(完整word)六年级奥数专题:时钟问题.docx
六年级(时钟问题)
假期问候、祝福:亲爱的各位小同学大家好,2014年的寒假马上就要到了,为了使你的假期过得更有意义,尤其是六年级的小同学,还有半年多你就要告别母校了,这个假期你有什么打算呢?如何给母校交上一份更好的毕业成绩,如何让你的父母2014年的新年更安慰呢?六年级(时钟问题)【知识概述】时钟上的时针和分针的运动是有规律的,时钟问题一般都是围绕时针、分针和秒针的重合、垂直、成直线或夹角的度数等问题来进行研究的。
钟面上一圈分为60个小格,分针每小时走60小格,时针每小时走5小格,时针的速度是分针的121,分针每小时比时针多走1-121=1211小格;还可以把钟面按“度”来分,分针1小时走一圈是360°,每分钟走360°÷60=6°,时针60分钟走30°,所以时针每分钟走30°÷60=0.5°。
分针每分钟比时针多走6°-0.5°=5.5°。
解时钟问题时,可以把它转化为行程问题中的“追及问题”来解答,基本的关系式是:路程差÷速度差=追及时间。
【例题精学】例1、从时针指向4点开始,再过多长时间,时针正好与分针重合?【思路点拨】先将本题转化为追及问题,4点时时针指向“4”,分针指向“12”,时针与分针相距20小格,本题就转化为,时针与分针相距20小格,时针在前,分针在后,分针每小时比时针多走1211小格,时针与分针同时出发,分针要用多少分钟可以追上时针?路程差是20小格,速度差是1211小格,根据“路程差÷速度差=追及时间”求出追及时间。
【同步精练】1、中午12时以后,时针与分针第一次重合时,表示的时间是几时几分?2、5点以后经过多长时间,时针与分针第一次重合,第二次重合?3、现在是6点多钟,时针与分针恰好重合,再过多长时间,时针与分针第一次位于同一直线上?例2、7点多少分的时候,分针落后于时针100°?【思路点拔】本题就转化为,分针每分钟走6°,时针每分钟走0.5°,7点多少分的时候,分针落后于时针100°?7点整,分针落后于时针210°,题目要求“分针落后于时针100°”也就是说分针要追上时针210°-100°=110°,路程差是110°,速度差是6°-0.5°=5.5°,110°÷5.5°=20(分)【同步精练】1、8点以后,什么时候时针与分针之间第一次形成120°的夹角?2、4点48分,时针与分针形成的夹角是多少度?3、3点开始,分钟与时针第二次形成30°的时间是三点几分?例3、五点过多少分钟,时针与分钟离“5”的距离相等,并在“5”的两边?【思路点拨】这道题可以换一个角度进行思考,用转化的思想,把追及问题变成为相遇的问题,假设五点整时,时针向相反的方向行走,时针走到分钟的到位时的时间,与分钟从“12”开始,走到分钟到位时的时间相同,此题就变成了:分钟于时针所行的路程和是25小格,分针每分钟走1小格,时针每分钟走121小格,求相遇时是什么时间?【同步精练】1、钟面上4点过几分钟,时针和分钟与“3”的距离相等,并且在“3”的两边?2、钟面上3点过几分,时针和分钟所在的射线与中小到“3”字的连线所成的角度相等?3、张华5点多起床,一看钟,“6”恰好在时针和分钟的正中间(即两针到“6”的距离相等),这时是5点几分?例4、李芳3点多钟开始看书,时针和分钟正好重合在一起,5点多钟看完书时,时针和分钟正好又重合在一起,李芳看多长时间书?【思路点拨】先根据例1的方法求出3点多钟,时针和分钟正好重合在一起的时间,再求出5点多钟,时针和分钟正好又重合在一起的时间,两次时间的差就是李芳看书的时间。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人〞分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度〞或者“每分钟走多少小格〞。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟〞,或者是“坏了的钟〞,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走〔3600-30〕/3600个小时,手表又比闹钟快那么它一小时走〔3600+30〕/3600个小时,那么标准时间走1小时手表那么走〔3600-30〕/3600*〔3600+30〕/3600个小时,那么手表每小时比标准时间慢1—【〔3600-30〕/3600*〔3600+30〕/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和标准答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的M 每秒或者千M 每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走小格,每分钟走0.5度112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为分。
56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【【【【闹钟比标准的慢 那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快 那么它一小时走(3600+30)/3600个小时,则标准时间走1小时 手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时 ,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
六年级奥数 时钟问题(一)
时钟问题(一)月 日 姓名:【知识要点】钟面是一个360°的周角(即60格),分针1小时旋转1周,即360°(即60格),时针1小时旋转121周,即30°(即5格),即时针1分钟旋转: )121(5.06030格即︒=︒;分针1分钟旋转:)1(0660360格即︒=︒.时针1分钟走 121格,分针1分钟走1格,分针每分钟比时钟多走1211-。
常用原基本公式:初始时刻需追赶的格数÷(1211-)=追及时间(分钟); 其中,(1211-)为分针与时针的速度差.钟面一周平均分为60格,相邻两格刻度之间的时间间隔为1分钟,【典型例题】例1 (1)9点几分,时针和分针重合?时针和分针成反向一直线?(2)9点几分,时针和分针相互垂直?时针和分针成30°角?例2 10点24分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?例3 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?例4 小明在7点多开始解一道题,开始时分针落后时针5格,解完题时两针正好成反向直线,小明解题共用了多少时间?此时是什么时刻?例5 4点整,再经过多少分钟,时针正好与分针第二次重合?时针与分针第三次成30°角?课堂小测姓名:成绩:1.7点几分,时针和分针重合?时针和分针成反向一直线?2.4点48分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?3.在0到12时之间,钟面上的时针与分针成60°角共有几次?分针与时针正好成一条直线的机会有多少次?4.5点整,再经过多少分钟,时针正好与分针第三次重合?时针与分针第三次成80°角?5.双休日,小明一家去欢乐谷游玩,上午八点多从家出发,小明发现钟面上时针与分针恰好重合,下午2点多,他们回到家,小明发现时针与分针正好成反向直线。
问:在欢乐谷玩了多久?小明一家上午几点几分离家的?下午几点几分回家的?7.观察在镜面反射后的钟面的指针位置,并说出:(1)两钟面所表示的实际时刻;(2)两钟面的时间差。
(小学奥数)时钟问题
1.行程問題中時鐘的標準制定;2.時鐘的時針與分針的追及與相遇問題的判斷及計算;3.時鐘的週期問題.時鐘問題知識點說明 時鐘問題可以看做是一個特殊的圓形軌道上2人追及或相遇問題,不過這裏的兩個“人”分別是時鐘的分針和時針。
我們通常把研究時鐘上時針和分針的問題稱為時鐘問題,其中包括時鐘的快慢,時鐘的週期,時鐘上時針與分針所成的角度等等。
時鐘問題有別於其他行程問題是因為它的速度和總路程的度量方式不再是常規的米每秒或者千米每小時,而是2個指針“每分鐘走多少角度”或者“每分鐘走多少小格”。
對於正常的時鐘,具體為:整個鐘面為360度,上面有12個大格,每個大格為30度;60個小格,每個小格為6度。
分針速度:每分鐘走1小格,每分鐘走6度時針速度:每分鐘走112小格,每分鐘走0.5度 注意:但是在許多時鐘問題中,往往我們會遇到各種“怪鐘”,或者是“壞了的鐘”,它們的時針和分針每分鐘走的度數會與常規的時鐘不同,這就需知識點撥教學目標時鐘問題要把時鐘問題當做行程問題來看,分針快,時針慢,所以分針與時針的問題,就是他們之間的追及問題。
另外,在解時鐘的快慢問題中,要學會十字交叉法。
例如:時鐘問題需要記住標準的鐘,時針與分針從一次重合到下一次重合,所分。
需時間為56511例題精講模組一、時針與分針的追及與相遇問題【例 1】當時鐘錶示1點45分時,時針和分針所成的鈍角是多少度?【巩固】在16點16分這個時刻,鐘錶盤面上時針和分針的夾角是____度.次重合;再經過多少分鐘,分針與時針第二次重合?【巩固】鐘錶的時針與分針在4點多少分第一次重合?【巩固】現在是3點,什麼時候時針與分針第一次重合?【例 3】鐘錶的時針與分針在8點多少分第一次垂直?【巩固】2點鐘以後,什麼時刻分針與時針第一次成直角?【例 4】時鐘的時針和分針在6點鐘反向成一直線,問:它們下—次反向成—直線是在什麼時間?(準確到秒)【例 5】8時到9時之間時針和分針在“8”的兩邊,並且兩針所形成的射線到“8”的距離相等.問這時是8時多少分?【例 6】現在是10點,再過多長時間,時針與分針將第一次在一條直線上?【巩固】在9點與10點之間的什麼時刻,分針與時針在一條直線上?【例 7】晚上8點剛過,不一會小華開始做作業,一看鐘,時針與分針正好成一條直線。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人"分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0。
5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟",或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒。
而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600—30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600—30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600—30)/3600*(3600+30)/3600】=1-14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针每分钟走多少角度”或者每分钟走多少小格”对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度1时针速度:每分钟走小格,每分钟走0.5度12注意:但是在许多时钟问题中,往往我们会遇到各种怪钟”或者是坏了的钟”它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30秒.而闹钟却比标准时间每小时慢30秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600* (3600+30)/3600个小时,则手表每小时比标准时间慢 1 —【(3600-30)/3600* (3600+30)/3600】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题(含例题讲解分析和答案)
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
小学六年级奥数时钟问题1(含例题讲解分析和答案)
小学六年级奥数时钟问题1(含例题讲解分析和答案)时钟问题“时间就是生命”。
自从人类发明了计时工具——钟表,人们的生活就离不开它了。
什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
时钟问题就是研究钟面上时针和分针关系的问题。
大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度垂直、两针成直线、两针成多少度角提出问题。
因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
例1现在是2点,什么时候时针与分针第一次重合?分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面例2在7点与8点之间,时针与分针在什么时刻相互垂直?分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后面5×7=35(格)。
时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:(1)顺时针方向看,分针在时针后面15格。
从7点开始,分针要比时针多走35-15=20(格),需(2)顺时针方向看,分针在时针前面15格。
从7点开始,分针要比时针多走35+15=50(格),需例3在3点与4点之间,时针和分针在什么时刻位于一条直线上?分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后面5×3=15(格)。
时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):(1)时针与分针重合。
从3点开始,分针要比时针多走15格,需15÷(2)时针与分针成180°角。
从3点开始,分针要比时针多走15+30例4 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?分析与解:这道题可以利用例3的方法,先求出开始的时刻和结束的时刻,再求出播出时间。
但在这里,我们可以简化一下。
小学奥数专题-时钟问题
1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.时钟问题知识点说明 时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.例题精讲知识点拨教学目标时钟问题【例 2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【巩固】钟表的时针与分针在4点多少分第一次重合?【巩固】现在是3点,什么时候时针与分针第一次重合?【例 3】钟表的时针与分针在8点多少分第一次垂直?【巩固】2点钟以后,什么时刻分针与时针第一次成直角?【例 4】时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到秒)【例 5】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 春季数学优化六年级小考专题
五.时钟问题
【知识要点】
时钟是我们日常生活中不可缺少的计时工具,生活中也时常会遇到与时钟相关的问题。
时钟上的时针
和分针的运动时有规律的,时钟问题一般都是围绕时针、分针或秒针的重合、垂直、成直角或夹角的度数
以及不准确的时钟等角度来进行研究的。
钟面上一圈分为60 小格,分针每小时走60 小格,时针每小时走 5 小格,所以时针的速度是分针的
1
,分针每分钟比时针多走11
小格;还可以把钟面按“度”来分,分针 1 小时走一圈是360°,每分钟
1212
走 6°,时针60 分钟走 30°,所以时针每分钟走0.5 °,分针每分钟比时针多走 5.5 °。
解时钟问题时,可以把它转化为行程问题中的“追及问题”或“相遇问题”来解答。
基本的关系式是:路程差÷速度差=追及时间;相遇路程÷速度和=相遇时间。
【经典例题】
例1. 现在是下午 2 点。
从现在起时针与分针什么时候第一次重合?
例2. 从上午 8 点整开始,至少经过多少分钟,两针正好垂直?
例3. 在 9 点与 10 点之间,时针和分针在什么时刻位于一条直线上?
例4. 在钟面上, 9 时 30 分的时刻,时针与分针的夹角是多少度?
例5. 现在是上午 9 点多,时针与分针重合。
至少再经过多少分钟,时针与分针再次重合?
例 6. 从 0 点开始的 12 小时内,时针与分针重合几次?
例 7. 钟面上 5 点过几分,时针和分针离“5”的距离相等,并且在“5”的两旁?
例8. 小明有一块手表,每分钟比标准时间快 2 秒钟。
小明早晨 8 点整将手表对准,当小明这块手表第一次指示
12 点时,标准时间此时应是几点几分?
例 9. 星期六,小明下午 2 点多钟开始做作业,此时时针与分针恰好重合在一起,作业做完时是 5 点多钟,此时时针与分针又恰好重合。
问小明做作业用了多长时间?
例 10. 小华家有两个旧手表,一个每天快20 分钟,一个每天慢30 分钟。
现在将两个手表同时调到标准时间,他们要经过多少天才能再次同时显示标准时间?
【专题精练】
1.现在是上午 9 点。
从现在起时针与分针什么时候第一次重合?
2.从上午 9 点整开始,至少经过多少分钟,两针正好垂直?
3. 在 5 点与 6 点之间,时针和分针在什么时刻位于一条直线上?
4. 在钟面上, 2 时 50 分的时刻,时针与分针的夹角是多少度?
5.现在是上午 8 点多,时针与分针重合。
至少再经过多少分钟,时针与分针再次重合?
6.一个时钟时针、分针在一昼夜24 小时内重合多少次?
7.钟面上3点过几分,时针和分针离“3”的距离相等,并且在“3”的两旁?
8.小翔家有一个闹钟,每小时比标准时间慢2 分。
有一天晚上 9 点整,小翔对准了闹钟,他想第二天早晨
6∶ 40 起床,于是他就将闹钟的铃定在了6∶ 40。
这个闹钟响铃的时间是标准时间的几点几分?
9. 李小军 3 点多开始看书,时针和分针正好重合在一起, 5 点多钟看完书时,时针与分针又重合在一起。
李小军看了多长时间书?
10. 聪聪家有两个旧挂钟,一个每天快10 分钟,另一个每天慢15 分钟。
现在将两个旧挂钟同时调到标准时间,他们要经过多长时间才能再次同时显示标准时间?
11.明明下午 6 点多外出时手表上两指针的夹角是110°,下午 7 点前回家发现手表上两指针的夹角仍是110°。
求明明的外出时间。
12.星期日,小明去同学家玩了两个多小时,离家时他看了看钟,回家时又看了看钟,发现时针与分针恰
好互换了一个位置。
问小明离开家多长时间?。