2019高考数学选考系列:参数方程(20200923233452)

合集下载

2019年高考数学考点突破——选考系列:参数方程

2019年高考数学考点突破——选考系列:参数方程

参数方程【考点梳理】1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.3.常见曲线的参数方程和普通方程考点一、参数方程与普通方程的互化【例1】已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t(t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)距离的最小值. [解析] (1)由C 1消去参数t ,得曲线C 1的普通方程为(x +4)2+(y -3)2=1.同理曲线C 2的普通方程为x 264+y 29=1.C 1表示圆心是(-4,3),半径是1的圆,C 2表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),又Q (8cos θ,3sin θ),故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ, 又C 3的普通方程为x -2y -7=0, 则M 到直线C 3的距离d =55|4cos θ-3sin θ-13|=55|3sin θ-4cos θ+13| =55|5(sin θ-φ)+13|⎝⎛⎭⎪⎫其中φ满足tan φ=43,所以d 的最小值为855.【类题通法】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形. 【对点训练】在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .[解析] (1)a =-1时,直线l 的普通方程为x +4y -3=0. 曲线C 的标准方程是x 29+y 2=1,联立方程⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.则C 与l 交点坐标是(3,0)和⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程是x +4y -4-a =0.设曲线C 上点P (3cos θ,sin θ).则P 到l 距离d =|3cos θ+4sin θ-4-a |17=|5sin (θ+φ)-4-a |17,其中tan φ=34.又点C 到直线l 距离的最大值为17. ∴|5sin(θ+φ)-4-a |的最大值为17. 若a ≥0,则-5-4-a =-17,∴a =8. 若a <0,则5-4-a =17,∴a =-16. 综上,实数a 的值为a =-16或a =8.考点二、参数方程的应用【例2】在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的普通方程以及曲线C 的极坐标方程;(2)若直线l 与曲线C 的两个交点分别为M ,N ,直线l 与x 轴的交点为P ,求|PM |·|PN |的值.[解析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数),消去参数t ,得x +y -1=0.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),利用平方关系,得x 2+(y -2)2=4,则x 2+y 2-4y =0.令ρ2=x 2+y 2,y =ρsin θ,代入得C 的极坐标方程为ρ=4sin θ. (2)在直线x +y -1=0中,令y =0,得点P (1,0). 把直线l 的参数方程代入圆C 的方程得t 2-32t +1=0,∴t 1+t 2=32,t 1t 2=1.由直线参数方程的几何意义,|PM |·|PN |=|t 1·t 2|=1. 【类题通法】过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. 【对点训练】在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =5cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4= 2.l 与C 交于A ,B 两点.(1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)设点P (0,-2),求|PA |+|PB |的值.[解析] (1)由曲线C :⎩⎨⎧x =5cos α,y =sin α(α为参数)消去α,得普通方程x 25+y 2=1.因为直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4=2,即ρcos θ-ρsin θ=2, 所以直线l 的直角坐标方程为x -y -2=0.(2)点P (0,-2)在l 上,则l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =-2+22t (t 为参数),代入x 25+y 2=1整理得3t 2-102t +15=0,由题意可得|PA |+|PB |=|t 1|+|t 2|=|t 1+t 2|=1023.考点三、参数方程与极坐标方程的综合应用【例3】在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为与C 的交点,求M 的极径.[解析] (1)由l 1:⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数)消去t ,化为l 1的普通方程y =k (x -2),① 同理得直线l 2的普通方程为x +2=ky ,② 联立①,②消去k ,得x 2-y 2=4(y ≠0). 所以C 的普通方程为x 2-y 2=4(y ≠0). (2)将直线l 3化为普通方程为x +y =2, 联立⎩⎨⎧x +y =2,x 2-y 2=4得⎩⎪⎨⎪⎧x =322,y =-22,∴ρ2=x 2+y 2=184+24=5,∴与C 的交点M 的极径为 5.【类题通法】1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,可化繁为简. 【对点训练】已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π6=4.(1)写出曲线C 的极坐标方程和直线l 的普通方程;(2)若射线θ=π3与曲线C 交于O ,A 两点,与直线l 交于B 点,射线θ=11π6与曲线C交于O ,P 两点,求△PAB 的面积.[解析] (1)由⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),消去θ.普通方程为(x -2)2+y 2=4.从而曲线C 的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ,因为直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=4,即32ρsin θ+12ρcos θ=4,∴直线l 的直角坐标方程为x +3y -8=0.(2)依题意,A ,B 两点的极坐标分别为⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫4,π3, 联立射线θ=11π6与曲线C 的极坐标方程得P 点极坐标为⎝ ⎛⎭⎪⎫23,11π6,∴|AB |=2,∴S △PAB =12×2×23sin ⎝ ⎛⎭⎪⎫π3+π6=2 3.。

高考真题 极坐标与参数方程

高考真题 极坐标与参数方程

2019年高考真题极坐标与参数方程1. 在极坐标系中,已知两点,,直线的方程为.(1)求,两点间的距离.(2)求点到直线的距离.2. 如图,在极坐标系中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,,的极坐标方程.(2)曲线由,,构成,若点在上,且,求的极坐标.3. 在极坐标系中,为极点,点在曲线上,直线过点且与垂直,垂足为.(1)当时,求及的极坐标方程.(2)当在上运动且在线段上时,求点轨迹的极坐标方程.4. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求和的直角坐标方程.(2)求上的点到距离的最小值.参考答案1.(1)【答案】【解析】解:设极点为,则在中,由余弦定理,得,.【知识点】极坐标系、余弦定理【来源】2019年江苏省高考数学试卷1.(2)【答案】【解析】解:由直线的方程,知直线过,倾斜角为,又,点到直线的距离为.【知识点】简单曲线的极坐标方程【来源】2019年江苏省高考数学试卷2.(1)【答案】见解析【解析】解:由题设得,弧,,所在圆的极坐标方程分别为,,,则的极坐标方程为,的极坐标方程为,的极坐标方程为.【知识点】简单曲线的极坐标方程【来源】2019年全国统一高考数学试卷(理科)(新课标Ⅲ); 2019年全国统一高考数学试卷(文科)(新课标Ⅲ)2.(2)【答案】或或或【解析】解:设,由题设及知,若,由得,得,若,由得,得或,若,由得,得,综上,的极坐标为或或或.【知识点】极坐标系【来源】2019年全国统一高考数学试卷(理科)(新课标Ⅲ); 2019年全国统一高考数学试卷(文科)(新课标Ⅲ)3.(1)【答案】见解析【解析】解:当时,,,曲线的直角坐标方程为,将极坐标化为直角坐标得,直线的方程为,又直线与垂直,直线的斜率为,又直线过点,故的极坐标方程为,即.【知识点】简单曲线的极坐标方程【来源】2019年全国统一高考数学试卷(理科)(新课标Ⅱ); 2019年全国统一高考数学试卷(文科)(新课标Ⅱ)3.(2)【答案】见解析【解析】解:设,则在中,有,在线段上,,故点轨迹的极坐标方程为,.【知识点】简单曲线的极坐标方程【来源】2019年全国统一高考数学试卷(理科)(新课标Ⅱ); 2019年全国统一高考数学试卷(文科)(新课标Ⅱ)4.(1)【答案】见解析【解析】解:由(为参数),得,两式平方相加,得,的直角坐标方程为,由,得.即直线的直角坐标方程为.【知识点】极坐标与参数方程综合【来源】2019年全国统一高考数学试卷(文科)(新课标Ⅰ); 2019年全国统一高考数学试卷(理科)(新课标Ⅰ); 2019高考真题新课标I224.(2)【答案】见解析【解析】解:设与直线平行的直线方程为,联立,得.由,得.当时,直线与曲线的切点到直线的距离最小,为.【知识点】参数方程的应用、极坐标与参数方程综合【来源】2019年全国统一高考数学试卷(文科)(新课标Ⅰ); 2019年全国统一高考数学试卷(理科)(新课标Ⅰ); 2019高考真题新课标I22。

第22题 坐标系与参数方程--2019年高考数学23题试题分析与考题集训含答案

第22题 坐标系与参数方程--2019年高考数学23题试题分析与考题集训含答案

第22题 坐标系与参数方程【考法】本主题考题形式为解答题,主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识,难度为基础题,分值为10分.【考前回扣】1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=α;(2)直线过点M (a ,0)(a >0)且垂直于极轴:ρcos θ=a ; (3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 3.圆的极坐标方程几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (r ,0),半径为r :ρ=2r cos θ; (3)当圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ. 4.直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).t 的几何意义是0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.使用该式时直线上任意两点P 1,P 2对应的参数分别为t 1,t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2)..5.圆、椭圆的参数方程(1)圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).(2)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)【易错点提醒】1. 将参数方程化为普通方程时忽视参数对变量x 、y 范围的限定致错.2.应用直线参数方程时,忽视不是直线参数方程的标准形式而用其参数t 的几何意义致错.【考向】曲线的极坐标方程【解决法宝】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx(x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法和平方法等技巧.2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.例【2019届湖南省六校(长沙一中、常德一中等)联考】在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线的参数方程为(为参数),曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程; (2)若直线与曲线交于,两点,求的面积.【分析】(1)直线l 的参数方程消去参数t 能求出l 的直角坐标方程.利用极坐标与直角坐标的互化公式能求出曲线C 的直角坐标方程;(2)求得圆心到直线l 的距离,又分析可得弦长MN 即为直径,由此能求出△MON 的面积. 【解析】(1)由消去参数得,直线的普通方程为.由得,,即,曲线的直角坐标方程是圆:.(2)原点到直线的距离.直线过圆的圆心,,所以的面积.【集训】1.【2019届陕西省汉中市二检】已知直线的参数方程为(为参数,),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若直线被圆截得的弦长为时,求的值.(2)直线的参数方程为(为参数),若,垂足为,求点的极坐标.【解析】(1)由得(,为参数)得.∵,,∴由得,,即圆心为,,∴到直线距离为,又弦长为,故,解得.(2)由的方程可得,又得:,解,,,.2.【四川省雅安中学2018届下学期第一次月考】在平面直角坐标系xOy 中,曲线1C 的参数方程为.以平面直角坐标系的原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,直线2C 的极坐标方程为sin ρθ=.(1) 求曲线1C 的极坐标方程;(2) 设1C 和2C 交点的交点为A , B ,求AOB ∆的面积.【解析】(1)曲线1C 的参数方程为,消去参数的1C 的直角坐标方程为:∴1C 的极坐标方程为4cos ρθ=(2)解方程组,有得sin2θ=或当时, ρ=时, 2ρ=∴ 1C 和2C 交点的极坐标∴故AOB ∆3.【2019届广东省佛山市一中期中】已知倾斜角为α且经过点的直线l 与椭圆C :交于A 、B 两点 (1)若,写出直线l 与椭圆C 的参数方程; (2)若,求直线l 的方程.【解析】(1)直线l 的参数方程为,(t 为参数)椭圆C 的参数方程为,(θ为参数)(2)将直线l 的参数方程代入中,得∴,,∴∵,得,∴,则tanα=±∴直线l 的方程为4.【辽宁省辽阳市2018学届一模】在直角坐标系xOy 中,圆1C :,以坐标原点O为极点, x 轴的正半轴为极轴建立极坐标系, 2C : 3πθ=(R ρ∈).(1)求1C 的极坐标方程和2C 的平面直角坐标系方程; (2)若直线3C 的极坐标方程为6πθ=(R ρ∈),设2C 与1C 的交点为O 、M , 3C 与1C 的交点为O ,N 求OMN 的面积.【解析】(1)因为圆1C 的普通方程为,把cos x ρθ=, sin y ρθ=代入方程得.所以1C 的极坐标方程为,2C 的平面直角坐标系方程为y =.(2)分别将3πθ=, 6πθ=代入,得,.则OMN 的面积为.5.【2019届贵州省凯里一中模拟(三)】在直角坐标系中,圆的参数方程为(为参数),以为极点,轴非负半轴为极轴建立极坐标系. (Ⅰ)求圆的极坐标方程; (Ⅱ)射线:与圆的交点为、,与曲线:的交点为,求线段的长.【解析】(Ⅰ)圆的普通方程为,又,,∴圆的极坐标方程为.(Ⅱ)设,则由解得.:化为极坐标方程,设,由解得.∴.6.【2018届广东省揭阳市一模】在直角坐标系xOy 中,已知曲线1C 的参数方程为为参数,)α;现以原点为极点, x 轴的非负半轴为极轴建立极坐标系,曲线2C 的方程为,(1)求曲线1C 的极坐标方程;(2)设1C 和2C 的交点为M N 、,求MON ∠的值.【解析】(1)由曲线1C 的参数方程知, 1C 是以原点O 为圆心,,其极坐标方程为.(2)联立方程ρ= =,得,于是tan2θ=,解得π24θ=或5π24θ=, 即N M θθ和的值为π5π88和,所以MON ∠=.7.【2019届山东师范大学附中五模】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的参数方程: (为参数),曲线的极坐标方程:,且直线交曲线于两点.(Ⅰ)将曲线的极坐标方程化为直角坐标方程; (Ⅱ)巳知点,求当直线倾斜角变化时,的值.【解析】(Ⅰ),∴(Ⅱ)(为参数)代入,8.【山东省枣庄市2018届二模】在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参数).(Ⅰ)若1a =,求直线l 被曲线C 截得的线段的长度;(Ⅱ)若11a =,在曲线C 上求一点M ,使得点M 到直线l 的距离最小,并求出最小距离.【解析】(Ⅰ)曲线C 的普通方程为22194x y +=. 当1a =时,直线l 的普通方程为2y x =.由.解得{x y ==或,直线l 被曲线C 截得的线段的长度为.(Ⅱ) 11a =时,直线l 的普通方程为.由点到直线的距离公式,椭圆上的点到直线l :的距离为,其中0θ满足,.由三角函数性质知,当00θθ+=时, d取最小值此时,,.因此,当点M 位于时,点M 到l的距离取最小值9.【2019届四川广元第二次高考适应考】在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的参数方程为:,为参数点的极坐标为,曲线C 的极坐标方程为.Ⅰ试将曲线C 的极坐标方程化为直角坐标方程,并求曲线C 的焦点在直角坐标系下的坐标;Ⅱ设直线l 与曲线C 相交于两点A ,B ,点M 为AB 的中点,求的值.【解析】Ⅰ把,代入,可得曲线C 的直角坐标方程为,它是开口向上的抛物线,焦点坐标为.Ⅱ点P 的直角坐标为,它在直线l 上,在直线l 的参数方程中,设点A ,B ,M 对应的参数为,,,由题意可知.把直线l 的参数方程代入抛物线的直角坐标方程,得.因为,所以.10.【山西省2018年高考考前适应性测试】在平面直角坐标系xOy 中,曲线1C 的参数方程为: {x cos y sin θθ==(θ为参数,[]0,θπ∈),将曲线1C 经过伸缩变换:'{'x x y ==得到曲线2C .(1)以原点为极点, x 轴的正半轴为极轴建立极坐标系,求2C 的极坐标方程; (2)若直线l : {x tcos y tsin αα==(t 为参数)与1C , 2C 相交于A , B 两点,且,求α的值.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为,由1{ ρθα==得1A ρ=,由得.而,∴1cos 2α=±. 而[]0,απ∈,∴3πα=或23π. 11.【2019届安徽省毛坦厂中学4月联考】已知直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程; (2)设直线与曲线交于,两点,求的值.【解析】(1)直线的参数方程为(为参数),消去,得,即直线的普通方程为.又曲线,即,,曲线的直角坐标方程为.(2)由(1)得,直线的标准参数方程为(为参数),代入曲线的直角坐标方程得,,,,.12.【湖南省郴州市2018届二质监】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数), (Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设曲线C经过伸缩变换2{x xy y='='得到曲线C',曲线C'任一点为(),M x y,求点M直线l的距离的最大值.【解析】(Ⅰ)直线l的普通方程为,∵∴∴221 4xy+=故曲线C的直角坐标方程为221 4xy+=,(Ⅱ)由(Ⅰ)得2214xy+=,经过伸缩变换2{x xx y='='得到曲线C'的方程为,所以曲线C'的方程22116xy+=,可以令(α是参数),根据点到直线的距离公式可得,故点M 到直线l . 13.【2019届四川省成都市外国语学校一诊】在极坐标系中,曲线的极坐标方程为,曲线与曲线关于极点对称.(1)以极点为坐标原点,极轴为轴的正半轴建立直角坐标系,求曲线的直角坐标方程; (2)设为曲线上一动点,记到直线与直线的距离分别为,,求的最小值.【解析】(1)∵曲线的极坐标方程为,∴,∴曲线的直角坐标方程,即.∴曲线的直角坐标方程为.(2)由(1)设,,直线与直线的直角坐标方程分别为,,∴,,,∴的最小值为.14.【湖南省三湘名校教育联盟2018届三联考】在极坐标系中,直线l 的极坐标方程为,现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为( 为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点,A B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为()2,2,求AP BP+的最小值.【解析】(1)∵,∴,即,∴直线l的直角坐标方程为;∵,∴曲线1C的普通方程为.15.【2019届安徽省马鞍山二质量监测】在直角坐标系中,曲线的极坐标方程为,直线的参数方程为(为参数,).(1)求曲线和直线的直角坐标方程;(2)若直线与曲线交于,两点,且,求以为直径的圆的方程.【解析】(1)曲线的直角坐标方程为,直线的直角坐标方程为.(2)设A(x1,y1),B(x2,y2)由得.所以.因直线过抛物线的焦点所以.由题设知,又,故因此的方程为.的中点坐标为(3,2),因此所求圆的方程为.16.【山西省2018届一模】在平面直角坐标系xOy中,曲线1C的参数方程为:{x cosy sinθθ==(θ为参数,[]0,θπ∈),将曲线1C 经过伸缩变换:{x x y ''==得到曲线2C .(1)以原点为极点, x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程;(2)若直线(t 为参数)与12,C C 相交于,A B 两点,且,求α的值.【解析】(1)1C 的普通方程为,把代入上述方程得,,∴2C 的方程为,令,所以2C 的极坐标方程为; (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为,由1{ρθα==,得1A ρ=, 由,得,而,∴1cos 2α=±, 而[]0,απ∈,∴3πα=或23π. 17.【2019届南昌外国语学校适应性测试】在直角坐标系中,曲线的参数方程为(t 为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.(Ⅰ)求的普通方程和的直角坐标方程;(Ⅱ)过曲线上任一点作与夹角为45°的直线,交于点,求的最大值与最小值.【解析】(Ⅰ)由∴的普通方程为,由,可得, ∴, ∴,即,此即的直角坐标方程.(Ⅱ)在曲线上任意取一点则到的距离为 ,则,即当时,|P A|取最大值为12;当时,|PA|取最小值为4.18.【河南安阳2018届二模】在平面直角坐标系xOy 中,已知直线l :,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin ρθ=.(1)求直线l 的极坐标方程和圆C 的直角坐标方程; (2)射线OP : 6πθ=与圆C 的交点为O , A ,与直线l 的交点为B ,求线段AB 的长.【解析】(1)在中,令cos x ρθ=, sin y ρθ=.得,化简得.即为直线l 的极坐标方程. 由4sin ρθ=得,即.,即为圆C 的直角坐标方程.(2)所以.19.【2019届河南省天一大联考阶段性测试(五)】在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.【解析】(Ⅰ)当时,直线的参数方程为.所以其普通方程为. 对于曲线,由,得,所以其直角坐标方程为.(Ⅱ)由题意得,直线过定点,为其倾斜角,曲线:,表示以为圆心,以1为半径的圆.当时,直线为,此时直线与圆不相交.当时,设表示直线的斜率,则:.设圆心到直线的距离为.当直线与圆相切时,令,解得或. 则当直线与圆有两个不同的交点时,. 因为,由,可得,即的取值范围为.20.【宁夏石嘴山市第三中学2018届一模】已知在平面直角坐标系xOy 中,椭圆C 的方程为221164y x +=,以O 为极点, x 轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为.(1)求直线l 的直角坐标方程;(2)设(),M x y 为椭圆C 上任意一点,求的最大值.(2)根据题意,M (x ,y )为椭圆一点,则设M (2cosθ,4sinθ),|2x+y ﹣1|=|4cosθ+4sinθ﹣1|=|8sin (θ+)﹣1|,分析可得,当sin (θ+)=﹣1时,|2x+y ﹣1|取得最大值9.。

2019届高考理科数学专题 坐标系与参数方程

2019届高考理科数学专题   坐标系与参数方程

理科数学选修4-4:坐标系与参数方程
理科数学选修4-4:坐标系与参数方程
理科数学选修4-4:坐标系与参数方程
理科数学选修4-4:坐标系与参数方程
理科数学选修4-4:坐标系与参数方程
因为直线l与曲线C交于M,N两点,所以Δ>0,即a>0或a<-4.又a>0,所以a的取 值范围为(0,+∞). (2)设交点M,N对应的参数分别为t1,t2.则由(1)知 t1+t2=2(42+2a),t1t2=2(16+4a),|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.(参数t的几何 意义的应用) 若|PM|,|MN|,|PN|成等比数列,则|t1-t2|2=|t1t2|, 解得a=1或a=-4(舍去),所以实数a的值为1.
理科数学选修4-4:坐标系与参数方程
注意 把直角坐标化为极坐标时,一定要明确点所在的象限(即极角的终边的位置) 和极角的范围,以便正确求出极角,否则点的极坐标将不唯一.
4.简单曲线的极坐标方程
曲线 圆心在极点,半 径为r的圆
图形
圆心为(r,0),半 径为r的圆
理科数学选修4-4:坐标系与参数方程
【理科数学】选修4-4:坐标系与参数方程
选修4-4坐标系与参数方程
考情精解读 考纲解读
目录
CONTENTS
命题规律
命题分析预测
考点1 坐标系 考点2 参数方程
理科数学选修4-4:坐标系与参数方程
考法1 极坐标(方程)与直角坐标(方程)的互化 考法2 极坐标方程的应用 考法3 参数方程与普通方程的互化 考法4 参数方程的应用 考法5 极坐标方程与参数方程的综合应用
考法2 极坐标方程的应用

19年高考真题和模拟题分类汇编—理科数学14:极坐标与参数方程

19年高考真题和模拟题分类汇编—理科数学14:极坐标与参数方程

2019年高考数学理科真题和模拟题分类汇编:极坐标与参数方程1.【19年高考北京卷 3】已知直线l 的参数方程为1324x ty t=+=+⎧⎨⎩(t 为参数),则点()1,0到直线l 的距离是( ) (A )15 (B )25 (C )45 (D )652.【19年高考江苏卷 21】在极坐标系中,已知两点3,4A π⎛⎫ ⎪⎝⎭,2B π⎫⎪⎭,直线l 的方程为sin 34πρθ⎛⎫+= ⎪⎝⎭。

⑴求,A B 两点间的距离;⑵求点B 到直线l 的距离。

3.【19年高考全国Ⅰ卷 22】在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t 为参数)。

以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ++=。

⑴求C 和l 的直角坐标方程;⑵求C 上的点到l 距离的最小值。

4.【19年高考全国II 卷 22】在极坐标系中,O 为极点,点()()000,0M ρθρ>在曲线C :4sin ρθ=上,直线l 过点()4,0A 且与OM 垂直,垂足为P 。

⑴当03πθ=时,求0ρ及l 的极坐标方程;⑵当M 在C上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程。

5.【19年高考全国III 卷 22】如图,在极坐标系Ox 中,()2,0A,4B π⎫⎪⎭,4C π3⎫⎪⎭,()2,D π,弧AB ,BC ,CD 所在圆的圆心分别是()1,0,1,2π⎛⎫⎪⎝⎭,()1,π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD 。

⑴分别写出1M ,2M ,3M 的极坐标方程;⑵曲线M 由1M ,2M ,3M 构成,若P 在M 上,且||OP =求P 的极坐标。

6.【重庆西南大学附属中学校19届高三第十次月考】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为()5x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=。

专题 坐标系与参数方程-2019年高考真题

专题  坐标系与参数方程-2019年高考真题

专题14 坐标系与参数方程1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .652.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M上,且||OP =P 的极坐标.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M的极坐标为34π⎛⎫ ⎪⎝⎭,直线l的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,32x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.。

专题 坐标系与参数方程(解析版)

专题  坐标系与参数方程(解析版)

专题 坐标系与参数方程1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .652.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为34π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,232x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.9.【河南省郑州市第一中学2019届高三上学期入学摸底测试数学】以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为15 (,),点M 的极坐标为π42(,).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.10.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上. (1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值.11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+. (1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.12.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.13.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值.14.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP .15.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy中,曲线C的参数标方程为e ee et tt txy--⎧=+⎪⎨=-⎪⎩(其中t为参数),在以O为极点、x轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin3ρθ⎛⎫-=⎪⎝⎭(1)求曲线C的极坐标方程;(2)求直线l与曲线C的公共点P的极坐标.16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=. (1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求MN .17.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=+⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值.答 案1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x +=;(2.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【名师点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(12)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l的距离为3sin()242ππ⨯-=. 【名师点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值. 【答案】(1)5cos 2ρθ=;(2) 【解析】(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交, 所以两方程相减可得交线为6215x -+=,即52x =. 所以直线的极坐标方程为5cos 2ρθ=. (2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M ,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t ,所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=【名师点睛】本题考查了极坐标,参数方程和普通方程的互化和用参数方程计算长度,是常见考题.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M的极坐标为34π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.【答案】(1)40x y --=,2213x y +=;(2.【解析】(1)因为直线l 的极坐标方程为πsin 04ρθ⎛⎫-+= ⎪⎝⎭, 即ρsin θ-ρcos θ+4=0.由x =ρcos θ,y =ρsin θ, 可得直线l 的直角坐标方程为x -y -4=0.将曲线C 的参数方程sin x y αα⎧=⎪⎨=⎪⎩,消去参数a ,得曲线C 的普通方程为2213x y +=.(2)设N α,sin α),α∈[0,2π).点M 的极坐标(,3π4),化为直角坐标为(-2,2).则11,sin 12P αα⎫-+⎪⎪⎝⎭.所以点P 到直线l 的距离2d ==≤,所以当5π6α=时,点M 到直线l 的距离的最大值为2. 【名师点睛】本题主要考查参数方程、极坐标方程和普通方程的互化,考查三角函数的图像和性质,考查点到直线的距离的最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,32x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.【答案】(1)l 普通方程为10x y --=,C 直角坐标方程为22143x y +=;(2)867. 【解析】(1)由直线l 的参数方程消去t ,得普通方程为10x y --=.223sin 12ρθ+=()等价于2223sin 12ρρθ+=,将222sin x y y ρρθ=+=,代入上式,得曲线C 的直角坐标方程为222312x y y ++=(), 即22143x y +=. (2)点21P (,)在直线10x y --=上,所以直线l的参数方程可以写为2 1x t y ⎧=+⎪⎪⎨⎪=+⎪⎩,(为参数), 将上式代入22143x y +=,得2780t ++=. 设A B ,对应的参数分别为12t t ,,则1212877t t t t +=-=, 所以22||PA PB PB PAPA PB PA PB ++=22PA PB PA PB PA PB+-=()21212122t t t t t t +-=()2121212||2t t t t t t +-⋅==⋅2828677877--⨯=(. 【名师点睛】本题考查了直线的参数方程,考查了简单曲线的极坐标方程,解答此题的关键是熟练掌握直线参数方程中参数的几何意义.9.【河南省郑州市第一中学2019届高三上学期入学摸底测试数学】以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为15-(,),点M 的极坐标为π42(,).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.【答案】(1)11252x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),8sin ρθ=;(2)直线l 与圆C 相离.【解析】(1)直线l的参数方程1π11cos 23 π5sin 53x t x t y t y ⎧⎧=+=+⋅⎪⎪⎪⎪⇒⎨⎨⎪⎪=-+⋅=-⎪⎪⎩⎩(t 为参数), M 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 的方程为22416x y +-=(),将cos sin x y ρθρθ=⎧⎨=⎩代入,得圆C 的极坐标方程为222cos (sin 4)16ρθρθ+-=,即8sin ρθ=; (2)直线l50y ---=,圆心M 到l的距离为942d ==>, ∴直线l 与圆C 相离.【名师点睛】主要是考查了极坐标与直角坐标的互化,以及运用,属于基础题.10.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值;(2)求椭圆C 的内接矩形面积的最大值. 【答案】(1)2) 【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x t y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值 【名师点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y yx ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形,尽量产生2cos ρρθ,,sin ρθ以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.【答案】(1)2210142x y x ++=+=,;(2)112⎡⎫⎪⎢⎣⎭,【解析】(1)当π6a =时,直线l的参数方程为π1cos ,162π11sin 162x t x y t y t ⎧⎧=-+=-+⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内, 将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,, 则12211sin t t α⋅=-+, 所以12211sin PA PB t t α⋅==+,因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.【名师点睛】利用直线参数方程中参数的几何意义求解问题.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为12t t ,,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到:(1)1202t t t +=;(2)1202t t PM t +==;(3)21AB t t =-;(4)12··PA PB t t =. 12.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【答案】(1)曲线C 的直角坐标方程为:()()22211x a y a -+-=+,直线l 的普通方程为2y x =+. (2)2a =.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,22x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+== 解得2a =,此时满足0a >.且1a ≠,故2a =.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式222tan cos ,sin x y x y xy ρρθρθθ=⎧+==⎧⎪⎨⎨=⎩⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.13.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【答案】(1)21y x =+,216y x =;(2. 【解析】(1)直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=, 曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为135x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入221212435167054y x t t t t t =-=+==-,,,121211t t PA PB t t -+==. 【名师点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.14.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP . 【答案】(1)cos sin 10ρθρθ-+=,4cos ρθ=;(2)π4OP α==, 【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=. (2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+,12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==,【名师点睛】本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 15.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et tt tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【答案】(1)2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭(2)π6⎛⎫ ⎪⎝⎭,【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥. 将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=. 所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭.(2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-=⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-. 因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即π6θ=.代入πsin 3ρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,.【名师点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【答案】(1)曲线C 方程为28x y =,表示焦点坐标为()0,2,对称轴为y 轴的抛物线;(2)10. 【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线. (2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=, 所以12124,16x x x x +==- 所以MN ===10==.【名师点睛】本题考查极坐标方程化直角坐标方程,直线的参数方程化一般方程,弦长公式等,属于简单题.17.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值. 【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);(2)12【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32,31则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数). (2)将直线的参数方程化为标准形式为1223332x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=(). 12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===. 【名师点睛】本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.。

2019年高考全国Ⅰ卷坐标系与参数方程试题评析和备考建议

2019年高考全国Ⅰ卷坐标系与参数方程试题评析和备考建议

容易消去, 曲线 C 的参数方程源于课本, 高于课本.
课本习题 4 (选修 4-4《坐标系与参数方程》第 28 页 x2 y2
例 1) 在椭圆 + = 1 上求一点 M , 使点 M 到直线 94
x + 2y − 10 = 0 的距离最小, 并求出最小距离.
在高考试题 1 中, 如果求出了曲线 C 和直线 l 的直角坐
分考生把 l 的直角坐标方程写成了 3x + 2y + 11 = 0 或 √
2x − 3y + 1 = 0 等形式, 说明了有些考生存在“公式不熟,
记忆混乱, 粗心大意, 快速解答, 不懂检验”等问题.
2. 高考试题 1 第 (1) 问求曲线 C 的直角坐标方程.
解法 2.1 (利用完全平方公式, 平方相加消去参数, 求曲
y=
1 + t2 4t
(t 为参
1 + t2
数), 以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标
√ 系, 直线 l 的极坐标方程为 2ρ cos θ + 3ρ sin θ + 11 = 0.
(1) 求 C 和 l 的直角坐标方程;
(2) 求 C 上的点到 l 距离的最小值.
课本习题 1 (选修 4-4《坐标系与参数方程》第 15 页习
42
中学数学研究
2019 年第 9 期 (上)
2019 年高考全国 I 卷坐标系与参数方程试题评析和备考建议
广东省云浮市郁南县西江中学 (527199) 刘龙标
坐标系与参数方程模块是高中数学的选修内容, 在高
考全国 I 卷的数学卷中有 1 道选做题, 分值 10 分, 广东约有
90% 的考生是选做这一道题的. 下面结合笔者的教学经验,

(理通用)2019届高考数学大二轮复习-第1部分 专题8 选考系列 第1讲 坐标系与参数方程课件

(理通用)2019届高考数学大二轮复习-第1部分 专题8 选考系列 第1讲 坐标系与参数方程课件

命题热点突破
命题方向1 直角坐标与极坐标的互化与应用
(2018·江苏一模)已知圆 O1 和圆 O2 的极坐标方程分别为 ρ=2,ρ2-2 2 ρcos(θ-π4)=2.
(1)把圆 O1 和圆 O2 的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.
[解析] (1)ρ=2⇒ρ2=4,所以 x2+y2=4; 因为 ρ2-2 2ρcos(θ-π4)=2, 所以 ρ2-2 2ρ(cosθcosπ4+sinθsinπ4)=2, 所以 x2+y2-2x-2y-2=0. (2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为 x+y=1,化为 极坐标方程为 ρcosθ+ρsinθ=1, 即 ρsin(θ+π4)= 22.
[解析] (1)由 x=ρcosθ,y=ρsinθ,x2+y2=ρ2 得 C2 的直角坐标方程为(x+1)2 +y2=4.
(2)由(1)知 C2 是圆心为 A(-1,0),半径为 2 的圆. 由题设知,C1 是过点 B(0,2)且关于 y 轴对称的两条射线.记 y 轴右边的射线为 l1,y 轴左边的射线为 l2.由于点 B 在圆 C2 的外面,故 C1 与 C2 有且仅有三个公共点 等价于 l1 与 C2 只有一个公共点且 l2 与 C2 有两个公共点,或 l2 与 C2 只有一个公共点 且 l1 与 C2 有两个公共点. 当 l1 与 C2 只有一个公共点时,A 到 l1 所在直线的距离为 2, 所以|-kk2++21|=2,故 k=-43或 k=0.
1.(2018·全国卷Ⅰ,22)在直角坐标系 xOy 中,曲线 C1 的方程为 y=kx+2.以 坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 ρ2+ 2ρcosθ-3=0.

专题02 参数方程-一本通之备战2019高考数学(理)选做题 Word版含解析.doc

专题02 参数方程-一本通之备战2019高考数学(理)选做题 Word版含解析.doc

专题02 参数方程知识通关1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩,并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. (1)参数方程化为普通方程基本思路是消去参数,常用的消参方法有:①代入消元法;②加减消元法;③恒等式(三角的或代数的)消元法等,其中代入消元法、加减消元法一般是利用解方程的技巧.对于含三角函数的参数方程,常利用同角三角函数关系式消参.如22sin cos 1θθ+=等. (2)普通方程化为参数方程曲线上任意一点的坐标与参数的关系比较明显且关系相对简单;当参数取某一值时,可以唯一确定x,y 的值.一般地,与旋转有关的问题,常采用旋转角作为参数;与直线有关的常选用直线的倾斜角、斜率、截距作为参数;与实践有关的问题,常取时间作为参数.此外,也常常用线段的长度、某一点的横坐标(纵坐标)作为参数.3.常见曲线的参数方程普通方程 参数方程过点M 0(x 0,y 0),α为直线的倾斜角的直线y -y 0=tan α(x -x 0)00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数)圆心在原点,半径为r 的圆 x 2+y 2=r 2cos sin x r y r θθ=⎧⎨=⎩(θ为参数) 中心在原点的椭圆22221x y a b+=(a >b >0) cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数) 【注】(1)在直线的参数方程中,参数t 的系数的平方和为1时,t才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.(2)若圆心在点M 0(x 0,y 0),半径为R,则圆的参数方程为00cos sin x x R y y R θθ=+⎧⎨=+⎩(θ为参数).(3)若椭圆的中心不在原点,而在点M 0(x 0,y 0),相应的椭圆参数方程为00cos sin x x a ty y b t =+⎧⎨=+⎩(t 为参数).基础通关1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 题组一 参数方程与普通方程的互化(1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形. 【例1】已知直线l 的参数方程为(t 为参数),圆C 的参数方程为(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 【解析】(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离|2|45a d -=≤,解得-25≤a ≤2 5. 题组二 参数方程及其应用(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如00x x aty y bt =+⎧⎨=+⎩(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【例2】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【解析】(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|PA |=dsin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255. 故|PA |的最大值与最小值分别为2255,255. 能力通关1.直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的烦琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.设过点M (x 0,y 0)的直线l 交曲线C 于A ,B 两点,若直线的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),注意以下两个结论的应用:(1)|AB |=|t 1-t 2|; (2)|MA |·|MB |=|t 1·t 2|.2.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程的形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.求解时,充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,可化繁为简.利用参数的几何意义解决问题【例1】在平面直角坐标系中,已知曲线C 的参数方程为1cos 1sin x y αα=+⎧⎨=+⎩(α为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为π2cos()16ρθ+=. (I )写出直线l 的直角坐标方程以及曲线C 的极坐标方程;(II )若(0,1)P -,且直线l 与曲线C 交于,M N 两点,求222||+||(||||)PM PN PM PN ⋅的值.【解析】(I )依题意,曲线C :()()22111x y -+-=,即222210x y x y +--+=,故曲线C 的极坐标方程为22cos 2sin 10ρρθρθ--+=;因为直线l 的极坐标方程为π2cos()16ρθ+=,即3cos sin 10ρθρθ--=,所以直线l 的直角坐标方程为310x y --=.坐标系与参数方程的综合问题【例2】在直角坐标系xOy 中,曲线1C 的参数方程为cos 3sin x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos()324ρθπ-=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知点P 在曲线1C 上,点Q 在曲线2C 上,求||PQ 的最小值及此时点P 的直角坐标.(2)由题意,可设点P 的直角坐标为(cos ,3sin )αα, 因为曲线2C 是直线,所以||PQ 的最小值即点P 到直线60x y +-=的距离的最小值, 易得点P 到直线60x y +-=的距离为|cos 3sin 6|2|sin()3|62d ααα+-π==+-,当且仅当2()3k k απ=π+∈Z 时,d 取得最小值,即||PQ 取得最小值,最小值为22,此时点P 的直角坐标为13(,)22.【例3】在平面直角坐标系中,曲线122cos :sin x C y αα=+⎧⎨=⎩(α为参数)经伸缩变换2x x y y⎧=⎪⎨⎪='⎩'后的曲线为2C ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知,A B 是曲线2C 上两点,且π6AOB ∠=,求3OA OB -的取值范围.【解析】(1)曲线122cos :sin x C y αα=+⎧⎨=⎩化为普通方程为:()22214x y -+=, 由2x x y y ⎧=⎪⎨⎪='⎩'得2x x y y =⎧⎨=''⎩,代入上式可知:曲线2C 的方程为()2211x y -+=,即222x y x +=, ∴曲线2C 的极坐标方程为2cos ρθ=. (2)设()1,A ρθ,2π,6B ρθ⎛⎫+⎪⎝⎭(ππ,23θ⎛⎫∈- ⎪⎝⎭), ∴12π332cos 23cos 6OA OB ρρθθ⎛⎫-=-=-+⎪⎝⎭π2sin 6θ⎛⎫=- ⎪⎝⎭, 因为π2ππ,636θ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭, 所以3OA OB -的取值范围是[)2,1-. 高考通关1.在平面直角坐标系xOy 中,直线21:1x t l y t =+⎧⎨=-⎩(t 是参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C :4cos ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)试判断直线l 与曲线C 是否相交,若相交,请求出弦长;若不相交,请说明理由. 【解析】(1)由211x t y t =+⎧⎨=-⎩消去t 得230x y --=,所以直线l 的普通方程为230x y --=.由4cos ρθ=两边同乘以ρ得24cos ρρθ=,因为222x y ρ+=,cos x ρθ=,所以224x y x +=,配方得22(2)4x y -+=,即曲线C 的直角坐标方程为22(2)4x y -+=.(2)法一:由(1)知,曲线:C 22(2)4x y -+=的圆心为)0,2(,半径为2, 由圆心到直线的距离公式得)0,2(到直线230x y --=的距离|203|5255d --==<, 所以直线l 与曲线C 相交,设交点为A 、B , 所以=||AB 5952)55(2222=-.所以直线l 与曲线C 相交,其弦长为5952. 法二:由(1)知,:l 230x y --=,:C 22(2)4x y -+=,联立方程,得⎩⎨⎧=+-=--4)2(03222y x y x ,消去y 得092252=+-x x , 因为0304954222>=⨯⨯-, 所以直线l 与曲线C 相交,设交点坐标为),(11y x A ,),(22y x B ,由根与系数的关系知52221=+x x ,5921=x x , 所以5952594)522()21(1||22=⨯-⋅+=AB , 所以直线l 与曲线C 相交,其弦长为5952. 2.在直角坐标系xOy 中,直线l 的参数方程为232212x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为π2cos 6ρθ⎛⎫=- ⎪⎝⎭. (1)求直线l 的极坐标方程; (2)若射线()π=03θρ>与直线l 交于点P ,与曲线C 交于点Q (Q 与原点O 不重合),求OQ OP 的值.【解析】(1)由232212x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩消去t 得直线l 的普通方程为40x y +-=, 把cos ,sin x y ρθρθ==,代入40x y +-=得直线l 的极坐标方程为()cos sin 4ρθθ+=.(2)由题意可得,48ππ13cos sin33OP ==++,ππ2cos 336OQ ⎛⎫=-= ⎪⎝⎭, 所以OQ OP =1333388++⨯=. 3.已知在平面直角坐标系xOy 中,点P 的坐标为)3,1(,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为θθρρsin 2cos 44+=+.(1)求点P 的极坐标1(,)ρα(02π)α≤<及曲线C 的参数方程; (2)过点P 的直线l 交曲线C 于M ,N 两点,若||MN =3,求直线l 的直角坐标方程.【解析】(1) 在平面直角坐标系xOy 中,点P )3,1(是第一象限内的点,∴12ρ=,tan 3α=且π02α<<, π3α∴=, ∴点P 的极坐标为π(2,)3.曲线C 的极坐标方程为θθρρsin 2cos 44+=+,θρθρρsin 2cos 442+=+∴,由222,cos ,sin x y x y ρρθρθ=+==得y x y x 24422+=++,∴曲线C 的直角坐标方程为042422=+--+y x y x ,即1)1()2(22=-+-y x , ∴曲线C 的参数方程为2cos 1sin x y ββ=+⎧⎨=+⎩(β为参数).(2)显然直线l 的斜率存在, ∴可设直线l 的方程为)1(3-=-x k y ,即03=-+-k y kx ,||MN =3,圆C 的半径为1, ∴圆C 的圆心(2,1)到直线l 的距离为21, ∴2|13|121k k -+=+,化简得03815)13(832=-+-+k k ,解得3-=k 或3358-=k , ∴直线l 的直角坐标方程为0323=-+y x 或(853)38380x y --+-=.4.已知极点与直角坐标系的原点重合、极轴与x 轴的正半轴重合,直线l 的极坐标方程为31sin()62ρθπ--=. (1)求直线l 的参数方程;(2)设l 与曲线2cos (sin x y θθθ=⎧⎨=⎩为参数)相交于A ,B 两点,求点()1,1P 到A ,B 两点的距离之积. 【解析】(1)因为直线l 的极坐标方程为31sin()62ρθπ--=,化为直角坐标方程即31(1)3y x -=-,显然直线l 过点(1,1),倾斜角为6π, 因此直线l 的参数方程为1cos 61sin 6x t y t π⎧=+⎪⎪⎨π⎪=+⎪⎩,即312112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩.5.在平面直角坐标系xOy 中,已知曲线C 的参数方程为123x ty t⎧=⎪⎨⎪=-⎩(t 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线D 的极坐标方程为(1sin )2ρθ+=. (Ⅰ)求曲线C 的普通方程与曲线D 的直角坐标方程; (Ⅱ)若曲线C 与曲线D 交于,M N 两点,求||MN .【解析】(Ⅰ)消掉参数t ,得曲线C 的普通方程为32y x =-,即230x y +-=. 曲线D 的方程可化为:sin 2ρρθ+=,显然0ρ>, 所以化为直角坐标方程为222x y y ++=,化简得244x y =-.方法二:将曲线C 的参数方程化为552535x m y m ⎧=-⎪⎪⎨⎪=+⎪⎩(m 为参数),并代入曲线D 的直角坐标方程,得2525()44(3)55m m -=-+,整理得2+85400m m +=. 由求根公式解得21,285(85)4404521021m -±-⨯==-±⨯, 故12||||410MN m m =-=.。

2019版高考数学(文)高分计划一轮高分讲义:第12章选4系列 12.2 参数方程 Word版含解析

2019版高考数学(文)高分计划一轮高分讲义:第12章选4系列 12.2 参数方程 Word版含解析

12.2 参数方程[知识梳理] 1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.常见曲线的参数方程和普通方程提醒:直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.[诊断自测] 1.概念思辨(1)直线⎩⎪⎨⎪⎧x =-2+t cos30°,y =1+t sin150°(t 为参数)的倾斜角α为30°.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )答案 (1)√ (2)√ (3)√ (4)× 2.教材衍化(1)(选修A4-4P 39T 1)直线⎩⎪⎨⎪⎧x =2t -1,y =t +1(t 为参数)被圆x 2+y 2=9截得的弦长等于( )A.125B.1255C.925D.9105 答案 B解析 直线的普通方程为x -2y +3=0. 圆的圆心为(0,0),半径r =3. ∴圆心到直线的距离d =35=355.∴弦长为2r 2-d 2=1255.故选B.(2)(选修A4-4P 24例2)已知点(x ,y )满足曲线方程⎩⎪⎨⎪⎧x =4+2cos θ,y =6+2sin θ(θ为参数),则y x 的最小值是( ) A.32 B.32 C.3 D .1 答案 D 解析曲线方程⎩⎨⎧x =4+2cos θ,y =6+2sin θ(θ为参数)化为普通方程得(x-4)2+(y -6)2=2,∴曲线是以C (4,6)为圆心,以2为半径的圆, ∴yx 是原点和圆上的点的连线的斜率,如图,当原点和圆上的点的连线是切线OA 时,yx 取最小值,设过原点的切线方程为y =kx ,则圆心C (4,6)到切线y =kx 的距离:d =|4k -6|k 2+1=2,即7k 2-24k +17=0,解得k =1或k =177, ∴yx 的最小值是1.故选D. 3.小题热身(1)(2014·安徽高考)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2 D .2 2 答案 D 解析由⎩⎨⎧x =t +1,y =t -3消去t ,得x -y -4=0,由ρ=4cos θ⇒ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2.∴点C 到直线l 的距离d =|2-0-4|2=2,∴所求弦长=2r 2-d 2=2 2.故选D.(2)(2015·湖北高考)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t ,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.答案 2 5解析 直线l 的直角坐标方程为y -3x =0,曲线C 的普通方程为y 2-x 2=4.由⎩⎨⎧y =3x ,y 2-x 2=4,得x 2=12,即x =±22,则|AB |=1+k 2AB |x A -x B |=1+32×2=2 5.题型1 参数方程与普通方程的互化典例(2014·全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.(1)用公式法,代入消参法;(2)过P作PH ⊥l ,垂足为H ,当|PH |最大时,|P A |取最大值.解(1)曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|,则|P A |=d sin30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 方法技巧将参数方程化为普通方程的方法1.将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.冲关针对训练已知直线l 的方程为y =x +4,圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点为极点,x 轴正半轴为极轴,建立极坐标系.(1)求直线l 与圆C 的交点的极坐标;(2)若P 为圆C 上的动点,求点P 到直线l 的距离d 的最大值. 解 (1)由题知直线l :y =x +4,圆C :x 2+(y -2)2=4,联立⎩⎨⎧y =x +4,x 2+(y -2)2=4,解得⎩⎨⎧x =-2,y =2或⎩⎨⎧x =0,y =4,其对应的极坐标分别为⎝ ⎛⎭⎪⎫22,3π4,⎝ ⎛⎭⎪⎫4,π2. (2)解法一:设P (2cos θ,2+2sin θ), 则d =|2cos θ-2sin θ+2|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫θ+π4+2, 当cos ⎝ ⎛⎭⎪⎫θ+π4=1时,d 取得最大值2+ 2. 解法二:圆心C (0,2)到直线l 的距离为|2|2=2,圆的半径为2,所以点P 到直线l 的距离d 的最大值为2+ 2.题型2 参数方程的应用典例(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧ x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .(1)方程组法;(2)代入点到直线的距离公式,采用分类讨论思想求解.解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎨⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117.由题设得-a +117=17,所以a =-16.综上,a =8或a =-16. 方法技巧直线的参数方程在交点问题中的应用1.若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→||M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2.2.若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22.3.若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.提醒:对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.见冲关针对训练.冲关针对训练(2017·湘西模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧x =12+t cos α,y =t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρ·sin 2θ=2cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解 (1)由ρ·sin 2θ=2cos θ,得(ρsin θ)2=2ρcos θ,即y 2=2x . ∴曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得 t 2sin 2α-2t cos α-1=0.设A ,B 两点对应的参数分别为t 1,t 2,则 t 1+t 2=2cos αsin 2α,t 1t 2=-1sin 2α, ∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫2cos αsin 2α2+4sin 2α=2sin 2α, 当α=π2时,|AB |的最小值为2.1.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,故C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.2.(2017·河南洛阳一模)在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =2+2sin φ(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,射线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解(1)因为圆C 的参数方程为⎩⎨⎧x =2cos φ,y =2+2sin φ(φ为参数),所以圆心C 的坐标为(0,2),半径为2,圆C 的普通方程为x 2+(y -2)2=4.(2)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4, 得圆C 的极坐标方程为ρ=4sin θ.设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ1=4sin θ1,θ1=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρ2sin ⎝ ⎛⎭⎪⎫θ2+π6=53,θ2=π6,解得ρ2=5,θ2=π6. 所以|PQ |=3.[基础送分 提速狂刷练]1.(2017·山西太原一模)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ).(1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.解 (1)C 1的普通方程为x 22+y 2=1,C 1的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ-2=0,C 2的极坐标方程为ρ=2sin θ.(2)联立θ=α(ρ≥0)与C 1的极坐标方程得|OA |2=21+sin 2α,联立θ=α(ρ≥0)与C 2的极坐标方程得|OB |2=4sin 2α, 则|OA |2+|OB |2=21+sin 2α+4sin 2α=21+sin 2α+4(1+sin 2α)-4, 令t =1+sin 2α,则|OA |2+|OB |2=2t +4t -4,当0<α<π2时,t ∈(1,2).设f (t )=2t +4t-4,易得f (t )在(1,2)上单调递增,∴|OA |2+|OB |2∈(2,5).2.(2017·辽宁模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 的直角坐标方程;(2)设点P 的直角坐标为P (2,1),直线l 与曲线C 相交于A ,B 两点,并且|P A |·|PB |=283,求tan α的值.解 (1)将方程ρsin 2θ=4cos θ两边同乘以ρ,得 ρ2sin 2θ=4ρcos θ,由x =ρcos θ,y =ρsin θ,得y 2=4x .经检验,极点的直角坐标(0,0)也满足此式. 所以曲线C 的直角坐标方程为y 2=4x .(2)将⎩⎨⎧x =2+t cos α,y =1+t sin α代入y 2=4x ,得sin 2α·t 2+(2sin α-4cos α)t -7=0, 因为P (2,1)在直线l 上,所以|t 1t 2|=⎪⎪⎪⎪⎪⎪⎪⎪-7sin 2α=283,所以sin 2α=34,α=π3或α=2π3,即tan α=3或tan α=- 3.3.(2017·湖南长郡中学六模)已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ的中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)距离的最小值.解 (1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1,C 1表示圆心是(-4,3),半径是1的圆,C 2表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),又Q (8cos θ,3sin θ), 故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ,又C 3的普通方程为x -2y -7=0,则M 到C 3的距离 d =55|4cos θ-3sin θ-13|=55|3sin θ-4cos θ+13| =55|5sin(θ-φ)+13|⎝ ⎛⎭⎪⎫其中φ满足tan φ=43, 所以d 的最小值为855.4.(2017·宣城二模)已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程是ρ=a sin θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-35t +2,y =45t (t 为参数).(1)若a =2,直线l 与x 轴的交点是M ,N 是圆C 上一动点,求|MN |的最大值;(2)直线l 被圆C 截得的弦长等于圆C 的半径的3倍,求a 的值. 解 (1)当a =2时,圆C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1.∴圆C 的圆心坐标为C (0,1),半径r =1.令y =45t =0得t =0,把t =0代入x =-35t +2得x =2.∴M (2,0). ∴|MC |=22+12= 5.∴|MN |的最大值为|MC |+r =5+1.(2)由ρ=a sin θ得ρ2=aρsin θ,∴圆C 的直角坐标方程是x 2+y 2=ay ,即x 2+⎝ ⎛⎭⎪⎫y -a 22=a 24.∴圆C 的圆心为C ⎝ ⎛⎭⎪⎫0,a 2,半径为⎪⎪⎪⎪⎪⎪a 2, 直线l 的普通方程为4x +3y -8=0.∵直线l 被圆C 截得的弦长等于圆C 的半径的3倍, ∴圆心C 到直线l 的距离为圆C 半径的一半.∴⎪⎪⎪⎪⎪⎪3a 2-842+32=⎪⎪⎪⎪⎪⎪a 4,解得a =32或a =3211. 5.(2017·锦州二模)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 是参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=14,求直线的倾斜角α的值.解 (1)∵ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2, ∴曲线C 的极坐标方程是ρ=4cos θ可化为: ρ2=4ρcos θ, ∴x 2+y 2=4x , ∴(x -2)2+y 2=4.(2)将⎩⎨⎧x =1+t cos α,y =t sin α代入圆的方程(x -2)2+y 2=4得:(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0.设A ,B 两点对应的参数分别为t 1,t 2,则⎩⎨⎧t 1+t 2=2cos α,t 1t 2=-3,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12,∵|AB |=14, ∴4cos 2α+12=14.∴cos α=±22. ∵α∈[0,π), ∴α=π4或α=3π4.∴直线的倾斜角α=π4或α=3π4.6.(2017·湖北模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2. (1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |. 解(1)由⎩⎨⎧x =3cos α,y =sin α,消去参数α得x 29+y 2=1,即C 的普通方程为x 29+y 2=1.由ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得ρsin θ-ρcos θ=2,(*) 将⎩⎨⎧x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2,所以直线l 的倾斜角为π4.(2)由(1),知点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎨⎧x =22t ,y =2+22t(t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|P A |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以直线 l 的直角坐标方程为 x- y- 2= 0.
(2) 点 P(0 ,- 2) 在 l 上,则 l 的参数方程为
海阔天空专属文档(翔子专享)
2
x=
t, 2
( t 为参数 ) ,
2 y=- 2+ 2 t
代入
x2 +
5
y2=
1
整理得
3t 2- 10
2t + 15= 0,
海阔天空专属文档(翔子专享)
π 6
=2
3.
海阔天空专属文档(翔子专享)
[ 解析 ] (1) 由
( θ 为参数 ) ,消去 θ.
y= 2sin θ
普通方程为 ( x-2) 2+ y2= 4.
从而曲线 C的极坐标方程为 ρ 2- 4ρcos θ =0,即 ρ= 4cos θ,
因为直线 l 的极坐标方程为
ρ sin
π θ+ 6
= 4,即
3 2 ρ sin
1 θ + 2ρ cos θ = 4,
( θ 为参数 ) ,直线 l 的参数方
y= sin θ
x=a+ 4t ,
程为
( t 为参数 ).
y=1- t
(1) 若 a=- 1,求 C与 l 的交点坐标;
(2) 若 C上的点到 l 距离的最大值为 17,求 a.
[ 解析 ] (1) a=- 1 时,直线 l 的普通方程为 x+4y- 3=0.
(2) 若 C1 上的点 P 对应的参数为 t = , Q 为 C2 上的动点,求 PQ的中点 M 到直线 C3: 2
x= 3+2t , ( t 为参数 ) 距离的最小值 .
y=- 2+ t
海阔天空专属文档(翔子专享)
海阔天空专属文档(翔子专享)
[ 解析 ] (1) 由 C1 消去参数 t ,得曲线 C1 的普通方程为 ( x+ 4) 2 +( y- 3) 2= 1.
半轴为极轴建立极坐标系,直线
π l 的极坐标方程为 ρ sin θ + 6 = 4.
(1) 写出曲线 C的极坐标方程和直线 l 的普通方程;
(2) 若射线
θ

π 3
与曲线
C 交于
O, A 两点,与直线
11 π l 交于 B 点,射线 θ= 6 与曲线 C
交于 O, P两点,求△ PAB的面积 .
x= 2+ 2cos θ ,
曲线
C的标准方程是
x2 +
y2=
1,
9
联立方程
x+ 4y- 3= 0,
x= 3,
x2 9

y2

1,
解得

y= 0
21 x=- 25,
24 y=25.
海阔天空专属文档(翔子专享)
21 24 则 C与 l 交点坐标是 (3 ,0) 和 -25, 25 . (2) 直线 l 的普通方程是 x+ 4y-4- a= 0.
【考点梳理】
参数方程
海阔天空专属文档(翔子专享)
1.曲线的参数方程 一般地, 在平面直角坐标系中, 如果曲线上任意一点的坐标
x,y 都是某个变数 t 的函数
x= f t , y= g t
并且对于 t 的每一个允许值,由这个方程组所确定的点
M( x,y) 都在这条曲
线上,那么这个方程组就叫做这条曲线的参数方程,联系变数
4
85
φ = 3 ,所以 d 的最小值为 5 .
1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.
2.把参数方程化为普通方程时, 要注意哪一个量是参数, 并且要注意参数的取值对普通方
程中 x 及 y 的取值范围的影响,要保持同解变形.
【对点训练】
x= 3cos θ ,
在直角坐标系 xOy 中,曲线 C 的参数方程为
海阔天空专属文档(翔子专享)
设曲线 C上点 P(3cos θ, sin θ ).
|3cos θ + 4sin θ - 4- a| |5sin ( θ + φ)- 4- a|
3
则 P到 l 距离 d=
= 17
17
,其中 tan φ= 4.
又点 C到直线 l 距离的最大值为 17.
∴ |5sin( θ + φ) - 4- a| 的最大值为 17.
x= x0+ at , (t
y= y0+ bt
为参数 ) ,当 a2+ b2≠1时,应先化为标准形式后才能利用 t 的几何意义解题 .
【对点训练】
x= 5cos α ,
在平面直角坐标系 xOy 中,曲线 C的参数方程为
( α 为参数 ). 以坐标原点
y= sin α
π O为极点, x 轴正半轴为极轴建立极坐标系, 直线 l 的极坐标方程为 ρ cos θ + 4 = 2. l 与 C 交于 A, B两点 .
∴直线 l 的直角坐标方程为 x+ 3y- 8= 0.
π
π
(2) 依题意, A,B 两点的极坐标分别为 2, 3 , 4, 3 ,
11π
11π
联立射线 θ = 6 与曲线 C的极坐标方程得 P 点极坐标为 2 3, 6 ,
∴ | AB| = 2,
1 ∴ S△ = PAB 2×2×2 3sin
π 3

若 a≥0,则- 5- 4- a=- 17,∴ a= 8.
若 a<0,则 5- 4- a= 17,∴ a=- 16.
综上,实数 a 的值为 a=- 16 或 a= 8. 考点二、参数方程的应用
x= 2cos θ,
【例 2】在平面直角坐标系 xOy 中, 曲线 C的参数方程为
( θ 为参数 ) ,直线
x,y 的取值范围保持一致.
点的轨迹
普通方程
参数方程
直线
y- y0= tan α ( x- x0)
x= x0+ t cos α , y= y0+ t sin α
( t 为参数 )

x2+y2= r 2
x= r cos θ , y= r sin θ
( θ 为参数 )
椭圆
x2 y2 a2+ b2= 1( a>b>0)
x2 y2
同理曲线
C2 的普通方程为
+ = 1. 64 9
C1 表示圆心是 ( - 4, 3) ,半径是 1 的圆, C2 表示中心是坐标原点,焦点在 x 轴上,长半轴
长是 8,短半轴长是 3 的椭圆 .
π (2) 当 t = 时, P( - 4, 4) ,又 Q(8cos θ ,3sin θ) ,
x= 2+ t ,
[ 解析 ] (1) 由 l 1:
( t 为参数 ) 消去 t ,
y= kt
化为 l 1 的普通方程 y= k( x- 2) ,①

同理得直线 l 2 的普通方程为 x+ 2= ky,②
联立①,②消去 k,得 x2-y2= 4( y≠0).
所以 C的普通方程为
x
2

y
2

4(
y≠0).
2.数形结合的应用, 即充分利用参数方程中参数的几何意义, 或者利用 ρ 和 θ 的几何意
义,直接求解,可化繁为简.
海阔天空专属文档(翔子专享)
【对点训练】
海阔天空专属文档(翔子专享)
x= 2+ 2cos θ ,
已知曲线 C的参数方程为
( θ 为参数 ) ,以坐标原点 O 为极点, x 轴的正
y= 2sin θ
(2) 将直线 l 3 化为普通方程为 x+ y= 2,
x+ y= 2, 联立 x2- y2= 4 得
32 x= 2 ,
2 y=- 2 ,

ρ
2=
x
2+
y
2=
18 4+
2 4

5
,∴与
C的交点
M的极径为
5.
【类题通法】
1.参数方程和极坐标方程的综合题, 求解的一般方法是分别化为普通方程和直角坐标方程 后求解.当然,还要结合题目本身特点,确定选择何种方程.
x,y 的变数 t 叫做参变数, 简
称参数.
2.参数方程与普通方程的互化
通过消去参数从参数方程得到普通方程, 如果知道变数 x,y 中的一个与参数 t 的关系, 例
如 x= f ( t ) ,把它代入普通方程, 求出另一个变数与参数的关系
x=f t , y= g( t ) ,那么
y=g t
就是曲线的参数方程.在参数方程与普通方程的互化中,必须使 3.常见曲线的参数方程和普通方程
| PM| ·|PN| = | t 1· t 2| = 1.
【类题通法】
过定点 P0( x0,y0) ,倾斜角为 α 的直线参数方程的标准形式为
x=x0+ t cos α, ( t 为参数 ) ,
y=y0+ t sin α
t 的几何意义是 P→0P的数量,即 | t | 表示 P0 到 P 的距离, t 有正负之分 . 对于形如
x= acos φ , y= bsin φ
( φ 为参数 )
【考点突破】
考点一、参数方程与普通方程的互化
x=- 4+ cos t ,
x= 8cos θ ,
【例 1】已知曲线 C1:
( t 为参数 ) , C2:
( θ 为参数 ).
y= 3+ sin t
y= 3sin θ
(1) 化 C1, C2 的方程为普通方程,并说明它们分别表示什么曲线; π
2
3

M - 2+ 4cos
θ

2+
sin 2
θ,
又 C3 的普通方程为 x- 2y-7= 0,
5
5
则 M到直线 C3 的距离 d= 5 |4cos θ - 3sin θ - 13| = 5 |3sin θ -4cos θ + 13|
相关文档
最新文档