]=在温度显示与电压调整副程式中,将测量值C暂存MEP[6]中unsigned char combuf[10];unsigned char ADR46,CH,CL,m,C1,C2; /*ADR46,93C46位址,CH高位元组,CL低*/ int sec,sec1;char ptr=0,ptr1=0x10,psr=0; /*ptr显示器值存放阵MEP[]指标,ptr1显示器扫描指标*/ char count=100,sb=0;void delay (unsigned int value) /*延时副程式*/{while (value!=0) value--; /*10us延时*/}void COMP(); /*宣告比较现在温度与设定温度副程式*/void SET();void disp(); /*宣告设定温度副程式*/void to9346(char c); /*宣告TO93C46副程式*/void SDT46(char c); /*宣告串入副程式*/RDT46(); /*宣告串出副程式*/void clear(void); /*宣告清除按键存放/显示器阵列MEP[]副副程式*/void xch(void); /*宣告按键存放/显示器阵列MEP[]右键滚入副程式*/void sjust(void); /*温度显示慢跳调整副程式*/void temper(); /*宣告温度显示与电压调整副程式*/void UP(); /*宣告温度上升键防抖动副程式*/void UPA(); /*宣告温度设置上升副程式*/void DOWN(); /*宣告温度下降键防抖动副程式*/void DOWNA(); /*宣告温度设置下降副程式*/void FONTION(); /*宣告模式键判断模式副程式*/void buf(); /*宣告从93C46取设定值副程式*/void SA VE(); /*宣告设置存储副程式*///********************************************************main() /*主程式*/{TMOD=0x11; /*TIMER0,TIMER1工作在MODE1*/TH0=(65535-50000)/256; /*设定TIMER0初值,50ms*/TL0=(65536-50000)%256;TH1=(65535-4000)/256; /*设定TIMER1初值,4ms*/TL1=(65536-4000)%256;IE=0x8a; /*TIMER0,TIMER1中断致能*/TR1=1; /*启动TIMER1*/P2_7=1; /*测试用,温度下限指示*/P2_6=1; /*测试用,温度在正常上下限间指示*/P2_5=1; /*测试用,温度上限指示*/buf(); /*从93C46取设定值副程式*/while(1) /*无条件循环*/{P3_1=0;MEP[3]=0xff; /*将模式位置零*/V AR=0x00; /*产生写入信号WR=0,令ADC0804开始转换*/while (P2_0==1); /*侦测ADC0804的接脚INTR=0否?是则转换完成*/S=V AR; /*读取ADC0804资料,存入C*/sjust(); /*温度显示慢跳调整副程式*/temper(); /*呼叫温度显示调整副程式*/MEP[5]=(MEP[2] < <4)|MEP[1];if(P2_4==0) SET(); /*如果模式键P2.4按下,则呼叫SET副程式,否则跳过副程式*/if(MEP[5] <combuf[5]) { P2_7=0; /*如果测试温度小于设定温度下限,等式成立时,则将低温指示打开P2_7=0*/P2_6=P2_5=1; /*关闭指示灯*/}if(MEP[5]> combuf[6]) { P2_5=0; /*如果测试温度大于设定温度上限,等式成立时,则将高温指示打开P2_5=0*/P2_7=P2_6=1; /*关闭指示灯*/}if(combuf[5] <MEP[5])if(MEP[5] <combuf[6]) { P2_6=0; /*如果测试温度介于设定温度上下限之间,则将正常指示打开P2_6=0*/ P2_7=P2_5=1;}} /*跳至while(1),无条件循环*/单片机的C语言轻松入门随着单片机开发技术的不断发展,目前已有越来越多的人从普遍使用汇编语言到逐渐使用高级语言开发,其中主要是以C语言为主,市场上几种常见的单片机均有其C语言开发环境.这里以最为流行的80C51单片机为例来学习单片机的C语言编程技术.本书共分六章,每章一个专题,以一些待完成的任务为中心,围绕该任务介绍C语言的一些知识,每一个任务都是可以独立完成的,每完成一个任务,都能掌握一定的知识,等到所有的任务都完成后,即可以完成C语言的入门工作.第1章C语言概述及其开发环境的建立学习一种编程语言,最重要的是建立一个练习环境,边学边练才能学好.Keil软件是目前最流行开发80C51系列单片机的软件,Keil提供了包括C编译器,宏汇编,连接器,库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境( Vision)将这些部份组合在一起.在学会使用汇编语言后,学习C语言编程是一件比较容易的事,我们将通过一系列的实例介绍C语言编程的方法.图1-1所示电路图使用89S52单片机作为主芯片,这种单片机性属于80C51系列,其内部有8K的FLASH ROM,可以反复擦写,并有ISP功能,支持在线下载,非常适于做实验.89S52的P1引脚上接8个发光二极管,P3.2~P3.4引脚上接4个按钮开关,我们的任务是让接在P1引脚上的发光二极管按要求发光.1.1 简单的C程序介绍例1-1: 让接在P1.0引脚上的LED发光./*************************************************平凡单片机工作室Copyright 2003 pingfan's mcustudioAll rights Reserved作者:周坚dddl.c单灯点亮程序*************************************************/图1-1 接有LED的单片机基本电路P1.0EA/VPPVCCXTAL2XTAL1GNDRST+5V+5V+R1E110K10UCY27P27P1KPZ1D8D189×××#include "reg51.h"sbit P1_0=P1^0;void main(){ P1_1=0;}这个程序的作用是让接在P1.0引脚上的LED点亮.下面来分析一下这个C语言程序包含了哪些信息.1)"文件包含"处理.程序的第一行是一个"文件包含"处理.所谓"文件包含"是指一个文件将另外一个文件的内容全部包含进来,所以这里的程序虽然只有4行,但C编译器在处理的时候却要处理几十或几百行.这里程序中包含REG51.h 文件的目的是为了要使用P1这个符号,即通知C编译器,程序中所写的P1是指80C51单片机的P1端口而不是其它变量.这是如何做到的呢打开reg51.h可以看到这样的一些内容:/*-------------------------------------------------------------------------REG51.HHeader file for generic 80C51 and 80C31 microcontroller.Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software, Inc.All rights reserved.--------------------------------------------------------------------------*//* BYTE Register */sfr P0 = 0x80;sfr P1 = 0x90;sfr P2 = 0xA0;sfr P3 = 0xB0;sfr PSW = 0xD0;sfr ACC = 0xE0;sfr B = 0xF0;sfr SP = 0x81;sfr DPL = 0x82;sfr DPH = 0x83;sfr PCON = 0x87;sfr TCON = 0x88;sfr TMOD = 0x89; sfr TL0 = 0x8A; sfr TL1 = 0x8B; sfr TH0 = 0x8C; sfr TH1 = 0x8D; sfr IE = 0xA8;sfr IP = 0xB8;sfr SCON = 0x98; sfr SBUF = 0x99; /* BIT Register */ /* PSW */sbit CY = 0xD7; sbit AC = 0xD6; sbit F0 = 0xD5; sbit RS1 = 0xD4; sbit RS0 = 0xD3; sbit OV = 0xD2; sbit P = 0xD0;/* TCON */sbit TF1 = 0x8F; sbit TR1 = 0x8E; sbit TF0 = 0x8D; sbit TR0 = 0x8C; sbit IE1 = 0x8B; sbit IT1 = 0x8A; sbit IE0 = 0x89; sbit IT0 = 0x88;/* IE */sbit EA = 0xAF; sbit ES = 0xAC; sbit ET1 = 0xAB; sbit EX1 = 0xAA; sbit ET0 = 0xA9; sbit EX0 = 0xA8; /* IP */sbit PS = 0xBC; sbit PT1 = 0xBB; sbit PX1 = 0xBA; sbit PT0 = 0xB9; sbit PX0 = 0xB8; /* P3 */sbit RD = 0xB7; sbit WR = 0xB6; sbit T1 = 0xB5;sbit T0 = 0xB4;sbit INT1 = 0xB3;sbit INT0 = 0xB2;sbit TXD = 0xB1;sbit RXD = 0xB0;/* SCON */sbit SM0 = 0x9F;sbit SM1 = 0x9E;sbit SM2 = 0x9D;sbit REN = 0x9C;sbit TB8 = 0x9B;sbit RB8 = 0x9A;sbit TI = 0x99;sbit RI = 0x98;熟悉80C51内部结构的读者不难看出,这里都是一些符号的定义,即规定符号名与地址的对应关系.注意其中有sfr P1 = 0x90;这样的一行(上文中用黑体表示),即定义P1与地址0x90对应,P1口的地址就是0x90 (0x90是C语言中十六进制数的写法,相当于汇编语言中写90H).从这里还可以看到一个频繁出现的词:sfrsfr并标准C语言的关键字,而是Keil为能直接访问80C51中的SFR而提供了一个新的关键词,其用法是:sfrt 变量名=地址值.2)符号P1_0来表示P1.0引脚.在C语言里,如果直接写P1.0,C编译器并不能识别,而且P1.0也不是一个合法的C语言变量名,所以得给它另起一个名字,这里起的名为P1_0,可是P1_0是不是就是P1.0 呢你这么认为,C编译器可不这么认为,所以必须给它们建立联系,这里使用了Keil C 的关键字sbit来定义,sbit的用法有三种:第一种方法:sbit 位变量名=地址值第二种方法:sbit 位变量名=SFR名称^变量位地址值第三种方法:sbit 位变量名=SFR地址值^变量位地址值如定义PSW中的OV可以用以下三种方法:sbit OV=0xd2 (1)说明:0xd2是OV的位地址值sbit OV=PSW^2 (2)说明:其中PSW必须先用sfr定义好sbit OV=0xD0^2 (3)说明:0xD0就是PSW的地址值因此这里用sfr P1_0=P1^0;就是定义用符号P1_0来表示P1.0引脚,如果你愿意也可以起P10一类的名字,只要下面程序中也随之更改就行了.3)main称为"主函数".每一个C语言程序有且只有一个主函数,函数后面一定有一对大括号"{}",在大括号里面书写其它程序.从上面的分析我们了解了部分C语言的特性,下面再看一个稍复杂一点的例子.例1-2 让接在P1.0引脚上的LED闪烁发光/*************************************************平凡单片机工作室Copyright 2003 pingfan's mcustudioAll rights Reserved作者:周坚ddss.c单灯闪烁程序*************************************************/#include "reg51.h"#define uchar unsigned char#define uint unsigned intsbit P10=P1^0;/*延时程序由Delay参数确定延迟时间*/void mDelay(unsigned int Delay){ unsigned int i;for(;Delay>0;Delay--){ for(i=0;iNew Project…"菜单,出现对话框,要求给将要建立的工程起一个名字,这里起名为exam2,不需要输入扩展名.点击"保存"按钮,出现第二个对话框,如图1-2所示,这个对话框要求选择目标CPU(即你所用芯片的型号),Keil支持的CPU很多,这里选择Atmel公司的89S52芯片.点击AT M E L前面的"+"号,展开该层,点击其中的89S52, 然后再点击"确定"按钮,回到主窗口,此时,在工程窗口的文件页中,出现了"Target 1",前面有"+"号,点击"+"号展开,可以看到下一层的"Source Group1",这时的工程还是一个空的工程,里面什么文件也没有,需要手动把刚才编写好的源程序加入,点击"Source Group1"使其反白显示,然后,点击鼠标右键,出现一个下拉菜单,如图1-3所示,选中其中的"Add file to Group"Source Group1",出现一个对话框,要求寻找源文件.双击exam2.c文件,将文件加入项目,注意,在文件加入项目后,该对话框并不消失,等待继续加入其它文件,但初学时常会误认为操作没有成功而再次双击同一文件,这时会出现如图1-4所示的对话框,提示你所选文件已在列表中,此时应点击"确定",返回前一对话框,然后点击"Close"即可返回主接口,返回后,点击"Source Group 1"前的加号,exam3.c文件已在其中.双击文件名,即打开该源程序.1.3 工程的详细设置工程建立好以后,还要对工程进行进一步的设置,以满足要求.首先点击左边Project窗口的Target 1,然后使用菜单"Project->Option for target 'target1'"即出现对工程设置的对话框,这个对话框共有8个页面,大部份设置项取默认值就行了. Target页图1-2 选择单片机型号图1-3 加入文件如图1-5所示,Xtal后面的数值是晶振频率值,默认值是所选目标CPU的最高可用频率值,该值与最终产生的目标代码无关,仅用于软件模拟调试时显示程序执行时间.正确设置该数值可使显示时间与实际所用时间一致,一般将其设置成与你的硬件所用晶振频率相同,如果没必要了解程序执行的时间,也可以不设.Memory Model用于设置RAM使用情况,有三个选择项:Small: 所有变量都在单片机的内部RAM中;Compact:可以使用一页(256字节)外部扩展RAM;Larget: 可以使用全部外部的扩展RAM.Code Model用于设置ROM空间的使用,同样也有三个选择项:Small:只用低于2K的程序空间;Compact:单个函数的代码量不能超过2K,整个程序可以使用64K程序空间;Larget:可用全部64K空间;这些选择项必须根据所用硬件来决定,由于本例是单片应用,所以均不重新选择,按默认值设置.Operating:选择是否使用操作系统,可以选择Keil提供了两种操作系统:Rtx tiny和Rtx full,也可以不用操作系统(None),这里使用默认项None,即不用操作系统.图1-5 设置目标图1-4 重复加入源程序得到的提示OutPut页如图1-6所示,这里面也有多个选择项,其中Creat Hex file用于生成可执行代码文件,该文件可以用编程器写入单片机芯片,其格式为intelHEX格式,文件的扩展名为.HEX,默认情况下该项未被选中,如果要写片做硬件实验,就必须选中该项.工程设置对话框中的其它各页面与C51编译选项,A51的汇编选项,BL51连接器的连接选项等用法有关,这里均取默认值,不作任何修改.以下仅对一些有关页面中常用的选项作一个简单介绍.Listing页该页用于调整生成的列表文件选项.在汇编或编译完成后将产生(*.lst)的列表文件,在连接完成后也将产生(*.m51)的列表文件,该页用于对列表文件的内容和形式进行细致的调节,其中比较常用的选项是"C Compile Listing"下的"Assamble Code"项,选中该项可以在列表文件中生成C语言源程序所对应的汇编代码,建议会使用汇编语言的C初学者选中该项,在编译完成后多观察相应的List文件,查看C源代码与对应汇编代码,对于提高C语言编程能力大有好处.C51页该页用于对Keil的C51编译器的编译过程进行控制,其中比较常用的是"Code Optimization"组,如图1.7所示,该组中Level是优化等级,C51在对源程序进行编译时,可以对代码多至9级优化,默认使用第8级,一般不必修改,如果在编译中出现一些问题,可以降低优化级别试一试.Emphasis是选择编译优先方式,第一项是代码量优化(最终生成的代码量小);第二项是速度优先(最终生成的代码速度快);第三项是缺省.默认采用速度优先,可根据需要更改.图1-6 设置输出文件Debug页该页用于设置调试器,Keil提供了仿真器和一些硬件调试方法,如果没有相应的硬件调试器,应选择Use Simulator,其余设置一般不必更改,有关该页的详细情况将在程序调试部分再详细介绍.至此,设置完成,下面介绍如何编译,连接程序以获得目标代码,以及如何进行程序的调试工作.1.4 编译,连接下面我们通过一个例子来介绍C程序编译,连接的过程.这个例子使P1口所接LED以流水灯状态显示.将下面的源程序输入,命名为exam3.c,并建立名为exam3的工程文件,将exam3.c文件加入该工程中,设置工程,在Target页将Xtal后的值由24.0改为12.0,以便后面调试时观察延时时间是否正确,本项目中还要用到我们所提供的实验仿真板,为此需在Debug页对Dialog DLL对话框作一个设置,在进行项目设置时点击Debug,打开Debug页,可以看到Dialog DLL对话框后的Parmeter:输入框中已有默认值-pAT52,在其后键入空格后再输入-dledkey,如图1-8所示.例1-3 使P1口所接LED以流水灯状态显示/**************************************************; 平凡单片机工作室; ; Copyright 2003 pingfan's McuStudio; All rights Reserved图1-7C51编译器选项;作者:周坚;lsd.c;流水灯程序**************************************************/#include "reg51.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned int/*延时程序由Delay参数确定延迟时间*/void mDelay(unsigned int Delay){ unsigned int i;for(;Delay>0;Delay--){ for(i=0;iBuild target,对当前工程进行连接,如果当前文件已修改,将先对该文件进行编译,然后再连接以产生目标代码;如果选择Rebuild All target files将会对当前工程中的所有文件重新进行编译然后再连接,确保最终生产的目标代码是最新的,而Translate ….项则仅对当前文件进行编译,不进行连接.以上操作也可以通过工具栏按钮直接进行.图1-9是有关编译,设置的工具栏按钮,从左到右分别是:编译,编译连接,全部重建,停止编译和对工程进行设置.编译过程中的信息将出现在输出窗口中的Build页中,如果源程序中有语法错误,会有错误报告出现,双击该行,可以定位到出错的位置,对源程序修改之后再次编译,最终要得到如图1-10所示的结果,提示获得了名为exam3.hex的文件,该文件即可被编程器读入并写到芯片中,同时还可看到,该程序的代码量(code=63),内部RAM的使用量(data=9),外部RAM的使用量(xdata=0)等一些信息.除此之外,编译,连接还产生了一些其它相关的文件,可被用于Keil的仿真与调试,到了这一步后即进行调试.1.5 程序的调试在对工程成功地进行汇编,连接以后,按Ctrl+F5或者使用菜单Debug->Start/Stop Debug Session即可进入调试状态,Keil内建了一个仿真CPU用来模拟执行程序,该仿真CPU功能强大,可以在没有硬件和仿真机的情况下进行程序的调试.进入调试状态后,Debug菜单项中原来不能用的命令现在已可以使用了,多出一个用于运行和调试的工具条,如图1-11所示,Debug菜单上的大部份命令可以在此找到对应的快捷按钮,从左到右依次是复位,运行,暂停,单步,过程单步,执行完当前子程序,运行到当前行,下一状态,打开跟踪,观察跟踪,反汇编窗口,观察窗口,代码作用范围分析,1#串行窗口,内存窗口,性能分析,工具按钮等命令.点击菜单Peripherals,即会多出一项"键盘LED仿真板(K)",选中该项,即会出现如图1-9 有关编译,连接,项目设置的工具条图1-11 调试工具条图1-10 编译,连接后得到目标代码图1-12所示界面.使用菜单STEP或相应的命令按钮或使用快捷键F11可以单步执行程序,使用菜单STEP OVER或功能键F10可以以过程单步形式执行命令,所谓过程单步,是指把C语言中的一个函数作为一条语句来全速执行.按下F11键,可以看到源程序窗口的左边出现了一个黄色调试箭头,指向源程序的第一行.每按一次F11,即执行该箭头所指程序行,然后箭头指向下一行,当箭头指向"mDelay(1000);"行时,再次按下F11,会发现,箭头指向了延时子程序mDelay的第一行.不断按F11键,即可逐步执行延时子程序.如果mDelay程序有错误,可以通过单步执行来查找错误,但是如果mDelay程序已正确,每次进行程序调试都要反复执行这些程序行,会使得调试效率很低,为此可以在调试时使用F10来替代F11,在main函数中执行到mDelay(1000)时将该行作为一条语句快速执行完毕.Keil软件还提供了一些窗口,用以观察一些系统中重要的寄存器或变量的值,这也是很重要的调试方法.以下通过一个对延时程序的延迟时间的调整来对这些调试方法作一个简单的介绍.这个程序中用到了延时程序mDelay,如果使用汇编语言编程,每段程序的延迟时间可以非常精确地计算出来,而使用C语言编程,就没有办法事先计算了.为此,可以使用观察程序执行时间的方法了来解.进入调试状态后,窗口左侧是寄存器和一些重要的系统变量的窗口,其中有一项是sec,即统计从开始执行到目前为止用去的时间.按F10,以过程单步的形式执行程序,在执行到mDelay(1000)这一行之前停下,查看sec的值(把鼠标停在sec 后的数值上即可看到完整的数值),记下该数值,然后按下F10,执行完mDelay(1000)后再次观察sec值,如图1-13所示,这里前后两次观察到的值分别是:0.00040400和1.01442600, 其差值为1.014022s,如果将该值改为124可获得更接近于1s的数值,而当该值取123时所获得的延时值将小于1s,因此,最佳的取值应该是124.图1-12 51单片机实验仿真板1.6 C语言的一些特点通过上述的几个例子,可以得出一些结论:1,C程序是由函数构成的,一个C源程序至少包括一个函数,一个C源程序有且只有一个名为main()的函数,也可能包含其它函数,因此,函数是C程序的基本单位.主程序通过直接书写语句和调用其它函数来实现有关功能,这些其它函数可以是由C语言本身提供给我们的(如例3中的_crol_(…)函数),这样的函数称之为库函数,也可以是用户自己编写的(如例2,3中用的mDelay(…)函数),这样的函数称之为用户自定义函数.那么库函数和用户自定义函数有什么区别呢简单地说,任何使用Keil C语言的人,都可以直接调用C的库函数而不需要为这个函数写任何代码,只需要包含具有该函数说明的相应的头文件即可;而自定义函数则是完全个性化的,是用户根据自己需要而编写的.Keil C提供了100多个库函数供我们直接使用.2,一个函数由两部份组成:(1)函数的首部,即函数的第一行.包括函数名,函数类型,函数属性,函数参数(形参)名,参数类型.例如:void mDelay (unsigned int DelayTime)一个函数名后面必须跟一对圆括号,即便没有任何参数也是如此.(2)函数体,即函数首部下面的大括号"{}"内的部份.如果一个函数内有多个大括号,则最外层的一对"{}"为函数体的范围.函数体一般包括:声明部份:在这部份中定义所用到的变量,例1.2中unsigned char j.执行部份:由若干个语句组成.在某此情况下也可以没有声明部份,甚至即没有声明部份,也没有执行部份,如:void mDelay(){}这是一个空函数,什么也不干,但它是合法的.在编写程序时,可以利用空函数,比如主程序需要调用一个延时函数,可具体延时多少,怎么个延时法,暂时还不清楚,我们可以主程序的框架结构弄清,先编译通过,把架子搭起来再说,至于里面的细节,可以在以后慢慢地填,这时利用空函数,先写这么一个函数,这样在主程序中就可以调用它了.3,一个C语言程序,总是从main函数开始执行的,而不管物理位置上这个main()放在什么地方.例1.2中就是放在了最后,事实上这往往是最常用的一种方式.图1-13 观察sec确定延时时间4,主程序中的mDelay如果写成mdelay就会编译出错,即C语言区分大小写,这一点往往让初学者非常困惑,尤其是学过一门其它语言的人,有人喜欢,有人不喜欢,但不管怎样,你得遵守这一规定.5,C语言书写的格式自由,可以在一行写多个语句,也可以把一个语句写在多行.没有行号(但可以有标号),书写的缩进没有要求.但是建议读者自己按一定的规范来写,可以给自己带来方便.6,每个语句和资料定义的最后必须有一个分号,分号是C语句的必要组成部份.7,可以用/*…..*/的形式为C程序的任何一部份作注释,在"/*"开始后,一直到"*/"为止的中间的任何内容都被认为是注释,所以在书写特别是修改源程序时特别要注意,有时无意之中删掉一个"*/",结果,从这里开始一直要遇到下一个"*/"中的全部内容都被认为是注释了.原本好好的一个程序,编译已过通过了,稍作修改,一下出现了几十甚至上百个错误,初学C的人往往对此深感头痛,这时就要检查一下,是不是有这样的情况,如果有的话,赶紧把这个"*/"补上.特别地,Keil C也支持C++风格的注释,就是用"//"引导的后面的语句是注释,例:P1_0=!P1_0; //取反P1.0这种风格的注释,只对本行有效,所以不会出现上面的问题,而且书写比较方便,所以在只需要一行注释的时候,我们往往采用这种格式.但要注意,只有Keil C支持这种格式,早期的Franklin C以及PC机上用的TC都不支持这种格式的注释,用上这种注释,编译时通不过,会报告编译错误.第2章分支程序设计第一部分课程学习了如何建立Keil C的编程环境,并了解了一些C语言的基础知识,这一部分将通过一个键控流水灯程序的分析来学习分支程序设计.2.1 程序功能与实现硬件电路描述如下:89S52单片机的P1口接有8个LED,当某一端口输出为"0"时,相应的LED点亮,P3.2,P3.3,P3.4,P3.5分别接有四个按钮K1~K4,按下按钮时,相应引脚被接地.现要求编写可键控的流水灯程序,当K1按下时,开始流动,K2按下时停止流动,全部灯灭,K3使灯由上往下流动,K4使灯由下往上流动.下面首先给出程序,然后再进行分析.例2-1:键控流水灯的程序#include "reg51.h"#include "intrins.h"#define uchar unsigned charvoid mDelay(unsigned int DelayTime){ unsigned int j=0;for(;DelayTime>0;DelayTime--){ for(j=0;j2的结果为真,而3<2的结果为假.C语言一共提供了6种关系运算符:"<"(小于),""(大于),">=(大于等于)","=="(等于)和"!="(不等于).用关系运算符将两个表达式连接起来的式子,称为关系表达式.例:a>b,a+b>b+c,(a=3)>=(b=5)等都是合法的关系表达式.关系表达式的值只有两种可能,即"真"和"假".在C语言中,没有专门的逻辑型变量,如果运算的结果是"真",用数值"1"表示,而运算的结果是"假"则用数值"0"表示.如式子:x1=3>2的结果是x1等于1,原因是3>2的结果是"真",即其结果为1,该结果被"="号赋给了x1,这里须注意,"="不是等于之意(C语言中等于用"=="表示),而是赋值号,即将该号后面的值赋给该号前面的变量,所以最终结果是x1等于1.式子:x2=30;DelayTime--)单片机的C语言轻松入门25{ for(j=0;j<125;j++){;}}}在main函数中用mDelay(1000)的形式调用该函数时,延时时间约为1s.如果将该函数中的unsigned int j改为unsigned char j,其他任何地方都不作更改,重新编译,连接后,可以发现延迟时间变为约0.38s.int和char是C语言中的两种不同的数据类型,可见程序中仅改变数据类型就会得到不同的结果.那么int和char型的数据究竟有什么区别呢3.3.1 整型数据1.整型数据在内存中的存放形式如果定义了一个int型变量i:int i=10; /*定义i为整型变量,并将10赋给该变量*/在Keil C中规定使用二个字节表示int型数据,因此,变量i在内存中的实际占用情况如下:0000,0000,0000,1010也就是整型数据总是用2个字节存放,不足部分用0补齐.事实上,数据是以补码的形式存在的.一个正数的补码和其原码的形式是相同的.如果数值是负的,补码的形式就不一样了.求负数的补码的方法是:将该数的绝对值的二进制形式取反加1.例如,-10,第一步取-10的绝对值10,其二进制编码是1010,由于是整型数占。

单片机汇编语言设计实例详解

单片机汇编语言设计实例详解

单片机汇编语言设计实例详解引言:单片机是嵌入式系统中常见的控制器,它具有体积小、功耗低、成本低等特点,被广泛应用于家电、汽车、工业控制等领域。

而汇编语言作为单片机的底层语言,直接操作硬件资源,具有高效性和灵活性。

本文将以一个实例,详细讲解如何使用单片机汇编语言进行设计。

实例背景:假设我们要设计一个温度检测系统,要求实时监测环境温度,并在温度超过某个阈值时触发报警。

硬件准备:1. 单片机:我们选择一款常用的8051单片机作为例子。

2. 温度传感器:我们选择一款数字温度传感器,它可以通过串行通信与单片机进行数据交互。

3. 显示屏:为了方便实时显示温度信息,我们选用一款数码管显示屏。

软件准备:1. Keil C51:这是一款常用的单片机开发软件,支持汇编语言的编写和调试。

2. 串口调试助手:用于测试串口通信功能。

设计步骤:1. 硬件连接:将单片机与温度传感器、显示屏连接起来。

注意接线的正确性和稳定性。

2. 编写初始化程序:使用汇编语言编写单片机的初始化程序,包括端口初始化、中断向量表设置、定时器初始化等。

3. 串口通信设置:通过串口与温度传感器进行数据交互,需要设置串口通信的波特率、数据位数、停止位等参数。

4. 温度检测程序:编写汇编语言程序,实时读取温度传感器的数据,并将数据送至显示屏进行显示。

5. 温度报警程序:在温度超过设定阈值时,触发报警程序,可以通过蜂鸣器等外设发出警报信号。

6. 调试与测试:使用Keil C51进行程序调试,通过串口调试助手测试串口通信和温度显示、报警功能。

设计思路:1. 初始化程序设计:先设置端口的输入输出方向,再设置中断向量表,最后初始化定时器。

这样可以确保程序的稳定性和可靠性。

2. 串口通信设置:根据温度传感器的通信协议,设置串口的波特率、数据位数、停止位等参数。

注意要与传感器的通信规范保持一致。

3. 温度检测程序设计:通过串口读取温度传感器的数据,并进行相应的处理。

贪吃蛇游戏单片机程序

贪吃蛇游戏单片机程序

贪吃蛇游戏单片机程序贪吃蛇游戏是一款经典的游戏,其简洁的规则和有趣的玩法使其成为了许多人喜爱的游戏之一。

在单片机中实现贪吃蛇游戏需要利用单片机的输入输出功能以及控制算法来完成游戏的控制和显示。

下面是一个简单的贪吃蛇游戏单片机程序的实现。

首先,我们需要定义一些常量和变量来表示游戏中的一些参数和状态。

比如,我们可以定义一个常量来表示屏幕的宽度和高度,以及一个变量来表示蛇的长度和当前的移动方向。

c#define SCREEN_WIDTH 16#define SCREEN_HEIGHT 8#define SNAKE_MAX_LENGTH 64int snake_length;int snake_direction;接着,我们需要定义一个数据结构来表示蛇的身体,可以使用一个数组来表示蛇的每一节身体的位置。

同时,我们还需要定义一个数据结构来表示食物的位置。

cstruct point {int x;int y;};struct point snake[SNAKE_MAX_LENGTH];struct point food;然后,我们可以编写一个函数来初始化游戏的状态。

在这个函数中,我们需要初始化蛇的位置和长度,以及随机生成食物的位置。

void init_game{// 初始化蛇的位置和长度snake[0].x = SCREEN_WIDTH / 2;snake[0].y = SCREEN_HEIGHT / 2;snake_length = 1;// 随机生成食物的位置food.x = rand% SCREEN_WIDTH;food.y = rand% SCREEN_HEIGHT;}接下来,我们需要编写一个函数来处理用户输入,并更新蛇的移动方向。

这个函数可以通过读取按键的状态来实现,比如可以通过一个变量来记录当前的按键状态。

cvoid handle_input{// 读取按键状态int key = read_key// 根据按键状态更新蛇的移动方向if (key == 'W' && snake_direction != 'S') {snake_direction = 'W';} else if (key == 'S' && snake_direction != 'W') {snake_direction = 'S';} else if (key == 'A' && snake_direction != 'D') {snake_direction = 'A';} else if (key == 'D' && snake_direction != 'A') {snake_direction = 'D';}然后,我们可以编写一个函数来更新蛇的位置。

单片机c语言程序设计实例100例--基于805i+proteus仿真

单片机c语言程序设计实例100例--基于805i+proteus仿真

以下是一个基于8051单片机和Proteus仿真环境的C语言程序设计实例:实例1:点亮LED灯
在这个例子中,我们将使用C语言编写一个简单的程序来控制8051单片机的一个I/O引脚,使其驱动一个LED灯。

c代码:
要使用Proteus进行仿真,你需要按照以下步骤操作:
1. 打开Proteus软件,创建一个新的设计工程。

2. 在元件库中搜索并添加相应的8051单片机型号(如AT89C51)和LED 元件到工作区。

3. 根据实际硬件连接,正确配置单片机的引脚和LED的连接。

4. 右键单击单片机元件,选择“Edit Component”打开编辑窗口。

5. 在“Program File(s)”区域,点击右侧的浏览按钮,选择你的C语言源文件(如上述的main.c)。

6. 点击“OK”关闭编辑窗口,然后点击工具栏上的“Play”按钮开始仿真。

在仿真过程中,你应该能看到LED灯被点亮,这表明你的C语言程序已经在Proteus环境中成功运行。

以上只是一个基础的例子,实际的"单片机C语言程序设计实例100例--基于8051+Proteus仿真"会包含更复杂和多样化的应用场景,包括定时器/计数器
应用、中断处理、串口通信、ADC/DAC转换、液晶显示等等。

每个实例都会详细介绍程序设计思路、代码实现以及如何在Proteus中进行仿真调试。

通过这些实例的学习和实践,你可以逐步掌握8051单片机的C语言编程技巧和Proteus仿真环境的使用方法。

单片机中断小程序

单片机中断小程序

#include<reg51.h>#include<intrins.h>typedef unsigned char uc;typedef unsigned int ui;typedef unsigned long ul;void udisplay(uc m,uc n);void delay100us();void delay1ms();void delay100ms();sfr P4 = 0xc0;sfr P4SW = 0xbb;sbit DAT_DIS = P0^4; /* 164 595 公用数据线*/sbit CLK_164 = P0^5; /* 164时钟线*/sbit CLK_595 = P0^6; /* 595时钟线*/sbit RCLK_595 = P0^7; /* 595锁存线*/sbit FMQ = P4^5; /* 蜂鸣器*/uc code displayduan[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x00,0x40};/* 0 1 2 3 4 5 6 7 8 9 SP - *///秒分时日月星期年uc code displaywei[]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01,0xff};uc a,b,c,d,e,f,g,h;ul sum;/*************************************************************//* 功能:在某一位数码管上显示某一个数值/* 输入:m,n/*************************************************************/void display(uc m,uc n){uc wei, duan, i;wei = 0x00;for(i=0; i<8; i++){ /* 关显示*/DAT_DIS = (bit)(wei & 0x80);wei <<= 1 ;CLK_595 = 0 ;_nop_();CLK_595 = 1 ;}RCLK_595 = 0;_nop_();RCLK_595 = 1;duan = displayduan[n]; /* 送段码*/for(i=0; i<8; i++){DAT_DIS = (bit)(duan & 0x80);duan <<= 1;CLK_164 = 1;_nop_();CLK_164 = 0;}wei = displaywei[m];for(i=0; i<8; i++){ /* 开显示*/ DAT_DIS = (bit)(wei & 0x80);wei <<= 1 ;CLK_595 = 0 ;_nop_();CLK_595 = 1 ;}RCLK_595 = 0;_nop_();RCLK_595 =1;}void udisplay(uc m,uc n){uc wei, duan, i;duan = displayduan[n]; /* 送段码*/for(i=0; i<8; i++){DAT_DIS = (bit)(duan & 0x80);duan <<= 1;CLK_164 = 1;_nop_();CLK_164 = 0;}wei = displaywei[m];for(i=0; i<8; i++){ /* 开显示*/DAT_DIS = (bit)(wei & 0x80);wei <<= 1 ;CLK_595 = 0 ;_nop_();CLK_595 = 1 ;}RCLK_595 = 0;_nop_();RCLK_595 =1;}void t0(void) interrupt 1 using 0{uc i;TH0=(65536-50000)/256;TL0=(65536-50000)%256;i++;if(i==20){i=0;sum++;{h = sum/10000000;g = sum%10000000/1000000;f = sum%1000000/100000;e = sum%100000/10000;d = sum%10000/1000;c = sum%1000/100;b = sum%100/10;a = sum%10;}}}main(){P4SW=0x70;TMOD=0x01;TH0=(65536-50000)/256;TL0=(65536-50000)%256;TR0=1;ET0=1;EA=1;while(1){display(1,b);display(0,a);display(2,c);display(3,d);display(4,e);display(5,f);display(6,g);display(7,h);/* if((c==1)&&(b==0)&&(a==0))FMQ=0;if((c==1)&&(b==0)&&(a==5))FMQ=1;*/}}void delay100us() //@11.0592MHz {uc i, j;_nop_();_nop_();i = 2;j = 15;do{while (--j);} while (--i);}void delay1ms() //@11.0592MHz {uc i, j;_nop_();_nop_();_nop_();i = 11;j = 190;do{while (--j);} while (--i);}void delay100ms() //@11.0592MHz {unsigned char i, j, k;_nop_();_nop_();i = 5;j = 52;k = 195;do{do{while (--k);} while (--j);} while (--i);}。

单片机C语言编程实例

单片机C语言编程实例

单片机C语言编程实例前言INTEL公司的MCS-51单片机是目前在我国应用得最广泛的单片机之一.随着单片机应用技术的不断发展,许多公司纷纷以51单片机为内核,开发出与其兼容的多种芯片,从而扩充和扩展了其品种和应用领域.C语言已成为当前举世公认的高效简洁而又贴近硬件的编程语言之—。

将C语言向单片机上的移植,始于20世纪80年代的中后期。

经过十几年的努力,C语言终于成为专业化单片机上的实用高级语言。

用C语言编写的8051单片机的软件,可以大大缩短开发周期,且明显地增加软件的可读性,便于改进和扩充,从而研制出规模更大、性能更完善的系统。

因此,不管是对于新进入这一领域的开发者来说,还是对于有多年单片机开发经验的人来说,学习单片机的C语言编程技术都是十分必要的..C语言是具有结构化.模块化编译的通用计算机语言,是国际上应用最广。

最多的计算语言之一。

C51是在通用C语言的基础上开发出的专门用于51系列单片机编程的C语言。

与汇编语言相比,C51在功能上.结构上以及可读性。

可移植性。

可维护性等方面都有非常明显的优势.目前最先进、功能最强大、国内用户最多的C51编译器是Keil Soft ware公司推出的KeilC51.第一章单片机C语言入门1。

1建立您的第一个C项目使用C语言肯定要使用到C编译器,以便把写好的C程序编译为机器码,这样单片机才能执行编写好的程序。

KEIL uVISION2是众多单片机应用开发软件中优秀的软件之一,它支持众多不同公司的MCS51架构的芯片,它集编辑,编译,仿真等于一体,同时还支持PLM、汇编和C语言的程序设计,它的界面和常用的微软VC++的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能.因此很多开发51应用的工程师或普通的单片机爱好者,都对它十分喜欢。

以上简单介绍了KEIL51软件,要使用KEIL51软件,必需先要安装它。

KEIL51是一个商业的软件,对于我们这些普通爱好者可以到KEIL中国代理周立功公司的网站上下载一份能编译2K的DEMO版软件,基本可以满足一般的个人学习和小型应用的开发。

单片机程序写入的操作方法

单片机程序写入的操作方法

单片机程序写入的操作方法
写入单片机程序的操作方法一般分为以下几个步骤:
1. 编写程序:使用编程语言(如C、汇编)编写单片机的程序代码。

根据需要,可以编写各种功能的程序,如控制器、传感器连接、各种输入输出等。

2. 编译程序:将编写的程序代码通过编译器进行编译,生成目标代码(通常是二进制文件)。

编译过程将源代码转换为单片机能够执行的机器代码。

3. 连接下载器和单片机:将下载器(如调试器、编程器)与单片机进行连接。

通常使用下载线连接器将它们连接起来。

4. 选择单片机型号和连接方式:在编程软件上设置好单片机的型号和连接方式。

一般可以通过选择菜单或配置文件来进行设置。

5. 切换到下载模式:将单片机切换到下载模式。

具体的切换方法根据单片机型号和下载器的不同而有所差别。

有些单片机需要在硬件上设置跳线或按下特定的按钮。

6. 下载程序:通过编程软件将编译好的目标代码下载到单片机中。

在编程软件上选择下载选项,然后点击下载按钮,等待下载完成。

7. 检查程序:下载完成后,可以通过一些调试工具检查程序是否正确地写入到单片机中。

可以使用单步执行、观察寄存器和内存等功能来进行检查。

需要注意的是,不同的单片机有不同的下载方式和编程软件。

因此,在操作之前,最好了解所使用单片机的型号、相关的下载器以及它们的软件支持。

此外,为了确保程序的正确性,需要仔细检查程序代码和编译选项。

基于c51单片机编写简单蜂鸣器音乐程序的方法

基于c51单片机编写简单蜂鸣器音乐程序的方法
/*7*/case 0x22:j=s/494;break;case 0x23:j=s/998;break;case 0x24:j=s/1967;break;
/*o*/case 0xff:j=0;break;
}
return j;
}
void sound(uint s)//给一次脉冲来进行发声的子程序,其中参数s与m_t()中的0x01等十六进制数是对应的
0x01,0x0d,0x16,0x1c,0xff,0x1c,0x1c,0x16,0x07,0x07,0x10,0x0d,0xff, 0x01,0x0d,0x16,0x1c,0xff,
0x1c,0x1c,0x22,0x1c,0x16,0x10,0x0d,0x10,0x0d,0x07,0x01,0x00} ;//*
以下是本人编写的一段简单音乐程序,程序已经在板子上调试成功,水平有限,如有不正确的地方请多包涵
*******************************************************************************************************/
#include<reg52.H>
#include <intrins.h> //内部包含延时函数_nop_();
typedef unsigned char uchar;
typedef unsigned int uint;
uint c;
sbit spk =P2^0 ; //定义p2.0口为电平信号输出端
最后在主程序中运行子程序,通过读rom里面的数组来达到连续播放各种不同音调的音的目的,这样听起来就像一首曲子了。
以下是我按以上方法编写的一个小程序:

单片机程序设计

单片机程序设计

单片机程序设计单片机(Microcontroller)是一种集成电路芯片,由中央处理器、存储器和输入输出设备组成,可用于控制电子设备的运行。

在现代电子领域中,单片机的应用越来越广泛,因此对单片机程序设计的需求也逐渐增加。

本文将介绍单片机程序设计的一般流程和注意事项。

一、单片机程序设计概述单片机程序设计是指为单片机编写软件,使其能够按照预定的功能和要求进行工作。

它包括程序设计的各个环节,如需求分析、算法设计、程序编写、调试和测试等。

通过合理设计和编写单片机程序,可以实现各种电子设备的控制和功能扩展。

二、单片机程序设计的基本流程1. 需求分析:了解单片机的使用环境、功能需求和性能要求,明确希望实现的功能。

2. 算法设计:根据需求分析结果,设计相应的算法和逻辑流程,确定程序的整体结构。

3. 硬件设计:根据单片机型号和功能需求,设计相应的硬件电路,包括输入输出接口、外设接口等。

4. 程序编写:根据算法设计和硬件设计结果,使用合适的编程语言编写单片机程序。

5. 调试和测试:在真实的硬件环境下,对程序进行调试和测试,确保程序的功能正常运行。

6. 优化和扩展:根据实际应用情况,对程序进行优化和扩展,提高程序的性能和功能。

三、单片机程序设计的注意事项1. 编程语言选择:根据单片机型号、功能需求和开发环境,选择合适的编程语言,如C语言、汇编语言等。

2. 程序结构设计:根据需求分析和算法设计结果,设计合理的程序结构,包括主程序、子程序和中断服务程序等。

3. 代码规范:编写代码时,遵循统一的代码规范,如缩进、命名规则、注释规范等,提高代码的可读性和可维护性。

4. 调试工具使用:使用合适的调试工具,如仿真器、调试器等,对程序进行调试和测试,快速排查错误。

5. 性能优化:针对程序的性能问题,进行适当的优化,如减少程序的存储空间占用、提高程序的执行效率等。

6. 安全性设计:对于涉及到安全性的应用,设计合理的安全机制,如输入检测、密码保护等,确保系统的安全可靠性。

51单片机C语言编程100例单片机c语言编程

51单片机C语言编程100例单片机c语言编程

51单片机C语言编程100例单片机c语言编程单片机是一种常用于嵌入式系统的微型计算机,可以根据预设的程序来执行指令。

而C语言是一种高级编程语言,具有较强的可读性和可移植性。

在单片机编程中,C语言是常用的编程语言之一。

本文将介绍51单片机C语言编程中的100个实例,帮助读者了解单片机编程的基本概念和技巧。

1. LED灯闪烁这是一个简单的实例,用于让LED灯交替闪烁。

在C语言中,可以使用宏定义和循环语句来实现:```c#include <reg52.h>#define LED P1void delay(unsigned int t) //延时函数{unsigned int i, j;for (i = t; i > 0; i--)for (j = 110; j > 0; j--);}void main(){while (1) //循环执行{LED = 0xFF; //LED灯亮delay(1000); //延时1秒LED = 0x00; //LED灯灭delay(1000); //延时1秒}}```2. 数码管显示这个实例演示了如何使用数码管进行数字显示。

在C语言中,可以通过控制IO口状态来实现:```c#include <reg52.h>#define LED P0unsigned char code digit[] ={ //数码管显示值表0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; void delay(unsigned int t) //延时函数{unsigned int i, j;for (i = t; i > 0; i--)for (j = 110; j > 0; j--);}void main(){unsigned int i;while (1) //循环执行{for(i=0;i<10;i++){LED = digit[i]; //显示数字delay(1000); //延时1秒}}```3. 蜂鸣器发声这个实例展示了如何使用蜂鸣器进行声音发声。

单片机c语言消息队列程序

单片机c语言消息队列程序

单片机c语言消息队列程序如何使用单片机C语言编写消息队列程序。

消息队列是一种在多任务环境中实现进程间通信的机制,可以用于在任务之间传递数据和消息。

在单片机开发中,使用消息队列可以实现不同任务之间的数据传输和通信。

本文将介绍如何使用单片机C语言编写消息队列程序。

1. 定义消息队列结构体首先,我们需要定义一个消息队列的结构体,用于存储队列的相关信息,包括队列长度、当前队列大小、队列头和尾指针等。

例如:typedef struct {int queue[QUEUE_SIZE];int head;int tail;int size;} MessageQueue;其中,QUEUE_SIZE为消息队列的最大长度,可以根据需要进行设置。

2. 初始化消息队列在程序初始化时,需要对消息队列进行初始化,包括将队列头和尾指针置为0,队列大小置为0。

例如:void initQueue(MessageQueue* queue) {queue->head = 0;queue->tail = 0;queue->size = 0;}3. 向消息队列中添加消息当有任务需要向消息队列中添加消息时,可以调用该函数。

首先,需要判断队列是否已满,如果已满则无法添加消息。

如果队列未满,则将消息添加到队列尾部,并更新队列尾指针和队列大小。

例如:void enqueue(MessageQueue* queue, int message) {if (queue->size == QUEUE_SIZE) {队列已满,无法添加消息return;}queue->queue[queue->tail] = message;queue->tail = (queue->tail + 1) QUEUE_SIZE; 更新队列尾指针queue->size++;}4. 从消息队列中取出消息当有任务需要从消息队列中取出消息时,可以调用该函数。

单片机中的软件开发流程及工具介绍

单片机中的软件开发流程及工具介绍

单片机中的软件开发流程及工具介绍在当今科技高度发达的时代,单片机作为嵌入式系统的重要组成部分,被广泛应用于各个领域。

而单片机的软件开发流程和工具选择对于项目的成功与否起着至关重要的作用。

本文将重点介绍单片机中的软件开发流程,并介绍一些常用的开发工具。

一、单片机软件开发流程1.需求分析:在开始软件开发之前,我们需要明确系统或产品的需求。

这包括功能需求、性能需求、接口需求等。

通过需求分析,我们可以确保软件开发的方向和目标。

2.系统设计:系统设计是软件开发的关键步骤。

在这一阶段,我们需要确定软件的整体架构、模块划分、算法设计等。

合理的系统设计能够提高软件的可维护性和可扩展性。

3.编码:在完成系统设计后,我们需要进行编码工作。

编码是将设计的思想转化为实际的代码实现的过程。

在编码过程中,我们需要根据需求和设计要求,使用相应的编程语言和开发工具。

4.测试与调试:编码完成后,我们需要对软件进行测试和调试。

测试是确保软件功能和性能的关键环节。

通过测试和调试,我们可以发现并解决软件中的错误和问题。

5.发布与维护:当软件经过测试并且没有问题后,我们可以将其发布。

发布后的软件需要进行维护,包括 Bug 的修复、功能的更新和性能的优化等。

二、常用的单片机软件开发工具1.Keil MDK:Keil MDK 是一款强大的嵌入式开发工具,支持众多单片机系列,如ST、NXP等。

它提供了集成开发环境(IDE)、编译器、调试器和仿真器等功能,可以帮助开发者完成单片机软件的开发和调试。

2.IAR Embedded Workbench:IAR Embedded Workbench 是一款专业的嵌入式开发环境,适用于多种单片机系列,如ARM、MSP430等。

它提供了高度优化的编译器和调试器,能够提高代码的执行效率和软件的可靠性。

3.Code Composer Studio:Code Composer Studio 是德州仪器(TI)提供的一款集成开发环境,专为MSP430、C2000等TI系列单片机设计。

51单片机简单程序实例

51单片机简单程序实例

51单片机简单程序实例
51单片机是一种常用的微控制器,下面我将给出一个简单的LED闪烁程序作为示例。

c.
#include <reg51.h>。

void delay() {。

int i, j;
for (i = 0; i < 500; i++)。

for (j = 0; j < 500; j++);
}。

void main() {。

while (1) {。

P1 = 0x00; // 关闭LED.
delay();
P1 = 0xFF; // 打开LED.
delay();
}。

}。

这是一个使用C语言编写的简单的51单片机程序。

程序的功能是让单片机控制开发板上的一个LED灯以一定的频率闪烁。

程序的主要部分是一个无限循环(`while(1)`),在循环中LED先被关闭然后延时一段时间,再被打开然后再延时一段时间,如此循环。

在这个示例中,我们使用了`P1`端口来控制LED的开关,
`0x00`表示关闭LED,`0xFF`表示打开LED。

`delay`函数用来产生时间延迟,以控制LED闪烁的频率。

这只是一个非常简单的示例,51单片机的功能远不止于此。

它可以用来控制各种外围设备,比如数码管、液晶显示屏、电机等,也可以用来实现各种功能,比如定时器、计数器、通信接口等。

希望这个简单的示例能够帮助你初步了解51单片机的编程。

51单片机DIY做PLC编程

51单片机DIY做PLC编程

51单片机DIY做PLC编程有朋友想定制一个净水机控制器,有一些独特的功能要增加,但是商品控制板没有这样的功能,问我能否做一个,我觉得单片机完全能满足这种简单的控制需要,上手开始编程序时候突然感到,用PLC逻辑编这种功能是非常简单轻松的,而如果用汇编或C编却感觉有点棘手,编程效率不高,所以想为何不在单片机上实现PLC的逻辑呢?上网搜索尝试看能否找到合适的程序下载来稍微改改就能用的呢?方案几年前就有了,实际上是利用三菱的低档PLC编程软件编辑好梯形图,存盘后用专用的格式转换工具转换成HEX单片机烧写文件烧进去,尝试下载三菱PLC工具软件,但是在我的WIN7-64位系统上不能正常工作,好容易换了系统装好开发工具,但是初次上手这款开发工具,界面挺复杂的,懒得研究各个按钮的使用,由于是单片机的硬件,对于程序的编制和转换有很多限制条件,否则是转换不成功的,嫌麻烦,放弃!某宝倒是有百元PLC板出售,但是为了这么个简单的东西专门买个全功能板子有点浪费,而且其编程软件仍然是三菱的盗版软件,算了,再想办法把。

由于工作中经常接触PLC程序,对其工作原理也略知一二,网上也有相关的说明介绍,其实就是三个主要步骤,第一步扫描IO输入,第二步执行逻辑,第三步输出逻辑到IO,很简单的,最早PLC也是用单片机实现的,我为何不用汇编在51上搭建一个架构,简单的逻辑编制进去就能运转呢?其中逻辑执行步骤还是有点意思的,需要把PLC逻辑翻译成单片机的汇编语言执行,这块开始也没有把握,后来搜索到一篇百度文章,介绍了一下三菱PLC逻辑是如何翻译成汇编的,我看了下估计其实是利用反汇编工具把HEX反编译成的ASM代码,并不清晰明了,而且还带着反汇编时候的行号,仅供参考了。

搜索结果中也有几篇论文,涉及到在51单片机上实现PLC逻辑的内容,但是那些论文都是充数的,仅仅几个IO逻辑,没有什么定时器,计数器功能的体现,哎!仅供参考!看来这个PLC系统还是需要自己写了!OK!既然决定自己重写,那就开工吧!利用春节休假时间,编制了如下ASM51汇编PLC代码:代码主要架构如下:1、IO定义部分:根据所使用的单片机IO口数量,任意指定多少个I多少个O,那几个脚是I,哪几个是O都可以任意指定,在这个51系统里面设计了最大32个I,32个O,占用64个位寻址区域,其实用不到那么多,也可以分配给其它需要的标志位用,因为51系统总可位寻址地址只有128位,需要仔细分配.2、位寻址变量定义(包括各类标志位,临时变量寄存器等等)目前设计了8个计时器的Timer DN, Timer EN,共16位,8个计数器的counter reset 和counter DN 标志位共16个,专用于上升沿下降沿检测的标志位4对,占用8个,剩余用于临时变量,这些地址分配在这块变量定义区域可以根据需要任意调整3、内存规划,包括堆栈区的设置,定时器,计数器的累加值和预设值地址等等,目前初步定义8个计数器的当前计数值和预设值,8个计时器的当前计数值和预设值,共占用32个内存地址,也可根据需要调整,51单片机片内总的用户可用内存地址包括堆栈区只有128个,实际去除位寻址区和堆栈区可用的估计只有80个左右,不过对于小程序应该够用的。

单片机用micropython编程实例

单片机用micropython编程实例

单片机用micropython编程实例
下面是一个micropython编程实例,使用ESP32开发板控制时钟显示:
```python
import machine
import utime
# 设置外部晶振的频率(单位为MHz)
xtal_freq = 12
# 初始化时钟模块
rtc = machine.RTC()
# 设置时钟模块使用外部晶振
rtc.init((2000, 1, 1, 0, 0, 0, 0, 0))
# 输出当前时间
while True:
year, month, day, weekday, hours, minutes, seconds, subseconds = rtc.datetime()
print("{:04d}-{:02d}-{:02d} {:02d}:{:02d}:{:02d}" .format(year, month, day, hours, minutes, seconds))
utime.sleep(1)
```
在上面的例子中,我们使用了`machine.RTC()`函数初始化时钟模块,并设置时钟模块使用外部晶振。

然后我们通过`rtc.datetime()`函数获取当前时间,并使用`print()`函数输出时间。

最后,我们使用`utime.sleep()`函数暂停一秒钟,然后再次获取时间,实现每秒钟输出一次时间的功能。

需要注意的是,不同的单片机和开发板可能需要使用不同的函数和配置来控制时钟,具体实现方式可能有所不同。

13个简单的单片机程序

13个简单的单片机程序
文件名c51音乐程序八月桂花功能通过单片机演奏音乐本例采用89c52晶振为110592mhz关于如何编制音乐代码其实十分简单各位可以看以下代码
/************************************************************************ * LED闪烁的简单试验 * * * 连接方法: JP11(P2)和JP1用8PIN排线连接起 来 * * * ************************************************************************ #include <reg51.h> //此文件中定义了51的一些特殊功能寄存器
TH0=(65536-3000)/256; TL0=(65536-3000)%256; TR0=1; ET0=1; EA=1; cntb=0; while(1) {; } } //开启定时0 //开启中断
/************************************************* * * 定时中断 ********************************************************/ void t0(void) interrupt 1 using 0 { TH0=(65536-3000)/256; //定时器高位装载数据 TL0=(65536-3000)%256; //定时器低位装载数据 if(cntb<18) //红色 { P1=0xFF; P2=tab[cnta]; P0=digittab[cntb][cnta]; }
void delay(unsigned int i); //声明延时函数 main() { P2 = 0x00; //置P0口为低电平 delay(600); // 延时 P2 = 0xff; //置P0口为高电平 delay(600); // 延时

单片机的编程及程序设计原理详解

单片机的编程及程序设计原理详解

单片机的编程及程序设计原理详解单片机(Microcontroller)是一种集成了处理器核心、存储器、输入/输出设备以及时钟电路等功能模块的微型计算机系统。

它具有体积小、成本低、功耗低等特点,被广泛应用于各种家电、工控设备、消费电子产品以及汽车电子等领域。

单片机的编程和程序设计是单片机应用开发的核心,下面将对其进行详细的解析。

一、单片机编程的基本原理单片机的编程主要是通过按照一定的程序设计规则,编写软件代码并将其烧录到单片机的存储器中,从而实现特定功能。

单片机编程的基本原理可以总结为以下几个步骤:1. 程序设计:首先,根据需求,设计单片机需要完成的具体功能,并将其转化为一系列的算法和流程。

在程序设计中需要考虑到诸如功能要求、资源限制、输入输出处理、错误处理等方面的问题。

2. 编写源代码:在设计完成后,需要使用编程语言(如C、C++、ASM等)编写源代码。

源代码是程序员用来描述单片机要执行的具体任务的文本文件。

3. 编译:将编写好的源代码通过编译器进行编译,将其翻译为二进制的机器码,以便单片机能够识别和执行。

4. 烧录到单片机:将编译后生成的可执行文件通过烧录工具或者编程器烧录到单片机的存储器中,以便单片机能够按照程序的要求运行。

5. 调试和测试:烧录完成后,需要对单片机的程序进行调试和测试,确保其能够正常运行并完成预期的功能。

调试和测试是单片机编程中至关重要的一步,可以通过调试工具、仿真器等辅助设备进行。

二、单片机程序设计的要点单片机程序设计需要考虑到多个方面的要点,下面将介绍一些值得注意的内容:1. 程序结构设计:合理的程序结构设计有助于提高程序的可读性、可维护性和可扩展性。

常见的程序结构设计包括顺序结构、选择结构和循环结构等,合理使用这些结构能够达到更好的程序效果。

2. I/O口的配置和使用:单片机的输入/输出口(IO口)是单片机与外部世界交互的接口,配置和使用IO口是单片机程序设计的重要部分。

单片机程序设计

单片机程序设计

单片机程序设计单片机程序设计概述单片机(Microcontroller)是一种集成电路芯片,内部集成了处理器、存储器、IO口等功能,用于控制外部设备的操作。

单片机程序设计是指针对特定的应用场景,使用汇编语言或高级语言编写程序,通过单片机实现相应的功能。

单片机的应用领域单片机广泛应用于各个领域,例如智能家居、工业自动化、医疗设备等。

由于单片机具有体积小、功耗低、成本低等特点,在嵌入式系统中得到广泛应用。

单片机程序设计的基本原理和步骤单片机程序设计的基本原理是通过编写一系列指令,将其存储在单片机的存储器中,然后由处理器逐条执行这些指令,从而实现相应的功能。

单片机程序设计的步骤如下:1. 确定需求:要明确需要实现的功能和要求,例如控制LED灯的亮灭、获取传感器数据等。

2. 选择单片机:根据需求选择合适的单片机型号,考虑处理器性能、存储器容量、IO口数量等因素。

3. 开发环境搭建:搭建单片机程序开发环境,包括编译器、调试工具等。

4. 编写程序:根据需求使用汇编语言或高级语言编写程序,实现相应的功能。

程序包括初始化设置、功能实现和IO口控制等部分。

5. 编译和烧录:将编写的程序进行编译二进制文件,然后通过烧录工具将二进制文件烧录到单片机的存储器中。

6. 调试与:通过调试工具对程序进行调试,检查程序的运行是否符合预期。

可以进行功能,确保程序可以正常工作。

7. 优化和改进:根据实际情况对程序进行优化和改进,提高程序的性能和稳定性。

单片机程序设计常用的开发工具和语言开发工具- Keil MDK:一款用于ARM单片机程序开发的集成开发环境,包括编译器、调试工具等。

- MPLAB X IDE:Microchip公司推出的集成开发环境,适用于PIC系列单片机的程序开发。

编程语言- 汇编语言:汇编语言是单片机程序设计中最底层的语言,可以直接操作单片机的寄存器和内存。

- C语言:C语言是单片机程序设计中最常用的高级语言,具有语法简洁、易理解和易于维护的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个单片机小程序编写
单片机在家用电器和工业系统中应用广泛,下面给大家介绍一个单片机小程序的编写。

1、设计任务:
如果开关合上,L1亮,开关打开,L1熄灭,如图1所示。

监视开关K1(接在P3.0端口上),用发光二极管L1(接在单片机P1.0端口上)显示开关状态。

2、电路原理图:
图1
3、系统板上硬件连线:如图1所示,图中VCC = +5V。

4、程序设计内容:
(1)开关状态的检测过程:
开关状态是从单片机的P3.0端口输入信号,当拨开开关K1拨上去(开关断开),即输入高电平;当拨动开关K1拨下去(开关闭合),即输入低电平。

可以采用JB BIT,REL 指令来完成对开关状态的检测即可。

(2)输出控制:
如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮。

我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。

5、程序框图:如图2所示。

图2
6、汇编源程序的编写:
ORG 00H
START: JB P3.0,D1
CLR P1.0
SJMP START
D1: SETB P1.0
SJMP START
END
7、用“keil软件编”写好汇编程序,然后转换成HEX文件并保存。

8、用“增强型A51编程器”把刚才写好的HEX文件烧写入单片机中。

9、把已写入程序的单片机,装入图1的电路,然后通电。

当拨动开关K1拨下去(开关闭合),发光二极管L1亮;拨开开关K1拨上去(开关断开),发光二极管L1灭。

说明刚才编写的程序达到了我们的设计要求。

相关文档
最新文档