2014年上海中考数学一模各区18、24、25整理试题及答案

合集下载

2014上海中考数学模拟测试参考答案(2014.6)

2014上海中考数学模拟测试参考答案(2014.6)

2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109; (C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题 19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为 24、.25、。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。

2014年上海市中考数学试卷及答案

2014年上海市中考数学试卷及答案

2014年上海市初中毕业统一学业考试数学试卷(满分150分,考试时间100分钟)考生注意:1•本试卷含三个大题,共 25题;2 •答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一 律无效;3 •除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上.】1 •计算2 . 3的结果是(A) .5 ; (B) .6 ; (C) 2 3 ; (D) 3 2 •2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科 学记数法表示为(A) 608 X 108; (B) 60.8X 109; (C) 6.08 X 1010; (D) 6.08 X 1011. 3・如果将抛物线y = x 2向右平移1个单位,那么所得的抛物线的表达式是2 2 2(A) y X 1 ; (B) y x 1 ; (C) y (x 1); 4・如图,已知直线a 、b 被直线c 所截,那么/ 1的同位角是(A) / 2; (B) / 3; (C) / 4; 5.某市测得一周 PM2.5的日均值(单位:微克每立方米)如下:50, 40, 75, 50, 37, 50, 40,这组数据的中位数和众数分别是(A) 50 和 50; (B) 50 和 40; (C) 40 和 50; (D) 40 和 40 •6.如图, (A)(B)(C)(D) 已知 AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是△ A BD 与厶ABC 的周长相等; △ A BD 与厶ABC 的面积相等; 菱形的周长等于两条对角线之和的两倍; 菱形的面积等于两条对角线之积的两倍. (D)(D)图2二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:a(a+1)= ▲.18. 函数y的定义域是▲.x 1x 1 2, 宀口9. 不等式组心 C 的解集是▲.2x 810. 某文具店二月份销售各种水笔320 支,三月份销售各种水笔的支数比二月份增长了10%, 那么该文具店三月份销售各种水笔▲支.11. 如果关于x的方程x2—2x+ k = 0( k为常数)有两个不相等的实数根,那么k的取值范围是▲.12. 已知传送带与水平面所成斜坡的坡度i= 1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为▲米.13. 如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是▲.k14. 已知反比例函数y —(k是常数,k z 0),在其图像所在的每一个象限内,y的值随着xx的值的增大而增大,那么这个反比例函数的解析式是▲(只需写一个).uuu r unr r15. 如图3,已知在平行四边形ABCD中,点E在边AB 上,且AB = 3EB.设AB a , BC b ,那么DE = ▲(结果用a、b表示).16. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图成绩最稳定的是▲17. 一组数:2, 1, 3, x, 7, y, 23,…,满足“从第三个数起,前两个数依次为a、b, 紧随其后的数就是2a —b”,例如这组数中的第三个数“ 3”是由“ 2 X 2- 1”得到的,那么这组数中y表示的数为▲4所示,那么三人中图B18. 如图5,已知在矩形ABCD中,点E在边BC 上, BE = 2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C'、D处,且点C'、D'、B在同一条直线上,折痕与边AD交于点F , D、与BE交于点G .设AB = t,那么△ EFG的周长为▲(用含t的代数式表示).19. 20. 21 . 解答题:(本大题共7题, (本题满分10分)(本题满分10分) 解方程:岁 满分78分)1 832 x 2 1 1 Fl (本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数 y( C )与水银柱的长度 x( cm)之间是一次函数关系•现有一支水 银体温计,其部分刻度线不清晰 (如图6),表中记录的是该体温计部分清晰刻度线及其对应 水银柱的长度. 水银柱的长度x( cm) 4.28.2 9.8体温计的读数y(C ) 35.0 40.0 42.0 图6 (1) 求y 关于x 的函数关系式(不需要写出函数的定义域); (2) 用该体温计测体温时,水银柱的长度为 6.2 cm,求此时体温计的读数.22.(本题满分10分,第(1)、(2)小题满分各5分) 如图7,已知 Rt △ ABC 中,/ ACB = 90°, CD 是斜边 CD , AE 分别与CD 、CB 相交于点 H 、E , AH = 2CH . (1) 求sinB 的值; (2) 如果CD = .5,求BE 的值.图7 23.(本题满分12分,第(1)、(2)小题满分各 已知:如图8,梯形ABCD 中,AD // BC , 是边BC 延长线上一点,且/ CDE = Z ABD . 6分) AB = DC , 对角线AC 、BD 相交于点F ,点E(1)求证:四边形 ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:D G GB DF DB24. (本题满分12分,第(1)、(2)、(3)小题满分各4分)2在平面直角坐标系中(如图9),已知抛物线y x2 bx c与x轴交于点A(—1, 0)和3点B,与y轴交于点C(0, —2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t> 3,如果△ BDP和厶CDP的面积相等,求t的值.y25. (本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)4如图10,已知在平行四边形ABCD中,AB = 5, BC= 8, cosB= ,点P是边BC上的5动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA 交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP// CG时,求弦EF的长;(3)当厶AGE是等腰三角形时,求圆C的半径长.D备用图图102014年上海市初中毕业统一学业考试数学参考答案一、选择题(每小题4分,1 . B2. C3. C4. A5. A6. B二、填空题(每小题4分,27 . a a .& x 1 .9. 3p x p 4 .10. 352.11. k p 1.12. 26.113 .114 . y (k p 0即可)x2r r15. a b .316 . 乙.17 . _-9 .18 . 2 . 3t 共24分)共48分)(只需写一个)三、解答题(本题共7题,满分78分)19. (本题满分10分)1 12 —计算:屈疵832 ^3 . -V320. (本题满分10分)解方程:LJ ¥—. x 0;x 1(舍)x 1 x 1 x 121. (本题满分10分,第(1)小题满分7分,第(2 )小题满分3分)(1)y 1.25x 29.75(2)37.522. (本题满分10分,每小题满分各5分)QCD 5; AB 2 5BC 2,5®osB 4;AC 2.5gsinB 2CE ACQa nCAE 1BE BC CE 323. (本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC, AB = DC,对角线BC延长线上一点,且/ CDE = Z ABD .(1) 求证:四边形ACED是平行四边形;Q ABCD为等腰梯形,ADB DACABD DCA,Q CDE = ABDDCA CDE , AC / / DEQ AD //CE, ADEC 为YQ AD//BC,DG AD;DF AD GB BE 'FB BCDF ADQ , FB BCDF AD DF FB AD BCQ ADEC为丫,AD CE;AD BC BEDF AD DF ADDF FB DG DF GB DB AD BC DB BE(2)联结AE,交BD于点G,求证:四D FGB DB 24.(本题满分12分,每小题满分各4分)25.(本题满分14 分,第(1)小题满分3 分,第(1 )小题满分5 分,第(1)小题满分6 分)。

上海中考一模数学2014年25题汇编(含答案)

上海中考一模数学2014年25题汇编(含答案)

2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,0090305cm C A BC ∠=∠==,,;△DEF 中,090D ∠=,045E ∠=,3cm DE =. 现将△DEF 的直角边DF 与△AB C 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,AD x BE y ==,请你写出y 与x 之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得022.5EBD ∠= ?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分) 如图,在△ABC 中,AB =8,BC =10,3cos 4C =,2ABC C ∠=∠,BD 平分∠ABC 交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。

(1)求证:AB BGCE CF=; (2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。

25、(1)证明:∵BD 平分ABC ∠∴2ABC ABD ∠=∠ ∵2ABC C ∠=∠∴ABD C ∠=∠∵AEC ABC BAE ∠=∠+∠ 即AEF FEC ABC BAE ∠+∠=∠+∠ ∵AEF ABC ∠=∠∴BAE FEC ∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=B(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8 过点A 作AN MB ⊥,垂足为N∵3,cos ,4ABD C C AB AC ∠=∠==∴6,12BN MN BM === ∵AM ∥BC ∴AM MG BE BG =∴812BG x BG -=∴128xBG x =+ ∵AB BGCE CF =∴128810x x xy +=- ∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况: 1°AE AF =,则AEF AFE ∠=∠易证明FE FC y ==, 又∵3cos 4C =易得32EC y =, 又∵10EC x =- ∴2023x y -=又∵2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF =作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x =====∴2810x += ∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。

上海中考一模数学2014年25题汇编(含答案)

上海中考一模数学2014年25题汇编(含答案)

2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,;△DEF 0090305cm C A BC ∠=∠==,,中,,,. 现将△DEF 的直角边DF 与△AB C 的斜边AB 090D ∠=045E ∠=3cm DE =重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,请你写出与之间的函数关系式及其定义域.,AD x BE y ==y x (2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得 ?如果存在,022.5EBD ∠=求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分)如图,在△ABC 中,AB =8,BC =10,,,BD 平分∠ABC 交AC 边3cos 4C =2ABC C ∠=∠于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。

(1)求证:;AB BGCE CF=(2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。

B25、(1)证明:∵BD 平分∴ABC ∠2ABC ABD ∠=∠∵∴2ABC C ∠=∠ABD C∠=∠∵ 即AEC ABC BAE ∠=∠+∠AEF FEC ABC BAE ∠+∠=∠+∠∵∴AEF ABC ∠=∠BAE FEC∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8过点A 作,垂足为NAN MB ⊥∵3,cos ,4ABD C C AB AC∠=∠==∴6,12BN MN BM ===∵AM ∥BC ∴∴∴AM MG BE BG =812BG x BG -=128xBG x =+∵∴AB BG CE CF =128810xx x y +=-∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况:1°,则AE AF =AEF AFE∠=∠易证明, 又∵FE FC y ==3cos 4C =易得, 又∵32EC y =10EC x =-∴又∵2023x y -=2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF=作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x=====∴2810x +=∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。

2014年上海市中考数学一模试卷 (1)DOC

2014年上海市中考数学一模试卷 (1)DOC

2014年上海市中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于().2.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m的值等于()3.如图,已知平行四边形ABCD中,向量在,方向上的分量分别是()..、、4.(4分)抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是()5.(4分)在△ABC,点D、E分别在边AB、AC上,如果AD=1,BD=2,那么由下列条件能够判定DE∥BC的是()..6.(4分)如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B 处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为()米0二、填空题:(本大题12小题,每题4分,满分48分)7.函数y=(5+x)(2﹣x)图象的开口方向是_________.8.在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=_________.9.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于_________cm.10.如果两个相似三角形周长的比是2:3,那么它们面积的比是_________.11.如图,在△ABC于△ADE中,,要使△ABC于△ADE相似,还需要添加一个条件,这个条件是_________.12.已知点G是△ABC的重心,AB=AC=5,BC=8,那么AG=_________.13.(4分)已知向量与单位向量方向相反,且,那么=_________(用向量的式子表示)14.如果在平面直角坐标系xOy中,点P的坐标为(3,4),射线OP与x的正半轴所夹的角为α,那么α的余弦值等于_________.15.(4分)已知一条斜坡的长度为10米,高为6米,那么坡角的度数约为_________(备用数据:tan31°=cot59°≈0.6,sin37°=cos53°≈0.6)16.如果二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,那么k=_________.17.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.18.(4分)(2014•静安区一模)如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形相似缩放,使重叠的两边互相重合,我们称这样的图形为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC中,AB=6,BC=7,AC=5,△A1B1C是△ABC 以点C为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△A2B2C(点A2,B2分别与A、B对应)的边A2B2的长为_________.三、解答题:(本大题共7题,满分78分)19.(10分)如图,已知在直角坐标系中,点A在第二象限内,点B和点C在x轴上,原点O为边BC的中点,BC=4,AO=AB,tan∠AOB=3,求图象经过A、B、C三点的二次函数解析式.20.(10分)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,,如果,.(1)求(用向量的式子表示)(2)求作向量(不要求写作法,但要指出所作图表中表示结论的向量)21.(10分)(2014•静安区一模)已知:如图,在平行四边形ABCD中,E、F分别是边BC,CD上的点,且EF∥BD,AE、AF分别交BD与点G和点H,BD=12,EF=8.求:(1)的值;(2)线段GH的长.22.(10分)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.23.(12分)(2014•静安区一模)已知,如图,在梯形ABCD中,AD∥BC,∠BCD=90°,对角线AC、BD相交于点E,且AC⊥BD.(1)求证:CD2=BC•AD;(2)点F是边BC上一点,联结AF,与BD相交于点G,如果∠BAF=∠DBF,求证:.24.(12分)已知在平面直角坐标系xOy中,二次函数y=﹣2x2+bx+c的图象经过点A (﹣3,0)和点B(0,6).(1)求此二次函数的解析式;(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,tanA=,点D是斜边AB上的动点,联结CD,作DE⊥CD,交射线CB于点E,设AD=x.(1)当点D是边AB的中点时,求线段DE的长;(2)当△BED是等腰三角形时,求x的值;(3)如果y=,求y关于x的函数解析式,并写出它的定义域.2014年上海市中考数学一模试卷参考答案1. B2. C3. C4. A5. D6. B7. 向下8. 69. 2.10. 4:9 11. ∠B=∠E12. 213. :﹣3.14..15. 答案为:37°.16. K=-3 17. 2 18.答案为:.19. 解:∵原点O为边BC的中点,BC=4,∴B点坐标为(﹣2,0),C点坐标为(2,0),作AH⊥OB于H,如图,∵AO=AB,∴OH=BH=1,∵tan∠AOB==3,∴AH=3,∴A点坐标为(﹣1,3),设抛物线的解析式为y=a(x+2)(x﹣2),把A(﹣1,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴经过A、B、C三点的二次函数解析式为y=﹣(x+2)(x﹣2)=﹣x2+4.20. 解:(1)∵DE∥BC,∴=,∵,,∴=+=+,∴==(+)=+;(2)如图,取点AB的中点M,作=,连接,则即为所求.21.解:(1)∵EF∥BD,∴=,∵BD=12,EF=8,∴=,∴=,∵四边形ABCD是平行四边形,∴AB=CD,∴=;(2)∵DF∥AB,∴==,∴=,∵EF∥BD,∴==,∴=,∴GH=6.22. 解:解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴=∵AB=CB=8∴BD=4,AD=12.∴=∴CD=3≈6.928>6.∴船继续向东航行无触礁危险.23. 证明:(1)∵AD∥BC,∠BCD=90°,∴∠ADC=∠BCD=90°,又∵AC⊥BD,∴∠ACD+∠ACB=∠CBD+∠ACB=90°,∴∠ACD=∠CBD,∴△ACD∽△DBC,∴=,即CD2=BC×AD;(2)方法一:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=,∴=,又∵△ABG∽△DBA,∴=,∴AB2=BG•BD,∴===,方法二:∵AD∥BC,∴∠ADB=∠DBF,∵∠BAF=∠DBF,∴∠ADB=∠BAF,∵∠ABG=∠DBA,∴△ABG∽△DBA,∴=()2=,而=,∴=.24. 解:(1)由题意得,,解得,所以,此二次函数的解析式为y=﹣2x2﹣4x+6;(2)∵y=﹣2x2﹣4x+6=﹣2(x+1)2+8,∴函数y=2x2﹣4x+6的顶点坐标为(﹣1,8),∴向右平移5个单位的后的顶点C(4,8),设直线BC的解析式为y=kx+b(k≠0),则,解得,所以,直线BC 的解析式为y=x+6,令y=0,则x+6=0,解得x=﹣12,∴点D的坐标为(﹣12,0),过点A作AH⊥BD于H,OD=12,BD===6,AD=﹣3﹣(﹣12)=﹣3+12=9,∵∠ADH=∠BDO,∠AHD=∠BOD=90°,∴△ADH∽△BDO,∴=,即=,解得AH=,∵AB===3,∴sin∠ABD===;(3)AB∥OC.理由如下:方法一:∵BD=6,BC==2,AD=9,AO=3,∴==3,∴AB∥OC;方法二:过点C作CP⊥x轴于P,由题意得,CP=8,PO=4,AO=3,BO=6,∴tan∠COP===2,tan∠BAO===2,∴tan∠COP=tan∠BAO,∴∠BAO=∠COP,∴AB∥OC.25. 解:(1)在△ABC中,∵∠ACB=90°,AB=10,tanA=,∴BC=8,AC=6,∵点D为斜边AB的中点,∴CD=AD=BD=5,∴∠DCB=∠DBC,∵∠EDC=∠ACB=90°,∴△EDC∽△ACB,∴=,即=,则DE=;(2)分两种情况情况:(i)当E在BC边长时,∵△BED为等腰三角形,∠BED为钝角,∴EB=ED,∴∠EBD=∠EDB,∵∠EDC=∠ACB=90°,∴∠CDA=∠A,∴CD=AC,作CH⊥AB,垂足为H,那么AD=2AH,∴=,即AH=,∴AD=,即x=;(ii)当E在CB延长线上时,∵△BED为等腰三角形,∠DBE为钝角,∴BD=DE,∴∠BED=∠BDE,∵∠EDC=90°,∴∠BED+∠BCD=∠BDE+∠EDC=90°,∴∠BCD=∠BDC,∴BD=BC=8,∴AD=x=AB﹣BD=10﹣8=2;(3)作DM⊥BC,垂足为M,∵DM∥AC,∴==,∴DM=(10﹣x),BM=(10﹣x),∴CM=8﹣(10﹣x)=x,CD=,∵△DEM∽△CDM,∴=,即DE==,∴y==,整理得:y=(0<x<10).。

2014年上海市中考数学试卷(附答案与解析)

2014年上海市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前上海市2014年初中毕业统一学业考试数 学本试卷满分150分,考试时间100分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23⨯的结果是( )A .5B .6C .23D .322.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为( )A .860810⨯B .960.810⨯C .106.0810⨯D .116.0810⨯3.如果将抛物线2y x =向右平移1个单位,那么所得新抛物线的表达式是 ( )A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+4.如图,已知直线,a b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠5.某市测得一周 2.5PM 的日均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是( )A .50和50B .50和40C .40和50D .40和406.如图,已知AC BD ,是菱形ABCD 的对角线,那么下列结论一定正确的是( )A .ABD △与ABC △的周长相等B .ABD △与ABC △的面积相等C .菱形ABCD 的周长等于两条对角线长之和的两倍 D .菱形ABCD 的面积等于两条对角线长之积的两倍第Ⅱ卷(非选择题 共126分)二、填空题(本大题共12小题,每小题4分,共48分.请把答案填在题中的横线上) 7.计算:(1)a a += .8.函数11y x =-的定义域是 . 9.不等式组12,28x x -⎧⎨⎩><的解集是 .10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔 支.11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度1:2.4i =,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1),(2),(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,0k ≠),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式可以是 (只需写一个). 15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且3AB EB =.设=AB a BC b =,,那么=DE (结果用,a b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图所示,那么三人中成绩最稳定的是 .17.一组数:2,1,3,,7,,23x y ,…,满足“从第三个数起,前两个数依次为,a b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页)数学试卷 第4页(共22页)18.如图,已知在矩形ABCD 中,点E 在边BC 上,=2BE CE ,将矩形沿着过点E 的直线翻折后,点,C D 分别落在边BC 下方的点C ,D ''处,且点,,C D B ''在同一条直线上,折痕与边AD 交于点,F D F '与BE 交于点G .设AB t =,那么EFG △的周长为 (用含t 的代数式表示).三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)计算:131128|23|3--+-.20.(本小题满分10分) 解方程:2121111x x x x +-=--+.21.(本小题满分10分)已知水银体温计的读数()y ℃与水银柱的长度(cm)x 之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表1记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度(cm)x4.2 … 8.2 9.8体温计的读数()y ℃ 35.0 … 40.0 42.0 (1)求y 关于x 的函数解析式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本小题满分10分)如图,已知Rt ABC △中,°90,ACB CD ∠=是斜边AB 上的中线,过点A 作AE CD ⊥,AE 分别与,CD CB 相交于点,,=2H E AH CH . (1)求sin B 的值;(2)如果5CD =,求BE 的长.23.(本小题满分12分)已知:如图,梯形ABCD 中,,=AD BC AB DC ∥,对角线,AC BD 相交于点F ,点E 是边BC 延长线上一点,且=CDE ABD ∠∠. (1)求证:四边形ACED 是平行四边形; (2)连接AE ,交BD 于点G .求证:DG DFGB DB=.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)24.(本小题满分12分)在平面直角坐标系xOy 中(如图),已知抛物线223y x bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点(0,2)C -.(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点(,0)P t ,且3t >,如果BDP △和CDP △的面积相等,求t 的值.25.(本小题满分14分)如图所示,已知在平行四边形ABCD 中,45,8,cos 5AB BC B ===,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点,E F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)连接AP ,当AP CG ∥时,求弦EF 的长; (3)当AGE △是等腰三角形时,求圆C 的半径长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页)数学试卷 第8页(共22页)上海市2014年初中毕业统一学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】BB . 【考点】二次根式的乘法运算法则. 2.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中110a <≤,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,几为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即1060800000000 6.0810=⨯,故选C . 【考点】科学记数法. 3.【答案】C【解析】抛物线2y x =的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到顶点的坐标为(1,0),所以所得的抛物线的表达式为2(1)y x =-,故选C . 【考点】二次函数图像的平移 4.【答案】D【解析】根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,可得1∠的同位角是5∠,故选D . 【考点】同位角的识别. 5.【答案】A【解析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,众数可能不止一个.从小到大排列此数据为37,40,40,50,50,50,73,数据50出现次数最多,所以50为众数,处在第4位是中位数50,故选A . 【考点】中位数,众数. 6.【答案】B【解析】选项A ,∵四边形ABCD 是菱形,∴AB BC AD ==,∵AC BD ≠,∴ABD △与ABC △的周长5 / 11不相等,A 错误;选项B ,∵12ABD ABCD S S =棱形△,12ABC ABCD S S =棱形△,∴ABD △与ABC △的面积相等,B 正确;选项C ,菱形的周长与两条对角线之和不存在固定的数量关系,C 错误;选项D ,菱形的面积等于两条对角线之积的12,D 错误,故选B. 【考点】菱形的性质应用.第Ⅱ卷二、填空题 7.【答案】2a a +【解析】利用代数式的乘法运算的法则计算得原式2a a =+,故答案为2a a +. 【考点】代数式的乘法运算. 8.【答案】1x ≠【解析】根据分母不等式0得10x -≠,解得1x ≠,故答案为1x ≠. 【考点】函数自变量的取值范围. 9.【答案】34x <<【解析】先求出不等式组中每一个不等式的解集,它们的公共部分就是不等式组的解集.即1228x x ->⎧⎨<⎩①,②,由①得3x >,由②得4x <,则不等式组的解集是34x <<,故答案为34x <<. 【考点】解一元一次不等式组. 10.【答案】352【解析】三月份销售各种水笔的支数比二月份增长了10%,即三月份销售的水笔支数是二月份的()110%+,由此得出三月份销售各种水笔()320110%320 1.1352⨯+=⨯=(支),故答案为352. 【考点】解应用题,列出算式解决问题. 11.【答案】1k <【解析】∵关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,∴0∆>,即()22410k --⨯⨯>,解得1k <,∴k 的取值范围为1k <,故答案为1k <. 【考点】一元二次根的判定式. 12.【答案】26【解析】如图,由题意得斜坡AB 的1:2.4i =,10AE =(米)AE BC ⊥,∵12.4AE i BE ==,∴24BE =(米),∴在Rt ABE △中,26AB =(米),故答案为26.数学试卷 第11页(共22页)数学试卷 第12页(共22页)【考点】解直角三角形的应用——坡度问题.13.【答案】13【解析】初三(1)(2)(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,恰好抽到初三(1)班的概率是13,故答案为13.【考点】概率公式的应用.14.【答案】1y x =-(答案不唯一)【解析】对于反比例函数ky x=,当0k >时,在每一个象限内,函数值y 随自变量x 的增大而减小;当0k <时,在每一个象限内,函数值y 随自变量x 增大而增大.根据题意只要令0k <即可,可取1k =-,则反比例函数的解析式是1y x =-,故答案是1y x =-.【考点】反比例函数的性质.15.【答案】23a b -【解析】∵3,AB EB AB a ==,∴2233AE AB a ==,∵在平行四边形ABCD 中,BC b =,∴AD BC b ==,∴23DE AE AD a b =-=-,故答案是23a b -.【考点】平面向量. 16.【答案】乙【解析】数据波动越小,数据越稳定,根据图形可得乙的乘积波动最小,数据最稳定,则三人中成绩最稳定的是乙,故答案为乙. 【考点】方差,折线统计图. 17.【答案】9-【解析】∵从第三个数起0,前两个数依次为,a b ,紧随其后的数就是2a b -,∴7223y ⨯-=,解得9y =-,故答案为9-. 【考点】数字的变化规律. 18.【答案】7 / 11【解析】如图,连接BD ',由翻折的性质得CE C E '=,∵2BE CE =,∴2BE C E '=, 又∵90C C '∠=∠=︒,∴30EBC '∠=︒.∵90FD C D ''∠=∠=︒,∴=60BGD '∠︒, ∴60FGE BGD '∠=∠=︒,∴AD BC ∥,∴60AFG FGE ∠=∠=︒,∵()()11180180606022EFG AFG ∠=︒-∠=︒-︒=︒,∴EFG △是等边三角形,∵AB t =,∴EF t ==,∴EFG △的周长3==,故答案为.【考点】翻折变换的性质. 19.【解析】原式22=+ 【考点】实数的综合运算能力. 三、解答题20.【答案】解:去分母,整理得20x x +=. 解方程,得121,0x x =-=.经检验:11x =-是增根,舍去;20x =是原方程的根. 所以原方程的根是0x =. 【考点】解分式方程.21.【答案】解:(1)设y 关于x 的函数解析式为()y kx b k =+≠0.由题意,得 4.235,8.240.k b k b +=⎧⎨+=⎩解得5,4119.4k b ⎧=⎪⎪⎨⎪=⎪⎩ 所以y 关于x 的函数解析式为511944y x =+. (2)当 6.2x =时,37.5y =. 答:此时该体温计的读数为37.5℃.数学试卷 第15页(共22页)数学试卷 第16页(共22页)【考点】待定系数法求一次函数的解析式,根据自变量的值求函数值的运用. 22.【答案】(1(2)3【解析】解:(1)∵在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线,∴22AB CD BD ==,所以DCB B ∠=∠.∵AH CD ⊥,∴90AHC CAH ACH ∠=∠+∠=︒.又∵90DCB ACH ∠+∠=︒,∴CAH DCB B ∠=∠=∠.∴ABC CAH ~△△.∴AC CHBC AH =. 又∵2AH CH =,∴2BC AC =.可设,2AC k BC k ==, 在Rt ABC △中,AB ==∴sin AC B AB ==. (2)∵2,AB CD CD ==AB =. 在Rt ABC △中,sin 2AC AB B =⋅===. ∴24BC AC ==.在Rt ACE △和Rt AHC △中,1tan 2CE CH CAE AC AH ∠===. ∴112CE AC ==,∴3BE BC CE =-=. 【考点】解直角三角形,直角三角形斜边上的中线.24.【答案】(1)证明:∵四边形ABCD 是梯形,,AD BC AB DC =∥,∴ADC DAB ∠=∠. ∵AD BE ∥,∴ADC DCE ∠=∠,∴DAB DCE ∠=∠. 在ABD △和CDE △中,,,,DAB DCE AB CD ABD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD CDE ≅△△,∴AD CE =.又∵AD CE ∥,∴四边形ACDE 是平行四边形.(2)证明:∵四边形ACED 是平行四边形,∴FC DE ∥. ∴DF CEDB BE =. ∵AD BE ∥,∴DG ADGB BE=.9 / 11又∵AD CE =,∴DG DFGB DB=. 【考点】比例的性质,平行四边形的判定及其应用. 24.【答案】(1)1x = (2)()1,4 (3)5【解析】(1)∵点()1,0A -和点()0,2C -在抛物线223y x bx c =++上, ∴210,32,b c c ⎧⨯-+=⎪⎨⎪=-⎩ 解得4,32.b c ⎧=-⎪⎨⎪=-⎩ ∴该抛物线的表达式为224233y x x =--,对称轴为直线1x =. (2)∵点E 为该抛物线的对称轴与x 轴的交点,∴()1,0E . ∵四边形ACEF 为梯形,AC 与y 轴交于点C , ∴AC 与EF 不平行,在AF CE ∥.∴FAE OEC ∠=∠.在Rt AEF △中,90,tan EFAEF FAE AE ∠=︒∠=, 同理,在Rt OEC △中,tan OC OEC OE ∠=,∴EF OCAE OE=. ∵2,1,2OC OE AE ===,得4EF =. ∴点F 的坐标是()1,4.(3)该抛物线的顶点D 的坐标是81,3⎛⎫- ⎪⎝⎭,点B 的坐标是()3,0.由点(),0P t ,且3t >,得点P 在点B 的右侧(如下图).数学试卷 第19页(共22页)数学试卷 第20页(共22页)()18434233BOD S t t =⨯-⨯=-△ ()1812111121232323CDP S t t t =⨯+⨯-⨯-⨯⨯=+△.∵BOD CDP S S =△△,∴414133t t -=+.解得5t =.即符合条件的t 的值是5.【考点】待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用. 25.【答案】(1)5 (2)74(3【解析】(1)过点A 作AH BC ⊥,垂足为点H .连接AC .在Rt AHB △中,90AHB ∠=︒,4cos ,55BH B AB AB ===, ∴4BH =.∵8BC =,∴AH 垂直平分BC . ∴5AC AB ==.∵圆C 经过点A ,∴5CP AC ==. (2)过点C 作CM AD ⊥,垂足为点M . 设圆C 的半径长为x .∵四边形ABCD 是平行四边形, ∴,,AB DC AD BC B D ==∠=∠ 可得4,3DM CM ==.在Rt EMC △中,90EMC ∠=︒,EM ==又∵点F 在点E右侧,∴4DE EM DM =+=∴4AE AD DE =-=-由,AD BC AP CG ∥∥,得四边形APCE 是平行四边形.∴AE CP =,即4x -=.解得258x =.11 / 11经检验:258x =是原方程的根,且符合题意.∴78EM == 在圆C 中,由CM EF ⊥得724EF EM ==. ∴当AP CG ∥时,弦EF 的长为74. (3)设圆C 的半径长为x ,则CE x =,又∵点F 在点E的右侧,∴4DE =.∵四边形ABCD 是平行四边形,∴AB DC ∥.∴AGE DCE △△由AGE △是等腰三角形,可得DCE △是等腰三角形.①若GE GA =,即CE CD =,又∵CD CA =,∴CE CA = 又∵点,A E 在线段AD 的垂直平分线CM 的同侧,∴点E 与点A 重合,舍去.②若AG AE =,即DC DE =45=.解得x =x =不符合题意,舍去.∴x =③若GE AE =,即CE DE =4x =. 解得258x =,不符合题意,舍去. 综上所述,当AGE △是等腰三角形时,圆C【考点】相似三角形的判定与性质,勾股定理,锐角三角函数关系.。

2014年上海地区中考数学试卷及其规范标准答案(汇总整理)

2014年上海地区中考数学试卷及其规范标准答案(汇总整理)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分) 【请将结果直接填入答题纸的相应位置】 7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r=_______________(结果用a r 、b r表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ;13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t .三、 解答题 19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1( ).(A); (B);(C); (D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6。

08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B)∠3; (C) ∠4; (D)∠5.15.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么=_______________(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.317.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ",例如这组数中的第三个数“3"是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算13128233-+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8。

2014年上海市中考数学试卷及答案Word版

2014年上海市中考数学试卷及答案Word版

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9;18、.三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。

上海中考数学一模各区18、24、25整理试题及答案

上海中考数学一模各区18、24、25整理试题及答案

18.已知梯形ABCD 中,AD ∥BC ,AB =15,CD=13,AD =8,∠B 是锐角,∠B 的正弦值为45,那么BC 的长为___________24.如图,抛物线22y ax ax b =-+经过点C (0,32-), 且与x 轴交于点A、点B ,若t an ∠ACO =23. (1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P是线段OB 上一动点 (不与点B 重合),∠MPQ=45°,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题7分,第(3)小题2分) 如图,在正方形A BCD 中,AB =2,点P 是边B C上的任 意一点,E是BC 延长线上一点,联结AP 作PF ⊥AP 交∠DC E的平分线CF 上一点F ,联结AF 交直线C D于点G. (1) 求证:AP=PF ;(2) 设点P 到点B的距离为x,线段D G的长为y , 试求y 与x 的函数关系式,并写出自变量x 的取值范围; (3) 当点P是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.(第24题)ABCDFGP(第25题)E18.在Rt△ABC中,∠C=90°,3cos5B=,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B DCD'=.24.(本题满分12分,每小题各4分)已知,二次函数2y=ax+bx的图像经过点(5,0)A-和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.第18题图25.(本题满分14分,其中第(1)小题8分,第(2)小题6分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,射线PD交射线BC于点E.(1)如图1,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.C B2014闵行等六区联考18.如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△A BC 中,AB =6,B C=7,A C=5,△A 1B1C是△ABC 以点C 为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△A 2B2C(点A 2、B 2分别与A 、B 对应)的边A2B 2的长为 ▲ .24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)已知在平面直角坐标系xOy 中,二次函数c bx x y ++-=22的图像经过点A (-3,0)和点B(0,6).(1)求此二次函数的解析式;(2)将这个二次函数图像向右平移5个单位后的顶点设为C ,直线BC 与x轴相交于点D ,求∠AB D的正弦值;(3)在第(2)小题的条件下,联结OC ,试探究直线AB与OC 的位置关系,并说明理由.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,已知在Rt △ABC 中,∠A CB =90°,AB=10,34tan =A ,点D 是斜边AB 上的动点,联结CD ,作DE ⊥CD ,交射线C B于点E,设AD =x.(1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果y =DBDE ,求y 关于x 的函数解析式,并写出它的定义域.A (B 1)B C A 1(第18题图) ACBDE (第25题图)2014长宁18.如图,△AB C是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠B AD =45°,AC 与DE 相交于点F ,则△AE F的面积是 .24.(本题满分12分)如图,在直角坐标平面上,点A 、B 在x轴上(A 点在B 点左侧),点C 在y 轴正半轴上,若A (-1,0),OB =3O A,且tan ∠CAO =2. (1)求点B 、C 的坐标;(2)求经过点A 、B 、C 三点的抛物线解析式;(3)P 是(2)中所求抛物线的顶点,设Q是此抛物线上一点,若△ABQ 与△ABP 的面积相等,求Q点的坐标.第18题图FEDCBA25.(本题满分14分)在△AB C中,∠B AC =90°,AB<AC ,M 是BC 边的中点,M N⊥BC 交AC 于点N .动点P 从点B 出发,沿射线BA 以每秒3个长度单位运动,联结MP ,同时Q从点N 出发,沿射线NC 以一定的速度运动,且始终保持MQ ⊥MP ,设运动时间为x秒(x >0). (1)求证:△BMP ∽△NMQ ;(2)若∠B =60°,A B=34,设△A PQ 的面积为y ,求y与x的函数关系式; (3)判断B P、PQ 、CQ之间的数量关系,并说明理由.第25题 图①NQP MCBA第25题 图②NMCB A2014虹口18.如图,Rt △ABC 中,∠C =90°,AB =5, AC=3,在边A B上取一点D ,作DE ⊥AB 交B C于点E.现将△BDE 沿D E折叠,使点B落在线段DA 上(不与点A 重合),对应点记为B 1;BD 的中点F 的对应点记为F 1.若△EFB ∽△A F1E ,则B1D = ▲ .24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知抛物线214y x bx c =++经过点B (-4,0)与点C (8,0),且交y 轴于点A . (1)求该抛物线的表达式,并写出其顶点坐标;(2)将该抛物线向上平移4个单位,再向右平移m个单位,得到新抛物线.若新抛物线的顶点为P ,联结BP ,直线B P将△AB C分割成面积相等的两个三角形,求m 的值.ABF 1第18题图CD EFB 1第24题图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:正方形ABC D的边长为4,点E 为BC 边的中点,点P为AB 边上一动点,沿PE 翻折△BPE 得到△FPE ,直线PF 交CD边于点Q ,交直线AD 于点G ,联结EQ .(1)如图,当BP =1.5时,求C Q的长;(2)如图,当点G 在射线A D上时,设BP=x ,DG =y,求y 关于x 的函数关系式,并写出x的取值范围;(3)延长EF 交直线AD 于点H ,若△CQ E∽△FHG ,求BP 的长.A BCD G 第25题图P E FQ备用图2014徐汇 18. 如图,矩形A BCD 中,A B=8,BC =9,点P 在BC 边上,CP =3,点Q 为线段A P上的动点,射线BQ 与矩形A BCD 的一边交于点R ,且AP=BR ,则QRBQ= .24. (本题满分12分,每小题各6分)如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A、C 两点的抛物线y =ax2+b x+c与x 轴的负半轴上另一交点为B ,且t an∠CBO=3.(1)求该抛物线的解析式及抛物线的顶点D 的坐标;(2)若点P 是射线BD 上一点,且以点P、A 、B 为顶点的三角形与△AB C相似,求P 点坐标.第18题P25. (本题满分14分,其中第(1)小题3分,第(2)小题6分,第(3)小题5分)如图,△AB C中,AB =5,BC =11,co sB =35,点P 是BC 边上的一个动点,联结A P, 取AP 的中点M ,将线段MP 绕点P 顺时针旋转90°得线段PN ,联结AN 、NC .设BP=x (1)当点N 恰好落在BC 边上时,求N C的长;(2)若点N 在△ABC 内部(不含边界),设BP=x , C N=y ,求y 关于x 的函数关系式,并求出函数的定义域;(3)若△PNC 是等腰三角形,求BP 的长.2014闸北18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△A DC绕着点D旋转,得△D EF , 点A 、C 分别与点E、F 对应,且E F与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= .B C图6DCBA24.(本题满分12分,第(1)小题满分6分,6分)已知:如图12,抛物线2445y x mx =-++与y 轴交于点C, 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足O C=4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标; (2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分) 已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与DE交于点O .(1)求证:△A DE∽△ACB ;(2)设CD =x ,tan ∠BAE = y ,求y关于x 的函数 解析式,并写出它的定义域;(3)如果△C OD与△BEA 相似,求CD 的值.2014宝山BAC图12Oxy图13PD OEC BABAC E DF 18、如图,在平面直角坐标系中,R t△OAB 的顶点A 的坐标为(9,0).t an ∠BOA=33,点C 的坐标为(2,0),点P 为斜边OB 上的一个动 点,则PA+PC 的最小值为_________..25、如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y轴相交于点C ,若已知B 点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC 、BC,试判断△AOC 与△COB 是否相似?并说明理由;(3)M 为抛物线上BC之间的一点,N 为 线段B C上的一点,若MN ∥y轴,求M N的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.(本题满分4+3+2+3=12分)26、如图△A BC中,∠C=90°,∠A=30°,BC=5cm ;△DEF 中,∠D=90°,∠E=45°,DE =3c m.现将△DEF 的直角边DF 与△ABC 的斜边AB 重合在一起,并将△D EF沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合, 一直移动至点F 与点B 重合为止).(1)在△DE F沿AB方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化, 现设A D=x ,BE=y,请你写出y 与x 之间的函数关系式及其定义域. (2) 请你进一步研究如下问题:问题①:当△DE F移动至什么位置,即AD 的长为多少时,E 、B 的连线与A C平行?问题②:在△DEF 的移动过程中,是否存在某个位置,使得∠E BD=22.5°?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD、EB 、BC 的长度为三边长的三角形是直角三角形?(本题满分6+8=14分)2014崇明18.如图,在AOB ∆中,已知90AOB ∠=︒,3AO =,6BO =,将AOB ∆绕顶点O 逆时针旋转到A OB ''∆处,此时线段A B ''与B O的交点E 为BO 的中点,那么线段B E '的长度为 .24、(本题满分12分,其中每小题各4分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于,A B 两点(点A在点B 的左侧),点B 的坐标为(3,0),与y 轴交于点(0,3)C ,顶点为D .(1)求抛物线的解析式及顶点D 的坐标; (2)联结AC ,BC ,求ACB ∠的正切值;(3)点P是抛物线的对称轴上一点,当PBD ∆与CAB ∆相似时,求点P 的坐标.ﻬ25、(本题满分14分,其中第(1)、(2)小题各5分,第(3)小题4分)如图,在ABC ∆中,8AB =,10BC =,3cos 4C =,D ,点E 是BC 边上的一个动点(不与B 、C E与B D相交于点G. (1)求证:AB BGCE CF=; (2)设BE x =,CF y =,求y 与x (3)当AEF ∆是以AE 为腰的等腰三角形时,求BE ﻬ2014黄浦18.如图7,在Rt △ABC 中,∠C =90°,AC =的点,且∠E DC=∠A ,将△AB C沿DE 对折,若点24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)如图11,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线23y x =-向右平移一个单位后得到的,它与y轴负半轴交于点A ,点B 在该抛物线上,且横坐标为3. (1)求点M 、A、B 坐标;(2)联结AB 、AM 、BM ,求ABM ∠的正切值;(第18题图)AA ′B O B ′ED A图7(3)点P 是顶点为M 的抛物线上一点,且位于对称轴的右侧,当ABM α=∠时,求P点坐标.25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图12,在△AB C中,∠A CB =90°,AC =8,sin 45B =,D 为边AC 中点,P 为边A B上一点 (点P 不与点A 、B 重合) ,直线PD 交B C延长线于点E ,设线段BP 长为x ,线段CE 长为y . (1)求y 关于x 的函数解析式并写出定义域;(2)过点D作BC 平行线交AB 于点F,在D F延长线上取一点ﻩQ,使得QF=D F, 联结PQ 、Q E,QE 交边A C于点G , ①当△E DQ 与△EGD 相似时,求x 的值;②求证:PD DEPQQE=.图11 B图122014嘉定18. 如图4,在矩形ABCD 中,已知12AB =,8AD =,如果将矩形 沿直线l 翻折后,点A 落在边CD 的中点E 处,直线l 与分别边AB 、AD 交于点M 、N ,那么MN 的长为 ▲ .24.(本题满分12分,每小题满分4分)在平面直角坐标系xOy (如图9)中,已知A(1-,3)、B(2,n )两点在二次函数4312++-=bx x y 的图像上. (1)求b 与n 的值;(2)联结OA 、OB 、AB ,求△AOB 的面积;(3)若点P (不与点A 重合)在题目中已经求出的二次函数的图像上,且︒=∠45POB ,求点P 的坐标. ﻩ25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:⊙O 的半径长为5,点A 、B 、C 在⊙O 上,6==BC AB ,点E 在射线BO 上. (1)如图10,联结AE 、CE ,求证:CE AE =;(2)如图11,以点C 为圆心,CO 为半径画弧交半径OB 于D ,求BD 的长; (3)当511=OE 时,求线段AE 的长.图4图10图11备用图图92014奉贤18.我们把三角形三边上的高产生的三个垂足组成的三角形称为该三角形的垂三角形。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D) .22.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109; (C)6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x -1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.345.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是( ).(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 与△ABC 的周长相等; (B)△ABD 与△ABC 的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.5二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数k(k是常数,k≠0),在其图像所yx在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).6715.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DEu u u r =_______________(结果用a r 、b r 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3,x, 7,y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示)89三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算:1382-+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.10(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;,求BE的值.(2)如果CD23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB =DC,对角线AC、BD相交于点F,点E是边BC 延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y xbx c=++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=4,点P是边BC上的动点,以CP为半径的圆C与边5AD交于点E、F(点F在点E的右侧),射线CE与射线BA 交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、选择题1、B;2、C;3、C;4、A;5、A;6、B二、填空题7、2a a+;8、1x≠;9、34xp p;10、352;11、1k p;12、26;13、13;14、1(0y kx=-p即可);15、23a b-r r;16、乙;17、-9;18、.三、 解答题19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BEDF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、21。

2014年上海中考数学试卷及答案

2014年上海中考数学试卷及答案

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算:23⋅的结果是().(A )5; (B )6; (C )23; (D )32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A )608×108; (B )60.8×109; (C )6.08×1010; (D )6.08×1011.3.如果将抛物线2y x =向右平移1个单位,那么所得的抛物线的表达式是( ).(A )21y x =-; (B )21y x =+; (C )2(1)y x =-; (D )2(1)y x =+. 4.如图1,已知直线a 、b 被直线c 所截,那么1∠的同位角是( ). (A )2∠; (B )3∠; (C )4∠; (D )5∠.5.某市测得一周 2.5PM 的日均值(单位:3/ug m )如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是( ). (A )50和50; (B )50和40; (C )40和50; (D )40和40. 6.如图2,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ). (A )ABD ∆与ABC ∆的周长相等; (B )ABD ∆与ABC ∆的面积相等;(C )菱形的周长等于两条对角线之和的两倍; (D )菱形的面积等于两条对角线之积的两倍.图1图2二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】 7.计算:(1)a a += .8.函数11y x =-的定义域是 . 9.不等式组1228x x ->⎧⎨<⎩的解集是 .10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔 支.11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .12.已知传送带与水平面所成斜坡的坡度1:2.4i =,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,0k ≠),在其图像所在的每个象限内,y 的值随着x 的增大而增大,那么这个反比例函数的解析式可以是 (只需填写一个).15.如图3,已知在平行四边形ABCD 中,点E 在边AB 上,且3AB EB =.设AB a =,BC b =,那么DE = (结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图4所示,那么三人中成绩最稳定的是 .17.一组数:2,1,3,x ,7,y ,23,,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为 .图3 图5 图418.如图5,已知在矩形ABCD 中,点E 在边BC 上,2BE CE =,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点'C 、'D 处,且点'C 、'D 、B 在同一直线上,折痕与边AD 交于点F ,'D F 与BE 交于点G .设AB t =,那么EFG ∆的周长为 (用含t 的代数式表示). 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)13128233-+20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (C ︒)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图6),表I 记录的是该体温计部分清晰刻度线及其对应水银柱的长度.表I水银柱的长度x (cm ) 4.28.29.8体温计的读数y(C ︒)35.040.042.0(1)求y 关于x 的函数解析式(不需要写出函数定义域):(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分5分)如图7,已知在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,过点A 作AE CD ⊥,AE 分别与CD 、CB 相交于点H 、E ,2AH CH =. (1)求sin B 的值;(2)如果5CD =,求BE 的长.23.(本题满分12分,每小题满分6分)已知:如图8,梯形ABCD 中,//AD BC ,AB DC =,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且CDE ABD ∠=∠. (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G .求证:DG DFGB DB=.图7图824.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中(如图9),已知抛物线223y x bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点(0,2)C -.(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的 坐标;(3)点D 为该抛物线的顶点,设点(,0)P t ,且3t >,如果BDP ∆和CDP ∆的面积相等,求t 的值.图925.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)如图10所示,已知在平行四边形ABCD 中,5AB =,8BC =,4cos5B =,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当//AP CG 时,求弦EF 的长; (3)当AGE ∆是等腰三角形时,求圆C 的半径长.备用图图10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.已知梯形ABCD 中,AD ∥BC ,AB =15,CD=13,AD =8,∠B 是锐角,∠B 的正弦值为45,那么BC 的长为___________24.如图,抛物线22y ax ax b =-+经过点C (0,32-), 且与x 轴交于点A 、点B ,若tan ∠ACO =23. (1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 是线段OB 上一动点 (不与点B 重合),∠MPQ=45°,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题7分,第(3)小题2分)如图,在正方形ABCD 中,AB =2,点P 是边BC 上的任意一点,E 是BC 延长线上一点,联结AP 作PF ⊥AP 交∠DCE 的平分线CF 上一点F ,联结AF 交直线CD 于点G . (1) 求证:AP=PF ;(2) 设点P 到点B 的距离为x ,线段DG 的长为y ,试求y 与x 的函数关系式,并写出自变量x 的取值范围; (3) 当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.(第24题)ABCDFGP(第25题)E18.在Rt△ABC中,∠C=90°,3cos5B=,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B' 正好落在AB上,A'B'与AC相交于点D,那么B DCD'=.24.(本题满分12分,每小题各4分)已知,二次函数2y=ax+bx的图像经过点(5,0)A-和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.(1)求点B的坐标;(2)求二次函数的解析式;(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△P AB相似,求点P的坐标.第18题图25.(本题满分14分,其中第(1)小题8分,第(2)小题6分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,P是斜边AB上的一个动点(点P与点A、B不重合),以点P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,射线PD 交射线BC于点E.(1)如图1,若点E在线段BC的延长线上,设AP=x,CE=y,①求y关于x的函数关系式,并写出x的取值范围;②当以BE为直径的圆和⊙P外切时,求AP的长;(2)设线段BE的中点为Q,射线PQ与⊙P相交于点I,若CI=AP,求AP的长.C B2014闵行等六区联考18.如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC 中,AB =6,BC =7,AC =5,△A 1B 1C 是△ABC 以点C 为转似中心的其中一个转似三角形,那么以点C 为转似中心的另一个转似三角形△A 2B 2C (点A 2、B 2分别与A 、B 对应)的边A 2B 2的长为 ▲ . 24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)已知在平面直角坐标系xOy 中,二次函数c bx x y ++-=22的图像经过点A (-3,0)和点B (0,6).(1)求此二次函数的解析式;(2)将这个二次函数图像向右平移5个单位后的顶点设为C ,直线BC 与x 轴相交于点D ,求∠ABD 的正弦值;(3)在第(2)小题的条件下,联结OC ,试探究直线AB 与OC 的位置关系,并说明理由. 25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,已知在Rt △ABC 中,∠ACB =90°,AB =10,34tan =A ,点D 是斜边AB 上的动点,联结CD ,作DE ⊥CD ,交射线CB 于点E ,设AD =x . (1)当点D 是边AB 的中点时,求线段DE 的长;(2)当△BED 是等腰三角形时,求x 的值; (3)如果y =DBDE ,求y 关于x 的函数解析式,并写出它的定义域.A (B 1)BC A 1(第18题图) A CBDE (第25题图)2014长宁18.如图,△ABC 是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积是 .24.(本题满分12分)如图,在直角坐标平面上,点A 、B 在x 轴上(A 点在B 点左侧),点C 在y 轴正半轴上,若A (-1,0),OB =3OA ,且tan ∠CAO =2. (1)求点B 、C 的坐标;(2)求经过点A 、B 、C 三点的抛物线解析式;(3)P 是(2)中所求抛物线的顶点,设Q 是此抛物线上一点,若△ABQ 与△ABP 的面积相等,求Q 点的坐标.第18题图FEDCBA25.(本题满分14分)在△ABC 中,∠BAC =90°,AB <AC ,M 是BC 边的中点,MN ⊥BC 交AC 于点N .动点P 从点B 出发,沿射线BA 以每秒3个长度单位运动,联结MP ,同时Q 从点N 出发,沿射线NC 以一定的速度运动,且始终保持MQ ⊥MP ,设运动时间为x 秒(x >0). (1)求证:△BMP ∽△NMQ ;(2)若∠B =60°,AB =34,设△APQ 的面积为y ,求y 与x 的函数关系式; (3)判断BP 、PQ 、CQ 之间的数量关系,并说明理由.第25题 图①NQP MCBA第25题 图②NMCB A2014虹口18.如图,Rt △ABC 中,∠C =90°,AB =5, AC=3,在边AB 上取一点D ,作DE ⊥AB 交BC 于点E .现将△BDE 沿DE 折叠,使点B 落在线段DA 上(不与点A 重合),对应点记为B 1;BD 的中点F 的对应点记为F 1.若△EFB ∽△A F 1E ,则B 1D = ▲ .24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知抛物线214y x bx c =++经过点B (-4,0)与点C (8,0),且交y 轴于点A .(1)求该抛物线的表达式,并写出其顶点坐标;(2)将该抛物线向上平移4个单位,再向右平移m 个单位,得到新抛物线.若新抛物线的顶点为P ,联结BP ,直线BP 将△ABC 分割成面积相等的两个三角形,求m 的值.ABF 1第18题图CD EFB 1第24题图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点,沿PE 翻折△BPE 得到△FPE ,直线PF 交CD 边于点Q ,交直线AD 于点G ,联结EQ .(1)如图,当BP =1.5时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP=x ,DG=y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若△CQE ∽△FHG ,求BP 的长.A BCD G 第25题图P E FQ备用图2014徐汇18. 如图,矩形ABCD 中,AB =8,BC =9,点P 在BC 边上,CP =3,点Q 为线段AP 上的动点,射线BQ 与矩形ABCD 的一边交于点R ,且AP=BR ,则QRBQ= .24. (本题满分12分,每小题各6分)如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A 、C 两点的抛物线y =ax2+bx +c 与x 轴的负半轴上另一交点为B ,且tan ∠CBO=3.(1)求该抛物线的解析式及抛物线的顶点D 的坐标;(2)若点P 是射线BD 上一点,且以点P 、A 、B 为顶点的三角形与△ABC 相似,求P 点坐标.第18题P25. (本题满分14分,其中第(1)小题3分,第(2)小题6分,第(3)小题5分)如图,△ABC 中,AB =5,BC =11,cos B =35,点P 是BC 边上的一个动点,联结AP , 取AP 的中点M ,将线段MP 绕点P 顺时针旋转90°得线段PN ,联结AN 、NC .设BP=x (1)当点N 恰好落在BC 边上时,求NC 的长; (2)若点N 在△ABC 内部(不含边界),设BP=x , CN=y ,求y 关于x 的函数关系式,并求出函数的定义域;(3)若△PNC 是等腰三角形,求BP 的长.2014闸北18.如图6,已知等腰△ABC ,AD 是底边BC 上的高, AD :DC =1:3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合, 设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= .B C图6DCBA24.(本题满分12分,第(1)小题满分6分,第(2)小题满分已知:如图12,抛物线2445y x mx =-++与y 轴交于点C 与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足OC =4OA . 设抛物线的对称轴与x 轴交于点M : (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当 △QMB 与△COM 相似时,求直线AQ 的解析式.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分4分,第(3)小题满分4分)已知:如图13,在等腰直角△ABC 中, AC = BC ,斜边AB 的长为4,过点C 作射线CP //AB ,D 为射线CP 上一点,E 在边BC 上(不与B 、C 重合),且∠DAE =45°,AC 与DE 交于点O .(1)求证:△ADE ∽△ACB ;(2)设CD =x ,tan ∠BAE = y ,求y 关于x 的函数 解析式,并写出它的定义域;(3)如果△COD 与△BEA 相似,求CD 的值.图13PD OEC BABAC E DF 18、如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0).tan ∠BOA=33,点C 的坐标为(2,0),点P 为斜边OB 上的一个动 点,则PA+PC 的最小值为_________..25、如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知B 点的坐标为B (8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC 、BC ,试判断△AOC 与△COB 是否相似?并说明理由;(3)M 为抛物线上BC 之间的一点,N 为 线段BC 上的一点,若MN ∥y 轴,求MN 的最大值;(4)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.(本题满分4+3+2+3=12分)26、如图△ABC 中,∠C=90°,∠A=30°,BC=5cm ;△DEF 中,∠D=90°,∠E=45°,DE=3cm .现将△DEF 的直角边DF 与△ABC 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合, 一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化, 现设AD=x ,BE=y ,请你写出y 与x 之间的函数关系式及其定义域. (2) 请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形?(本题满分6+8=14分)18.如图,在AOB ∆中,已知90AOB ∠=︒,3AO =,6BO =,将AOB ∆绕顶点O 逆时针旋转到A OB ''∆处,此时线段A B ''与BO 的交点E 为BO 的中点,那么线段B E '的长度为 .24、(本题满分12分,其中每小题各4分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于,A B 两点(点A 在点B 的左侧),点B 的坐标为(3,0),与y 轴交于点(0,3)C ,顶点为D .(1)求抛物线的解析式及顶点D 的坐标; (2)联结AC ,BC ,求ACB ∠的正切值;(3)点P 是抛物线的对称轴上一点,当PBD ∆与CAB ∆相似时,求点P 的坐标.(第18题图)AA ′B O B ′E25、(本题满分14分,其中第(1)、(2)小题各5分,第(3)小题4分)如图,在ABC ∆中,8AB =,10BC =,3cos 4C =,2ABC C ∠=∠, BD 平分ABC ∠交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且AEF ABC ∠=∠,AE与BD 相交于点G .(1)求证:AB BGCE CF=; (2)设BE x =,CF y =,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当AEF ∆是以AE 为腰的等腰三角形时,求BE 的长.(第25题图)BCEFDGA(备用图1)BCDA(备用图2)BCDA2014黄浦18.如图7,在Rt △ABC 中,∠C =90°,AC =3,cot 34A =,点D 、E 分别是边BC 、AC 上的点,且∠EDC=∠A ,将△ABC 沿DE 对折,若点C 恰好落在边AB 上,则DE 的长为 .24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)如图11,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线23y x =-向右平移一个单位后得到的,它与y 轴负半轴交于点A ,点B(1)求点M 、A 、B 坐标;(2)联结AB 、AM 、BM ,求ABM ∠的正切值;(3)点P 是顶点为M α,当ABM α=∠时,求P 点坐标.EB图7图1125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图12,在△ABC 中,∠ACB =90°,AC =8,sin 45B =,D 为边AC 中点,P 为边AB 上一点 (点P 不与点A 、B 重合) ,直线PD 交BC 延长线于点E ,设线段BP 长为x ,线段CE 长为y .(1)求y 关于x 的函数解析式并写出定义域;(2)过点D 作BC 平行线交AB 于点F ,在DF 延长线上取一点 Q ,使得QF =DF , 联结PQ 、QE ,QE 交边AC 于点G , ①当△EDQ 与△EGD 相似时,求x 的值;②求证:PD DEPQQE=.2014嘉定18. 如图4,在矩形ABCD 中,已知12AB =,8AD =,如果将矩形沿直线l 翻折后,点A 落在边CD 的中点E 处,直线l 与分别边AB 、AD 交于点M 、N ,那么MN 的长为 ▲ .24.(本题满分12分,每小题满分4分)在平面直角坐标系xOy (如图9)中,已知A (1-,3)、B (2,n )两点在二次函数4312++-=bx x y 的图像上. (1)求b 与n 的值;(2)联结OA 、OB 、AB ,求△AOB 的面积;(3)若点P (不与点A 重合)在题目中已经求出的二次函数的图像上,且︒=∠45POB ,求点P 的坐标.B图12图425.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:⊙O 的半径长为5,点A 、B 、C 在⊙O 上,6==BC AB ,点E 在射线BO 上.(1)如图10,联结AE 、CE ,求证:CE AE =;(2)如图11,以点C 为圆心,CO 为半径画弧交半径OB 于D ,求BD 的长; (3)当511=OE 时,求线段AE 的长.图10图11备用图2014奉贤18.我们把三角形三边上的高产生的三个垂足组成的三角形称为该三角形的垂三角形。

相关文档
最新文档