天线原理与设计—第十三章计算方法和测量方法
天线测试方法
天线测试方法一、测试依据。
天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。
在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。
因此, 移动网络的好坏也就自然与天线密切相关。
为了便于介绍天线测试方法先从天线的几个基本特性谈起。
1、天线辐射的方向图天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。
反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。
我们通常用垂直平面及水平平面上表示不同方向辐射(或接收)电磁波功率大小的曲线来表示天线的方向性,并称为天线辐射的方向图。
同时用半功率点之间的夹角表示了天线方向图中的水平波束宽度及垂直波束见度。
2、天线的增益天线通常是无源器件,它并不放大电磁信号,天线的增益是将天线辐射电磁波进行聚束以后比起理想的参考天线,在输入功率相同条件下,在同一点上接收功率的比值,显然增益与天线的方向图有关。
方向图中主波束越窄,副辩尾辩越小,增益就越高。
可以看出高的增益是以减小天线波束的照射范围为代价的。
3、天线的驻波比天线驻波比表示天馈线与基站(收发信机)匹配程度的指标。
驻波比的产生,是由于入射波能量传输到天线输入端B未被全部吸收(辐射)、产生反射波,迭加而形成的. VSWR越大,反射越大,匹配越差.那么,驻波比差,到底有哪些坏处?在工程上可以接受的驻波比是多少? 一个适当的驻波比指标是要在损失能量的数量与制造成本之间进行折中权衡的。
4、天线的极化天线辐射电磁波中电场的方向就是天线的极化方向。
由于电磁波在自由空间传播时电场的取向有垂直线极化的水平线极化的圆极化的,因而天线也就相应的垂直线极化的天线水平线极化的天线。
特别值得一提的双极化天线,它是在一副天线罩下水平线极化与垂直线极化两副天线做在一起的天线。
二、测试方法用移动基站给待测天线发送一个GSM频段中的频点,并且配合天线转台匀速旋转一周同时用高灵敏度频率扫描仪为数据采样接收机采集所用频点的场强。
天线设计的原理与实现方式
天线设计的原理与实现方式天线是电磁波收发的关键部件,是无线通信中不可或缺的重要元件,不同的天线设计可以实现不同的工作频率、增益、方向性、天线匹配等性能。
本文将介绍天线设计的原理和实现方式,帮助读者更好地理解天线的工作原理和参数设计。
一、天线设计的基本原理天线是将电磁波转换为电信号或反之的电器(电磁设备),它是无线通信系统中的关键部件之一。
天线设计基本原理包括天线性能指标和天线结构设计两部分。
1、天线性能指标天线的性能指标主要包括工作频率、增益、方向性、天线匹配等。
不同的天线类型和应用场景需要不同的性能指标来实现特定的功能。
(1)工作频率工作频率是指天线在工作中所应用的频率范围,通常为频段或中心频率等。
天线的设计要根据应用环境和所需要的信号频率来确定。
(2)增益增益是指天线辐射的功率与理想点源天线辐射的功率的比值,通常以dB为单位。
天线的增益与其结构形式、工作频率、方向性等有关。
(3)方向性方向性是天线传输能量的方向特性,是指天线辐射模式的立体角分布。
天线的方向性与其结构形式、工作频率、增益等有关。
(4)天线匹配天线匹配是指天线系统整体与其驱动器之间阻抗匹配的关系,使得天线系统的传输和接收线路具有最佳阻抗匹配状态,以提高天线的输出功率和信噪比。
2、天线结构设计天线结构设计是指天线的实现方式,包括天线结构形式、阻抗匹配方式、辐射元件、天线材料等方面。
(1)天线结构形式天线结构形式可以分为线性天线、环形天线、阵列天线、反射天线、补偿天线、微带天线、偏振天线等多种形式,每种天线形式都有其特点,应根据具体要求来选择天线结构形式。
(2)阻抗匹配方式阻抗匹配方式主要有天线冷端阻抗、贴片阻抗、隔离光缆、转换器和偶合电路等多种方法。
(3)辐射元件天线的辐射元件包括天线辐射体、驱动器和辅助元件等。
辐射体和驱动器是天线最基本的组成部分,辅助元件包括反射盘、支撑杆、防射线等。
(4)天线材料天线材料主要包括导体、绝缘材料、衬底材料等。
天线原理与设计
天线原理与设计天线是无线通信系统中的重要组成部分,它的设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。
本文将介绍天线的基本原理和设计方法,帮助读者更好地理解和应用天线技术。
首先,天线的基本原理是什么呢?天线是将电磁波转换为电信号或者将电信号转换为电磁波的装置。
在接收模式下,天线接收到的电磁波会转换成电信号,而在发送模式下,电信号会被天线转换成电磁波进行传输。
因此,天线的设计需要考虑到频率范围、辐射效率、方向性等因素,以确保其在特定的应用场景下能够实现高效的信号传输。
其次,天线的设计方法有哪些呢?天线的设计需要根据具体的应用需求来确定。
一般来说,天线的设计包括结构设计、材料选择、匹配网络设计等方面。
在结构设计方面,需要考虑天线的形状、尺寸、辐射器的布局等因素,以确保天线能够实现所需的辐射特性。
在材料选择方面,需要选择合适的材料来制作天线,以确保天线具有足够的机械强度和耐候性。
在匹配网络设计方面,需要设计合适的匹配网络来确保天线与传输线的匹配,以提高天线的辐射效率。
最后,天线的设计需要注意哪些问题呢?在天线设计过程中,需要注意考虑以下几个问题。
首先,需要考虑天线的频率范围,以确保天线能够在所需的频段内正常工作。
其次,需要考虑天线的辐射效率,以确保天线能够实现高效的信号传输。
此外,还需要考虑天线的方向性,以确保天线能够实现所需的辐射方向。
最后,还需要考虑天线的机械强度和耐候性,以确保天线能够在各种环境条件下正常工作。
综上所述,天线是无线通信系统中的重要组成部分,其设计和原理对于无线通信的性能和覆盖范围起着至关重要的作用。
天线的设计需要考虑频率范围、辐射效率、方向性等因素,以确保其能够在特定的应用场景下实现高效的信号传输。
希望本文能够帮助读者更好地理解和应用天线技术。
天线系数的计算公式
天线系数的计算公式
(最新版)
目录
1.天线系数的定义与重要性
2.天线系数的计算公式
3.计算公式的推导过程
4.应用实例与分析
正文
【1.天线系数的定义与重要性】
天线系数是描述天线接收和发送信号能力的一个重要参数,它反映了天线在某一方向上接收或发送信号的强度与理想情况下的信号强度之比。
在无线通信系统中,天线系数对于评估系统性能和设计合适的天线系统具有重要意义。
【2.天线系数的计算公式】
天线系数的计算公式为:
G = (E × H) / (k × (1/4π) × (R^2 + H^2)^(3/2))
其中,G 表示天线系数,E 表示天线接收到的电场强度,H 表示天线高度,k 表示波数,R 表示天线半径。
【3.计算公式的推导过程】
天线系数的计算公式来源于电磁场理论,它的推导过程涉及到复杂的积分运算。
在推导过程中,首先将电磁场方程进行分离变量,然后对变量进行积分运算,最后得到天线系数的计算公式。
【4.应用实例与分析】
在实际应用中,天线系数的计算公式可以帮助我们评估天线的性能,
并为天线系统的设计提供重要参考。
例如,在设计无线通信基站时,我们可以通过计算天线系数来选择合适的天线,以实现最佳的信号覆盖范围和系统性能。
总之,天线系数的计算公式是描述天线接收和发送信号能力的重要参数,它对于评估天线性能和设计合适的天线系统具有重要意义。
天线的测试方法和原理
天线的测试方法和原理一、开头最近在研究天线的测试方法和原理,发现了一些挺有趣的事情呢。
天线这个东西啊,其实在我们日常生活中到处都是。
就像咱们家里的电视,没有天线(或者现在的数字天线设备),可能就收不到几个台,画面还模糊得不行。
这天线到底是怎么回事儿,它的测试方法背后又有哪些原理呢?今天来和大家好好聊一聊。
二、内容展开咱们先来说说天线的工作原理吧。
你可以简单把天线想象成是一个在无线世界里的“嘴巴”和“耳朵”。
它既能发送电波信号(说话),又能接收电波信号(听话)。
那这些电波信号其实就是一种看不见、摸不着的电磁波,就像海洋里的水波一样,在空气中传播。
当天线要发送信号的时候,就像我们在池塘里扔一颗小石子,会激起一圈圈的水波向四周扩散,天线就是这个把电信号以电磁波形式向外扩散的源头;而天线接收信号的时候呢,反过来看就像在水里放置了一个很灵敏的探测器,当那些水波(电磁波)碰到探测器(天线)的时候,就能获取振动的信息,天线就能接收到信号啦。
那怎么知道这个“嘴巴”和“耳朵”好不好使呢?这就涉及到天线的测试方法了。
比如在测量天线的增益这个指标时,说得直白一点,就是看这个天线是不是能让信号变得更强或者说收集信号的能力有多强。
这就好像你在一个很吵的地方听人说话,带一个好的助听器(类似好的天线在接收信号)就能让声音听起来更清楚,而这个助听器(天线)增强声音的程度就是增益的一个类似概念。
在测试的时候,我们会利用一些专业的仪器在特定的环境下进行测量。
说到这里,你可能会问,那什么叫做特定的环境啊?通常呢,在实验室测试天线的时候,要避免周围其他物体的干扰。
就像我们想要真正听到某个人说话,如果周围有太多杂音(其他干扰电波),那就很难分辨清楚了。
所以测试环境要尽量纯净。
比如说测试的场地周围可能会设置一些电磁屏蔽装置,防止外界电磁场的入侵。
其实我一开始也不明白为什么要花这么大力气搞测试环境,后来看到其实一旦有外界干扰,测试的数据就会偏差很大,得出来的结果就不准了。
天线计算公式
天线计算公式天线计算公式是在无线通信领域中非常重要的一部分,它可以帮助我们设计和优化天线系统,以获得更好的信号传输效果。
在本文中,我们将介绍几种常见的天线计算公式,并解释它们的作用和应用。
我们来介绍一下天线增益的计算公式。
天线增益是衡量天线辐射能力的指标,通常以dBi为单位。
天线增益的计算公式为:G = η * D * λ^2 / (4π)其中,G表示天线的增益,η表示天线的效率,D表示天线的方向性,λ表示信号的波长。
这个公式告诉我们,天线的增益与天线效率、方向性和信号波长有关。
通过调整这些参数,我们可以优化天线的性能。
接下来,我们介绍一下天线输入阻抗的计算公式。
天线的输入阻抗是指天线输入端所呈现出的电阻和电抗的综合特性。
天线输入阻抗的计算公式为:Zin = R + jX其中,Zin表示天线的输入阻抗,R表示天线的电阻,X表示天线的电抗。
通过测量和计算天线的电阻和电抗,我们可以了解天线的匹配情况,从而调整天线系统的匹配网络,以提高信号传输效率。
天线辐射功率的计算也是天线设计中的重要内容。
天线辐射功率是指天线向空间辐射能量的能力。
天线辐射功率的计算公式为:Prad = (|E|^2 * Rrad) / (2 * η)其中,Prad表示天线的辐射功率,|E|表示天线电场强度的模值,Rrad表示天线的辐射阻抗,η表示自由空间的特性阻抗。
通过计算天线的辐射功率,我们可以评估天线的发射性能,并作出相应的调整。
天线的带宽计算也是天线设计中的一项重要任务。
天线的带宽是指天线在一定频率范围内能够正常工作的能力。
天线的带宽计算公式为:BW = f2 - f1其中,BW表示天线的带宽,f2表示天线能够正常工作的最高频率,f1表示天线能够正常工作的最低频率。
通过计算天线的带宽,我们可以选择合适的频率范围,以满足实际应用的需求。
我们来介绍一下天线的极化计算公式。
天线的极化是指天线辐射电磁波时电磁场的方向和偏振状态。
天线的极化计算公式为:P = |Eh|^2 / (|Eh|^2 + |Ev|^2)其中,P表示天线的极化度,|Eh|表示水平方向上的电场强度的模值,|Ev|表示垂直方向上的电场强度的模值。
天线测量实用手册pdf
天线测量实用手册一、天线类型与原理天线是无线通信系统中的重要组成部分,负责将电磁波转换为电流或电压,以便进行信号传输和处理。
根据不同的分类标准,天线有多种类型。
常见类型包括:线天线、面天线、行波天线、非行波天线等。
天线的工作原理基于电磁波传播的规律,包括电场、磁场和波长的概念。
二、天线参数定义与测量天线参数是评估天线性能的重要指标,包括辐射参数和电路参数两大类。
辐射参数包括方向图、增益、效率等,电路参数包括输入阻抗、电压驻波比等。
测量天线的各种参数是评估天线性能的重要手段,需要使用专业的测量仪器和设备。
三、测量设备与工具测量天线需要使用多种设备和工具,包括:信号源、功率计、频谱分析仪、场强仪、示波器等。
这些设备可以测量天线的各种参数,如阻抗、方向图、增益等。
此外,还需要使用辅助工具如支架、探头等。
四、测量环境与场地要求天线测量的精度和可靠性受到测量环境的影响,因此需要满足一定的场地要求。
例如,测量场地应远离干扰源,如高压线、电台等;场地应平坦开阔,以便进行天线架设和测量;场地还应满足一定的尺寸要求,以确保测量的准确性。
五、测量步骤与方法测量天线的步骤一般包括:天线架设、设备连接、设置参数、开始测量等。
不同的天线参数测量方法不同,如阻抗测量可以使用矢量网络分析仪进行测量,方向图和增益可以通过比较法或直接测量法进行测量。
在测量过程中需要注意操作的规范性和准确性。
六、测量数据处理与分析测量得到的数据需要进行处理和分析,以评估天线的性能。
数据处理包括数据筛选、滤波等,数据分析包括比较不同天线的性能参数,以及绘制各种图表和曲线等。
数据分析可以帮助我们了解天线的性能特点,为进一步优化和改进提供依据。
七、测量误差与精度提升天线测量的误差和精度是评估测量结果可靠性的关键因素。
误差可能来源于多个方面,如设备误差、环境干扰等。
为了提高测量的精度和可靠性,需要采取一系列措施,如选择高精度测量设备、加强场地建设、加强操作规范等。
天线测试方法介绍
天线测试方法介绍天线测试是指对无线通信设备或系统中的天线进行性能测试和验证的一系列技术手段和方法。
天线的测试旨在评估其工作频段、增益、辐射图案、回波损耗、驻波比以及其他性能参数,确保其符合设计要求并满足通信系统的性能需求。
本文将介绍天线测试的方法。
一、测试设备的选择和准备在进行天线测试之前,需要准备一些测试设备。
主要有天线测试仪、信号源、功率计、频谱分析仪等。
这些设备的选择应根据实际测试需求来确定,并确保其性能和精度符合测试要求。
二、天线增益测试天线增益是反映天线辐射能力的重要指标,对于天线的调试和优化非常关键。
天线增益测试的方法主要有场强法、功率比法和功率流量法。
场强法是通过测量接收信号的场强和发送信号的功率来计算天线增益;功率比法是通过测量发射信号和接收信号之间的功率差异来计算天线增益;功率流量法是通过测量发射信号在一定距离内的功率衰减来计算天线增益。
不同的测试方法适用于不同的测试场景,需要根据具体的测试需求来选择。
三、天线辐射图案测试天线辐射图案描述了天线在空间中的辐射特性,是评估其指向性和可用方向性的重要指标。
天线辐射图案测试的方法主要有自由空间测试法、全视场测试法和屏蔽室测试法。
自由空间测试法是将天线放置于开放空地上,通过测量发射信号的功率和方向来绘制天线辐射图案;全视场测试法是将天线置于旋转平台上,通过旋转平台的控制来改变天线的方向,从而测量不同方向的辐射特性;屏蔽室测试法是将天线置于屏蔽室内,通过测量不同方向上的电场强度来计算辐射特性。
不同的测试方法适用于不同的测试场景,需要根据具体的测试需求来选择。
四、天线回波损耗测试天线回波损耗是指天线发送信号时,部分信号由于反射和散射在天线端口反射回来的损耗。
回波损耗测试主要通过测量功率差异或反射系数来评估。
测试方法有反射系数法、两端法和西口法等。
反射系数法是通过测量天线端口上的发射信号和反射信号的功率差异来计算回波损耗;两端法是通过在天线之间设置一个匹配器,测量匹配器端口上的发射功率和反射功率来计算回波损耗;西口法是通过在天线输出端口设置一个西口来测量反射信号的功率来计算回波损耗。
(整理)天线测量与微波测量实验讲义
天线测量与微波测量实验讲义(试用)实验一、喇叭天线方向图的测量一、 实验目的:1、 了解喇叭天线的方向图特性;2、 掌握天线方向图的测量方法。
二、 实验原理:H 面和E 面方向图的计算公式为E H θ)E 0b[(λR H )/8]1/2{exp[j(π/4)λR Hθ/λ))2][C(u 1)+C(u 2)-jS(u 1)-jS(u 2)]+exp[j(π/4)λR H ((1/a h )-(2sin θ/λ))2][C(u 3)+C(u 4) -jS(u 3)-jS(u 4)]}E E 2]1/2cos θ}{[C(w 1)+C(w 2)]2+[S(w 1)+S(w 2)]2}1/2±j(π/2)t 2]dt=C(x)±jS(x)u1=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)+(2sinθ/λ)]}u2=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)+(2sinθ/λ)]}u3=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)-(2sinθ/λ)]}u4=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)-(2sinθ/λ)]} w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w2=[b h/(2λg R E)1/2]-{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}三、实验装置:测量方向图所需的基本设备可分为发射系统和接收系统两大部分。
天线的原理与设计
天线的原理与设计天线是将电能(或者电磁波)转换为电磁场(或者电磁波)的装置,它在通信、雷达、无线电电视广播和无线电导航等领域起着重要作用。
天线设计的目的是通过合适的几何形状和材料选择,使其尽可能高效地辐射和接收电磁波。
天线的原理可以归纳为以下几个主要方面:1. 反射和辐射原理:天线将电能转换为电磁波的关键在于其几何形状。
几何形状不同,天线对电磁波的反射和辐射效果也不同。
一般来说,天线的形状需要与待处理信号的波长相匹配,以确保最佳的能量传输和辐射。
2. 功率匹配原理:设计天线需要考虑到待处理信号的功率,以及天线的能量传输效率。
天线设计需要合理选择天线尺寸、形状和材料,以确保尽可能高的信号接收和发射效率。
3. 波束方向性原理:天线的方向性是指其辐射或接收信号的方向性。
波束方向性天线的设计考虑到天线的几何形状、电流分布、波束宽度等因素,以使其增加信号的强度以及抑制不希望的信号干扰。
4. 阻抗匹配原理:阻抗匹配是天线设计中的关键要素之一。
天线的阻抗与发射或接收设备之间的阻抗必须匹配,以确保最大能量传输和最小信号损失。
通过使用匹配网络或其他技术,可以实现天线和设备之间的阻抗匹配。
天线的设计过程可以基于理论分析、模拟和实验来完成。
具体的设计步骤包括:1. 确定设计需求和参数:根据特定应用的需求,确定所需天线的频率范围、增益、方向性、极化方式等参数。
2. 选择适当的天线类型:根据设计需求,选择适合的天线类型,如喇叭天线、螺旋天线、微带天线等。
3. 进行理论分析和模拟:利用电磁场理论和仿真软件,对天线进行理论分析和模拟,确定天线的几何结构和材料。
4. 进行实验验证:通过制作样品天线并进行实验验证,评估天线的性能和参数是否符合设计要求。
如果需要,进行调整和优化。
5. 优化和改进:根据理论分析、模拟和实验结果,对天线进行优化和改进,以提高天线的性能和效果。
天线设计中需要考虑的其他因素还包括天线的制造成本、安装要求、环境适应性等。
天线效率测试方法
天线效率测试方法天线是无线通信系统中非常重要的组件,它负责接收和发送无线信号。
天线的效率是衡量天线性能的重要指标之一。
天线效率测试是评估天线性能的一种方法。
本文将介绍天线效率测试的原理、方法和步骤。
一、天线效率测试原理天线效率是指天线将输入的电能转化为辐射出的电磁能量的能力。
天线效率测试的原理是通过测量天线输入和输出的功率来计算天线的效率。
测试中,需要保持输入功率不变,通过测量输出功率来计算天线的效率。
1. 无线功率测试法:这是一种常用的天线效率测试方法。
测试时,将天线与信号源相连,通过测量信号源输出功率和天线接收到的功率来计算天线的效率。
测试时,需要注意信号源和天线之间的连接要保持良好,以减少信号损失。
2. 比较法:这是一种简单快捷的天线效率测试方法。
测试时,将待测天线与已知效率的参考天线相连,并将相同功率的信号源分别连接到两个天线上,通过比较两个天线接收到的信号强度来计算待测天线的效率。
3. 天线扫描法:这是一种全向测试天线效率的方法。
测试时,将天线放置在旋转平台上,通过旋转平台使天线在水平和垂直方向上进行扫描,并测量每个方向上天线的接收功率,进而计算出天线的效率。
4. 电磁场法:这是一种基于电磁场测试天线效率的方法。
测试时,将天线放置在已知电磁场强度的区域内,通过测量天线接收到的电磁场强度和已知电磁场强度的比值来计算天线的效率。
三、天线效率测试步骤1. 准备测试设备:包括信号源、功率计、天线和连接线等设备。
2. 连接测试设备:将信号源与天线通过连接线相连,同时将功率计连接到天线输出端。
3. 设置测试参数:根据具体测试要求,设置信号源的输出功率和频率等参数。
4. 测量输入功率:将信号源输出功率调至设定值,通过功率计测量天线输入功率。
5. 测量输出功率:通过功率计测量天线输出功率。
6. 计算天线效率:根据输入功率和输出功率的比值,计算天线的效率。
7. 分析和评估结果:根据测试结果,对天线的效率进行分析和评估,判断是否符合设计要求。
天线测量理论介绍技术介绍
• 天线测量理论概述 • 天线测量技术与方法 • 天线参数测量与评估 • 天线测量系统与设备 • 天线测量技术前沿与展望
目录
Part
01
天线测量理论概述
天线测量的定义与目的
定义
天线测量是指使用测量设备和技 术,对天线的各种参数进行量化 和评估的过程。
目的
评估天线的性能指标,如增益、 方向性、极化等,为天线设计和 优化提供依据。
近远场测量技术转换需要采用数值计 算方法和计算机模拟技术,如傅里叶 变换、基函数展开等。
近远场测量技术转换的缺点是需要较 高的计算成本和较长的计算时间,同 时需要专业的数值计算和计算机模拟 技能。
测量误差分析与校正
测量误差因素包括测试环境、测 试设备、测试方法、数据处理等 方面。
测量误差分析与校正的优点是可 以提高测试精度和可靠性,减小 测试误差对天线性能评估的影响 。
近场测量技术可以获得天线的详 细辐射特性和方向图信息,适用 于小型天线和复杂天线结构的测 量。
近场测量技术的优点是测试精度 高、分辨率高,可以获得天线的 详细辐射特性和方向图信息。
近远场测量技术转换
近远场测量技术转换是指将近场测量 数据转换为远场测量数据,以便对天 线进行全面的性能评估。
近远场测量技术转换的优点是可以将 小型天线的近场测量数据转换为大型 天线的远场测量数据,提高测试效率 和精度。
THANKS
感谢您的观看
天线方向图测量
总结词
天线方向图是描述天线辐射能量在空间来自布的图形,一般采用近场扫描法进行测 量。
详细描述
天线方向图能够直观地展示天线在不同方向上的辐射特性。近场扫描法是通过在 天线附近不同角度和距离上测量电磁场的幅度和相位信息,再经过计算和修正得 到天线方向图。
天线长度的计算方法
天线长度的计算方法一段金属导线中的交变电流能够向空间发射交替变化的感应电场和感应磁场,这就是无线电信号的发射。
相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的接收。
在电台进行发射和接收时都希望导线中的交变电流能够有效的转换成为空间中的电磁波,或空间中的电磁波能够最有效的转换成导线中的交变电流。
这就对用于发射和接收的导线有获取最佳转换效率的要求,满足这样要求的用与发射和接收无线电磁波信号的导线称为天线。
理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接收转换效率最高。
因此,天线的长度将根据所发射和接收信号的频率即波长来决定。
只要知道对应发射和接收的中心频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度。
频率与波长的换算公式为:波长= 30万公里/频率= 300000000米/频率(得到的单位为米))例:求业余无线电台的天线长度已知业余无线电台使用的信号频率为435MHz附近,其波长为: 波长= 300000公里/435MHz = 300000000/435000000 = 300/435 = 0.69米对应的最佳天线长度应为 0.69/4 ,等于0.1725米当频率为439MH时,大家可以将计算公式简化为波长 = 300/439 = 0.683米最佳天线长度为0.683米/4,等于0.17米注意:只要在金属体内有交变的电流,该金属体就要向空间辐射电磁波;反之,只要空间中有一定强度的电磁波信号,就会在该空间中的金属体上感应出交变的电流。
天线与一般金属体的不同之处在于,天线强调了将金属体内交变电流最有效的转变成空间的电磁波或将空间的电磁波最有效的转变成金属体中的交变电流信号。
天线测量实用手册
天线测量实用手册一、天线基础知识天线是无线通信系统中的重要组成部分,用于发射和接收电磁波。
了解天线的基本概念、类型和原理是进行天线测量的基础。
二、天线参数定义天线的性能通过一系列参数进行描述,如辐射方向图、增益、输入阻抗、极化等。
这些参数用于评估天线的性能,并影响无线通信系统的性能。
三、天线测量方法天线测量的目的是获取天线的各项参数,以确保其性能符合要求。
常见的方法包括远场测量、近场测量和统计方法等。
不同的测量方法适用于不同的场景和需求。
四、测量系统搭建天线测量需要专门的测量设备和系统,包括发射系统、接收系统、测量场地、测量仪器等。
搭建测量系统时需要考虑系统的稳定性、精度和可扩展性。
五、数据处理与分析天线测量得到的数据需要进行处理和分析,以提取天线的各项参数。
数据处理方法包括信号处理、图像处理和统计分析等。
数据分析有助于理解天线的性能和潜在问题。
六、测量误差分析天线测量的误差来源包括系统误差、随机误差和人为误差等。
了解误差来源并进行误差分析有助于提高测量精度和可靠性。
七、测量实验与实践通过实际的天线测量实验,可以深入理解天线测量的原理和方法,提高实验技能和实践能力。
实验内容包括天线参数的测量、测量系统的搭建和调试等。
八、测量仪器介绍进行天线测量需要使用各种专业测量仪器,如频谱分析仪、信号发生器、功率计、示波器等。
了解测量仪器的原理、特点和操作方法是有效使用仪器的关键。
九、案例分析与经验分享通过分析和研究实际案例,可以学习天线测量的实践经验和技巧,了解不同场景下的应用和挑战。
分享经验有助于提高个人的技能和知识水平。
十、天线测量发展前景随着无线通信技术的快速发展,天线测量技术也在不断进步和创新。
未来,天线测量将更加注重自动化、智能化和高效化,以提高测量精度和效率。
同时,新兴的天线技术如超材料天线等将为天线测量带来新的挑战和机遇。
掌握天线测量的基本知识和技能对于从事无线通信领域的专业人员来说至关重要。
天线系数的计算与使用
天线系数计 FCC给出的数 (dB)
算结果(dB) 值(dB)
30
-3.7287 1.1394
0.0051
-2.0842
-1.8576
35
-2.4389 1.1394
0.0424
-0.7571
-0.5186
40
-1.1975 1.1394
0.0707
0.5126
0.6412
45
-0.1600 1.1394
系数十分接近,最大误差的绝对值不超过0.6d B。这表
明,在模型准确的情况下,可以通过理论计算精确获得
天线系数。
计算结果表明,在知道天线和无源网络详细电路参 数情况下,可以通过本文所述方法精确获得天线系数。 我们还可以得出使用天线系数的一些注意事项:
(1)天线系数一般在远场的测量时使用; (2)通过天线系数与测量接收机电平读数得到的 电场强度表征的是入射波在测量天线极化方向的分量; (3)为了正确使用厂家提供的天线系数,需要获 知厂家取得天线系数的条件(巴仑和匹配网络、射频电 缆型号长度等),便于在测量系统正确计算和使用厂家 所提供的天线系数。
。
(15)
式(15)中G为天线增益,λ为自由空间电磁波的波
长。可以推得:
,(16)
图4和两端口网络Z参数定义可知:
,(22)
其中,
, f c为巴仑
和匹配网络工作的中心频率(MHz),f为频率(MHz)。
(a)构造图
, (17) 式(16)和(17)是可用于计算天线系数的一般表 达式。对于负载阻抗为50Ω测量系统来说,式(16)可以 简化为:
(a)天线作为接收器件示意图
。
(1)
也有人将式(1)称为电场天线系数的定义式,并定
天线原理与设计—第十三章计算方法和测量方法
天线原理与设计—第十三章计算方法和测量方法一、计算方法1.理论计算:(1)天线增益的计算:根据天线的辐射模式和辐射功率分布,可以采用积分方法来计算天线的增益。
(2)天线输入阻抗的计算:天线输入阻抗的计算通常使用线性切向电流天线模型或螺旋线天线模型,通过电场边界条件来计算天线输入阻抗。
(3)天线的方向图计算:根据天线的电流分布和辐射功率分布,可以通过积分方法来计算天线的方向图。
2.数值计算:(1)有限差分时间域(FDTD)方法:FDTD方法是一种数值计算方法,通过将空间分割成小立方体来离散化场的分布,并利用电磁场的时域麦克斯韦方程进行迭代计算,从而得到天线的电磁场分布和性能。
(2)方法不可逆特征边界条件(MNIBC)方法:MNIBC方法是一种适用于计算电磁波散射问题的数值方法,通过各向同性吸收边界条件和物理吸收边界条件来模拟仿真区域的边界。
二、测量方法1.增益的测量:(1)天线场测试的方法:利用天线场测试系统和天线场测试仪器,通过测量天线的辐射场强度来推算出天线的增益。
(2)环境排斥区测量法:通过将天线放置在天线排斥区,利用环境中的散射物或反射物的信号来测量天线的增益。
2.方向图的测量:(1)天线扫描方法:利用天线旋转或移动扫描来测量天线的辐射方向图。
(2)天线阵列方法:利用多个天线组成的天线阵列来测量天线的辐射方向图。
3.输入阻抗的测量:(1)逐步移相器法:通过改变馈电网络中移相器的相位,使得天线在不同频率下的阻抗匹配。
(2)S参数测量法:利用网络分析仪来测量天线的S参数,并通过计算来得到天线的输入阻抗。
总结:天线原理与设计中的计算方法和测量方法是天线工程中必不可少的内容。
通过理论计算和数值计算可以得到天线的增益、输入阻抗和方向图等参数,而天线的增益、方向图和输入阻抗可以通过测量方法来验证。
这些计算方法和测量方法对于天线性能的评估和优化非常重要。
天线原理与设计
天线原理与设计绪论0.1 天线在无线电工程中的作用天线已随处可见,它已与我们的日常生活密切相关。
例如,收听无线电广播的收音机需要天线,电视机需要天线,手机也需要天线。
在一些建筑物、汽车、轮船、飞机上等都可以看见各种形式的天线。
收音机、电视机使用的天线一般是接收天线,广播电视台的天线则为发射天线。
而手机天线则收发共用,但须经过移动通信基站天线转收和转发。
实际上,一切无线电设备(包括无线电通讯、广播、电视、雷达、导航等系统)都是利用无线电波来进行工作的,而从几MHz的超长波到四十多GHz的毫米波段电磁波的发射和接收都要通过天线来实现。
天线是这样一个部件,作发射时,它将电路中的高频电流或馈电传输线上的导行波有效地转换成某种极化的空间电磁波,向规定的方向发射出去;作接收时,则将来自空间特定方向的某种极化的电磁波有效地转换为电路中的高频电流或传输线上的导行波。
综上所述,天线的作用主要有四点:(1) 能量转换对于发射天线,天线应将电路中的高频电流能量或传输线上的导行波能量尽可能多地转换为空间的电磁波能量辐射出去。
对于接收天线,天线应将接收的电磁波能量最大限度地转换为电路中的高频电流能量输送到接收机。
这就要求天线与发射机源或与接收机负载尽可能好的匹配。
一副好的天线,就是一个好的能量转换器。
(2) 定向辐射或接收对于发射天线,辐射的电磁波能量应尽可能集中在指定的方向上,而在其它方向不辐射或辐射很弱。
对于接收天线,只接收来自指定方向上的的电磁波,在其它方向接收能力很弱或不接收。
例如,就雷达而言,它的任务是搜索和跟踪特定的目标。
如果雷达天线不具有尖锐的方向性,就无法辨别和测定目标的位置。
而且如果天线没有方向性,或方向性弱,则对发射天线来说,它所辐射的能量中只有一少部分到达指定方向,大部分能量浪费在不需要的方向上。
对接收天线来说,在接收到所需要信号的同时,还将接收到来自其它方向的干扰信号或噪声信号,致使所需信号完全淹没在干扰和噪声中。
天线第三版上册课程设计
天线第三版上册课程设计一、课程简介本课程为天线第三版上册的课程设计,旨在通过实际操作,让学生深入了解天线的基本原理和设计方法,培养学生的实践能力和科研能力。
本课程设计分为两个部分,第一部分为天线基本原理的研究和实验,第二部分为天线设计与仿真。
二、课程内容第一部分:天线基本原理研究和实验1. 天线基本概念和原理讲解本部分内容主要涵盖天线的基本概念、天线的功率、增益、波束等基本原理的讲解,让学生全面了解天线的基本概念和原理。
2. 天线实验操作本部分内容主要是对学生进行天线实验的操作和调试,让学生了解天线的实际应用和调试方法。
具体的实验内容包括:•了解天线的测试方法和测试仪器;•合理选择天线的工作频段;•了解天线相应参数的变化规律;•测试天线增益、方向性等参数。
3. 天线参数的计算和仿真本部分内容主要是让学生学会使用计算软件和仿真软件对天线参数进行计算和仿真分析,熟练掌握天线参数计算和仿真的方法。
具体的内容包括:•计算天线的发射功率和增益;•计算天线的辐射效率和阻抗匹配;•采用HFSS仿真工具对天线进行仿真;•根据仿真结果进行天线参数调整。
第二部分:天线设计与仿真1. 天线的设计和校准本部分内容主要是让学生通过实际操作,了解天线的设计和校准方法,并通过实验验证天线参数的正确性。
具体的内容包括:•根据实际需求进行天线设计;•采用3-D电磁仿真工具进行天线仿真;•对天线参数进行校准和调整;•对设计好的天线进行实际测试。
2. 天线组合设计本部分内容主要是让学生掌握天线组合设计的方法和技巧,通过实际操作,让学生了解不同组合方式的特点和适用场合。
具体的内容包括:•了解天线组合的基本原理和方法;•采用自适应阵列的方法,优化天线的性能;•对不同天线组合方式进行比较和分析。
三、课程要求1. 学习要求•学生需要具有基本的电磁场理论和信号处理知识;•学生需要对计算机仿真软件和天线测试仪器有一定的了解。
2. 作业要求•每个学生需要完成实验报告和设计报告;•需要在指定时间内完成课程设计。
天线测试方法介绍
天线测试方法介绍天线测试方法介绍对天线与某个应用进行匹配需要进行精确的天线测量。
天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。
这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。
虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。
例如,500MHz以下的低频天线通常是使用锥形微波暗室(Anechoic Chamber),这是20世纪60年代就出现的技术。
遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。
因此,他们无法发挥这种技术的最大效用。
随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。
在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。
用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。
其它技术包括近场和反射面测试。
选用哪种天线测试场取决于待测的天线。
为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。
发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。
接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。
在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。
AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。
远场测量可以在室内或室外测试场进行。
室内测量通常是在微波暗室中进行。
这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。
在矩形微波暗室中,采用一种墙面吸波材料来减少反射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需要消除周围环境对被测天线的影响(反射)
测量方法
远场 紧缩场 近场
13.1 天线测量方法
远场测试方法
室外测量
架高测试场:辐射零点对地面反射点;两个建筑物边
缘;两座山边缘
地面反射消除法:1)二次散射;2)地面反射栅;3)
十三、天线测量方法
13.1 天线测量方法
输入阻抗特性测量 测量天线的输入阻抗、反射系数Γ,从而确定天线的
阻抗带宽
对多端口天线(多天线),测量不同端口间的S参数,从
而确定端口间的互耦特性
辐射特性测量 天线的方向图 天线的增益和方向性系数 天线的辐射效率 天线的轴比特性(圆极化天线)
垂直测试、倾斜测试
需要开阔、较大的场地,尤其对于工作频率较低的天
线 室内测量 无反射室测试:微波暗室
13.1 天线测量方法
电磁理论与微波技术实验室拥有的微波暗室
13.1 天线测量方法
紧缩场测试方法
发射喇叭天线位于抛物面的焦点,反射面产生一平面
波照射至待测天线
所需场地面积较小,对于抛物面加工精度要求很高
输入阻抗特性测量
13.1 天线测量方法
电磁理论与微波技术实验室拥有的网络分析仪
安捷伦Agilent E8363C矢量网络分析仪(10MHz-40GHz) 安捷伦N9912A便携式矢量网络分析仪(6GHz)
13.1 天线测量方法
辐ห้องสมุดไป่ตู้特性测量
利用收发天线的互易性 可采用缩尺模型的方法:缩尺模型:几何尺寸缩小m倍,
13.1 天线测量方法
输入阻抗特性测量 通常通过测量天线端口的S参数来确定天线的阻抗特性
和阻抗带宽
对于单端口天线,可认为2端口与自由空间匹配,因此
可直接通过测量S11来确定天线的反射系数
S参数的测量通常使用矢量网络分析仪,网络分析仪使
用前需要通过校准来确定测量的参考平面
13.1 天线测量方法
13.1 天线测量方法
天线增益的测试方法 比较法
增益Gs已知的标准喇叭天线 1. 用标准喇叭天线做发射 和接收,得到接收功率P1 2. 用待测天线替换标准喇 叭作为接收天线,得到接 收功率P2 3. Gt= Gs -P1+P2
增益Gt未知的待测天线
13.1 天线测量方法
紧缩场测试方法
紧缩场暗室
13.1 天线测量方法
近场测试方法
缩距技术:无反射表面透镜技术,抛物面平行较准技
术
聚焦技术:采用偏焦方法聚焦到近处 解析技术:由近场测量值进行模式展开 所需场地最小,但通常对于测量相位的精度要求较高
13.1 天线测量方法
近场测试方法 近场暗室和测试系统