人教版数学九年级下册数学:27.1 --27.3 同步复习题 (附答案)
新课程课堂同步练习册(九年级数学下册人教版)答案
数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
人教版数学九年级下《27.3位似》测试(含答案)
位似测试时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共8小题,共32.0分)1.如图,在网格中,小正方形边长为1,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A. (−3,−4)B. (−3,−3)C. (−4,−4)D. (−4,−3)2.如图,△AOB与△COD是以点O为位似中心的位似图形,相似比为1:2,若A(2,1),则点C的坐标为A. (1,2)B. (2,1)C. (2,4)D. (4,2)3.如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C的坐标是()A. (2,5),5)B. (52C. (3,5)D. (3,6)4.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个5.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4:9B. 2:5C. 2:3D. √2:√36.按如下方法,将△ABC的三边缩小的原来的1,如图,任取一点O,连AO、BO、2CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A. 1B. 2C. 3D. 47.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,则端点C的坐标为()2A. (3,3)B. (4,3)C. (3,1)D. (4,1)8.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A. −2aB. 2a−2C. 3−2aD. 2a−3二、填空题(本大题共8小题,共32.0分)9.△OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的12,得到△OA′B′,则点A的对应点A′的坐标为______.10.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA =35,则FGBC=______.11.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=______.12.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是______.13.如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),,可以原点O为位似中心,把这个三角形缩小为原来的12以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是______.14.已知,如图,A′B′//AB,B′C′//BC,且OA′:A′A=4:3,则△ABC与______ 是位似图形,位似比为______ ;△OAB与______ 是位似图形,位似比为______ .15.已知在平面直角坐标系中,点A(−3,−1)、B(−2,−4)、C(−6,−5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为______.16.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为______.三、计算题(本大题共4小题,共20.0分)17.如图,在每个小正方形边长为1个单位长的网格中,建立直角坐标系xOy,点A,B,C均在格点上.(1)请在该网格内部画出△A1BC1,使其与△ABC关于点B成位似图形,且位似比为2:1;(2)直接写出(1)中C1点的坐标为______.18.(10分)在平面直角坐标系中,△ABC的位置如下图所示,其中点B(−3,1),解答下列问题:(1)将△ABC绕着点O(0,0)顺时针旋转90∘得到△A1B1C1,并写出B1的坐标;(5分)(2)在网格图中,以O为位似中心在另一侧将△A1B1C1放大2倍得到△A′B′C′,并写出B′的坐标.(5分)19.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______ ;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______ .20.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)请你根据位似的特征并结合点B的坐标变化回答下列问题:,3),则A′的坐标为______ ;①若点A(52②△ABC与△A′B′C′的相似比为______ ;(2)若△ABC的面积为m,求△A′B′C′的面积.(用含m的代数式表示)四、解答题(本大题共2小题,共16.0分)21.如图,网格图的每个小正方形边长均为1.△OAB的顶点均在格点上.已知△OA′B′与△OAB是以O为位似中心的位似图形,且位似比为1:3.(1)请在第一象限内画出△OA′B′;(2)试求出△OA′B′的面积.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(−2,0),C(4,0)(1)以原点O为位似中心,画出所有满足条件的△DEF,使△DEF和△ABC位似,且DE:AB=EF:BC=1:2。
人教版九年级下册数学 27.1--27.3分节测试题含答案
人教版九年级下册数学 27.1--27.3分节测试题含答案27.1图形的相似一、单选题1.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.如图,D E 、分别是ABC △边,AB AC 上的点,ADE ACB ∠=∠,若2,6,4AD AB AC ===,则AE 的长是( ).A .1B .2C .3D .43.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .AE EC =BE EDB .AE ED =AB CDC .EF AB =DF DBD .AD BD =AE BF 4.如图,有三个矩形,其中是相似图形的是( )A .甲和乙B .甲和丙C .乙和丙D .甲、乙和丙5.如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且A.5∶8 B.3∶8 C.3∶5 D.2∶56.如图,在矩形ABCD中,点E、F分别在BC,AD上,四边形ABEF是正方形,矩形ABCD∼矩形ECDF,AD=2,则DF的值为()A.√5−1B.√5+1C.√5−3D.3−√57.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A B.2:3 C.4:9 D.16:818.如图,有三个直角三角形,其中OA=AB=BC=CD=1,则线段OA,OD的比例中项线段的长度为( )A B C D9.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM 等于()二、填空题10.已知线段a =2cm 、b =8cm ,那么线段a 、b 的比例中项等于_________cm..11.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若23AD AB =,AE=4,则EC 等于_____.12.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.13.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为_____14.在ABC 中,AB AC =,点D 在直线BC 上,3DC DB =,点E 为AB 边的中点,连接AD ,射线CE 交AD 于点M ,则AM MD的值为________. 15.小芳的房间有一面积为3 m 2的玻璃窗,她站在室内离窗子4 m 的地方向外看,她能看到窗前面一幢楼房的面积有____m 2(楼之间的距离为20 m).16.在长8cm ,宽6cm 的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_______cm217.如图,Rt △ABC 中,∠C =90°,AB =5,AC =3,D 是AB 的中点,E 是直线BC 上一点,把△BDE 沿直线ED 翻折后,点B 落在点F 处,当FD ⊥BC 时,线段BE 的长为_____.18.如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.三、解答题19.知四条线段的长度为 1.5a = cm ,2b = cm , 2.8c = cm , 2.1d = cm ,判断它们是不是成比例线段.20.如图,已知E 是平行四边形ABCD 中DA 边的延长线上一点,且AD =2AE ,连接EC 分别交AB ,BD 于点F ,G .(1)求证:BF =2AF ;(2)若BD =20cm ,求DG 的长.1.C 2.C 3.A 4.B 5.A 6.D 7.B 8.D 9.C10.411.212.4.13.2 514.23或4315.108 16.2717.54或518.2.19.略20.(1)略;(2)12cm.27.2相似三角形一、选择题1、能判定与相似的条件是()A. B.,且C.且D.,且2、已知两个相似三角形的周长比为4:9,则它们的面积比为()A.4:9 B.2:3 C.8:18 D.16:493、下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是()A. B. C. D.4、已知△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是( )5、如图,在△ABC中,∠ADE = ∠B,DE :BC = 2 :3,则下列结论正确的是()A. AD : AB = 2 : 3; B.AE : AC = 2:5;C. AD : DB = 2 : 3; D.CE : AE= 3 : 2.6、如图,已知DE∥BC,那么下列结论正确的是()A. B. C. D.7、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.8、如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A.B.C.3 D.9、如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个 B.2个 C.3个 D.4个10、如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使AB⊥BC,然后选定E,使EC⊥BC,用视线确定BC和AE相交于D,此时测得BD=120米,CD=60米,为了估计河的宽度AB,还需要测量的线段是()A.CEB.DEC.CE或DED.无法确定11、如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.412、如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM 为()时,△ABE与以D、M、N为顶点的三角形相似A. B. C.或 D.或二、填空题13、如图,在△ABC中,D、E分别是AB、AC边上的点(DE不平行于BC),当时,△AED与△ABC相似.14、如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)15、如图,在△ABC 中,D. E 分别是 AB、AC 边的中点,则的值为16、如图,两条直线被第三条直线所截,DE=,EF=,AB=1,则AC= .17、如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A 落在点处,若为CE的中点,则折痕DE的长为.18、在边长为2cm的正方形ABCD中,动点E、F分别从D、C两点同时出发,都以1cm/s的速度在射线DC、CB上移动.连接AE和DF交于点P,点Q为AD的中点.若以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,则运动时间t为秒.三、简答题19、在△ABC中,AB=12,点E在AC上,点D在AB上,若AE=6,EC=4,。
2023-2024学年人教版九年级数学下册27.3位似第1课时位似图形的概念及画法 作业课件
知识点3:位似图形的画法 7.如图所示,分别按下列要求作出四边形ABCD以点O为位似中心的位似四边形. (1)沿AO方向放大为原图的2倍; (2)沿OA方向放大为原图的2倍.
解:(1)如图,四边形A1B1C1D1即为所求 (2)如图,四边形A2B2C2D2即为所求
8.如图,△ABO与△A′B′O是位似图形,其中AB∥A′B′,则A′B′的长y与AB的长x
解:(2)∵E′C′∥EC,E′D′∥ED,∴△OCE∽△OC′E′,△ODE∽△OD′E′.∴CE∶C′E′ =OE∶OE′,DE∶D′E′=OE∶OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O,∴CE∶C′E′ = DE∶D′E′ , ∠CED = ∠C′E′D′.∴△CDE∽△C′D′E′.∵△CDE 是 等 边 三 角 形 , ∴△C′D′E′是等边三角形
的面积为( C )
Hale Waihona Puke A.(43 )3B.(43 )7
C.(43 )6
D.(34 )6
11.如图,矩形ABCD与矩形A′B′C′D′是位似图形,点A是位似中心,矩形ABCD 的周长是24,BB′=4,DD′=2,则AB=____. 8
12.如图所示,图中的小方格都是边长为1的正方形,△ABC的顶点和点O都在正 方形的顶点上.
第二十七章 相似
27.3 位似
第1课时 位似图形的概念及画法
知识点1:位似图形 1.图中的两个相似三角形不是位似图形的是( D )
2.图中两个四边形是位似图形,它们的位似中心是( D ) A.点M B.点N C.点O D.点P
知识点2:位似图形的性质
3.(温州中考)如图,图形甲与图形乙是位似图形,O是位似中心,相似比为2∶3,
之间函数关系的图象大致是( )
(完整版)人教九年级数学下册同步练习题及答案
第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。
3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。
人教版数学九年级下册 27.1 ---27.3随堂练(含答案)
A B
C
二、填空题
6 / 36
9. (2020·盐城) 如图, BC / /DE, 且 BC DE, AD BC 4, AB DE 10 ,则 AE 的值 AC
为 .
10. (2020·吉林)如图, AB // CD // EF .若 AC 1 , BD 5 ,则 DF ______. CE 2
人教版数学九年级下册 27.1《图形的相似》
一、选择题 1.下图是大众汽车的标志示意图,下面的图形中与其相似的是( )
2.下列各组图形中,两个图形形状不一定相同的是( ) A.两个等边三角形 B.有一个角是 35°的两个等腰三角形 C.两个正方形 D.两个圆
3.一个多边形的边长为 2,3,4,5,6,另一个和它相似的多边形的最长边为 24,则这个多边形的 最短边为( )
A.6
B.8
C.10
D.12
4.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5 cm,6 cm 和 9 cm,另 一个三角形的最短边长为 2.5 cm,则它的最长边为( )
A.3 cm
B.4 cm
C.4.5 cm D.5 cm
5.小张用手机拍摄得到图(1),经放大后得到图(2),图(1)中的线段 AB 在图(2)中的对应线段是 ()
(1)如果四周的小路的宽均相等,都是 x,如图 1,那么小路四周所围成的矩形 A′B′C′D ′和矩形 ABCD 相似吗?请说明理由;
(2)如果相对着的两条小路的宽均相等,宽度分别为 x,y,如图 2,试问小路的宽 x 与 y 的 比值为多少时,能使得小路四周所围成的矩形 A′B′C′D′和矩形 ABCD 相似?请说明理由.
(含答案)九年级数学人教版下册课时练第27章《27.3 位似 》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第27章相似27.3位似一、选择题1.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)3.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是()A.1:8B.1:6C.1:4D.1:24.如图,在3×3正方形网格中,顶点是网格线的交点的三角形叫做格点三角形.给出下列命题:①一定存在全等的两个格点三角形②一定存在相似且不全等的两个格点三角形③一定存在两个格点三角形是位似图形④一定存在周长和面积均为无理数的格点三角形其中真命题的个数是()A.4个 B.3个 C.2个 D.1个5.如图,在56´的网格中,每个小正方形边长均为1,ABC 的顶点均为格点,D 为AB 中点,以点D 为位似中心,相似比为2,将ABC 放大,得到'''A B C ,则'BB =()6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述不正确的是()A.△AMO 与△ABC 位似B.△AMO 与△BCD 位似C.△ANO 与△ACD 位似D.△AMN 与△ABD 位似7.如图,已知△ABO 与△DCO 位似,且△ABO 与△DCO 的面积之比为1:4,点B 的坐标为(﹣3,2),则点C 的坐标为()A.(3,﹣2)B.(6,﹣4)C.(4,﹣6)D.(6,4)8.如图,在平面直角坐标系中,△ABC 与△A1B1C1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)二、填空题9.△ABC与△A/B/C/是位似图形,且△ABC与△A/B/C/的位似比是1:2,已知△ABC的面积是3,则△A/B/C/的面积是10.如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(﹣1,2),则点P的坐标为.11.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,则点B的横坐标是.12.在平面直角坐标中,△ABC的顶点坐标分别是A(1,1),B(4,2),C(3,5),以点A为位似中心,相似比为1:2.把三角形ABC缩小,得到△AB1C1,则点C的对应点C1的坐标为.13.如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.三、作图题14如图,图中的小方格都是边长为1的正方形,△ABC 与△A′B′C′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC 与△A′B′C′的位似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.15.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点,分别按下列要求画三角形.(1)在图②中,请在网格中画一个与图①△ABC 相似的△DEF ;(2)在图③中,以O 为位似中心,画一个△A 1B 1C 1,使它与△ABC 的位似比为2:1.16.如图,在正方形格中,每一个小正方形的边长都为1,△ABC 的顶点分别为A (2,3),B(2,1),C(5,4).(1)写出△ABC的外心P的坐标.(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的同侧将△ABC放大为△A′B′C′,放大后点A、B、C的对应点分别为A′、B′,C′,请在图中画出△ABC.17.如图,在10×10的正方形网格中,每个小正方形的边长均为1,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1.(2)△A1B1C1与△ABC的位似比为;(3)△A1B1C1的周长为.参考答案1.D2.A3.C4.B5.D6.B7.B8.D9.答案为:1210(,2)或(﹣,﹣2).11.(﹣1,0).12.(2,3)或(0,﹣1).13.答案为:(﹣2,).14.解:(1)连接A′A,C′C,并分别延长相交于点O,即为位似中心(2)位似比为1∶2(3)略15.解:(1)如图②,△DFE为所作;(2)如图③,△A1B1C1为所作.16.解:(1)如图.P点坐标为(4,2);故答案为(4,2);(2)如图,△A′B′C′为所作.17.解:(1)如图所示:△A1B1C1即为所求;(2)△A1B1C1与△ABC的位似比为:1:3;(3)△A1B1C1的周长为:9++=9+3+3.故答案为:(2)1:3;(3)9+3+3.。
2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)
2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
人教版初3数学9年级下册 第27章(相似)期末综合复习训练2(含答案)
人教版九年级数学下册《第27章相似》期末综合复习训练2(附答案)1.若x===,则x等于( )A.﹣1或B.﹣1C.D.不能确定2.已知===,则=( )A.B.C.D.3.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为( )A.4﹣4B.8+8C.8﹣8D.4+44.一个五边形ABCDE各边的边长为2,3,4,5,6,另一个和它相似的五边形A1B1C1D1E1最长边为12,则A1B1C1D1E1的最短边长为( )A.8B.6C.4D.25.如图,在正方形ABCD中,E,F分别是BC、AB上一点,且AF=BE,AE与DF交于点G,连接CG.若CG=BC,则AF:FB的比为( )A.1:1B.1:2C.1:3D.1:46.如图,AB与CD相交于点E,点F在线段BC上,且AC∥EF∥DB.若BE=5,BF=3,AE=BC,则的值为( )A.B.C.D.7.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为( )A.1B.2C.D.38.有一个三角形木架三边长分别是15cm,20cm,24cm,现要再做一个与其相似的三角形木架,而只有长为12cm和24cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )A.一种B.两种C.三种D.四种9.如图,四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,若OA:AA′=2:1,则四边形ABCD与四边形A'B'C'D'的面积之比等于( )A.1:2B.1:4C.2:3D.4:910.如图,在平面直角坐标系中,有一个Rt△OAB,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将Rt△OAB绕原点逆时针旋转30°,同时把各边长扩大为原来的两倍(即OA1=2OA).得到Rt△OA1B1,同理,将Rt△OA1B1绕原点O逆时针旋转30°,同时把各边长扩大为原来的两倍,得到Rt△OA2B2,…,依此规律,得到三角形Rt△OA2021B2021,则OB2021的长度为( )A.B.×22020C.×22021D.×2201911.已知=,则= .12.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是 .13.四边形ABCD∽四边形A1B1C1D1,他们的面积比为16:9,四边形ABCD的周长是16,则四边形A1B1C1D1的周长为 .14.如图,直线a∥b∥c,点B是线段AC的中点,若DE=2,则DF的长度为 .15.如图,在直角坐标系中,已知点A(2,0),B(0,4),在x轴上找到点C(1,0)和y轴的正半轴上找到点D,使△AOB与△DOC相似,则D点的坐标是 .16.如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为 .17.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为 .18.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A,B,E在x轴上,若正方形BEFG的边长为5,则C 点坐标为 .19.阅读理解:已知:a,b,c,d都是不为0的数,且=,求证:=.证明:∵=,∴+1=+1.∴=.根据以上方法,解答下列问题:(1)若=,求的值;(2)若=,且a≠b,c≠d,证明=.20.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,DE=15,求△DEF的面积.21.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则=.下面是这个定理的部分证明过程.证明:如图2,过C作CE∥DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是 .22.在等腰△AMB中,AM=AB,点C在边AM上,△MCD是直角三角形,∠CMD=90°,∠MCD=∠MAB,连接BC,BD,点O是BC的中点,连接AO.(1)如图1,作AE⊥MB于E,连接OE.当∠AMB=45°时,求证:△AOE相似于△BDM;(2)如图2,当∠AMB=30°时,线段BD与线段AO存在怎样的数量关系?写出证明过程.23.数学小组想利用所学知识测量一棵树的高度EF.在第一次测量中,小莉来回走动,走到点D时,其影子末端与树影子末端重合于点H,测得DH=1米.随后,组员在直线DF 上平放一平面镜,在镜面上做了一个标记,这个标记在直线DF上的对应位置为点G.镜子不动,小莉从点D沿着直线FD后退11米到B点时,恰好在镜子中看到顶端E的像与标记G重合,此时BG=2米.如图,已知AB⊥BF,CD⊥BF,EF⊥BF,小莉的身高为1.6米(眼睛到头顶距离忽略不计,平面镜的厚度忽略不计).根据以上信息,求树的高度EF.24.如图,点D在△ABC的边BC上,DC=AC=BD,∠ACB的平分线CF交AD于F,点E是AB的中点,连接EF.(1)求证:△AEF∽△ABD.(2)若△AEF的面积为1,求△ABC的面积.参考答案1.解:∵x===,∴当a+b+c≠0时,x==;当a+b+c=0时,x===﹣1,故选:A.2.解:∵===,∴b=2a,d=2c,f=2e,把b=2a,d=2c,f=2e代入===,故选:C.3.解:∵线段AB=8,P是AB的黄金分割点,且AP<BP,∴BP=AB=×8=4﹣4.故选:A.4.解:设五边形A1B1C1D1E1的最短边长为m.由相似多边形的性质可知:=,∴m=4,故选:C.5.解:作CH⊥DF于点H,如图所示.在△ADF和△BAE中,,∴△ADF≌△BAE(SAS).∴∠ADF=∠BAE,又∠BAE+∠GAD=90°,∴∠ADF+∠GAD=90°,即∠AGD=90°.由题意可得∠ADG+∠CDG=90°,∠HDC+∠CDG=90°,.∴∠ADG=∠HDC.在△AGD和△DHC中,,∴△AGD≌△DHC(AAS).∴DH=AG.又CG=BC,BC=DC,∴CG=DC.由等腰三角形三线合一的性质可得GH=DH,∴AG=DH=GH.∴tan∠ADG=.又tan∠ADF==,∴AF=AB.即F为AB中点,∴AF:FB=1:1.故选:A.6.解:设CF=x,∵EF∥AC,∴=,∴=,解得x=,∴CF=,∵EF∥DB,∴===.故选:A.7.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=3,∴DH=EF=×3=,故选:C.8.解:长24cm的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长24cm 的木条不能作为一边,设从24cm的木条上截下两段长分别为xcm,ycm(x+y≤24),由于长12cm的木条不能与15cm的一边对应,否则x+y>24cm,当长12cm的木条与20cm的一边对应,则==,解得:x=9,y=14.4;当长12cm的木条与24cm的一边对应,则==,解得:x=7.5,y=10.∴有两种不同的截法:把24cm的木条截成9cm、14.4cm两段或把24cm的木条截成7.5cm、10cm两段.故选:B.9.解:∵OA:AA′=2:1,∴OA:OA′=2:3.∵四边形ABCD与四边形A′B′C′D′位似,∴AB∥A′B′,四边形ABCD∽四边形A′B′C′D′,∴△OAB∽△OA′B′,∴==,∴四边形ABCD与四边形A′B′C′D′的面积比=()2=,故选:D.10.解:在Rt△AOB中,∠AOB=30°,OA=1,∴OB=OA•cos∠AOB=,由题意得,OB1=2OB=×2,OB2=2OB1=×22,……OB n=2OB1=×2n=×2n﹣1,∴OB2021=×22020.故选:B.11.解:∵=,∴=,∴﹣=,∴=.故答案为:.12.解:因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4,故答案为:1:4.13.解:∵四边形ABCD∽四边形A1B1C1D1,他们的面积比为16:9,∴相似比为4:3,∴周长比等于4:3,∴四边形A1B1C1D1的周长=×16=12,故答案为:12.14.解:∵点B是线段AC的中点,∴AB=BC,∴=1,∵直线a∥b∥c,∴==1,∵DE=2,∴EF=2,∴DF=DE+EF=2+2=4,故答案为:4.15.解:若△AOB∽△DOC,点D在x轴上方:∠B=∠OCD,∴=,即=.∴OD=.∴D(0,),若△AOB∽△COD,点D在x轴上方:可得D(0,2).综上所述,D点的坐标是(0,)或(0,2).故答案是:(0,)或(0,2).16.解:在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,∴AC=2BC=8cm,∵D为BC中点,∴CD=2cm,∵0≤t≤12,∴E点的运动路线为从A到C,再从C到AC的中点,按运动时间分为0≤t≤8和8<t≤12两种情况,①当0≤t≤8时,AE=tcm,CE=BC﹣AE=(8﹣t)cm,当∠EDC=90°时,则有AB∥ED,∵D为BC中点,∴E为AC中点,此时AE=4cm,可得t=4;当∠DEC=90°时,∵∠DEC=∠B,∠C=∠C,∴△CED∽△BCA,∴,即,解得t=7;②当8<t≤12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;当t=12时,此时E点在AC的中点,DE∥AB,此时△CDE是直角三角形.综上可知t的值为4或7或9或12,故答案为:4或7或9或1217.解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).18.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,∴=,∵BG=5,∴AD=BC=,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=,∴OB=+=,∴C点坐标为:(,),故答案为:(,).19.解:(1)∵=,∴=+1=+1=.(2)∵=,∴﹣1=﹣1,∴=,∵=,∴÷=÷,∴=.20.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.21.(1)证明:如图2,过C作CE∥DA.交BA的延长线于E,∵CE∥AD,∴=,∠2=∠ACE,∠1=∠E,∵∠1=∠2,∴∠ACE=∠E,∴AE=AC,∴=;(2)解:如图3,∵AB=3,BC=4,∠ABC=90°,∴AC=5,∵AD平分∠BAC,∴=,即=,∴BD=BC=,∴AD===,∴△ABD的周长=+3+=.故答案为.22.解:(1)证明:∵AM=AB,AE⊥MB,∴E为MB的中点,∵∠AMB=45°,∴∠MAB=180°﹣2×45°=90°,∴AE=MB,∵点O是BC的中点,∴OE∥MC且OE=MC,∴∠OEB=∠CMB=45°,∴∠AEO=45°,∵∠CMD=90°,∴∠BMD=45°,∴∠BMD=∠AEO,∴△BMD∽△AEO;(2)BD=2AO;证明:如图,作AF⊥MB于F,连接OF,∵AM=AB,AF⊥MB,∴F为MB的中点,∵∠AMB=30°,∴∠MAB=180°﹣2×30°=120°,∴∠MCD=∠MAB=60°,∵∠CMD=90°,∴∠CDM=30°,∴tan AMB=tan∠CDM=tan30°==,∴MB=2AF,∵点O是BC的中点,∴OF∥MC且OF=MC,∴∠OFB=∠CMB=30°,MD=2OF,∴∠AFO=60°,∴∠BMD=∠AFO,∴△BMD∽△AFO,∴BD=2AO.23.解:设广告牌的高度EF为xm,依题意知:DB=11m,BG=2m,DH=1m,AB=CD=1.6m.∴GD=DB﹣BG=9m,∵CD⊥BF,EF⊥BF,∴CD∥EF.∴△EFH∽△CDH.∴=,即=.∴=.∴DF=x﹣1.由平面镜反射规律可得:∠EGF=∠AGB.∵AB⊥BF,∴∠ABG=90°=∠EFG.∴△EFG∽△ABG.∴=,即=.∴=.∴x=12.8.故树的高度EF为12.8m.24.(1)证明:∵DC=AC,CF是∠ACB的平分线,∴AF=DF,∵点E是AB的中点,即AE=BE,∴EF是△ABD的中位线,∴EF∥BD,∴△AEF∽△ABD;(2)∵△AEF∽△ABD,∴,∵AE=AB,S△AEF=1,∴S△ABD=4,∵BD=CD,∴S△ABC=2S△ABD=8。
人教版九年级下册数学第二十七章测试卷及答案
人教版九年级下册数学第二十七章测试题一、单选题1.如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若23ADDB=,则下列说法不正确的是()A.AD AEAB AC=B.23AEEC=C.23DEBC=D.421ADEDBCESS=四边形2.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则EFFC等于()A.13B.12C.23D.323.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.16013mm C.20mm D.24013mm4.如图,在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.两三角形重叠部分是四边形AGDH,当四边形AGDH的面积最大时,最大值是多少?()A.12B.11.52C.13D.25.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为() A.52B.6﹣2√5C.512D.4﹣56.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,DF∥AC,若△ADE与四边形DBCE的面积相等,则△DBF与△ADE的面积之比为()A.12B.14C21D.27.如图,正方形OABC的边长为8,点P在AB上,CP交OB于点Q.若S△BPQ=19OQC S,则OQ长为()A.6B.2C.1623D.1638.在△ABC中,点D在边BC上,联结AD,下列说法错误的是()A.如果∠BAC=90°,AB2=BD•BC,那么AD⊥BCB.如果AD⊥BC,AD2=BD•CD,那么∠BAC=90°C.如果AD⊥BC,AB2=BD•BC,那么∠BAC=90°D.如果∠BAC=90°,AD2=BD•CD,那么AD⊥BC9.如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC 分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.如图,已知△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,点B的坐标为(﹣3,2),则点C的坐标为()A.(3,﹣2)B.(6,﹣4)C.(4,﹣6)D.(6,4)11.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m12.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2B.4C.6D.8二、填空题13.如图,△ABC 中,D 、E 分别是AB 、AC 上的点(DE 不平行BC ),若使△ADE 与△ABC 相似,则需要添加_____即可(只需添加一个条件).14.如图,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,且BD =4,CD =2,那么AF =_____.15.如图,矩形ABCD 中,AB =2,BC =4,剪去一个矩形ABEF 后,余下的矩形EFDC ∽矩形BCDA ,则FC 的长为_____.16.若23a b =,则2a ba +=_____.17.如图,平行四边形ABCD 中,点E 是AD 边上一点,连结EC 、BD 交于点F ,若AE :ED =5:4记△DFE 的面积为S 1,△BCF 的面积为S 2,△DCF 的面积为S 3,则DF :BF =_____,S 1:S 2:S 3=_____.18.如图,在四边形ABCD 中,AD ∥BC ∥EF ,EF 分别与AB ,AC ,CD 相交于点E ,M ,F ,若EM :BC =2:5,则FC :CD 的值是_____.19.如图,已知△ABC ,AB=6,AC=5,D 是边AB 的中点,E 是边AC 上一点,∠ADE=∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AFAG的值为__________.三、解答题20.如图,在△ABC 中,AB =AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E .(1)求证:DE •CD =AD •CE ;(2)设F 为DE 的中点,连接AF 、BE ,求证:AF •BC =AD •BE.21.如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且AE 2=EG •ED .(1)求证:DE ⊥EF ;(2)求证:BC 2=2DF •BF.22.如图,在ABC 中,D 、E 分别是边AB 、AC 上的点,// DE BC ,点F 在线段DE 上,过点F 作//FG AB 、//FH AC 分别交BC 于点G 、H ,如果::2:4:3BG GH HC .求ADEFGHS S △△的值.23.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.24.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.25.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=12BD•EC.(1)求证:△EDF∽△EFC;(2)如果14EDFADCSS,求证:AB=BD.参考答案1.C 【分析】根据题意可以得到△ADE ∽△ABC ,然后根据题目中的条件即可推出选项中的说法是否正确,从而可以解答本题.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AE AB AC =,AE AD EC DB ==23,DE BC==AD AB =25,ADE ABC S S ∆∆=(AD AB )2=425,∴ADE DBCE S S ∆四边形=421,故A 、B 、D 选项正确,C 选项错误,故选C .【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用相似三角形的性质解答问题.2.A 【详解】试题分析:如图,∵四边形ABCD 为平行四边形,∴ED ∥BC ,BC=AD ,∴△DEF ∽△BCF ,∴EF DEFC CB =,设ED=k ,则AE=2k ,BC=3k ,∴EF FC =3k k =13,故选A .考点:1.相似三角形的判定与性质;2.平行四边形的性质.3.A【分析】利用相似三角形的性质构建方程即可解决问题.【详解】如图,设AD交PN于点K,∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k,∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴PM AK BC AD=,∴3802 12080k k-=,解得k=20mm,∴PM=3k=60mm,故选A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.A【分析】先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8-43GA,得到S矩形AGDH=-43AG2+8AG,确定极值,AG=3时,面积最大,于是得到结论.【详解】∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∵GA⊥AC,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴BG GD AB AC=,∴AB AG AH AB AC-=,∴668AG AH -=,∴AH=8-43 GA,S矩形AGDH=AG×AH=AG×(8-43AG)=-43AG2+8AG,当AG=-842()3⨯-=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选A.【点睛】此题主要考查了相似三角形的性质和判定,平行四边形,矩形,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线,5.A【分析】利用黄金分割的定义得到PA=12AB ,然后把AB=4代入计算即可.【详解】∵点P 是线段AB 的黄金分割点(AP >BP ),∴12AB=12.故选A .【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中,并且线段AB 的黄金分割点有两个.6.D【分析】根据矩形的性质得到DE=CF ,根据相似三角形的性质得到ADE ABC S S =(DE BC )2=12,求得DE BC=2,设k ,BC=2k ,得到k ,根据相似三角形的性质即可得到结论.【详解】∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形,∴DE=CF ,∵△ADE 与四边形DBCE 的面积相等,∴ADE ABC S S =12,∵DE ∥BC ,∴△ADE ∽△ABC ,∴ADE ABC S S =(DE BC )2=12,∴DE BC=2,设k ,BC=2k ,∴,∵DF ∥AC ,∴△BDF ∽△BAC ,∴△DBF ∽△ADE ,∴BDF ADE S S =(BF DE )2=2⎛⎫⎪⎪⎭=)2故选D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.B【分析】根据正方形的性质得到AB ∥OC ,推出△PBQ ∽△COQ ,根据相似三角形的性质得到OC=3PB ,求得PB=83,于是得到结论.【详解】∵四边形ABCO 是正方形,∴AB ∥OC ,∴△PBQ ∽△COQ ,∴BPQOQC S S =(PB OC)2=19,∴OC=3PB ,∵OC=8,∴PB=83,∵BQ OQ =PB OC =13,∴OQ=34故选B .【点睛】本题考查相似三角形的判定和性质、正方形的性质、平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.D根据相似三角形的判定定理证明相应的三角形相似,根据相似三角形的性质判断即可.【详解】如图:A、∵AB2=BD•BC,∴AB BC BD AB=,又∠B=∠B,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴AD CD BD AD=,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴AB BC BD AB=,又∠B=∠B,∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选D.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.9.A【分析】根据角平分线和平行证明△EBO和△OFC是等腰三角形,再由周长关系得y=8-x,即可解题.【详解】解:∵点O是∠ABC和∠ACB两个内角平分线的交点,EF∥BC,∴∠OBC=∠EOB,∠OBC=∠EBO,∴△EBO是等腰三角形,同理,△OFC是等腰三角形,即BE=EO,CF=OF,∴△AEF的周长y=AE+EF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴y=8-x,即x是关于y的一次函数,图像是递减的直线,故选A【点睛】本题考查了一次函数的实际应用,中等难度,证明等腰三角形,找到函数关系是解题关键. 10.B【分析】利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).【详解】∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO为1:2,∵点B的坐标为(-3,2),∴点C的坐标为(6,-4),故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.D【分析】首先设它的实际长度是xcm ,然后根据比例尺的定义,即可得方程:1:800025:x =,解此方程即可求得答案,注意统一单位.【详解】设它的实际长度是xcm ,根据题意得:1:800025:x =,解得:200000x =,2000002000cm m =,∴它的实际长度为2000m .故选D .【点睛】此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.12.D【分析】先根据三角形中位线的性质得到DE=12AB ,从而得到相似比,再利用位似的性质得到△DEF ∽△ABC ,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D ,E 分别是OA ,OB 的中点,∴DE=12AB ,∵△DEF 和△ABC 是位似图形,点O 是位似中心,∴△DEF ∽△ABC ,∴DEF ABC S S ∆∆=14,∴△ABC 的面积=2×4=8故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.13.∠ADE=∠C【分析】根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.【详解】∵∠A是公共角,如果∠ADE=∠C,∴△ADE∽△ABC,故答案为∠ADE=∠C.【点睛】本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即①有两组角对应相等的三角形相似,②三边对应成比例的两个三角形相似,③两组边对应成比例且夹角相等的两个三角形相似.14.143【分析】根据三角形的角性质定理、相似三角形的性质进行求解.【详解】∵△ABC和△ADE都是等边三角形,∴∠B=∠ADE=∠C=60°,∵∠B+∠BAD=∠ADF+∠FDC,∴∠BAD=∠FDC,∴△ABD∽△FDC,∴DC FC AB BD=,∵BD=4,CD=2,且△ABC是等边三角形,∴AB=BC=BD+DC=6,∴2=6 DC FCAB BD=,∴FC=4 3 ,AF=AC-FC=14 3 .【点睛】本题主要考查的是三角形的角性质定理、相似三角形的性质,熟练掌握是本题的解题关键. 15【分析】根据相似多边形的性质得CD CEAD AB=,即242CE=,然后利用比例性质求出CE,再利用勾股定理计算FC即可.【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,∵四边形EFCD是矩形,∴EF=CD=2,CF=DE,∵余下的矩形EFCD∽矩形BCDA,∴CD CEAD AB=,即242CE=,∴CE=1,∴FC的长【点睛】本题考查了相似多边形的性质:如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形;相似多边形对应边的比叫做相似比.16.4【分析】设a b k23==,则a=2k,b=3k,再代入式子中即可求得结果.【详解】设a b k23==,则a=2k,b=3k,a 2b a+=2k 6k 2k +=8k 2k =4故答案为4【点睛】此题考查了比例的基本性质,熟练掌握性质是解答此题的关键.17.4:916:81:36.【分析】由AE :ED=5:4,得到DE :AD=4:9,根据平行四边形的性质得到AD ∥BC ,AD=BC ,根据相似三角形的性质即可得到结论.【详解】∵AE :ED=5:4,∴DE :AD=4:9,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∴49DE DF BC BF ==,∴12S S =(49)2=1681,23S S =94,∴S 1:S 2:S 3=16:81:36,故答案为4:9,16:81:36.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.18.35【分析】首先得出△AEM ∽△ABC ,△CFM ∽△CDA ,进而利用相似三角形的性质求出即可.【详解】∵AD ∥BC ∥EF ,∴△AEM ∽△ABC ,△CFM ∽△CDA ,∵EM :BC=2:5,∴25 AM EMAC BC==,设AM=2x,则AC=5x,故MC=3x,∴35 CM CFAC CD==,故答案为3 5.【点睛】此题主要考查了相似三角形的判定与性质,得出25AMAC=是解题关键.19.3 5【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF AD AG AC==.故答案为3 5 .【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=12BC,DE=2DF,结合DE•CD=AD•CE可得出CE BCDF AD=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【详解】(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴DE CE AD CD=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=12 BC,∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•12BC=AD•CE,∴CE BC DF AD=,又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴BC BE AD AF=,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.21.(1)证明见解析;(2)证明见解析.【分析】(1)根据直角三角形的性质得到AE=FE,根据相似三角形的性质得到∠EAG=∠ADG,求得∠DAG=∠FEG,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB=90°,于是得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【详解】(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴AE DE EG AE,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF EG DE EF=,∵∠FEG =∠DEF ,∴△FEG ∽△DEF ,∴∠EFG =∠EDF ,∴∠BAF =∠EDF ,∵∠DEF =∠AFB =90°,∴△ABF ∽△DFE ,∴AB BF DF EF=,∵四边形ACBD 是菱形,∴AB =BC ,∵∠AFB =90°,∵点E 是AB 的中点,∴FE =12AB =12BC ,∴BC DF =12BF BC ,∴BC 2=2DF•BF .【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.22.2516ADE FGH S S ∆=△.【分析】设BG=2k ,GH=4k ,HC=3k ,根据平行四边形的性质可得DF=BG=2k ,EF=HC=3k ,可得DE=5k ,根据△ADE ∽△FGH 可得22516ADE FGH S DE SGH == ().【详解】解:∵DE BC ‖,∴ADE B∠=∠∴FG AB ‖,∴FGH B∠=∠∴ADE FGH∠=∠同理:AED FHG∠=∠∴ADE FGH∽△△∴2ADE FGH S DE S GH ⎛⎫= ⎪⎝⎭△△∵DE BC ‖,FGAB ‖,∴DF BG =同理:FE HC=∵::2:4:3BG GH HC =,∴设2BG k =,4GH k =,3HC k=∴2DF k =,3FE k =,∴5DE k=∴2525416ADE FGH S k S k ∆⎛⎫== ⎪⎝⎭△【点睛】此题考查相似三角形的判定和性质,平行四边形判定和性质,熟练掌握相似三角形的性质是解题的关键.23.(1)AD =4;(2)矩形EFGH 的面积28849.【分析】(1)设BC=3x ,根据三角形的面积公式列式计算即可;(2)设GF=y ,根据矩形的性质得到HG ∥BC ,得到△AHG ∽△ABC ,根据相似三角形的性质列出比例式,计算即可.【详解】(1)设BC =3x ,则AD =2x ,∵△ABC 的面积为12,∴12×3x×2x =12,解得,x 1=2,x 2=﹣2(舍去),则AD 的长=2x =4;(2)设GF =y ,则HG =2y ,∵四边形EFGH 为矩形,∴HG ∥BC ,∴△AHG ∽△ABC ,∴HG AM BC AD =,即2464y y -=,解得,y =127,HG =2y =247,则矩形EFGH 的面积=127×247=28849.【点睛】本题考查的是相似三角形的判定和性质,矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.△DBH ∽△HBC ,理由见解析.【分析】根据正方形的性质得到∠A=90°,设AB=x ,则AH=BC=CD=x ,推出BH BD BC BH=,由∠HBC=∠HBC ,即可得到结论.【详解】△DBH ∽△HBC ,理由:∵四边形ABGH ,四边形BCFG ,四边形CDEF 都是正方形,∴A ,B ,C ,D 在一条直线上,∠A =90°,设AB =x ,则AH =BC =CD =x ,∴BHx ,BD =2x ,∴BH BD BC BH =,∵∠HBC =∠HBC ,∴△DBH ∽△HBC .【点睛】此题主要考查了相似三角形的判定方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;需注意的是所有的全等三角形都相似.25.(1)证明见解析;(2)证明见解析.【分析】(1)利用两边成比例夹角相等两个三角形相似即可证明;(2)由△EDF ∽△ADC ,推出EDF ADC S S =(ED AD )2=14,推出ED AD =12,即ED=12AD ,由此即可解决问题.【详解】(1)∵AB =AD ,AE ⊥BC ,∴BE =ED =12DB ,∵EF 2=12•BD•EC ,∴EF 2=ED•EC ,即得EF EC =ED EF,又∵∠FED =∠CEF ,∴△EDF ∽△EFC ;(2)∵AB =AD ,∴∠B =∠ADB ,又∵DF ∥AB ,∴∠FDC =∠B ,∴∠ADB =∠FDC ,∴∠ADB+∠ADF =∠FDC+∠ADF ,即得∠EDF =∠ADC ,∵△EDF ∽△EFC ,∴∠EFD =∠C ,∴△EDF ∽△ADC ,∴EDF ADC S S =(ED AD )2=14,∴ED AD =12,即ED =12AD ,又∵ED =BE =12BD ,∴BD =AD ,∴AB =BD .【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
人教版九年级数学下《第27章相似》专项训练含答案
人教版九年级数学下《第27章相似》专项训练含答案专训1证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD =CE,DE交AC于点F,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC 于E,交AD于F.求证:BFBE=ABBC.(第8题)9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.(第9题)等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF ∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2巧用“差不多图形”探究相似条件名师点金:几何图形大多数由差不多图形复合而成,因此熟悉三角形相似的差不多图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC=BD·AC;(2)假如S △ADE =3,S △BDE =2,DE =6,求BC 的长.(第1题)相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO=DOCO,试问△ADE 与△ABC 相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF.(第3题)旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC. 求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.(第4题)专训3利用相似三角形巧证线段的数量和位置关系名师点金:判定两线段之间的数量和位置关系是几何中的差不多题型之一.由角的关系推出“平行或垂直”是判定位置关系的常用方法,由相似三角形推出“相等”是判定数量关系的常用方法.证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.(第1题)2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE CE=BF CF.求证:AD=DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12 BC.(第3题)4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.(第4题)证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB上一点,连接CD,DE ⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.(第5题)6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.(第7题)8.如图,已知矩形ABCD,AD=13AB,点E,F把AB三等分,DF交AC于点G,求证:EG⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题经常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 通过A ,B ,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标.(第2题)3.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =-x 2+bx +c 与直线BC 交于点D(3,-4).(1)求直线BD 和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)通过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB对应的函数解析式.(第4题)专训5全章热门考点整合应用名师点金:本章要紧内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其要紧考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度差不多上________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判定四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原先的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B动身,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC 交AC于点E,设动点D运动的时刻为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范畴;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;=5,BC=10,求DE的长.(2)若S△FCD(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE ⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP 交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,现在树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,同时在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长差不多上1个单位长度)有一点O 和△ABC.请以点O为位似中心,把△ABC缩小为原先的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC 的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题) 1.证明:如图,过点C作CM∥AB交DF于点M. ∵CM∥AB,∴△CMF∽△BDF.∴BFCF=BDCM.又∵CM∥AD,∴△ADE∽△CME.∴AEEC=ADCM.∵D为AB的中点,∴BDCM=ADCM.∴BFCF=AEEC,即AE·CF=BF·EC.2.证明:过点D作DG∥BC,交AC于点G,∴△DGF∽△ECF,△ADG∽△ABC.∴EFDF=CEDG,ABBC=ADDG.∵AD=CE,∴CEDG=ADDG.∴ABBC=EFDF,即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A”型或“X”型的差不多图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题) 5.证明:如图,连接PM,PN.∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°.∴∠5=∠7.∴△BPM∽△CNP.∴BPCN=BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF ∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DGDE=DEDF,∴DE2=DG·DF,∴DG·DF=DB·EF.7.证明:∵BG⊥AP,PE⊥AB,∴∠AEP=∠BED=∠AGB=90°.∴∠P+∠PAB=90°,∠PAB+∠ABG=90°.∴∠P=∠ABG.∴△AEP∽△DEB.∴AEDE=PEBE,即AE·BE=PE·DE.又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°. 又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE.∴△AEC ∽△CEB. ∴AE CE =CEBE ,即CE 2=AE·BE.∴CE 2=DE·PE. 8.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BF BE. ∵∠BAC =∠BDA =90°,∠ABC =∠DBA. ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =AB BC. 9.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°, ∴△AMB ∽△AND. (2)由△AMB ∽△AND 得AM AN =ABAD,∠BAM =∠DAN. 又AD =BC ,∴AM AN =AB BC. ∵AM ⊥BC ,AD ∥BC ,∴∠AMB =∠MAD =90°. ∴∠B +∠BAM =∠MAN +∠NAD =90°, ∴∠B =∠MAN. ∴△AMN ∽△BAC ,∴AM AB =MN AC. 10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ADE ∽△ABD ,得AD 2=AE·AB,同理可得AD 2=AF·AC,∴AE·AB=AF·AC,∴AE AF =AC AB. 11.证明:连接PC ,如图.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB ,∴BP =CP ,∴∠1=∠2,∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F ,∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC ,∴CPPE =PFCP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA,则PA=PD,∴∠PDA=∠PAD. ∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC∽△PBA,∴PAPB=PCPA,即PA2=PB·PC,∴PD2=PB·PC.专训21.(1)证明:∵ED∥BC,∴△ADE∽△ABC.∴AEAC=DEBC.∵BE平分∠ABC,∴∠DBE=∠EBC. ∵ED∥BC,∴∠DEB=∠EBC.∴∠DBE=∠DEB.∴DE=BD.∴AEAC=BDBC,即AE·BC=BD·AC.(2)解:设h△ADE表示△ADE中DE边上的高,h△BDE表示△BDE中DE边上的高,h△ABC表示△ABC中BC边上的高.∵S△ADE =3,S△BDE=2,∴S△ADES△BDE=h△ADEh△BDE=32.∴h△ADEh△ABC=35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,因此△BOE∽△COD,△DOE∽△COB.因此∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE =∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.因此∠ADE=∠ABC.又因为∠A=∠A,因此△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DN MC =ON OM .∴DN MC =NE BM .∴DN NE =MC BM. ∵DE ∥BC ,∴△ANE ∽△AMC.∴AN AM =NEMC .同理可得AN AM =DN BM ,∴DN BM =NE MC .∴DN NE =BM MC. ∴MC BM =BMMC.∴MC 2=BM 2.∴BM =MC.(第2题)2.证明:如图,过C 作CG ∥AB 交DF 于G 点. ∵CG ∥AB ,∴AD CG =AE CE ,BD CG =BF CF, ∵AE CE =BF CF ,∴AD CG =BD CG, ∴AD =BD.3.证明:∵BD ⊥AC ,CE ⊥AB ,∠A =60°,∠ABD =∠ACE =30°,∴AD AB =12,AE AC =12,∴AD AB =AE AC .又∠A =∠A ,∴△ADE ∽△ABC ,∴DE BC =AD AB =12,∴DE =12BC. 4.证明:如图,延长CE ,交AM 的延长线于F.∵AB ∥CF ,∴∠BAM =∠F ,△BDM ∽△CEM ,△BAM ∽△CFM ,∴BD CE =BM MC ,BA CF =BM MC ,∴BD CE =BACF.又∵BA =2BD ,∴CF =2CE.又AM 平分∠BAC ,∴∠BAM =∠CAM ,∴∠CAM =∠F ,∴AC =CF ,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C 作CO ⊥AB 于点O.∵DE =CD ,DE ⊥CD ,∴∠ECD =∠CED =45°.∵△ABC 是等腰直角三角形,∴∠CAB =∠B =45°.∴∠CAB =∠CED.又∵∠AOC =∠EDC =90°,∴△ACO ∽△ECD.∴AC CO =ECCD .又∵∠ACE +∠ECO =∠OCD +∠ECO =45°,∴∠ACE =∠OCD.∴△ACE ∽△OCD.∴∠CAE =∠COD =90°.又∵∠ACB =90°,∴∠CAE +∠ACB =180°.∴AE ∥BC.6.解:(1)MN ∥AC ∥ED.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AM AD =MFDC .∵E 为AB 的中点,EF ∥BC ,∴F 为AC 的中点.又∵DF ∥AB ,∴D 为BC 的中点,∴EM =MF.∵F 为AC 的中点,FN ∥AE ,∴N 为EC 的中点,从而MN ∥AC.又∵D 为BC 的中点,E 为AB 的中点,∴ED ∥AC ,∴MN ∥AC ∥ED.(2)MN ∥AC.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD=AM AD =MF DC ,∴EM MF =BD DC .又∵DF ∥AB ,∴BD DC =EN NC ,∴EM MF =EN NC ,∴EM EF =ENEC .又∵∠MEN =∠FEC ,∴△MEN ∽△FEC.∴∠EMN =∠EFC.∴MN ∥AC.7.证明:∵AC 2=AB·AD,∴AC AD =ABAC.又∵∠A =∠A , ∴△ACD ∽△ABC.∴∠ADC =∠ACB. 又∵BC 2=BA·BD,∴BC BD =BABC.又∵∠B =∠B , ∴△BCD ∽△BAC.∴∠BDC =∠BCA. ∴∠ADC =∠BDC.∵∠BDC +∠ADC =180°,∴∠ADC =∠BDC =90°. ∴CD ⊥AB.8.证明:∵AD =13AB ,点E ,F 把AB 三等分,∴设AE =EF =FB =AD =k ,则AB =CD =3k. ∵CD ∥AB ,∴∠DCG =∠FAG ,∠CDG =∠AFG.∴△AFG ∽△CDG ,∴FG DG =AF CD =23. 设FG =2m ,则DG =3m ,∴DF =FG +DG =2m +3m =5m. 在Rt △AFD 中,DF 2=AD 2+AF 2=5k 2,∴DF =5k. ∴5m =5k.∴m =55k.∴FG =255k. ∴AF FG =2k 255k =5,DF EF =5k k = 5.∴AF FG =DFEF. 又∠AFD =∠GFE ,∴△AFD ∽△GFE. ∴∠EGF =∠DAF =90°.∴EG ⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0) 将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎨⎧b =153=43k +b 解得⎩⎨⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C(3,0),即BC =5 设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.现在点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝⎛⎭⎪⎫3,52. ②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F. ∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F. 即E 2F 2=CF·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去)∴E 2(2,2)当∠EBC =90°时,此情形不存在. 综上所述:E 1⎝⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线通过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎨⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎨⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AOAD=OBDP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m.把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎨⎧m =2,k +m =0,解得⎩⎨⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c.∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-9+3b +c =-4,解得⎩⎨⎧b =1,c =2. ∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO ,即ON 2=MN1,∴MN=12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n 2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在如此的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =k x 通过点D(1,3),∴3=k 1,∴k =3,∴y =3x .∵点E在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 通过点E ,∴点E 的纵坐标为y=32,∴点E 的坐标为⎝⎛⎭⎪⎫2,32. (2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BD CF =BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 通过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A′B′C′D′相似.由已知条件知,∠DAB =∠D′A′B′,∠B =∠B′,∠BCD =∠B′C′D′,∠D =∠D′,且AB A′B′=BCB′C′=CD C′D′=DA D′A′=56,因此四边形ABCD 与四边形A′B′C′D′相似. 4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B′作B′N⊥x 轴于点N ,则△CBM ∽△CB′N.因此MC NC =BM B ′N =BC B ′C.又由已知条件知NC =a +1,B′N=-b ,BC B ′C =12,因此MC (a +1)=BM (-b)=1 2.因此MC =12(a +1),BM =-b 2.因此MO =12(a +1)+1=a +32.因此点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y 6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x·y=12·2x·⎝⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD. 由(1)知△ABC ∽△FCD ,∴S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=41.又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC·AM,∴AM =2S △ABC BC =2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM =BDBM. 由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE4=55+52,∴DE=83.点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB为等腰直角三角形,AB为斜边,∴∠CAB=45°.∵CO⊥AB.∴∠AOC=90°.又∵DE⊥CD,DE=CD,∴∠CED=45°,∠CDE=90°.∴∠CAO=∠CED,∠AOC=∠EDC.∴△ACO∽△ECD.∴∠ACO=∠ECD,ACCO=CECD.∴∠ACE=∠OCD.∴△ACE∽△OCD.8.(1)证明:由四边形APCB内接于圆O,得∠FPC=∠B. 又∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,因此∠APD=∠FPC,因此∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∠PAC=∠PDC,因此△PAC∽△PDF.(2)解:由(1)知△PAC∽△PDF,因此∠PCA=∠PFD.又∠PAC=∠CAF,因此△PAC∽△CAF,因此△CAF∽△PDF,因此PDAC=DFAF,则PD·AF=AC·DF.由AB=5,AC=2BC,∠ACB=90°,知BC=5,AC=2 5. 由OE⊥CD,∠ACB=90°知CB2=BE·AB,CE=DE.因此BE=CB2AB=55=1.因此AE=4,CE=CB2-BE2=5-1=2,因此DE=2.又=,∠AFD=∠PCA,因此∠AFD=∠PCA=45°.因此FE=AE=4,AF=42,因此PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,因此△ABM∽△DCM∽△FGH,因此ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,因此2CM=1.22,解得CM=103m.因为BC=4 m,因此BM=BC+CM=4+103=223(m).因此AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.因此AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG=1.2 m,GH=2 m,因此AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G. ∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O,先连接CO,因为要把原三角形缩小为原先的一半,可确定C′O=12CO,由其确定出C′的位置,再依照同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,依照位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD为平角直截了当可得.(2)由于线段PM,CM,BM在同一条直线上,因此必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM=AM,从而证明△ACM与△ABM相似即可.(1)解:∵AP平分∠BAC,∴∠PAC=12∠BAC.又∵AQ平分∠CAD,∴∠CAQ=12∠CAD.∴∠PAC+∠CAQ=12∠BAC+12∠CAD=12(∠BAC+∠CAD).又∵∠BAC+∠CAD=180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.(2)证明:由(1)知∠PAQ=90°,又∵M是线段PQ的中点,∴PM=AM,∴∠APM=∠PAM.∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,∠BAP=∠PAC,∴∠B=∠CAM.又∵∠AMC=∠BMA,∴△ACM∽△BAM.∴CMAM=AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,查找相似三角形进行求解.。
人教版九年级数学下册第27章测试题及答案
人教版九年级数学下册第27章测试题及答案(考试时间:120分钟满分:120分)分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.在下面的图形中,相似的一组是(C)2.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为(A)A.3 B.2 C.4 D.5 3.下列四条线段中能成比例的是(C) A.a=4,b=6,c=5,d=10B.a=2,b=3,c=2,d=3C.a=2,b=2,c=6,d=3D.a=1,b=2,c=3,d=44.在△ABC与△DEF中,∠A=∠D=60°,ABDF=ACDE,如果∠B=50°,那么∠E的度数是(C) A.50°B.60°C.70°D.80°5.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为 ( A )A .2 ∶1B .3 ∶1C .4 ∶3D .3 ∶2第5题图6.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10 cm ,AO BO =DO CO =23 ,则容器的内径是( C )A .5 cmB .10 cmC .15 cmD .20 cm第6题图7.如图,在△ABC 中,点D 在边BC 上,点G 在线段AD 上,GE∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论中一定正确的是 ( A )A.AE AB =CF CD B .AE EB =DF FC C .EG BD =FG AC D .AE AG =AD AB8.如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF⊥AE ,交AE 的延长线于F ,若DF =6,则线段EF 的长为 ( B )A .2B .3C .4D .5第8题图9.如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是(A) A.△CGE∽△CBP B.△APD∽△PGDC.△APG∽△BFP D.△PCF∽△BCP第9题图10.如图,在正方形ABCD中,点E是边BC的中点,连接AE,DE,分别交BD,AC于点P,Q,过点P作PF⊥AE交CB的延长线于F,有下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=102AO;④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36;⑤CE·EF=EQ·DE.其中正确的有(B) A.5个B.4个C.3个D.2个第10题图第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.若△ABC ∽△A ′B ′C ′,∠A =50°,∠C =110°,则∠B ′的度数为__20°__.12.如图,AB ∥CD ∥EF .若AC CE =12 ,BD =5,则DF =__10__.第12题图13.乐乐同学的身高为166 cm ,测得他站立在阳光下的影长为83 cm ,紧接着他把手臂竖直举起,测得影长为103 cm ,那么乐乐竖直举起的手臂超出头顶的长度约为__40__cm.14.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,且点D ,E 分别在边AB ,AC 上,则BD AD 的值为.第14题图15.如图,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6 ,AD =2.当AB =时,△ABC 与△ACD 相似. 第15题图16.如图,△ABC 与△DEA 是两个全等的等腰直角三角形,∠BAC=∠D =90度,BC 分别与AD ,AE 相交于点F ,G ,则图中共有__4__对相似三角形.第16题图17.在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF的值为__52 __.18.如图,等边△ABC 的边长为5,点D ,E ,F 分别在三边AC ,AB ,BC 上,且AE =2,DF ⊥DE ,∠DEF =60°,则DF 的长为2 __.第18题图选择、填空题答题卡一、选择题(每小题3分,共30分)二、填空题(每小题3分,共24分)得分:________11.__20°__ 12.__10__ 13.__40__ 14._15. 16.__4__ 17.__52 __ 18._2 __三、解答题(共66分) 19.(6分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC 的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为4,则△A 1B 1C 1的面积是__16__.解:(1)如图,△A 1B 1C 1为所作.20.(8分)如图,在△ABC 中,AB =AC ,点P 在BC 上.(1)求作:△PCD ,使点D 在AC 上,且△PCD ∽△ABP ;(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC =2∠ABC .求证:PD ∥AB .(1)解:如图所示.(2)证明:∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.21.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.解:过点D作DE⊥AB于点E,根据题意,得AE ED=11.2,即AE9.6=11.2,解得AE=8.则AB=AE+BE=8+2=10(米).答:学校旗杆的高度为10米.22.(8分)如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于点E.(1)求证:CD2=DE·DA;(2)当∠BED=47°时,求∠ABC的度数.(1)证明:∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD∶AD=DE∶CD,∴CD2=DE·AD.(2)解:∵D是BC的中点,∴BD=CD.∵CD2=DE·AD,∴BD2=DE·AD,∴BD∶AD=DE∶BD.又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.∵∠BED=47°,∴∠ABC=47°.∴∠ABC的度数是47°.23.(10分)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB .∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A .(2)解:∵E 是BC 的中点,BC =4,∴BE =2.∵AB =6,∴AE =AB 2+BE 2 =62+22 =210 .∵四边形ABCD 是矩形,∴AD =BC =4.∵△ABE ∽△DF A ,∴AB DF =AE AD ,∴DF =AB ·AD AE =6×4210 =6510 .24.(12分)如图,在△ABC 和△A ′B ′C ′中,D ,D ′分别是AB ,A ′B ′上一点,AD AB =A ′D ′A ′B ′ ,当CD C ′D ′ =AC A ′C ′ =BC B ′C ′ 时,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.解:△ABC 与△A ′B ′C ′相似. 理由:过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC .同理,A ′D ′A ′B ′ =D ′E ′B ′C ′ =A ′E ′A ′C ′ ,∵AD AB =A ′D ′A ′B ′ ,∴DE BC =D ′E ′B ′C ′ ,∴DE D ′E ′ =BC B ′C ′ ,同理,AE AC =A ′E ′A ′C ′ ,∴AC -AE AC =A ′C ′-A ′E ′A ′C ′ ,即EC AC =E ′C ′A ′C ′ ,∴EC E ′C ′ =AC A ′C ′ .∵CD C ′D ′ =AC A ′C ′ =BC B ′C ′ ,∴CD C ′D ′ =DE D ′E ′ =EC E ′C ′ ,∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′.∵DE ∥BC ,∴∠CED +∠ACB =180°.同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′C ′B ′.∵ACA′C′=BCB′C′,∴△ABC∽△A′B′C′.25.(14分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P 从A点出发,沿着AB以每秒4 cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3 cm的速度向A点运动,设运动时间为x 秒.(1)当x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ与△CQB相似?若存在,求出此时AP的长;若不存在,请说明理由;(3)当CQ=10时,求S△APQS△ABQ的值.解:(1)由题可得AP=4x,CQ=3x.∵BA=BC=20,AC =30,∴BP =20-4x ,AQ =30-3x .若PQ ∥BC ,则有△APQ ∽△ABC ,∴AP AB =AQ AC ,∴4x 20 =30-3x 30 ,解得x =103 .∴当x =103 时,PQ ∥BC .(2)存在.∵BA =BC ,∴∠A =∠C . 要使△APQ ∽△CQB ,只需AP CQ =AQ CB .此时4x 3x =30-3x 20 ,解得x =109 ,∴AP =4x =409 .要使△APQ ∽△CBQ ,只需AP CB =AQ CQ ,此时4x 20 =30-3x 3x ,解得x 1=-10(舍去),x 2=5. 当x =5时,AP =20.∴AP =409 或20.∴当AP 的长为409 或20时,△APQ 与△CQB 相似.(3)当CQ =10时,3x =10,∴x =103 ,∴AP =4x =403 ,∴S△APQ S△ABQ =APAB=40320=23.。
人教版九年级数学下册 27.3 位似 同步测试题(含答案)
27.3 位似同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在平面直角坐标系中,A(3,4),B(−2,3),C(−4,−2),以原点为位似中心,将△ABC扩大到原来的3倍,若A点的对应点坐标为(9,12),则B点的对应点的坐标为()A.(6,−9)B.(−6,9)C.(6,9)D.(−6,−9)2. 在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小得到线段OC,则点C的坐标为()为原来的13A.(2,1)B.(2,0)C.(3,3)D.(3,1)3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a, b)对应大鱼上的点( )A.(−2a, 2b)B.(−2a, −2b)C.(−2b, −2a)D.(−2a, −b)4. 在如图所示的网格中,正方形ABCD与正方形EFGH是位似图形,则位似中心是()A.点O或点MB.点O或点NC.点P或点MD.点P或点N5. 如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点OB.点PC.点MD.点N6. 点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点EB.点FC.点HD.点G7. 如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′= 2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3B.4C.6D.98. 在平面直角坐标系中,△ABO的三个顶点的坐标分别为A(−4,2),B(−4,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的12,得到△CDO,则点A的对应点C的坐标是()A.(−2,1)B.(2,2)C.(−2,1)或(2,−1)D.(2,2)或(−2,−2)9. 下列各组图形中不是位似图形的是()A. B. C. D.10. 在平面直角坐标系中,把△ABC以原点O为位似中心放大,得到△A′B′C′若点A和它的对应点A′的坐标分别为(2,5),(−6,−15),则△A′B′C′与△ABC的相似比为()A.−3B.3C.13D.−13二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是________.12. 如图,在Rt△ABC∠B=90∘,AB,=3,BC=4,点D、E分别是AC,BC的中点,点F 是AD上一点,将△CEF沿EF折叠得△C′EF,C′F,交BC于点G,当△CFG,△ABC相似时,CF的长为________.13. 在平面直角坐标系中,△ABO三个顶点的坐标分别为A(−2, 4),B(−4, 0),O(0, 0).以,得到△CDO,则点A的对应点C的坐标是原点O为位似中心,把这个三角形缩小为原来的12________.14. 大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm2,大矩形的长为5cm,则大矩形的宽为________cm.15. 已知四边形ABCD各顶点的坐标分别为A(2,6),B(4,2),C(6,2),D(6,4),以0为位似,则点A′、B′、C′、D′的中心,作四边形A′B′C′D′位似与四边形ABCD位似,对应边的比为12对应点的坐标分别为________,________,________,________.倍,则面积缩小到原来16. 把一个三角形变成和它位似的另一个三角形,若边长缩小到12的________倍.17. 如图,五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为1.若五边形ABCDE2的,面积为20cm2,那么五边形A′B′C′D′E′的面积为________.18. 在△ABC中,AB=BC,∠B=90∘,将△ABC沿BC方向平移,得到△A′CC′,以C为位的似中心,作△DEC与△ABC位似,位似比为1:2,F为CC′的中点,连接DF, A′F,则A′FDF值为________.19. 如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为________.20. 如图,△ABC的顶点在格点上,且点A(−5, −1),点C(−1, −2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出________放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.三、解答题(本题共计6 小题,共计60分,)21. 已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0, 3),B(3, 4),C(2, 2).(正方形网格中,每个小正方形的边长是1个单位长度)请以点B为位似中心,在网格中画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,并求出△A1B1C1的面积.22. 如图,已知O是坐标原点,A,B的坐标分别为(3,1),(2,−1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD.(要求:新图与原图的相似比为2:1);(2)分别写出A,B的对应点C,D的坐标;(3)若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为________.23. 如图,在平面直角坐标系中,A(2, 1),B(1, −2).(1)画出△OAB向左平移2个单位长度,再向上平移1个单位长度后的△O1A1B1;(2)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1;(3)判断△O1A1B1与△OA2B2是否关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.24. 如图,已知O是坐标原点,B、C两点的坐标分别为(3, −1)、(2, 1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25. 如图,BD,AC相交于点P,连结AB,BC,CD,DA,∠DAP=∠CBP.(1)求证:△ADP∼△BCP;(2)△ADP与△BCP是不是位似图形?并说明理由;(3)若AB=8,CD=4,DP=3,求AP的长.26. 如图,已知O是原点,B、C两点的坐标分别为(3, −1),(2, 1).(1)以点O为位似中心,在y轴的左侧将△OBC扩大为原来的两倍(即新图与原图的相似比为2),画出图形并写出点B,C的对应点的坐标;(2)如果△OBC内部一点M的坐标为(a, b),写出点M的对应点M′的坐标.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:∵ 以原点O为位似中心,将△OAB放大为原来的3倍,点A(3,4)的对应点是(9,12),则点B(−2,3)的对应点为(−6,9).故选B.2.【答案】A【解答】解:在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的13得到线段OC,则点A的对应点C的坐标为(6×13,3×13),即C点坐标为(2,1).故选A.3.【答案】B【解答】解:根据图形可得,两个图形的位似比是1:2,∵ 对应点是(−2a, −2b).故选B.4.【答案】D【解答】解:如图,连接AG,EC,FD,BH交于点P;连接AE,BF,DH,CG并分别延长交于点N,则位似中心为点P或点N.故选D.5.【答案】B【解答】如图所示:两个三角形的位似中心是:点P.故选:B.6.【答案】B【解答】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,故选B.7.【答案】D【解答】解:∵ 四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∵ 四边形ABCD与四边形A′B′C′D′的面积比为:4:9.∵ 四边形ABCD的面积等于4,∴ 四边形A′B′C′D′的面积为9.故选D.8.【答案】C【解答】,解:∵ 点A(−4,2),且相似比为12∵ 当△CDO与△ABO在y轴同侧时,点C的坐标为(−2,1),当△CDO与△ABO在y轴异侧时,点C的坐标为(2,−1).故选C.9.【答案】D【解答】解:根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.故选D.10.【答案】B【解答】解:∵ △ABC和△A′B′C′关于原点位似,且点A和它的对应点A′的坐标分别为(2,5),(−6,−15),对应点的坐标乘以−3,∵ △A′B′C′与△ABC的相似比为3.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:由题图可知,直线与直线的交点坐标为,所以位似中心的坐标为.故答案为:.12.【答案】4或2.8【解答】解:①当FG⊥BC时,将△CEF沿EF折叠得△C′EF,∵ ∠C′=∠C,C′E=CE=2,∵ sin∠C=sin∠C′,∵ ABAC =EGC E,∵ EG=1.2,∵ FG//AB,∵ CGBC =CFAC,即3.2 4=CF5,∵ CF=4;②当GF⊥AC时,如图,将△CEF沿EF折叠得△C′EF,∵ ∠1=∠2=45∘,∵ HF=HE,∵ sin∠C=sin∠C′=EHC′E =ABAC,∵ EH=2×35=65,∵ C′H=√C′E2−EH2=85,∵ CF=C′F=C′H+HF=1.6+1.2=2.8.综上所述,当△CFG与△ABC相似时,CF的长为4或2.8.故答案为∵4或2.8.13.【答案】(−1, 2)或(1, −2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的12,点A的坐标为(−2, 4),∵ 点C的坐标为(−2×12, 4×12)或(2×12, −4×12),即(−1, 2)或(1, −2).故答案为:(−1, 2)或(1, −2).14.【答案】4【解答】解:∵ 大矩形与小矩形位似,∵ 位似比等于相似比为2:1.∵ 其对应的面积比等于相似比的平方为4:1,∵ 大矩形面积为20cm2.∵ 大矩形的宽为4cm.故大矩形的宽为4cm.15.【答案】(1,3),(2,1),(3,1),(3,2)【解答】解:如图,连接OA、OB、OC、OD,分别取它们的中点A′,B′,C′,D′,即四边形A′B′C′D′即为所求.∵ A′(1,3),B′(2,1),C′(3,1),D′(3,2).故答案为:(1,3);(2,1);(3,1);(3,2).16.【答案】14【解答】解:∵ 把一个三角形变成和它位似的另一个三角形,若边长缩小了2倍∵ 位似比等于1:2∵ 面积比等于1:4∵ 面积缩小到原来的1倍.417.【答案】5【解答】解:∵ 五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为12,∵ 五边形A′B′C′D′E′的面积与五边形ABCDE的面积比为:1:4,∵ 五边形ABCDE的面积为20cm2,∵ 五边形A′B′C′D′E′的面积为:5.故答案为:5.18.【答案】1或√5【解答】解:设AB=BC=2x,①如图1,当点D在AC上时,∵ △ABC≅△A′CC′,∵ A′C=CC′=2x,∵ F为CC′的中点,∵ CF=x,则A′F=√A′C2+CF2=√5x,又∵ △DEC∼△ABC,且DEAB =CECB=12,∵ DE=CE=x,则EF=2x,∵ DF=√DE2+EF2=√5x,∵ A′FDF =√5x√5x=1;②如图2,当点D在AC延长线上时,由①知A′F=√A′C2+CF2=√5x,DF=DE=x,∵ A′FDF =√5xx=√5.故答案为:1或√5.19.【答案】6【解答】解:∵ △ABC与△DEF是位似图形,位似比为2:3,∵ AB:DE=2:3,∵ DE=6.故答案为:6.20.【答案】△ABC【解答】解:如图所示:△A′B′C′即为所求,A′(10, 2),B′(10, 6),C′(2, 4).三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:如图所示:△A1B1C1即为所求,△A1B1C1的面积为:4×6−12×2×6−12×2×4−12×2×4=10.【解答】解:如图所示:△A1B1C1即为所求,△A1B1C1的面积为:4×6−12×2×6−12×2×4−12×2×4=10.22.【答案】解:(1)如图:△OCD即为所求.(2)由图可知:C:(−6,−2),D:(−4,2).(−2m,−2n)【解答】解:(1)如图:△OCD即为所求.(2)由图可知:C:(−6,−2),D:(−4,2).(3)根据原点位似的特点可知P′(−2m,−2n).故答案为:(−2m,−2n).23.【答案】解:如图所示:如图:如图所示,与是关于为位似中心的位似图形.【解答】解:如图所示:如图:如图所示,与是关于为位似中心的位似图形.24.【答案】解:是所求的三角形;的坐标是,的坐标是.【解答】解:是所求的三角形;的坐标是,的坐标是.25.【答案】(1)证明:∵ ∠DAP=∠CBP,∠DPA=∠CPB,∴ △ADP∼△BCP;(2)解:△ADP与△BCP不是位似图形,因为它们的对应边不平行;(3)∵ △ADP∼△BCP,∴APDP =BPCP,又∠APB=∠DPC,∴ △APB∼△DPC,∴APPD =ABCD,即AP3=84,解得,AP=6.【解答】(1)证明:∵ ∠DAP=∠CBP,∠DPA=∠CPB,∴ △ADP∼△BCP;(2)解:△ADP与△BCP不是位似图形,因为它们的对应边不平行;(3)∵ △ADP∽△BCP,∴APDP =BPCP,又∠APB=∠DPC,∴ △APB∽△DPC,∴APPD =ABCD,即AP3=84,解得,AP=6.26.【答案】解:(1)如图,△OB1C1为所作,点B1,C1点的坐标分别为(−6, 2),(−4, −2);(2)把M点的横纵坐标分别乘以−2即可得到M1的坐标,所以点M的对应点M′的坐标为(−2a, −2b).【解答】解:(1)如图,△OB1C1为所作,点B1,C1点的坐标分别为(−6, 2),(−4, −2);(2)把M点的横纵坐标分别乘以−2即可得到M1的坐标,所以点M的对应点M′的坐标为(−2a, −2b).。
人教版九年级数学下 27.3 位似练习(含解析)
27.3 位似一、选择题1.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①中两个角对应相等,为相似三角形,①对;②顶点相等且为等腰三角形,即底角也相等,是相似三角形,②对;③菱形的角不确定,所以不一定相似,③错;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,④对;所以①②④正确,故选C.2.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )A. 2:3B. 3:2C. 4:5D. 4:9【答案】A【解析】解:由位似变换的性质可知,A′B′//AB,A′C′//AC,∴△A′B′C′∽△ABC.与△ABC的面积的比4:9,与△ABC的相似比为2:3,∴OB′OB =23故选:A.3.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,则端点C和D的坐标分别2为( )A. (2,2),(3,2)B. (2,4),(3,1)C. (2,2),(3,1)D. (3,1),(2,2)【答案】C【解析】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,2∴端点的坐标为:(2,2),(3,1).故选:C.4.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是( )A.−2aB. 2a−2C. 3−2aD. 2a−3【答案】C【解析】解:设点B′的横坐标为x,则B、C间的横坐标的长度为a−1,B′、C间的横坐标的长度为−x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a−1)=−x+1,解得:x=−2a+3,故选:C5.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(−4,4),(2,1),则位似中心的坐标为( )A.(0,3)B. (0,2.5)C. (0,2)D. (0,1.5)【答案】C【解析】解:如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(−4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC//GF,∴GPPC =GFBC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选:C.6.如图,在平面直角坐标系xOy中,点A的坐标为(−1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为( )A.(−2,4)B. (−1,1)2C. (2,−4)D. (2,4)【答案】A【解析】解:∵点A的坐标为(−1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(−2,4).故选:A.7.如图,△ABO与△A′B′O是位似图形,其中AB//A′B′,那么A′B′的长y与AB的长x之间函数关系的图象大致是( )A.B.C.D.【答案】C【解析】解:∵AB//A′B′,∴△OAB∽△OA′B′,∴ABA′B′=3612,即xy=3∴y=13x(x>0),是正比例函数,图象为不包括原点的射线.故选:C.8.在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的13得到线段OC,则点C的坐标为( )A. (2,1)B. (2,0)C. (3,3)D. (3,1)【答案】A【解析】解:以原点O为位似中心,在第一象限内将其缩小为原来的13,则点A的对应点C的坐标为(6×13,3×13),即(2,1),故选:A.9.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为( )A. (2,0)B. (1,1)C. (√2,√2)D. (2,2)【答案】D【解析】解:∵四边形OABC是正方形,点A的坐标为(1,0),∴点B的坐标为(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为(2,2),故选:D.10.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是( )A. 50cmB. 500cmC. 60cmD. 600cm【答案】C【解析】解:1.5m=150cm,150+30=180cm.设屏幕上小树的高度是x米.则10:x=1:6;∴x=60cm.故选C.二、填空题11.已知在平面直角坐标系中,点A(−3,−1)、B(−2,−4)、C(−6,−5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为______ .【答案】(1,2)或(−1,−2)【解析】解:∵点B的坐标为(−2,−4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(−1,−2),故答案为:(1,2)或(−1,−2).12.如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把,可以得到△A′B′O,已知点B′的这个三角形缩小为原来的12坐标是(3,0),则点A′的坐标是______.【答案】(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12, ∴点A′的坐标是(2×12,4×12),即(1,2),故答案为:(1,2).13. 如图,在直角坐标系中,每个小方格的边长均为1,△AOB 与△A′OB′是以原点O 为位似中心的位似图形,且相似比为3:2,点A ,B 都在格点上,则点B′的坐标是______. 【答案】(−2,43)【解析】解:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B(3,−2)∴B′的坐标是[3×(−23),−2×(−23)],即B′的坐标是(−2,43);故答案为:(−2,43).14. 已知△ABC 是正三角形,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上.(1)如图,在正三角形ABC 及其内部,以点A 为位似中心,画出正方形EFPN 的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不写画法,但要保留画图痕迹);(2)若正三角形ABC 的边长为3+2√3,则(1)中画出的正方形E′F′P′N′的边长为______.【答案】3【解析】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=√33x.∵E′F′+AE′+BF′=AB,∴x+√33x+√33x=3+2√3,∴解得:x=3,故答案为:3.15.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是______.【答案】6√3【解析】解:设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,根据题意,△ABC与△DEF的位似图形,点O、E、B共线,在Rt△OEG中,∠OEG=30∘,EG=12b,∴OG=EG√3=√36b,同理得到OH=√36a,而OH−OG=1,∴√36a−√36b=1,∴a−b=2√3,∴3(a−b)=6√3.故答案为6√3.三、解答题16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(−2,1)、B(−3,2)、C(−1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕C点逆时针旋转90∘后得到的△A2B2C.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;17.在12×12的正方形网格中,△TAB的顶点坐标为T(1,1)、A(2,3)、B(4,2)(1)以原点(0,0)为位似中心,相似比2:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标______ .【答案】(3a−2,3b−2)【解析】解:(1)如图所示:,△TA′B′即为所求,A′(4,7),B′(10,4);(2)变化后点C的对应点C′的坐标为:C′(3a−2,3b−2).故答案为:(3a−2,3b−2).。
人教版九年级数学下册27.3 位似同步测试附解析学生版
人教版九年级数学下册27.2.3 相似三角形应用举例同步测试附解析学生版一、单选题(共10题;共30分)1.(3分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m2.(3分)如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm3.(3分)路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知BC=5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是()A.6.75米B.7.75米C.8.25米D.10.75米4.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36 π平方米B.0. 81 π平方米C.2 π平方米D.3.24 π平方米5.(3分)如图,为了估计某一条河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R,如果QS = 60m,ST =120m,QR=80m,则这条河的宽度PQ为()A.40m B.120m C.60m D.180m6.(3分)如图,路灯距地面8m,身高 1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m7.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯A的高度AB等于()A.4.5 m B.6 m C.7.2 m D.8 m8.(3分)如图,正方形ABCD的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠DPE=90°,PE交AB于点E,设BP=x,BE=y,则y关于x的函数图象大致是()A.B.C.D.9.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米10.(3分)某天同时同地,甲同学测得1m的测竿在地面上影长为0.8m,乙同学测得国旗旗杆在地面上的影长为9.6m,则国旗旗杆的长为()A.10m B.12mC.13m D.15m二、填空题(共5题;共15分)11.(3分)如图,▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S∠AFB :S四边形FEDC的值为12.(3分)如图,身高1.8米的轩轩从一盏路灯下的B处向前走了4米到达点C处时,发现自己在地面上的影子CE长与他的身高一样,则路灯的高AB为米.13.(3分)如图,小明为了测量高楼MN的高度,在离点N18米的点A处放了一个平面镜,小明沿NA方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC是1.6米,则高楼MN的高度是.14.(3分)如图,为了测量一栋楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直到她刚好在镜子里看到楼的顶部,如果王青身高1.55m,她估计自己眼睛距地面1.50m.同时量得LM=30cm,MS=2m,则这栋楼高m.15.(3分)如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若幻灯片到光源的距离为20 cm,到屏幕的距离为120 cm,且幻灯片中的图形的高度为8 cm,则屏幕上图形的高度为cm.三、解答题(共8题;共55分)16.(7分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连结AC并延长到点D,使CD= 12AC,连结BC并延长到点E,使CE= 12BC,连结DE.量得DE的长为15米,求池塘两端A,B的距离.17.(7分)如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示。
2020--2021学年人教版九年级数学下册 27.1---27.3:考点练习题(有答案不全)
27.1 图形的相似(满分100分;时间:90分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知a,d,b,c依次成比例线段,其中a=3cm,b=4cm,c=6cm,则d的值为()A.8cmB.192cm C.4cm D.92cm2. 如果两个相似多边形的面积的比为1:5,则它们的周长的比为()A.1:25B.1:5C.1:2.5D.1:√53. 已知线段AB=4,点P是它的黄金分割点,AP>PB,则PB=()A.√5−12B.3−√52C.2√5−4D.6−2√54. 如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25B.1:5C.1:2.5D.1:√55. 若xy =23,则3x+y2y的值是()A.2 3B.32C.1D.536. 对一段长为10cm的线段进行黄金分割,那么分得的较长线段长为()cm.A.5(√5−1)B.5(−1+√5)C.√5−12D.√5+127. 如图,若AC:BC=2:5,则AB:BC=()A.5:2B.5:3C.7:5D.5:78. 已知x:b=c:a,求作x,则下列作图正确的是()A. B.C. D.9. 下列四组图形中是相似形的是()A.各有一个角是45∘的两个等腰三角形B.任意两个直角三角形C.有一个角是60∘的两个菱形D.任意两个等腰梯形10. 下列图形不是形状相同的图形是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面像D.一棵树与它倒影在水中的像二、填空题(本题共计10 小题,每题3 分,共计30分,)=________.11. 设2y−3x=0(y≠0),则x+yy12. 一匹骏马在草原上奔跑,摄影师在某处随机拍下几张照片,这些照片中的骏马形状应该是________的.(填“相同”或“不同”)13. 在比例尺是1:3000000地图上,两地间的距离为3厘米,那么两地的实际距离是________千米.14. 已知线段a,b,c,其中c是a,b的比例中项,若a=9cm,b=4cm,则线段c长________.15. 若2x=7y,则xy=________.16. 如果两个相似多边形的周长之比为√2:3,那么它们的面积之比为________.17. 如果x5=y2,那么2x=________.18. 若线段AB=2cm,点C是线段AB的黄金分割点,且AC<BC,则线段AC的长为________.19. 已知:点C是线段AB的黄金分割点,AB=2,则AC=________.20. 已知点P在线段AB上,且AP:BP=2:3,那么AB:PB=________.三、解答题(本题共计6 小题,共计60分,)21. 已知x2=y3=z4,求xy+yz+3zxx2+y2+z2的值.22. 已知:x:y:z=2:3:4,求:;(1)x+2yy;(2)3x2x+3y−5z.(3)x+2y+3z3x−2y−z23. 如图,在梯形ABCD中,AD // BC,E、F分别是腰AB、DC的中点,四边形AEFD与四边形EBCF相似吗?为什么?24. 如图,在矩形ABCD中,AB=a,AD=b,E、F分别是AD、BC上的点,ABFE是正方形,且AB:AD=ED:EF,判断ABCD是否为黄金矩形(宽比长=(√5−1)比2的矩形叫黄金矩形),并说明理由.25. 如果一个矩形的宽与长的比值为√5−1,则称这个矩形为黄金矩形,如图,将矩形2ABCD剪掉一个正方形ADFE后,剩余的矩形BCFE(BC>BE)是黄金矩形,则原矩形ABCD是否为黄金矩形?请说明理由.26. 定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90∘,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S N.①若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)②当n>1时,请写出一个反映S n−1,S n,S n+1之间关系的等式.(不必证明)参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:根据题意得:a:d=b:c,∵ a=3cm,b=4cm,c=6cm,∵ 3:d=4:6,cm;∵ d=92故选D.2.【答案】D【解答】解:∵ 两个相似多边形的面积之比为1:5,∵ 两个相似多边形的边长之比是1:√5,∵ 它们的周长之比为1:√5.故选D.3.【答案】D【解答】解:∵ 点P是线段AB的黄金分割点,AP>PB,AB=4,∵ PB=4×3−√52=6−2√5;故选D.4.【答案】D【解答】解:∵ 两个相似多边形面积的比为1:5,∵ 它们的相似比为1:√5.故选D.5.【答案】B【解答】解:∵ xy =23,∵ 设x=2k,则y=3k,∵ 3x+y2y =6k+3k6k=32.故选B.6.【答案】A【解答】解:∵ 将长度为10cm的线段进行黄金分割,∵ 较长的线段=10×√5−12=(5 √5−5)cm.7.【答案】C【解答】解:∵ AC:BC=2:5,∵ 设AC=2k,BC=5k,则AB=AC+BC=2k+5k=7k,∵ AB:BC=7k:5k=7:5.故选C.8.【答案】A【解答】解:∵ x:b=c:a,∵ xb =ca,A、作出的为xb =ca,故本选项正确;B、作出的为ab =xc,故本选项错误;C、线段x无法先作出,故本选项错误;D、作出的为xc =ba,故本选项错误;故选A.9.【答案】C解:A、各有一个角是45∘,这个角可能是顶角也可能是底角,故本选项错误;B、两个直角三角形,只能得到两个三角形的直角对应相等,其它两角不能判断是否对应相等,所以不是相似形.故本选项错误;C、有一个角为60∘,根据菱形的性质可以得到其相邻的角为120∘,与另一个菱形的两组对应角相等,所以相似,故本选项正确;D、任意两个等腰梯形两底边,腰长不一定能够对应成比例,所以不一定相似,故本选项错误.故选C.10.【答案】C【解答】A、同一张底片冲洗出来的两张大小不同的照片,是形状相同的图形,不合题意;B、用放大镜将一个细小物体图案放大过程中原有图案和放大图案,是形状相同的图形,不合题意;C、某人的侧身照片和正面像,不是形状相同的图形,符合题意;D、一棵树与它倒影在水中的像,是形状相同的图形,不合题意;二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】53【解答】解:∵ 2y−3x=0(y≠0),∵ 3x=2y,∵ yx =32,∵ 可设y=3k,则x=2k,∵ x+yy =2k+3k3k=53.故答案为53.12.【答案】不同【解答】解:不同,理由如下:由相似图形的定义可知:①相似图形的形状必须完全相同;②相似图形的大小不一定相同;③两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况所以照片中的骏马形状应该是不同,故答案为:不同.13.【答案】90【解答】解:设两地的实际距离是x厘米,则:1:3000000=3:x,∵ x=9 000 000,∵ 9 000 000cm=90千米,∵ 两地的实际距离是90千米.故答案为90.14.【答案】6cm【解答】解:由题意得ac =cb,所以c2=4×9,解得c=±6(负舍).故答案为:6cm.15.【答案】72【解答】解:∵ 2x=7y,y≠0,∵ 两边都除以2y得:xy =72.故答案为72.16.【答案】2:9【解答】解:∵ 两个相似多边形的周长之比为√2:3,∵ 它们的相似比k=√2:3,∵ 它们的面积之比为k2=(√2:3)2,即2:9.故答案为:2:9.17.【答案】5y 【解答】解:由x5=y2,得2x=5y.故答案为:5y.18.【答案】3−√5【解答】解:∵ 点C是线段AB的黄金分割点,且AC<BC,∵ BC=√5−12AB=(√5−1)cm,则AC=2−(√5−1)=3−√5,故答案为:3−√5.19.【答案】√5−1或3−√5【解答】解:点C是线段AB的黄金分割点,当AC>BC时,AC=√5−12AB=√5−1,当AC<BC时,AC=AB−√5−12AB=3−√5,故答案为:√5−1或3−√5.20.【答案】5:3【解答】由题意AP:PB=2:3,AB:PB=(AP+PB):PB=(2+3):3=5:3;三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:设x2=y3=z4=k,可得x=2k,y=3k,z=4k,∵ xy+yz+3zxx2+y2+z2=6k2+12k2+24k2 4k2+9k2+16k2=4229.【解答】解:设x2=y3=z4=k,可得x=2k,y=3k,z=4k,∵ xy+yz+3zxx2+y2+z2=6k2+12k2+24k2 4k2+9k2+16k2=4229.22.【答案】解:(1)∵ x:y:z=2:3:4,∵ 设x=2a,y=3a,z=4a,∵ x+2yy =2a+6a3a=83;(2)3x2x+3y−5z =3×2a2×2a+3×3a−5×4a=−67;(3)x+2y+3z3x−2y−z =2a+2×3a+3×4a6a−6a−4a=−5.【解答】解:(1)∵ x:y:z=2:3:4,∵ 设x=2a,y=3a,z=4a,∵ x+2yy =2a+6a3a=83;(2)3x2x+3y−5z =3×2a2×2a+3×3a−5×4a=−67;(3)x+2y+3z3x−2y−z =2a+2×3a+3×4a6a−6a−4a=−5.23.【答案】解:四边形AEFD与四边形EBCF不相似,理由:∵ AD // BC,E、F分别是腰AB、DC的中点,∵ AEBE =DFFC=11,但是ADEF ≠11,故四边形AEFD与四边形EBCF不相似.【解答】解:四边形AEFD与四边形EBCF不相似,理由:∵ AD // BC,E、F分别是腰AB、DC的中点,∵ AEBE =DFFC=11,但是ADEF ≠11,故四边形AEFD与四边形EBCF不相似.24.【答案】解:矩形ABCD是黄金矩形.∵ 在矩形ABCD中,AB=a,AD=b,E、F分别是AD、BC上的点,四边形ABFE是正方形,AB:AD=ED:EF,∵ AB=AE=EF,∵ ABAD =DEEF=AD−ABAB,∵ AB2=AD2−AD×AB,∵ AD2−AD×AB−AB2=0,解得:AD=AB±√5AB2(负数不合题意),∵ ABAD =AB+√5AB2−ABAB=√5−12,∵ 四边形ABCD是黄金矩形.【解答】解:矩形ABCD是黄金矩形.∵ 在矩形ABCD中,AB=a,AD=b,E、F分别是AD、BC上的点,四边形ABFE是正方形,AB:AD=ED:EF,∵ AB=AE=EF,∵ ABAD =DEEF=AD−ABAB,∵ AB2=AD2−AD×AB,∵ AD2−AD×AB−AB2=0,解得:AD=AB±√5AB2(负数不合题意),∵ ABAD =AB+√5AB2−ABAB=√5−12,∵ 四边形ABCD是黄金矩形.25.【答案】原矩形ABCD是为黄金矩形.理由如下:设矩形BCFE的长BC为x,∵ 四边形BCFE为黄金矩形,∵ 宽FC为√5−12x,∵ 四边形AEFD是正方形,∵ AB=x+√5−12x=√5+12x,则BCAB =√5+12x=√5−12,∵ 原矩形ABCD是为黄金矩形.【解答】原矩形ABCD是为黄金矩形.理由如下:设矩形BCFE的长BC为x,∵ 四边形BCFE为黄金矩形,∵ 宽FC为√5−12x,∵ 四边形AEFD是正方形,∵ AB=x+√5−12x=√5+12x,则BCAB =√5+12x=√5−12,∵ 原矩形ABCD是为黄金矩形.26.【答案】如图:割线CD就是所求的线段.理由:∵ ∠B=∠B,∠CDB=∠ACB=90∘,∵ △BCD∽△ACB.①△DEF经N阶分割所得的小三角形的个数为14n,∵ S n=100004n.当n=5时,S5=1000045≈9.77,当n=6时,S6=1000046≈2.44,当n=7时,S7=1000047≈0.61,∵ 当n=6时,2<S6<3.②S n2=S n−1×S n+1.【解答】如图:割线CD就是所求的线段.理由:∵ ∠B=∠B,∠CDB=∠ACB=90∘,∵ △BCD∽△ACB.,①△DEF经N阶分割所得的小三角形的个数为14n∵ S n=10000.4n≈9.77,当n=5时,S5=1000045≈2.44,当n=6时,S6=1000046≈0.61,当n=7时,S7=1000047∵ 当n=6时,2<S6<3.②S n2=S n−1×S n+1.27.2相似三角形一.选择题1.如图,DE∥BC,下列各式不正确的是()A.=B.=C.=D.=2.如图,点P是等腰△ABC的腰AB上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有()A.2条B.3条C.4条D.5条3.若直角三角形的两条直角边各扩大2倍,则斜边扩大()A.2倍B.4倍C.6倍D.8倍4.如图,D、E分别是△ABC的边AB、AC的中点,若△ADE的面积为1,则四边形DECB 的面积为()A.2B.3C.4D.65.如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且线段AD、BC 交于点O.若线段AB=4cm,则线段CD长为()A.4cm B.5cm C.6cm D.8cm6.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的个数是()①AM平分∠CAB;②AM2=ACAB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有.A.1B.2C.3D.47.如图,已知:△ABC∽△DAC,∠B=36°,∠D=117°,∠BAD的度数为()A.36°B.117°C.143°D.153°8.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD 分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.B.C.D.10.如图,梯形ABCD的面积为12,AB=2CD,E为AC的中点,BE的延长线交AD于F,则△AEF的面积是()A.B.C.D.二.填空题11.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠C=∠E;②△ADE∽△FDB;③∠AFE=∠AFC;④FD=FB.其中正确的结论是.12.在梯形ABCD中,AB∥CD,AB<CD,AC与BD交于点O,E、F为AC、BD的中=,则梯形ABCD的面积为.点,等边△OEF的边长为1,S△BOC13.如图,梯形ABCD中,AD∥BC,AB=DC,E、F分别是AB、AD的中点,直线EF分别交CB、CD的延长线于G、H,且BC:AD=7:4,对角线AC=28,则GH的长为.14.如图,在正方形ABCD中,E是AD的中点,AF⊥BE于点F,以BF为直径的圆与BC 交于点G,则的值为.15.如图所示,⊙O中两弦AB,CD相交于点M,且AC=CM=DM,MB=AM=1,则⊙O的直径为.三.解答题16.如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.17.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.请写出一对相似三角形,并证明.18.如图,矩形ABCD中,E为BC上一点,连接AE,过顶点D作DF⊥AE,垂足为F,求证:△ABE∽△DF A.19.如图,方格网的小方格是边长为1的正方形,A、B、C、D四点都在格点上.(1)找出图中一组相似三角形,并给予证明;(2)作∠ABC和∠ACD的角平分线BM、CM,求∠BMC的度数.参考答案与试题解析一.选择题1.【解答】解:∵DE∥BC,=,=,=,∴选项A,B,D正确,故选:C.2.【解答】解:∵BA=BC,∴∠A=∠C,①作PE∥BC,可得△APE∽△ABC.②作PF∥AC,可得△BPF∽△BAC.③作∠APG=∠A,可得∠AGP∽△ABC,故选:B.3.【解答】解:设直角三角形的两直角边分别是x,y,原来直角三角形的斜边:.两条直角边都扩大2倍后两直角边为2x,2y,则斜边:.所以斜边也扩大2倍.故选:A.4.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=,∵△ADE的面积为1,∴△ABC的面积为4,∴四边形DBCE的面积等于3,故选:B.5.【解答】解:如图,过点O作OE⊥AB于点E,OF⊥CD于点F,则OE、OF分别是△AOB、△DOC的高线,∵练习本中的横格线都平行,∴△AOB∽△DOC,∴=,即=,∴CD=6cm.故选:C.6.【解答】解:连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=ACAB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,∴BD∥AC,∴,∴PB=P A,∴PB=AB,BD=OM,∴PB=OB=OA,∴在Rt△OMP中,OM=2BD=2,∴OP=4,∴∠OPM=30°,∴PM=2,∴CM=DM=DP=,故④正确.故选:C.7.【解答】解:∵△ABC∽△DAC,∴∠DAC=∠B=36°,∠BAC=∠D=117°,∴∠BAD=∠DAC+∠BAC=153°,故选:D.8.【解答】解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.9.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:A.10.【解答】解:作辅助线如下:延长EF交CD的延长线于点M,∵梯形ABCD的面积为12,AB=2CD,E为AC的中点,BE的延长线交AD于F,∴△ADC的面积=△AEB的面积=△ECB的面积=×梯形ABCD的面积=×12=4,∵△MDF∽△F AB,∵MD=AB,∴△MDF的面积=△AFB的面积,∵假设△AEF的面积为k,∴四边形EFDCDE的面积为4﹣k,∴△MDF的面积=×(k+4),∵△MEC的面积=△AEB的面积,∴×(k+4)+4﹣k=4,∵k=,故选:C.二.填空题(共5小题)11.【解答】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∠AFE=∠C,∴∠AFC=∠C,∴∠AFE=∠AFC;由∠B=∠E,∠ADE=∠FDB,可知△ADE∽△FDB;无法得到∠C=∠E;FD=FB.综上可知:②③正确,故答案为:②③.12.【解答】解:画出示意图,如图所示:连接BE,并延长BE交CD于H,∵E、F为AC、BD的中点,∴AE=EC,BF=DF,∵△EOF是等边三角形,∴∠OEF=∠OFE=∠EOF=60°,∵AB∥CD,∴△ABE∽△CHE,∴=1,∴BE=EH,又∵BF=DF,∴EF∥CD,∴EF∥CD∥AB,∴∠OFE=∠ODC=∠ABO=60°,∠OEF=∠OCD=∠OAB=60°,∴△ABO、△CDO为等边三角形,∴设CD=OD=OC=a,∴DF=BF=a﹣1,∴OB=(a﹣1)﹣1=a﹣2;CF=,∵S=,△BOC∴(a﹣2)×a=.∴a=5.∴梯形面积为16.故答案为:16.13.【解答】解:连接BD,如下图所示,∵梯形ABCD中,AD∥BC,AB=DC,∴此梯形为等腰梯形,∴BD=AC=28,∵E、F分别是AB、AD的中点,∴AE=EB,AF=FD=AD,∵AD∥BC.∴∠F AE=∠EBG(两直线平行,内错角相等),∵∠AEF=∠GEB,∴△AEF≌△BEG(ASA),∴GB=AF=FD,EG=EF,∵FD∥BC,∴△HFD∽△HGC,∴=,∵BC:AD=7:4,∴﹣=,设HF=2k,∴FE=EG=×7k,∵四边形FDBG是平行四边形,∴FG=BD=28,∴7k=28,∴k=4,∴GH=9k=36,故答案为:36.14.【解答】解:连接FG,如下图所示:∵在正方形ABCD中,E是AD的中点,AF⊥BE于点F.∴AE=ED=AB,∴∠EF A=90°=∠EAB,∵∠FEA=∠AEB,∴△FEA~△AEB,∴=,∴EF=AF,设EF=k,∴AF=2k,∵∠EAF=∠ABF,∵∠AFE=∠BF A=90°,∴△AFE∽△BF A,∴=,∴BF=4k,∴BE=5k,设正方形的边长为2a,∴BE=a,∴k=a,∵BF是圆的直径,∴∠BGF=90°,∵∠AEF=∠FBG,∠AFE=∠BGF=90°,∴△AFE∽△FGB∴FG=2BG,∵BF=4k=a,∴BG=a,∴GC=2a﹣BG=2a﹣a=a,∴=,故答案为:.15.【解答】解:如图,连接OB,OC,BC,BD,过点C作CH⊥AB于H,∵MB=AM=1,∴AM=3,∵∠A=∠D,∠CMA=∠BMD,∴△AMC∽△DMB,∴,∵CM=AC=MD,∴CM2=1×3=3,∴CM=DM==AC,∵CH⊥AB,∴AH=HM=,∴CH===,∴BC===,∵sin∠BAC=,∴∠BAC=30°,∴∠BOC=60°,又∵BO=CO,∴△BOC是等边三角形,∴BC=CO=,∴⊙O的直径为2,故答案为2.三.解答题(共4小题)16.【解答】证明:∵AC,BD相交于的点O,∴∠AOB=∠DOC,又∵∠ABO=∠C,∴△AOB∽△DOC.17.【解答】解:△BEC∽△ADC,证明如下:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADC=90°.又∵BE⊥AC,∴∠BEC=90°.∴∠ADC=∠BEC=90°.又∵∠C=∠C,∴△BEC∽△ADC.18.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAE=∠AEB,又∵∠B=∠DF A=90°,∴△ABE∽△DF A.19.【解答】解:(1)△ADC∽△ACB,理由如下:由勾股定理:AD=2,AC=5,DC=,BC=5,AB=5,∴;∴△ADC∽△ACB;(2)如图,连接CH,∵BM,CM分别平分∠ABC和△ACD,∴∠ABM=∠CBM,∠DCM=∠ACM,∴∠BMC=180°﹣∠MBC﹣∠BCD﹣∠DCM=180°﹣∠ABM﹣∠CBM﹣∠BCD=∠BDC,由勾股定理可得CM=,CD=,DH=2,∵CM2+CD2=20=DH2,∴∠DCH=90°,又∵CM=CD,∴∠BDC=45°=∠BMC.27.3 位似一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 下列说法错误的是()A.位似图形的对应点和位似中心在同一条直线上B.位似图形上任意一对对应点到位似中心的距离之比等于位似比C.位似图形一定是相似图形D.位似图形的对应线段不可能在同一条直线上2. 如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3B.3:4C.9:16D.16:93. 在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小得到线段OC,则点C的坐标为()为原来的13A.(2,1)B.(2,0)C.(3,3)D.(3,1)4. 如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点OB.点PC.点MD.点N5. 如图,已知BC // DE,则下列说法不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE:AD是相似比D.点B与点E,点C与点D是对应位似点6. 在平面直角坐标系中,△ABO的三个顶点的坐标分别为A(−4,2),B(−4,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的12,得到△CDO,则点A的对应点C的坐标是()A.(−2,1)B.(2,2)C.(−2,1)或(2,−1)D.(2,2)或(−2,−2)7 在平面直角坐标系中,把△ABC以原点O为位似中心放大,得到△A′B′C′若点A和它的对应点A′的坐标分别为(2,5),(−6,−15),则△A′B′C′与△ABC的相似比为()A.−3B.3C.13D.−13二、填空题(本题共计7 小题,每题3 分,共计21分,)8 如图,在Rt△ABC∠B=90∘,AB,=3,BC=4,点D、E分别是AC,BC的中点,点F 是AD上一点,将△CEF沿EF折叠得△C′EF,C′F,交BC于点G,当△CFG,△ABC相似时,CF的长为________.9. 两个位似图形的对应边的比是1:3,则位似中心到这两个位似图形一组对应边的距离比是________.10. 如图,△ABC与△DEF是位似图形,位似比为4:9,已知AB=2,则DE的长为________.11. 若原图形上的点的坐标为(−2, 3),以原点O为位似中心,原图形与像的位似比为3,则像上的对应点的坐标为________.12 如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2,则点B的对应点B1的坐标是________.13. 如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为________.14. 如图,已知△ABC与△A′B′C′是以坐标原点O为位似中心的位似图形,且OAOA′=12,若点A(−1, 0),点C(12, 1),则A′C′=________.三、解答题(本题共计9 小题,共计78分,)15 如图,点A,D在∠XOY的边OX上,点B,E在OY边上,射线OZ在∠XOY内,且点C,F在OZ上,AC // DF,BC // EF.ACDF =57.(1)试说明△ABC与△DEF是位似图形;(2)求△ABC与△DEF的位似比.16. 如图,已知O是坐标原点,A,B的坐标分别为(3,1),(2,−1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD.(要求:新图与原图的相似比为2:1);(2)分别写出A,B的对应点C,D的坐标;(3)若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为________.17 如图,在平面直角坐标系中,A(2, 1)、B(1, −2).(1)画出△AOB向左平移2个单位长度,再向上平移1个单位长度后的△O1A1B1;(2)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1;(3)判断△O1A1B1与△OA2B2是否关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.18. 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(3, 3),B(1, 2)C(4, 1),点E坐标为(1, 1).(1)画出和△ABC以点E为位似中心的位似图形△A1B1C1,且△A1B1C1和△ABC的位似比为2:1;(2)分别写出A1、B1、C1三个点的坐标.19. 如图,在边长均为1的小正方形网格纸中,△ABC的顶点A、B、C均在格点上,O为直角坐标系的原点,点A(−1,0)在x轴上.(1)以O为位似中心,将△ABC放大,使得放大后的△A1B1C1与△ABC的相似比为2:1,要求所画△A1B1C1与△ABC在原点两侧;(2)直接写出B1,C1的坐标,并求cos∠B1C1A1.20. 如图,BD,AC相交于点P,连结AB,BC,CD,DA,∠DAP=∠CBP.(1)求证:△ADP∼△BCP;(2)△ADP与△BCP是不是位似图形?并说明理由;(3)若AB=8,CD=4,DP=3,求AP的长.21. 如图,在边长均为1的小正方形网格纸中,△ABC的顶点A、B、C均在格点上,O为直角坐标系的原点,点A(−1, 0)在x轴上.(1)以O为位似中心,将△ABC放大,使得放大后的△A1B1C1与△ABC的相似比为2:1,要求所画△A1B1C1与△ABC在原点两侧;(2)分别写出B1、C1的坐标.22. 如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)求出四边形TA′B′C′的面积.(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.1 图形的相似知识点1 相似图形1.下列选项中,哪个才是相似图形的本质属性()A.大小不同B.大小相同C.形状相同 D.形状不同2.下列各组图形相似的是()知识点2 比例线段3.下列各线段的长度成比例的是()A.2 cm,5 cm,6 cm,8 cm B.1 cm,2 cm,3 cm,4 cmC.3 cm,6 cm,7 cm,9 cm D.3 cm,6 cm,9 cm,18 cm4.在比例尺为1∶40 000的地图上,某条道路的长为7 cm,则该道路的实际长度是km.知识点3 相似多边形5.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为()A.23B.32C.49D.946.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5 cm,6 cm和9 cm,另一个三角形的最短边长为2.5 cm,则它的最长边长为()A.3 cm B.4 cm C.4.5 cm D.5 cm7.如下的各组多边形中,相似的是()A.(1)(2)(3) B.(2)(3)C.(1)(3) D.(1)(2)8.在一张复印出来的纸上,一个多边形的一条边由原图中的2 cm变成了6 cm,这次复印的放缩比例是.9.如图所示是两个相似四边形,求边x、y的长和α的大小.10.已知三条线段的长分别为1 cm、2 cm、 2 cm,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为 . 11.下列说法:①放大(或缩小)的图片与原图片是相似图形;②比例尺不同的中国地图是相似图形;③放大镜下的五角星与原来的五角星是相似图形;④放电影时胶片上的图象和它映射到屏幕上的图象是相似图形;⑤平面镜中,你的形象与你本人是相似的.其中正确的说法有()A.2个 B.3个C.4个 D.5个12.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F13.如图所示,它们是两个相似的平行四边形,根据条件可知,α=,m=.14.如图,左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同.15.为了铺设一矩形场地,特意选择某地砖进行密铺,为了使每一部分都铺成如图所示的形状,且由8块地砖组成,问:(1)每块地砖的长与宽分别为多少?(2)这样的地砖与所铺成的矩形地面是否相似?试说明你的结论.16.如图,矩形ABCD的长AB=30,宽BC=20.(1)如图1,若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD 与A′B′C′D′相似吗?请说明理由;(2)如图2,x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?参考答案:1.C2.B3.D4.2.8 .5.A6.C7.B8.1∶3.9.解:∵两个四边形相似,∴ADA′D′=BCB′C′=ABA′B′,即416=6x=7y.∴x=24,y=28.∵∠B=∠B′=73°,∴α=360°-∠A-∠D-∠B=83°.102__cm或2__cm. 11.D12.B13.α=125°,m=12.14.解:如图所示.15.解:(1)设矩形地砖的长为a cm ,宽为b cm ,由题图可知4b =60,即b =15.因为a +b =60,所以a =60-b =45,所以矩形地砖的长为45 cm ,宽为15 cm. (2)不相似.理由:因为所铺成矩形地面的长为2a =2×45=90(cm ),宽为60 cm ,所以长宽=9060=32,而a b =4515=31,32≠31,即所铺成的矩形地面的长与宽和地砖的长与宽不成比例.所以它们不相似. 16.解:(1)不相似,AB =30,A ′B ′=28,BC =20,B ′C ′=18, 而2830≠1820, 故矩形ABCD 与矩形A ′B ′C ′D ′不相似. (2)矩形ABCD 与A ′B ′C ′D ′相似, 则A ′B ′AB =B ′C ′BC 或A ′B ′BC =B ′C ′AB .即30-2x 30=20-220或30-2x 20=20-230.解得x =1.5或9,故当x =1.5或9时,矩形ABCD 与A ′B ′C ′D ′相似.27.2 相似三角形(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 如图,在△ABC 中,AB =8,AC =6,点D 在AC 上,且AD =2,如果要在AB 上找一点E,使△ADE与△ABC相似,则AE的长为()A.8 3B.32C.3D.83或322. 在△ABC中,点D,E分别在边AB,AC上,AD:BD=1:2,那么下列条件中能够判断DE // BC的是()A.DEBC =12B.DEBC=13C.AEAC=12D.AEAC=133. 能说明△ABC和△A1B1C1相似的条件是()A.AB:A1B1=AC:A1C1B.AB:A1C1=BC:A1C1且∠A=∠C1C.AB:A1B1=BC:A1C1且∠B=∠A1D.AB:A1B1=AC:A1C1且∠B=∠B14. 如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.3 2B.92C.3√32D.3√35. 如图,在Rt△ABC中,∠BAC=90∘,AD⊥BC,AB=10,BD=6,则BC的值为()A.185B.2√5 C.1003D.5036. 已知两个相似三角形的对应边长分别为9cm和11cm,它们的周长相差20cm,则这两个三角形的周长分别为()A.45cm,65cmB.90cm,110cmC.45cm,55cmD.70cm,90cm7. 如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,图中点D,E,F也都在格点上,则下列与△ABC相似的三角形是()A.△ACDB.△ADFC.△BDFD.△CDE8. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为()m.A.2B.4C.6D.89. 如图,在△ABC中,D、E分别是AB、AC上一点,下面有四个条件:(1)ADAB =AEAC;(2)DBAB=ECAC;(3)ADDB=AEEC;(4)ADDB=DEBC.其中一定能判定DE // BC有()A.1个B.2个C.3个D.4个10. 如图,AD⊥BC于D,CE⊥AB于E交AD于F,则图中相似三角形的对数是()A.3个B.4个C.5个D.6个二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A1B1C1,使△A1B1C1与格点三角形ABC相似(相似比不为1).________.12. 如图,在△ABC中,D,E分别是AB,AC上的点,AF平分∠BAC,交DE于点G,交BC于点F.若∠AED=∠B,且AG:GF=2:1,则DE:BC=________.13. 在△ABC中,∠ACB=90∘,CD⊥AB,垂足为D,若AD=3,BD=1.则∠ABC的度数为________度.14. 如图,已知△ABC中,DE // BC,连接BE,△ADE的面积是△BDE面积的1,则2S△ADE:S△ABC=________.15. 如图所示,CD是一个平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角).AC⊥CD,BD⊥CD,垂足分别为点C,D.若AE=4,BE=8,CD=6.则CE=________.16. 如图,AB⊥BC于B,AC⊥CD于C,添加一个条件:________,使△ABC∽△ACD.17. 四边形ABCD中,AD // BC,∠A=90∘,AD=2cm,AB=7cm,BC=3cm,试在AB边上确定P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似,则AP的长是________cm.18. 如图,C、D是△PAB的边AB上的两点,以CD为边作平行四边形CDEF,EF经过点P,且∠APB=∠ADE.试写出四对相似三角形________.三、解答题(本题共计8 小题,共计66分,)19. 已知,如图,D为△ABC的边BC的中点,O为AD上的任一点,CD的延长线交AB于点E,BD的延长线交AC于点F,求证:EF // BC.20. 已知,如图,ABBD =BCBE=CAED,那么△ABD与△BCE相似吗?为什么?21. 如图,已知AB:AC=AE:AD.求证:△ODB∽△OEC.22. 如图,CD为Rt△ABC的斜边AB上的高线,∠BAC的平分线交BC,CD于点E,F,求证:△ABE∽△ACF.23. 如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∼△ACG;(2)若ADAC =12,求AFFG的值.24. 如图,已知:梯形ABCD中,AD // BC,AC、BD交于点O,E是BC延长线上一点,点F在DE上,且DFEF =AOOC.求证:OF // BC.25. 如图,阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区,已知亮区到窗口下的墙脚距离EC=7.2m,窗口高AB=1.8m.求窗口底边离地面的高BC.26. 定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1. 【答案】 D 【解答】解:∵ ∠A 是公共角, ∵ 当AEAB =ADAC,即AE 8=26时,△AED ∼△ABC , 解得:AE =83; 当AE AC=AD AB,即AE 6=28时,△ADE ∼△ABC ,解得:AE =32, ∵ AE 的长为:83或32.故选D . 2. 【答案】 D 【解答】 解:如图,可假设DE // BC ,则可得AD DB=AE EC=12,AD AB=AE AC=13,但若只有DEBC =ADAB =13,并不能得出线段DE // BC .故选D .3. 【答案】【解答】解:∵ 相似三角形的判定定理之一是:有①两边对应成比例,且②夹角相等的两个三角形相似,①②两个条件缺一不可,∵ A、只符合条件①,不符合条件②,即这两个三角形不相似,故本选项错误;B、符合条件①,但是夹角是∠B=∠A1,不是∠A=∠C1,即这两个三角形不相似,故本选项错误;C、符合条件①②,即这两个三角形相似,故本选项正确;D、符合条件①,但是夹角是∠A=∠A1,不是∠B=∠B1,即这两个三角形不相似,故本选项错误;故选C.4.【答案】A【解答】解:∵ 在Rt△ABC中,∠ACB=90∘,CD⊥AB,∵ AC2=AD⋅AB.又∵ AC=3,AB=6,∵ 32=6AD,则AD=32.故选A.5.【答案】D【解答】解:根据射影定理得:AB2=BD×BC,∵ BC=1006=503.故选D.6.【答案】【解答】解:∵ 两个相似三角形的对应边长分别为9cm和11cm,∵ 两个相似三角形的相似比为9:11,∵ 两个相似三角形的周长比为9:11,设两个相似三角形的周长分别为9x、11x,由题意得,11x−9x=20,解得,x=10,则这两个三角形的周长分别为90cm,110cm,故选:B.7.【答案】C【解答】解:由网格可知:AB=2√2,BC=4,AC=2√10,BD=1,DF=√2,BF=√5,则BDAB =DFBC=BFAC=√24,故与△ABC相似的三角形是△BDF.故选C.8.【答案】B【解答】解:根据题意,作△EFC;树高为CD,且∠ECF=90∘,ED=2,FD=8;∵ ∠E+∠ECD=∠E+∠CFD=90∘∵ ∠ECD=∠CFD∵ Rt△EDC∽Rt△FDC,有EDDC =DCFD;即DC2=ED⋅FD,代入数据可得DC2=16,DC=4;故选:B.9.【答案】C【解答】解:根据对应线段成比例两直线平行,有ADAB =AEAC,DBAB=ECAC,ADDB=AEEC,得到(1)(2)(3)正确,(4)的线段不对应(如图所示)DE′=DE时,DE′不平行于BC,所以不正确.故选C.10.【答案】D【解答】解:∵ AD⊥BC于D,CE⊥AB于E,∵ ∠ADB=∠CEB=90∘,而∠AFE=∠CFD,∵ ∠A=∠C,∵ Rt△AFE∽Rt△CFD∽Rt△ABD∽Rt△CBF.故选D.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】答案如图【解答】解:如图所示:12.【答案】2:3【解答】解:∵ ∠AED=∠B,而∠DAE=∠CAB,∵ △ADE∽△ACB,∵ DEBC =AGAF,∵ AG:GF=2:1,∵ DEBC =AGAF=23.故答案为2:3.13.【答案】60∘【解答】解:由射影定理得,CD2=AD⋅DB=3,则CD=√3,tan∠B=CDDB=√3,则∠ABC=60∘.故答案为:60∘.14.【答案】1:9【解答】解:∵ △ADE的面积是△BDE面积的12,∵ ADBD =12,∵ ADAB =13,∵ DE // BC,∵ △ADE∼△ABC,∵ S△ADES△ABC =(ADAB)2=(13)2=19.故答案为:1:9.15.【答案】2【解答】解:由镜面反射对称可知:∠A=∠B,∠AEC=∠BED.∵ △AEC∽△BED.∵ AEBE =CEDE.又∵ AE=4,BE=8,CD=6,∵ 48=CE6−CE,求得EC=2.故答案为:2.16.【答案】∠BAC=∠CAD或∠BCA=∠CDA或ABBC =ACCD【解答】解:∵ AB ⊥BC 于B ,AC ⊥CD 于C , ∵ ∠ABC =∠ACD =90∘,∵ 当∠BAC =∠CAD 或∠BCA =∠CDA 或AB BC=AC CD时,△ABC ∽△ACD . 故答案为:∠BAC =∠CAD 或∠BCA =∠CDA 或AB BC=AC CD.17. 【答案】 1, 6或145【解答】解:①若点A ,P ,D 分别与点B ,C ,P 对应,即△APD ∽△BCP , ∵ ADBP =APBC , ∵27−AP =AP 3,∵ −AP 2+7AP −6=0, ∵ AP =1或AP =6,检测:当AP =1时,由BC =3,AD =2,BP =6, ∵ APBC =ADBP ,又∵ ∠A =∠B =90∘,∵ △APD ∽△BCP . 当AP =6时,由BC =3,AD =2,BP =1, 又∵ ∠A =∠B =90∘, ∵ △APD ∽△BCP .②若点A ,P ,D 分别与点B ,P ,C 对应,即△APD ∽△BPC . ∵ APBP =ADBC , ∵ AP7−AP =23, ∵ AP =145.检验:当AP =145时,由BP =215,AD =2,BC =3,∵ APBP =ADBC ,又∵ ∠A =∠B =90∘, ∵ △APD ∽△BPC .故答案为:1,6或145.18.【答案】△PMF∽△AMC;△AMC∽△ABP;△PMF∽△ABP;△BDN∽△PEN【解答】解:△PMF∽△AMC;△AMC∽△ABP;△PMF∽△ABP;△BDN∽△PEN,∵ 平行四边形CDEF,∵ EF // AB,CF // ED,∵ ∠F=∠MCA,∠FPM=∠A,∵ △PMF∽△AMC;∵ ∠A=∠A,∠ACM=∠ADE=∠APB,∵ △AMC∽△ABP;∵ ∠F=∠ACM=∠APB,∠FPM=∠A,∵ △PMF∽△ABP;∵ EF // AB,∵ ∠E=∠NDB,∠EPN=∠B,∵ △BDN∽△PEN.故答案为:△PMF∽△AMC;△AMC∽△ABP;△PMF∽△ABP;△BDN∽△PEN三、解答题(本题共计8 小题,每题10 分,共计80分)19.【答案】证明:∵ D为△ABC的边BC的中点,∵ BD=CD,∵ S△ABD=S△ACD,S△BOD=S△COD,∵ S△ABO=S△ACO,∵ AEBE =S△ACES△BCE=S△AOES△BOE=S△ACE−S△AOES△BCE−S△BOE=S△AOCS△BOC,同理可得AFCF =S△AOBS△BOC,∵ AEBE =AFCF,∵ EF // BC.【解答】证明:∵ D为△ABC的边BC的中点,∵ BD=CD,∵ S△ABD=S△ACD,S△BOD=S△COD,∵ S△ABO=S△ACO,∵ AEBE =S△ACES△BCE=S△AOES△BOE=S△ACE−S△AOES△BCE−S△BOE=S△AOCS△BOC,同理可得AFCF =S△AOBS△BOC,∵ AEBE =AFCF,∵ EF // BC.20.【答案】∵ ABBD =BCBE=CAED,∵ △ABC∽△DBE,∵ ∠ABC=∠DBE,∵ ∠ABC−∠DBC=∠DBE−∠DBC,即∠ABD=∠CBE,∵ ABBD =BCBE,∵ ABBC =BDBE,∵ △ABD∽△CBE.【解答】∵ ABBD =BCBE=CAED,∵ △ABC∽△DBE,∵ ∠ABC=∠DBE,∵ ∠ABC−∠DBC=∠DBE−∠DBC,即∠ABD=∠CBE,∵ ABBD =BCBE,∵ ABBC =BDBE,∵ △ABD∽△CBE.21.【答案】证明:∵ AB:AC=AE:AD,即AB:AE=AC:AD,∠A为公共角,∵ △ACD∽△ABE,∵ ∠BDO=∠CEO,又∵ ∠BOD=∠COE,∵ △ODB∽△OEC.【解答】证明:∵ AB:AC=AE:AD,即AB:AE=AC:AD,∠A为公共角,∵ △ACD∽△ABE,∵ ∠BDO=∠CEO,又∵ ∠BOD=∠COE,∵ △ODB∽△OEC.22.【答案】证明:∵ ∠ACB=90∘,∠CDB=90∘,∵ ∠ACD=90∘−∠DCB,∠B=90∘−∠DCB,∵ ∠ACD=∠B,∵ AE平分∠CAB,∵ ∠CAE=∠EAB,∵ △ACF∽△ABE.【解答】证明:∵ ∠ACB=90∘,∠CDB=90∘,∵ ∠ACD=90∘−∠DCB,∠B=90∘−∠DCB,∵ ∠ACD=∠B,∵ AE平分∠CAB,∵ ∠CAE=∠EAB,∵ △ACF∽△ABE.23.【答案】(1)证明:∵ ∠AED=∠B,∠DAE=∠CAB,∵ △ADE∼△ACB,∵ ∠ADF=∠C.又∵ ADAC =DFCG,∵ △ADF∼△ACG.(2)解:∵ △ADF∼△ACG,∵ ADAC =AFAG.∵ ADAC =12,∵ AFAG =12,∵ AFFG =AFAG−AF=1.【解答】(1)证明:∵ ∠AED=∠B,∠DAE=∠CAB,∵ △ADE∼△ACB,∵ ∠ADF=∠C.又∵ ADAC =DFCG,∵ △ADF∼△ACG.(2)解:∵ △ADF∼△ACG,∵ ADAC =AFAG.∵ ADAC =12,∵ AFAG =12,∵ AFFG =AFAG−AF=1.24.【答案】证明:∵ AD // BC,∵ AOCO =DOBO,∵ DFEF =AOOC,∵ DOBO =DFEF,∵ DODB =DFEF,∵ ∠ODF=∠BDE,∵ △DOF∽△DBE,∵ ∠DOF=∠DBE,∵ OF // BC.【解答】证明:∵ AD // BC,∵ AOCO =DOBO,∵ DFEF =AOOC,∵ DOBO =DFEF,∵ DODB =DFEF,∵ ∠ODF=∠BDE,∵ △DOF∽△DBE,∵ ∠DOF=∠DBE,∵ OF // BC.25.【答案】窗口底边离地面的高BC为3m.【解答】解:∵ BF // AE,∵ △CBF∽△CAE,∵ CBCA =CFCE,即CBCB+1.8=7.2−2.77.2,∵ BC=3(m).26.【答案】解:(1)作答如图所示图2中,连接AC、CE,得△ABC∽△CDE∽△ECA,相似比为√2:2;图3中,连接BE、CE,得△BCE∽△EBA∽△CED,相似比为√2:2.【解答】解:(1)作答如图所示图2中,连接AC、CE,得△ABC∽△CDE∽△ECA,相似比为√2:2;图3中,连接BE、CE,得△BCE∽△EBA∽△CED,相似比为√2:2.27.3 位似(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在平面直角坐标系中,A(3,4),B(−2,3),C(−4,−2),以原点为位似中心,将△ABC扩大到原来的3倍,若A点的对应点坐标为(9,12),则B点的对应点的坐标为()A.(6,−9)B.(−6,9)C.(6,9)D.(−6,−9)2. 在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的1得到线段OC,则点C的坐标为()3A.(2,1)B.(2,0)C.(3,3)D.(3,1)3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a, b)对应大鱼上的点( )A.(−2a, 2b)B.(−2a, −2b)C.(−2b, −2a)D.(−2a, −b)4. 在如图所示的网格中,正方形ABCD与正方形EFGH是位似图形,则位似中心是()A.点O或点MB.点O或点NC.点P或点MD.点P或点N5. 如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点OB.点PC.点MD.点N6. 点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点EB.点FC.点HD.点G7. 如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3B.4C.6D.98. 在平面直角坐标系中,△ABO的三个顶点的坐标分别为A(−4,2),B(−4,0),O(0,0),,得到△CDO,则点A的对应点C的坐以原点O为位似中心,把这个三角形缩小为原来的12标是()A.(−2,1)B.(2,2)C.(−2,1)或(2,−1)D.(2,2)或(−2,−2)9. 下列各组图形中不是位似图形的是()A. B. C. D.10. 在平面直角坐标系中,把△ABC以原点O为位似中心放大,得到△A′B′C′若点A和它的对应点A′的坐标分别为(2,5),(−6,−15),则△A′B′C′与△ABC的相似比为()A.−3B.3C.13D.−13二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是________.12. 如图,在Rt△ABC∠B=90∘,AB,=3,BC=4,点D、E分别是AC,BC的中点,点F是AD上一点,将△CEF沿EF折叠得△C′EF,C′F,交BC于点G,当△CFG,△ABC相似时,CF的长为________.13. 在平面直角坐标系中,△ABO三个顶点的坐标分别为A(−2, 4),B(−4, 0),O(0, 0).以原点O为位似中心,把这个三角形缩小为原来的12,得到△CDO,则点A的对应点C的坐标是________.14. 大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm2,大矩形的长为5cm,则大矩形的宽为________cm.15. 已知四边形ABCD各顶点的坐标分别为A(2,6),B(4,2),C(6,2),D(6,4),以0为位似中心,作四边形A′B′C′D′位似与四边形ABCD位似,对应边的比为12,则点A′、B′、C′、D′的对应点的坐标分别为________,________,________,________.16. 把一个三角形变成和它位似的另一个三角形,若边长缩小到12倍,则面积缩小到原来的________倍..若五边形ABCDE 17. 如图,五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为12的,面积为20cm2,那么五边形A′B′C′D′E′的面积为________.18. 在△ABC中,AB=BC,∠B=90∘,将△ABC沿BC方向平移,得到△A′CC′,以C为位似的值为中心,作△DEC与△ABC位似,位似比为1:2,F为CC′的中点,连接DF, A′F,则A′FDF________.19. 如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为________.20. 如图,△ABC的顶点在格点上,且点A(−5, −1),点C(−1, −2).以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出________放大后的图形△A′B′C′并写出△A′B′C′各顶点坐标.三、解答题(本题共计6 小题,共计60分,)21. 已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0, 3),B(3, 4),C(2, 2).(正方形网格中,每个小正方形的边长是1个单位长度)请以点B为位似中心,在网格中画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,并求出△A1B1C1的面积.22. 如图,已知O是坐标原点,A,B的坐标分别为(3,1),(2,−1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD.(要求:新图与原图的相似比为2:1);(2)分别写出A,B的对应点C,D的坐标;(3)若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为________.23. 如图,在平面直角坐标系中,A(2, 1),B(1, −2).(1)画出△OAB向左平移2个单位长度,再向上平移1个单位长度后的△O1A1B1;(2)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1;(3)判断△O1A1B1与△OA2B2是否关于某一点M为位似中心的位似图形?若是,请在图中标出位似中心M,并写出点M的坐标.24. 如图,已知O是坐标原点,B、C两点的坐标分别为(3, −1)、(2, 1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25. 如图,BD,AC相交于点P,连结AB,BC,CD,DA,∠DAP=∠CBP.(1)求证:△ADP∼△BCP;(2)△ADP与△BCP是不是位似图形?并说明理由;(3)若AB=8,CD=4,DP=3,求AP的长.26. 如图,已知O是原点,B、C两点的坐标分别为(3, −1),(2, 1).(1)以点O为位似中心,在y轴的左侧将△OBC扩大为原来的两倍(即新图与原图的相似比为2),画出图形并写出点B,C的对应点的坐标;(2)如果△OBC内部一点M的坐标为(a, b),写出点M的对应点M′的坐标.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:∵ 以原点O为位似中心,将△OAB放大为原来的3倍,点A(3,4)的对应点是(9,12),则点B(−2,3)的对应点为(−6,9).故选B.2.【答案】A【解答】解:在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的13得到线段OC,则点A的对应点C的坐标为(6×13,3×13),即C点坐标为(2,1).故选A.3.【答案】B【解答】解:根据图形可得,两个图形的位似比是1:2,∵ 对应点是(−2a, −2b).故选B.4.【答案】D【解答】解:如图,连接AG,EC,FD,BH交于点P;连接AE,BF,DH,CG并分别延长交于点N,则位似中心为点P或点N.故选D.5.【答案】B【解答】如图所示:两个三角形的位似中心是:点P.故选:B.6.【答案】B【解答】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,故选B.7.【答案】D【解答】解:∵ 四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∵ 四边形ABCD与四边形A′B′C′D′的面积比为:4:9.∵ 四边形ABCD的面积等于4,∴ 四边形A′B′C′D′的面积为9.故选D.8.【答案】C【解答】,解:∵ 点A(−4,2),且相似比为12∵ 当△CDO与△ABO在y轴同侧时,点C的坐标为(−2,1),当△CDO与△ABO在y轴异侧时,点C的坐标为(2,−1).故选C.9.【答案】D【解答】解:根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.故选D.10.【答案】B【解答】解:∵ △ABC和△A′B′C′关于原点位似,且点A和它的对应点A′的坐标分别为(2,5),(−6,−15),对应点的坐标乘以−3,∵ △A′B′C′与△ABC的相似比为3.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:由题图可知,直线与直线的交点坐标为,所以位似中心的坐标为.故答案为:.12.【答案】4或2.8【解答】解:①当FG⊥BC时,将△CEF沿EF折叠得△C′EF,∵ ∠C′=∠C,C′E=CE=2,∵ sin∠C=sin∠C′,∵ ABAC =EGC′E,∵ EG=1.2,∵ FG//AB,∵ CGBC =CFAC,即3.2 4=CF5,∵ CF=4;②当GF⊥AC时,如图,将△CEF沿EF折叠得△C′EF,∵ ∠1=∠2=45∘,∵ HF=HE,∵ sin∠C=sin∠C′=EHC′E =ABAC,∵ EH=2×35=65,∵ C′H=√C′E2−EH2=85,∵ CF=C′F=C′H+HF=1.6+1.2=2.8.综上所述,当△CFG与△ABC相似时,CF的长为4或2.8.故答案为∵4或2.8.13.【答案】(−1, 2)或(1, −2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的12,点A的坐标为(−2, 4),∵ 点C的坐标为(−2×12, 4×12)或(2×12, −4×12),即(−1, 2)或(1, −2).故答案为:(−1, 2)或(1, −2).14.【答案】4【解答】解:∵ 大矩形与小矩形位似,∵ 位似比等于相似比为2:1.∵ 其对应的面积比等于相似比的平方为4:1,∵ 大矩形面积为20cm2.∵ 大矩形的宽为4cm.故大矩形的宽为4cm.15.【答案】(1,3),(2,1),(3,1),(3,2)【解答】解:如图,连接OA、OB、OC、OD,分别取它们的中点A′,B′,C′,D′,即四边形A′B′C′D′即为所求.∵ A′(1,3),B′(2,1),C′(3,1),D′(3,2).故答案为:(1,3);(2,1);(3,1);(3,2).16.【答案】14【解答】解:∵ 把一个三角形变成和它位似的另一个三角形,若边长缩小了2倍∵ 位似比等于1:2∵ 面积比等于1:4倍.∵ 面积缩小到原来的1417.【答案】5【解答】,解:∵ 五边形A′B′C′D′E′与五边形ABCDE是位似图形,且位似比为12∵ 五边形A′B′C′D′E′的面积与五边形ABCDE的面积比为:1:4,∵ 五边形ABCDE的面积为20cm2,∵ 五边形A′B′C′D′E′的面积为:5.故答案为:5.18.【答案】【解答】解:设AB=BC=2x,①如图1,当点D在AC上时,∵ △ABC≅△A′CC′,∵ A′C=CC′=2x,∵ F为CC′的中点,∵ CF=x,则A′F=√A′C2+CF2=√5x,又∵ △DEC∼△ABC,且DEAB =CECB=12,∵ DE=CE=x,则EF=2x,∵ DF=√DE2+EF2=√5x,∵ A′FDF =√5x√5x=1;②如图2,当点D在AC延长线上时,由①知A′F=√A′C2+CF2=√5x,DF=DE=x,∵ A′FDF =√5xx=√5.故答案为:1或√5.19.6【解答】解:∵ △ABC与△DEF是位似图形,位似比为2:3,∵ AB:DE=2:3,∵ DE=6.故答案为:6.20.【答案】△ABC【解答】解:如图所示:△A′B′C′即为所求,A′(10, 2),B′(10, 6),C′(2, 4).三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:如图所示:△A1B1C1即为所求,△A1B1C1的面积为:4×6−12×2×6−12×2×4−12×2×4=10.【解答】解:如图所示:△A1B1C1即为所求,△A1B1C1的面积为:4×6−12×2×6−12×2×4−12×2×4=10.22.【答案】解:(1)如图:△OCD即为所求.(2)由图可知:C:(−6,−2),D:(−4,2).(−2m,−2n)【解答】解:(1)如图:△OCD即为所求.(2)由图可知:C:(−6,−2),D:(−4,2).(3)根据原点位似的特点可知P′(−2m,−2n).故答案为:(−2m,−2n).23.【答案】解:如图所示:如图:如图所示,与是关于为位似中心的位似图形.【解答】解:如图所示:如图:如图所示,与是关于为位似中心的位似图形.24.【答案】解:是所求的三角形;的坐标是,的坐标是.【解答】解:是所求的三角形;的坐标是,的坐标是.25.【答案】(1)证明:∵ ∠DAP=∠CBP,∠DPA=∠CPB,∴ △ADP∼△BCP;(2)解:△ADP与△BCP不是位似图形,因为它们的对应边不平行;(3)∵ △ADP∼△BCP,∴APDP =BPCP,又∠APB=∠DPC,∴ △APB∼△DPC,∴APPD =ABCD,即AP3=84,解得,AP=6.【解答】(1)证明:∵ ∠DAP=∠CBP,∠DPA=∠CPB,∴ △ADP∼△BCP;(2)解:△ADP与△BCP不是位似图形,因为它们的对应边不平行;(3)∵ △ADP∽△BCP,∴APDP =BPCP,又∠APB=∠DPC,∴ △APB∽△DPC,∴APPD =ABCD,即AP3=84,解得,AP=6.26.【答案】解:(1)如图,△OB1C1为所作,点B1,C1点的坐标分别为(−6, 2),(−4, −2);(2)把M点的横纵坐标分别乘以−2即可得到M1的坐标,所以点M的对应点M′的坐标为(−2a, −2b).【解答】解:(1)如图,△OB1C1为所作,点B1,C1点的坐标分别为(−6, 2),(−4, −2);(2)把M点的横纵坐标分别乘以−2即可得到M1的坐标,所以点M的对应点M′的坐标为(−2a, −2b).亲爱的读者:纸上得来终觉浅,绝知此事要躬行!+读书不觉已春深,一寸光阴一寸金;少壮不努力,老大徒伤悲春去燕归来,新桃换旧符。