《函数y=Asin(ωxφ)的图象》的教学反思解读

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数y=Asin(ωx+φ)的图象》的教学反思

数学组张淑文

教师不能只把教案写得详细周全,满足于“今天我上完课了,改完作业了,完成教学任务了。”而应该常常反思自己的教育教学行为,记录教育教学过程中的所得、所失、所感,不断创新,不断地完善自己,不断提高教育教学水平。新课程标准要求我们将新理念转化为实际的教学行为,要有效地实现知识与技能,过程与方法,情感、态度与价值观的三位一体的课程目标。

这次公开课我讲的是人教版高中数学必修(4)第一章第五节的内容──函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象是高中数学的重点内容,是三角函数知识解决实际问题的重要工具。经过这次教研活动,在展示自己的基础上,对公开课作了认真准备,有了一定的提高同时发现了自身存在的不足,需要我在今后的教学实践中去不断的积累和完善。本着新课标的精神,我浅谈一下我对这节公开课的几点反思:

1、创设情境、激发学生的兴趣。

长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学,所以我从一开始就引入物理的内容:简谐运动中单摆对平衡位置的位移y与时间x的关系、交流电的电流y与时间x的关系等都是形如y=Asin(ωx+φ) 的函数(其中A, ω, φ都是常数)。演示课件《弹簧振子位移——时间的图象》,这有助于学生认清函数y=Asin(ωx+φ)与正弦函数的图象内在联系,并把有探

究价值的问题留给学生,激发学生探求知识的强烈欲望和创新意识.2.钻研教材、建构符合学生认知的教学设计

应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的任务等等,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们要更高层次前进。平时布置任务时,让优生做完基本的任务要求,再加上两三个有难度的要求,让学生多多思考,提高思考含量。对于学习有困难的学生,则要降低任务要求,努力达到基本要求。

教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者,丰富学生的学习方式、改进学生的学习方法,这些都是高中数学课程追求的基本理念,首先,我试图将学生的主体性得到充分体现,让他们自己探索总结由正弦函数图象到函数y=Asin(ωx+φ)的图象变化规律。让学生自己感受发现问题——分析问题——解决问题的过程,培养他们科研素质。而我作为学生学习的引导者、组织者和合作者.学生不再是知识的接受器,教学完全建立在学生认知水平基础之上.最后由学生自己观察,分析出变化趋势,总结规律。课后,我思考是否能让学生的主体性发挥的更彻底一些,在创设教学情景方面,作为学生学习的引导者、组织者,我与老教师的差距是明显的,比如在课堂上,在由函数y=sin(x+φ)的的函数图象到函数y=sin(ωx+φ)的图象图象变换的规律总结上,教师很自然

1倍,但是学生的想到把曲线的纵坐标不变,横坐标伸长或缩短到原来的

往往只能发现五个“特殊点”的变化,,而认识不到整个函数的变化趋势,

变化多少?是变化ω1

倍还是变化ω倍?这时候就需要教师的引导,而我当时感觉是引导少了一些传授多了一些,老教师的课我也经常听,感到在对学生的启发引导我还要下功夫。

3.尊重学生,突出评价的激励和发展功能

数学教育是学生真切生活的体验,是师生情感的交流,是学生持续发展的体现.只有在民主、平等的气氛中,学生的言行才能得到尊重与宽容。学生天生好问,但由于知识经验、思维能力有限,有时的回答可能显得幼稚,教学中,应该不急于将结果直接呈现给学生,让学生观察、归纳、猜想、论证,处处闪烁着学生的思维火花.有学生和教师,学生与学生之间的平等对话,处处体现出教师以人为本,尊重学生个性差异,关注学生未来发展的理念。但是在注重和学生的交流这一点上我是做得很不够,这方面,我欠缺在尊重学生个性差异,通过课堂的提问,很少由学生的个性差异出发,而脑海中对每个学生以“他掌握了”“他没掌握”或“他哪里没掌握”作为评价选项,而没有注重学生个性差异而加以引导。通过这次教研活动,特别是这节公开课,感觉到自身的不足,在今后的教学中还应该多干、多想、多积累。

4、 借助几何画板,多途径解决数学问题,拓展学生视野。

本节课若采用传统的方法讲授,作图量大,耗时多。所以,本人主要运用计算机中“几何画板”软件探究“函数y=Asin (ωx+φ)的图象变换”的课例。借助信息技术强大的作图和分析功能,让学生充分利用“几何画板”的动画功能,对其三角函数图象的变化能直接进行“数学实验”的操作,培养学生探究和解决实际问题的能力充分体现数学源于实践,源于生活;充分体现“以学生发展为本”的新课标要求。

由y=sinx到y=Asin(ωx+φ图象变换是一个动态的过程。借助几何画板的课件演示可以直观地让学生感受变换的过程,加深对变换的理解。当学生用利用几何画板来自已输入各个参数,可以既可以从形的角度解决图象的变换,又要可以检验数学推理是否正确。

通过这堂研讨课,让我认识到作为教学活动的主导者,只有在日常的教学中不断加强自身的专业修养、勇于创新,才能优化课堂教学,提高课堂教学效果。

5、与老教材相比有优越也有瑕疵

以前该部分内容的教学通常是通过取值、列表、描点、画图然后静态的让学生观察、总结,最后得出它们之间图象变化的特点,不仅教学内容少,而且课时多(以前至少需要2课时)、课堂气氛枯燥、学生参与的活动少、学习的积极性较低.通过信息技术的使用,改变常规教学中处理方式,通过几何画板的辅助教学演示,使得振幅变换、伸缩变换、平移变换变得形象、直观,学生易于理解和掌握,不仅一节课完成了三种变换而且学生的兴趣浓厚、参与活动多、课堂气氛活跃,使课堂教学落到了实处,主体作用得到了真正的体现,综合能力和素质也得到了培养,这充分体现了信息技术具有的优势.但值得商榷的是:原来教学的“五点作图法”绘制函数图象,再讨论参数所起的作用,这里用技术马上就画出函数图象,并观察规律得出结论,学生可能会怀疑真的是如此?这时可用“五点作图法”来确定最后,有时侯想尽量让学生喜欢数学,在上课之前,告诉自己要面带微笑,要讲得行云流水。但有时还会有不尽人意的地方。

“吾日三省吾身”,“学而不思则罔,思而不学则怠。”通过教学反思我会不断提高我的教学水平,成长为一名优秀的人民教师。

相关文档
最新文档