6.2二次函数的图象和性质(7)(江苏省兴化市板桥初级中学顾厚春)
初三数学上册 6.2.2 二次函数的图象和性质课件(2) 苏科版
苏科版
➢回顾与思考
y=ax2 (a≠0)
a>0
a<0
图 象
开口方向 顶点坐标
•y
•O •x
•向上 •(0 ,0)
•y •O •x
•向下 •(0 ,0)
对称轴
•y轴
•y轴
增减性 •当x<0时,y随着x的增大而减小. •当x<0时,y随着x的增大而增
•(3)将抛物线y=4x2向上平移3个单位,所得的抛物线的函数
式是
。将抛物线y=-5x2+1向下平移5个单位,所得
的抛物线的函数式是
。
•y=-x2+3
•y=x2+1 •y=x2
•y=x2-2
•y=-x2 •y=-x2-2
• 当a>0时,抛物线y=ax2+c的开口•上 ,对称轴 是 •y ,顶点坐标是•(0,c,) 在对称轴的左侧,y随x的 增大轴而•减小,在对称轴的右侧,y随x的增大而 •增大, •当x=•0 时,取得最•小 值,这个值等于 •c ; • 当a<0时,抛物线y=ax2+c的开口 •下 ,对称轴 是•y ,顶点坐标是•(0,c,) 在对称轴的左侧,y随x的 增大轴而•增大,在对称轴的右侧,y随x的增大而 •减小,
当x= •0时,取得最 •大 值,这个值等于 •c 。
•(4)抛物线y=-3x2+5的开口
,对称轴是
是 ,在对称轴的左侧,y随x的增大而
右侧,y随x的增大而
,
•当x= 时,取得最 值,这个值等于
,顶点坐标 ,在对称轴的
。
•(5)抛物线y=7x2-3的开口
江苏省泰州市永安初级中学九年级数学下册 6.2 二次函
6.2二次函数的图像和性质(1)学习目标:1、经历探索二次函数y=x2图像作法的过程,进一步感受应用图像发现函数性质的方法。
2、能够利用描点法作出函数y=ax2(a≠0)的图像,能根据图像了解二次函数y=x2的性质。
教学过程:(一)复习导入:1、回忆研究一次函数和反比例函数的过程,想一想:研究函数的通常步骤是什么?2、回忆一次函数和反比例函数的图像及作图方法,思考:二次函数的图像是直线吗?是双曲线吗?你打算怎样画出二次函数的图像?(二)操作与思考:1、用描点法画出二次函数y=x2的图像,并观察图像的特征。
(1)列表:函数y=x2的自变量x的取值范围是________,根据函数y=x2的特征,选取自(2)描点:以表中的每个x值为点的横坐标、对应的y值为点的纵坐标,在右图的直角坐标系中描出相应的点。
(按x的值从小到大,从左到右描点)(3)连线:用平滑的曲线顺次连接所描出的点,即得二次函数y=x2的图像。
(能用直线连接吗?)2、思考:二次函数y=x2的图像有什么特征?(1)你能描述图象的形状吗?(2) 图象是轴对称图形吗?(3) 图象与x轴有交点吗? 如果有,交点坐标是什么?3、下图的直角坐标系中画出二次函数y=-x2的图像。
思考:(1)二次函数y=-x 2的图像有什么特征?(2)二次函数y=x 2与y=-x 2的图像有什么共同特征?(三)归纳提高:实际上,二次函数y=x 2与y=-x 2的图像都是________,都有一条对称轴是________,对称轴与抛物线的交点叫做________。
(四)巩固练习:1、二次函数y=x 2的图像开口________,对称轴是________,顶点是。
2、点A (2,-4)在函数y=-x 2的图像上,点A 在该图像上的对称点的坐标是________。
3、二次函数y=221x 与 y=-221x 的图像关于________对称。
4、若点A (1,a )B (b ,9)在函数y=x 2的图像上,则a=________,b=________.5、观察函数y=x 2的图像,利用图像解答下列问题:(1)在y 轴左侧的图像上任取两点A (x 1,y 1)、B(x 2,y 2),且使0>x 1>x 2,试比较y 1与y 2的大小;(2)在y 轴右侧的图像上任取两点C (x 3,y 3)、B(x 4,y 4),且使x 3>x 4>0,试比较y 3与y 4的大小.6、利用函数y=-x 2的图像回答下列问题:(1)当x=23时,y 的值是多少? (2)当y=-8时,x 的值是多少?(3)当x<0时,随着x 值的增大,y 值如何变化?当x>0时,随着x 值的增大,y 值如何变化?(4)当x 取何值时,y 值最大?最大值是多少?7、已知点A (3,a )在二次函数y=x 2的图像上。
次函数的图象和性质1江苏省兴化市板桥初级中学顾厚春
整理(2)y=2x2;(3)y=
1
2
x2.
跟踪练习:
(1)y=-x2;
(2)y=-2x2;(3)y=- 1 2
x2.
讨论:类比一次函数以及反比例函数的知识,你 能归纳出二次函数y=ax2的图像的一些性质吗?
整理课件
3
知识梳理
二次函数y=ax2的图象的性质:
1.二次函数y=ax2的图象是抛物线.
2.抛物线y=ax2的顶点是原点,对称轴是y轴.
3.当a﹥0时,抛物线y=ax2的开口向上.在对称 轴左侧,即当x<0时,函数y随x的增大而减小; 在对称轴右侧,即当x﹥0时,函数y随x的增大 而增大;当x=0时,y最小=0.
当a﹤0时,抛物线y=ax2的开口向下.在对称 轴左侧,即当x<0时,函数y随x的增大而增大; 在对称轴右侧,即当x﹥0时,函数y随x的增大 而减小;当x=0时,y最大=0.
初中数学九年级下册(苏科版)
6.2 二次函数的图象和性质(1)
兴化市板桥初级中学 顾厚春
温故知新
1.什么叫二次函数? 形如y=ax2+bx+c(a≠0)的函数叫做二次函数.
2.类比一次函数以及反比例函数的知识,你认为 我们学习二次函数还应该研究什么内容?
整理课件
2
典例研习
例1.用描点法画下列二次函数的图象,并观察
①当x取何值时,y>0? ②当x取何值时,在y2>y1时,总有x2>x1? ③当x取何值时,在y2>y1时,总有x2<x1?
整理课件
9
巩固练习
5.已知二次函数y=-x2. (1)当-2<x<3时,求y的取值范围; (2)当-4<y<-1时,求x的取值范围.
中考数学专题复习14《二次函数图像与性质》(2021年整理)
江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》的全部内容。
2017年中考数学专题练习14《二次函数图像与性质》【知识归纳】1.一般地,形如 的函数叫做二次函数,当a ,b 时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是 ,对称轴是直线x= ,顶点坐标是( , ). 3.抛物线的开口方向由a 确定,当a >0时,开口 ;当a <0时,开口 ;a 的值越 ,开口越 .4.抛物线与y 轴的交点坐标为 .当c >0时,与y 轴的 半轴有交点;当c <0时,与y 轴的 半轴有交点;当c =0时,抛物线过 . 5.若a >0,当x =2ba -时,y 有最小值,为 ; 若a <0,当x =2ba-时,y 有最大值,为 .6.当a >0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ;当a <0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧.y 随x 的增大而 . 7.当m >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =a (x +m )2的图象;当k >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“ ”右 “ ”;上“ ”下“ ”. 【基础检测】1.(2016•兰州)二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 2.当x 为实数时,代数式x 2﹣2x ﹣3的最小值是 .3.(2016•永州)抛物线y=x 2+2x+m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( )A .m <2B .m >2C .0<m≤2 D.m <﹣24。
6.2二次函数的图象和性质(3)(江苏省兴化市板桥初级中学顾厚春)
x
x y=x2 y=x2+1
… … …
-2 4
-1 1
0 0
y
8
1 1
2 4
… …
5
2
1
2
5
y=x2+1
函数y=x2+1的图象与y=x2的 图象的位置有什么关系?
函数y=x2+1的图 象可由y=x2的图 象沿y轴向上平移 1个单位长度得到. 相同
-10 -5
6
4
2
你能说说这 个图象有哪 函数y=x +1的图 象与y=x 的图象 些性质吗?
2 2
函数y=x2-2的图象与y=x2的 图象的位置有什么关系?
的形状相同吗?
O
-2 5
x
10
y=x2-2
函数y=-x2+3的图 象可由y=-x2的图 象沿y轴向上平移 3个单位长度得到.
-10 -5
4
y
2
y=-x2+3
5
O
-2
x
10
函数y=-x2-2的图 象可由y=-x2的图 象沿y轴向下平移 2个单位长度得到.
2 2
y=x2
O
-2
的形状相同吗?
5
x
10
x y=x2 y=x2-2
….. …… ……
-2 4
-1 1
0 0
1 1
2 4
……
2
-1
y
8
-2
-1
2 ……
函数y=x2-2的图象 可由y=x2的图象 沿y轴向下平移2 个单位长度得到. 相同
-10 -5
6
4
2
你能说说这 2 y=x个图象有哪 函数y=x +1的图 些性质吗? 象与y=x 的图象
苏科版数学九下《二次函数的图像和性质》word同步教案
数学教学设计教材:义务教育教科书·数学(九年级下册)作者:张玲(连云港市新海实验中学)5.2 二次函数的图像和性质(1)1.能用描点法画函数y=x2图像.2.能画y=-x2图像,并说出它与y=x2图像的共同特征.1.能用描点法画函数y=x2图像.2.能作出函数y=-x2图像,并说出它与y=x2图像的共同特征.用描点法画函数y=x2图象,理解它与y=-x2图像的共同特征.教学过程(教师)学生活动设计数图像步骤:列表、描点、连线.函数性质方法:数形结合.二次函数图像是怎样的?学生回顾画函数图像步骤,研究函数性质方法,并猜想二次函数图像形状.通过回顾为二次函数的学习打下基.次函数y=x²表达式,你能描述它的图像有?学生根据函数y=x²表达式描述它的图像有什么特征.通过列表线画y=x2图经历作图、观思考这一过程是一个叫“抛像.动2..直角坐标系中,用描点法画出二次函数.列表选取哪些点?为什么?.,在平面直角坐标系中,画出二次函数像.1.学生通过列表、描点、连线画y=x2的图像.x ...-3 -2 -1 0 1 2 3 ...y=x²...9 4 1 014 9...通过画图像以及总次让学生经图像的形成过.=x ²的图像与函数y =-x ²的图像有什么共小组交流):二次函数y =x ²、y =-x ²的图像都关于y 线,称为抛物线.抛物线与对称轴的交点叫做抛物线的顶点.2.学生通过列表、描点、连线画y =-x 2的图像.3.学生交流函数y =x ²的图像与函数y =-x ²的图像有什么共同特征.x ... -3 -2 -1 0123... y =-x ² ...-9 -4 -1 0 -1 -4 -9....直角坐标系中,分别画出下列函数的图像.x 21=2; (2)y x 2=2; x -21=2; (4)y x -2=2.学生在坐标系中画图.通过作生经历图像的再次体会二质.课中:我学到了什么?我还有什么疑问?学生总结回顾,回答老师提出的问题.通过课了解学生存在解学生对本情况.。
初三数学最新课件-二次函数的图象及性质[下学期]江苏教育版 精品
y 2x2
练习
根据左边已画好的函数图象填空:
y 2 x2 3
(1)抛物线y=2x2的顶点坐标是(0,0), 对称轴是 y轴 ,在 对称轴的右 侧, y随着x的增大而增大;在对称轴的左 侧, y随着x的增大而减小,当x= 0 时, 函数y的值最小,最小值是 0 ,抛物 线y=2x2在x轴的 上 方(除顶点外)。
3
3
( 3,6)
y=-2x2
( 3,6)
二次函数y=ax2的性质
y x2 1、抛物线y=ax2的顶点是原点,对称轴是y 轴。
2、当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向 上,并且 向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向 下,并且向下无限伸展。
3、当a>0时,在对称轴的左侧,y随着x的增大而减小; 在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。 当a<0时,在对称轴的左侧,y随着x的增大而增大; 在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。
0.5 2 4.5
8
...
x ... -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ... y=2x2 ... 8 4.5 2 0.5 0 0.5 2 4.5 8 ...
x
... -3 -2 -1.5 -1 0 1 1.5 2
3 ...
yy=2x22x2
3
...
-6
8 3
-1.5
2 3
(2)抛物线
y
2 3
x2在x轴的
下
方(除顶点外),在对称轴的
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的
6.2二次函数的图象和性质(4)(江苏省兴化市板桥初级中学顾厚春)
巩固练习
5.将函数y=3(x-4)2的图象)2的 图象沿y轴对折后得到的函数解析式是 ; 6.把抛物线y=a(x-4)2向左平移6个单位后得到抛 物线y=- 3(x-h)2的图象,则 a= , h= .若抛物线y= a(x-4)2的顶点A,且 与y轴交于点B,抛物线y= - 3(x-h)2的顶点是M, 则SΔ MAB= .
函数开口方向对称轴顶点坐标y的最值最值增减性在对称轴轴左侧在对称轴右侧轴右侧温故知新yax2a0a0yax2ca0a0向上y轴00最小值是0最大值是0y随x的增大而减小y随x的增大而增大向下y轴00y随x的增大而增大y随x的增大而减小向上y轴0c最小值是cy随x的增大而减小y随x的增大而增大向下y轴0c最大值是cy随x的增大而增大y随x的增大而减小例1
最小值 y随x的增
大而减小 y随x的增 大而增大 y随x的增 大而减小 y随x的增 大而增大 y随x的增 大而减小
y轴 y轴 y轴 y轴
y=ax2
a<0
a>0
向下 向上 向下
最大值 y随x的增 是0
大而增大
最小值 y随x的增 是C
大而减小
y=ax2+c
a<0
最大值 是C
y随x的增 大而增大
典例研习
巩固练习
7.将抛物线y=2x2-3先向上平移3单位,就得到函数 的图象,在向 平移 个单位得到函数y= 2(x-3)2的图象. 8.函数y=(3x+6)2的图象是由函数 的图象 向左平移5个单位得到的,其图象开口向 ,对称 轴是 ,顶点坐标是 ,当x 时,y随x的 增大而增大,当x= 时,y有最 值是 .
初中数学九年级上册(苏科版)
6.2 二次函数的图象和性质(4)
二次函数江苏版含解析答案(word版,含答案)
二次函数的图像与性质考点3年考频 常考题型分析二次函数的图像和性质★★★选择、填空、解答三种题型均会出现,其中以选择题、填空题的形式出现时,直接运用性质即可解答,以解答题的形式出现时,需要计算与推理.确定二次函数的表达式★★以填空题的形式出现时,一般根据函数的定义和性质解答,在解答题中一般用待定系数法求解. 抛物线与一元二次方程的关系★★以选择题、填空题的形式出现时,直接运用概念即可解答,以解答题的形式出现时,需要计算与推理.梳理·考点清单 / KAO DIAN QING DAN考点一 二次函数的图像和性质一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,且a A 1)的函数叫做二次函数,其中,x 是自变量,a ,b ,c 分别是二次项系数、一次项系数和常数项.1. 顶点与对称轴:二次函数y =ax 2+bx +c (a ≠0)的图像的顶点坐标是 A 2,对称轴是经过点 A 3且与y 轴平行的直线.2. y =ax 2+bx +c 的系数a ,b ,c 和图像之间的关系: (1)二次项系数a 确定抛物线的开口方向:当a >0时,抛物线开口 A 4;当a <0时,抛物线开口 A 5,反过来也成立.(2)常数项c 确定抛物线与y 轴交点的位置:当c =0时,抛物线经过 A 6;当c >0时,抛物线与y 轴正半轴相交;当c <0时,抛物线与y 轴负半轴相交,反过来也成立. (3)确定抛物线对称轴的位置:当a ,b 同号时,抛物线的对称轴在y 轴左侧;当a ,b 异号时,抛物线的对称轴在y 轴右侧;当b =0时,抛物线的对称轴就是 A 7,反过来也成立.3. 增减性与最值:(1)a >0时:①当x <-b2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大.②抛物线有最低点,当x =-b 2a 时,y 有最 A 8值,y 最小值=4ac -b 24a.(2)a <0时:①当x <-b2a 时,y 随x 的增大而增大;当x >-b 2a 时,y 随x 的增大而减小.②抛物线有最高点,当x =-b 2a 时,y 有最 A 9值,y 最大值=4ac -b 24a.【拓展】二次函数图像平移的变化规律(1)上、下平移:当抛物线y =a (x -h )2+k 向上(或向下)平移m (m >0)个单位后,所得的抛物线的表达式为 A 10(或 A 11).(2)左、右平移:当抛物线y =a (x -h )2+k 向左(或向右)平移n (n >0)个单位后,所得的抛物线的表达式为 A 12(或 A 13).考点二 确定二次函数的表达式1. 二次函数的表达式有三种:(1)一般式:y =ax 2+bx +c (适用条件:一般仅已知三点坐标).(2)顶点式:y =a (x -m )2+n ,其中(m ,n )为顶点坐标(适用条件:一般已知顶点及另一个点坐标).(3)交点式:y =a (x -x 1)(x -x 2),其中(x 1,0),(x 2,0)为抛物线与 A 14轴的交点(适用条件:一般已知抛物线与x 轴的两个交点坐标及另一个点的坐标).2. 用待定系数法求函数表达式的步骤:(1)设出含有待定系数的表达式;(2)根据条件列出以待定系数为未知数的方程或方程组;(3)解方程(组),求出待定系数的值;(4)将求出的待定系数代入所设的表达式.考点三 抛物线与一元二次方程的关系抛物线y =ax 2+bx +c 与x 轴的公共点的个数可以由对应的一元二次方程ax 2+bx +c =0的 A 15确定: (1)有两个公共点2-4ac >方程有A 16;(2)有一个公共点(顶点在x 轴上) 2-4ac =A 17; (3)没有公共点2-4ac < A 18. 方程、不等式与二次函数的联系:已知y=ax2+bx+c(a≠0)分类当y=0时,得一元二次方程ax2+bx+c=0当y>0时,得一元二次不等式ax2+bx+c>0当y<0时,得一元二次不等式ax2+bx+c<0图形抛物线与x轴的交点图像位于x轴的上方图像位于x轴的下方解集方程的根不等式的解集不等式的解集当b2-4ac>0时,抛物线与x轴A19图像数形结合方程的两个根是抛物线与x轴的交点的横坐标,即:x1,2=A20不等式的解集是抛物线位于x轴上方的自变量的取值范围,即:当a>0时,x<x1或x>x2;当a<0时,A21不等式的解集是抛物线位于x轴下方的自变量的取值范围,即:当a>0时,x1<x<x2;当a<0时,A22当b2-4ac=0时,抛物线与x轴A23图像数形结合方程的根是抛物线与x轴的交点的横坐标,即:x1=x2=A24不等式的解集是抛物线位于x轴上方的自变量的取值范围,即:当a>0时,x≠-b2a;当a<0时,无解不等式的解集是抛物线位于x轴下方的自变量的取值范围,即:当a>0时,无解;当a<0时,x≠-b2a当b2-4ac<0时,抛物线与x轴A25图像数形结合方程无解当a>0时,x取一切实数;当a<0时,无解当a>0时,无解;当a<0时,x取一切实数突破·重点难点/ ZHONG DIAN NAN DIAN突破一同一坐标系下二次函数与其他函数图像的共存问题在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()【点评】本题是对直线和二次函数图像形状及位置的判别,对m的值进行分类讨论,根据m的不同取值范围,利用一次函数图像的性质,结合二次函数图像的开口方向、对称轴或图像经过的特殊点对选项进行逐一判断.突破二 二次函数的图像的平移(2018·淮安模拟)在平面直角坐标系中,将表达式为y=2x 2的图像沿着x 轴方向向左平移4个单位,再沿着y 轴方向向下平移3个单位,此时图像的表达式为 . 【思路点拨】 抛物线平移与其表达式的变化规律可以概括为:左加右减,上加下减.左右平移表达式变化在二次项内部(括号内部),上下平移表达式变化在二次项外部(括号外部),根据该规律可得到平移后的函数表达式.突破三 二次函数的图像特征与系数的关系的应用(2018·毕节)已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b >0;③b 2-4ac >0;④a -b +c >0.其中正确的个数是( )A. 1B. 2C. 3D. 4【思路点拨】 由抛物线的对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断.【点评】 二次函数y =ax 2+bx +c 系数的符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.已知二次函数y =(m -1)x 2+(m -3)x -2(m 为常数,且m ≠1).(1)求证:不论m 为何值,该函数的图像与x 轴总有交点; (2)当函数图像的对称轴为直线x =1时,把抛物线向上平移,使得顶点落在x 轴上,求此时抛物线与y 轴的交点; (3)在(2)的情况下,直接写出两条抛物线、对称轴和y 轴围成的图形的面积.【思路点拨】 (1)二次函数的图像与x 轴的交点问题可以转化为一元二次方程的根的问题;(2)利用配方法求出抛物线顶点坐标,转化为顶点平移问题;(3)利用平移的性质,将围成的图形面积转化成四边形的面积.【点评】抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点和一元二次方程ax 2+bx +c =0的根之间的关系:b 2-4ac 决定抛物线与x 轴的交点个数. b 2-4ac >0时,抛物线与x 轴有2个交点;b 2-4ac =0时,抛物线与x 轴有1个交点;b 2-4ac <0时,抛物线与x 轴没有交点.突破四 二次函数与几何图形的综合运用如图,直线y =-3x +3与x 轴、y 轴分别交于点A ,B.抛物线y =a (x -2)2+k 经过点A ,B ,并与x 轴交于另一点C ,其顶点为P.(1)求a ,k 的值.(2)在图中求一点Q ,使以Q ,A ,B ,C 为顶点的四边形是平行四边形,请直接写出相应的点Q 的坐标.(3)抛物线的对称轴上是否存在一点M ,使△ABM 的周长最小?若存在,求△ABM 的周长;若不存在,请说明理由. (4)抛物线的对称轴上是否存在一点N ,使△ABN 是以AB 为斜边的直角三角形?若存在,求出N 点的坐标;若不存在,请说明理由.【思路点拨】 (1)由条件可先求得A ,B 两点的坐标,代入抛物线表达式可求得a ,k 的值;(2)过点B 作平行于x 轴的直线,在B 点两侧分别截取线段BQ 1=BQ 2=AC ;过点C 作平行于AB 的直线,在C 点两侧分别截取CQ 3=CQ 4=AB.则Q 1,Q 2,Q 3,Q 4四点到x 轴的距离都等于B 点到x 轴的距离,可分别求得满足条件的Q 点的坐标;(3)连接BC 交对称轴于点M ,根据“将军饮马”模型,可知点M 即为所求;(4)可设N 点坐标为(2,n ),可分别表示出AB 2,AN 2,BN 2,由勾股定理可得到关于n 的方程,可求得N 点的坐标.(2016·新疆)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,-4). (1)求抛物线表达式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.【思路点拨】(1)根据对称轴、A,B两点的坐标,可得方程组,解方程组可得表达式中的系数和常数项,配方成顶点式可得顶点坐标;(2)根据平行四边形的性质,S=S△AEO+S△AFO=2S△AEO,求出点E的纵坐标,易求关系式;(3)根据(2)中的关系式,可得面积为24时,E点的坐标,根据菱形的判定,可得答案.分类练习考点一二次函数的图像和性质1. (2017·连云港)已知抛物线y=ax2(a>0),过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>02. (2015·常州)已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A. m=-1B. m=3C. m≤-1D. m≥-13. (2017·宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A. y=(x+2)2+1B. y=(x+2)2-1C. y=(x-2)2+1D. y=(x-2)2-14. (2017·盐城)如图,将函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新函数的图像,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面积为9(图中的阴影部分),则新图像的函数表达式是()A. y=12(x-2)2-2B. y=12(x-2)2+7C. y=12(x-2)2-5D. y=12(x-2)2+45. (2017·扬州)如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1),若二次函数y=x2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A. b≤-2 B. b<-2C. b≥-2D. b>-26. (2017·宿迁)如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=2 cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1 cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A. 20 cmB. 18 cmC. 2 5 cmD. 3 2 cm7. (2018·淮安)将二次函数y=x2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是.8. (2016·镇江)a,b,c是实数,点A(a+1,b),B(a+2,c)在二次函数y=x2-2ax+3的图像上,则b,c的大小关系是b c.(用“>”或“<”填空)9. (2016·泰州)二次函数y=x2-2x-3的图像如图所示,若线段AB在x轴上,且AB为23个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图像上,则点C的坐标为.10. (2018·宁波)已知抛物线y=-12x2+bx+c经过点(1,0),()0,32.(1)求该抛物线的函数表达式;(2)将抛物线y=-12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.11. (2018·南通)在平面直角坐标系xOy中,已知抛物线y=x2-2(k-1)x+k2-52k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值-32,求k 的值考点二 确定二次函数的表达式12. (2018·宿迁)如图,在平面直角坐标系中,二次函数y =(x -a )(x -3)的图像与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD ,BC.(1)求点A ,B ,D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D ,O ,C ,B 能否在同一个圆上?若能,求出a 的值;若不能,请说明理由.13. (2018·盐城)如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P ,Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP ,DQ.①若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.14. (2018·镇江)如图,二次函数y =x 2-3x 的图像经过O (0,0),A (4,4),B (3,0)三点,以点O 为位似中心,在y 轴的右侧将△OAB 按相似比2∶1放大,得到△OA′B′,二次函数y =ax 2+bx +c (a ≠0)的图像经过O ,A′,B′三点.(1)画出△OA′B′,试求二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)点P (m ,n )在二次函数y =x 2-3x 的图像上,m ≠0,直线OP 与二次函数y =ax 2+bx +c (a ≠0)的图像交于点Q (异于点O ).①求点Q 的坐标;(横、纵坐标均用含m 的代数式表示) ②连接AP ,若2AP >OQ ,求m 的取值范围;③当点Q 在第一象限内时,过点Q 作QQ′平行于x 轴,与二次函数y =ax 2+bx +c (a ≠0)的图像交于另一点Q′,与二次函数y =x 2-3x 的图像交于点M ,N (M 在N 的左侧),直线OQ′与二次函数y =x 2-3x 的图像交于点P′.△Q′P′M △QB′N ,则线段NQ 的长度等于.考点三 抛物线与一元二次方程的关系15. (2017·徐州)若函数y =x 2-2x +b 的图像与坐标轴有三个交点,则b 的取值范围是( ) A. b <1且b ≠0 B. b >1 C. 0<b <1 D. b <116. (2016·宿迁)若二次函数y =ax 2-2ax +c 的图像经过点(-1,0),则方程ax 2-2ax +c =0的解为( ) A. x 1=-3,x 2=-1 B. x 1=1,x 2=3 C. x 1=-1,x 2=3 D. x 1=-3,x 2=117. (2017·苏州)若二次函数y =ax 2+1的图像经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A. x 1=0,x 2=4 B. x 1=-2,x 2=6 C. x 1=32,x 2=52D. x 1=-4,x 2=018. (2017·镇江)若二次函数y =x 2-4x +n 的图像与x 轴只有一个公共点,则实数n = .19. (2018·南京)已知二次函数y=2(x-1)(x-m-3)(m 为常数).(1)求证:不论m为何值,该函数的图像与x轴总有公共点;(2)当m取什么值时,该函数的图像与y轴的交点在x轴的上方?20. (2017·南京)已知函数y=-x2+(m-1)x+m(m为常数). (1)该函数的图像与x轴公共点的个数是.A. 0B. 1C. 2D. 1或2(2)求证:不论m为何值,该函数的图像的顶点都在函数y =(x+1)2的图像上;(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.二次函数的应用解读·考试说明/ KAO SHI SHUO MING考点3年考频常考题型分析二次函数的实际应用★★★多以解答题的形式出现,常与方程、不等式结合考查,综合性较强,难度稍大. 梳理·考点清单/ KAO DIAN QING DAN考点二次函数的实际应用1. 最大利润问题用二次函数解答的利润问题,涉及的主要关系式为“总利润=每件利润×销售量”,根据该关系式列出二次函数的表达式,然后结合实际意义求解.2. 拱桥问题关于拱桥问题,常用下面两种方法建立直角坐标系解答:一是以拱桥的跨度所在直线作为x轴,拱高所在直线作为y轴(如图①);二是以拱桥顶点作为坐标原点(如图②). 3. 抛物线高度问题把二次函数化为y=a(x-h)2+k的形式,一般地,顶点纵坐标的值就是物体能够达到的最大高度.如果根据实际意义顶点的横坐标x=h不在自变量的取值范围内,还需要根据实际意义结合图像确定物体的最大高度.4. 与几何图形有关的最大面积问题如果几何图形面积涉及两个变量,并且两个变量都可以用含有同一个未知数的式子表示,那么面积可以表示为这个未知数的二次函数,把所得函数表达式化为y=a(x-h)2+k的形式,并结合具体情境中自变量的取值进行求解.5. 以抛物线为载体判断图形形状和存在性问题这类问题涉及抛物线的内容主要是计算顶点坐标和抛物线与坐标轴或其他图形的交点坐标.解答这类问题,需要对所涉及的数学知识全面掌握.突破·重点难点/ ZHONG DIAN NAN DIAN突破一利用二次函数求最大利润九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.【思路点拨】(1)根据(售价-进价)×销量=利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的大小比较,可得答案;(3)根据二次函数值大于或等于4 800,一次函数值大于或等于4 800,可得不等式,解不等式组可得.突破二利用二次函数求最大面积为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【思路点拨】 (1)根据三个矩形面积相等,得到矩形AEFD 的面积是矩形BCFE 面积的2倍,可得出AE =2BE ,设BE =a ,则AE =2a ,从而AB =3a ,根据围网的总长是80 m ,可得2a +2×3a +2x =80,解得a =-14x +10,则3a =-34x +30,进而表示出y 与x 的关系式,并求出x 的范围即可;(2)利用二次函数的性质求出y 的最大值,以及此时x 的值即可.突破三 利用二次函数解决抛物线问题(2018·衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度. 【解答】【思路点拨】 (1)由题意知,抛物线的顶点为(3,5)且过(8,0),可先设二次函数的顶点式,再代入点(8,0)即可;(2)令y =1.8,求出符合题意的x 的值即可;(3)求出原抛物线与y 轴的交点坐标,由形状不变,可得二次函数表达式的二次项系数不变,直径扩大到32米,可知抛物线过点(16,0).然后用待定系数法求出抛物线的表达式,再利用配方法将所求出的二次函数表达式变形为顶点式,即可确定水柱的最大高度.分类练习考点二次函数的应用1. (2018·连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A. 点火后9 s和点火后13 s的升空高度相同B. 点火后24 s火箭落于地面C. 点火后10 s的升空高度为139 mD. 火箭升空的最大高度为145 m2. (2018·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为元.3. (2016·扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.4. (2018·绵阳)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加m.5. (2018·淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.6. (2017·泰州)怡然美食店的A,B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1 120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降低0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?7. (2016·徐州)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:x/元180 260 280 300y/间100 60 50 40(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)8. (2016·宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.9. (2016·南京)如图是抛物线形拱桥,P 处有一照明灯,水面OA 宽4 m ,从O ,A 两处观测P 处,仰角分别为α,β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系.(1)求点P 的坐标;(2)水面上升1 m ,水面宽多少?(2取1.41,结果精确到0.1 m )10. (2017·扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x/(元/千克) 30 35404550日销售量p/千克600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2 430元,求a 的值.(日获利=日销售利润-日支出费用)11. (2018·荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =⎩⎨⎧10 000(0≤t ≤20),100t +8 000(20<t ≤50),y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)答案梳理·考点清单__/__KAO__DIAN__QING__DAN______ A1. ≠0A2. ⎝⎛⎭⎫- b 2a,4ac -b 24aA3.()- b 2a ,0(说明:填写(-b 2a ,4ac -b 24a)也可) A4. 向上 A5. 向下 A6. 原点 A7. y 轴 A8. 小A9. 大 A10. y =a(x -h)2+k +m A11. y =a(x -h)2+k -m A12. y =a(x -h +n)2+k A13. y =a(x -h -n)2+k A14. x A15. 根的判别式 A16. 两个不相等的实数根 A17. 方程有两个相等的实数根 A18. 方程没有实数根A19. 有两个交点 A20. -b±b 2-4ac2aA21. x 1<x <x 2 A22. x <x 1或x >x 2 A23. 有一个交点 A24.-b2aA25. 没有交点 突破·重点难点__/__ZHONG__DIAN__NAN__DIAN____例1. D 解析:当m >0时,直线y =mx +m 的图像经过第一、二、三象限,二次函数图像开口方向向下,C 错误;当m <0时,直线y =mx +m 的图像经过第二、三、四象限,二次函数图像开口方向向上,且对称轴x =1m<0,A ,B 错误,D 正确.例2. y =2(x +4)2-3例3. D 解析:①∵抛物线对称轴在y 轴的右侧,∴ab <0. ∵抛物线与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x =-b2a<1,∴-b <2a ,∴2a +b >0,故②正确;③∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故③正确; ④当x =-1时,y >0,∴a -b +c >0,故④正确. 故选D.例4. (1)∵b 2-4ac =(m -3)2-4(m -1)×(-2)=(m +1)2≥0, ∴不论m 为何值,该函数的图像与x 轴总有交点.(2)∵-b 2a =3-m 2(m -1) =1,解得m =53,∴y =23x 2-43x -2=23(x -1)2-83.∴顶点M ()1,-83向上平移83个单位得Q(1,0).∴原抛物线与y 轴交点为N(0,-2),平移后得P ()0,23.(3)如图,围成的图形面积利用平移可转化成四边形PQMN 的面积,∴两条抛物线、对称轴和y 轴围成的图形的面积为1×83=83.例5. (1)在y =-3x +3中,令y =0,可求得x =1, 令x =0,可求得y =3,∴A (1,0),B (0,3).把A (1,0),B (0,3)分别代入y =a (x -2)2+k 中,得⎩⎨⎧a +k =0,4a +k =3,解得⎩⎨⎧a =1,k =-1.(2)由(1)可知抛物线的表达式为y =(x -2)2-1,令y =0,可求得x =1或x =3,∴C (3,0),∴AC =3-1=2,AB =10.过点B 作平行于x 轴的直线,在B 点两侧分别截取线段BQ 1=BQ 2=AC =2,如图①.∵B (0,3),∴Q 1(-2,3),Q2(2,3).过点C作AB的平行线,在C点两侧分别截取线段CQ3=CQ4=AB=10,如图②.∵B(0,3),∴Q3,Q4到x轴的距离都等于B点到x轴的距离,即为3,且到直线x=3的距离为1,∴Q3(2,3),Q4(4,-3).综上可知,满足条件的Q点的坐标为(-2,3)或(2,3)或(4,-3).(3)存在.连接BC交对称轴于点M,连接MA,如图③.由于AB长度不变,则MA+MB最小时,△MAB的周长最小.∵A,C两点关于对称轴直线x=2对称,∴AM=MC,∴BM+AM=BC时最小,△ABM的周长最小.设直线BC的表达式为y=kx+b.把B(0,3),C(3,0)代入,得⎩⎨⎧b=3,3k+b=0,解得⎩⎨⎧k=-1,b=3.∴直线BC的表达式为y=-x+3,当x=2时,可得y=1,∴M(2,1),∴存在满足条件的点M(2,1),使△ABM的周长最小,此时BM+AM=BC=32,且AB=10,∴△ABM的周长的最小值为32+10.(4)存在.由题意可设N点的坐标为(2,n),则NB2=22+(n-3)2=n2-6n+13,NA2=(2-1)2+n2=1+n2,且AB2=10,当△ABN是以AB为斜边的直角三角形时,由勾股定理可得NB2+NA2=AB2,∴n2-6n+13+1+n2=10,解得n=1或n=2,即N点的坐标为(2,1)或(2,2),综上可知,存在满足条件的N点,其坐标为(2,1)或(2,2).例6. (1)设抛物线的表达式为y=ax2+bx+c,∵对称轴为直线x=72的抛物线经过点A(6,0)和B(0,-4),∴⎩⎨⎧-b2a=72,36a+6b+c=0,c=-4,解得⎩⎪⎨⎪⎧a=-23,b=143,c=-4.∴抛物线的表达式为y=-23x2+143x-4,配方,得y=-23()x-722+256,∴抛物线的顶点坐标为()72,256.。
最新-江苏省姜堰市九年级数学上册《62 二次函数的图像
江苏省姜堰市九年级数学上册《6.2 二次函数的图像与性质》学案(无答案) 北师大版学习目标1. 能通过配方把二次函数错误!未找到引用源。
化成错误!未找到引用源。
+k 的形式,从而确定开口方向、对称轴和顶点坐标;2. 会利用对称性画出二次函数的图象.学习重点能通过配方把二次函数错误!未找到引用源。
化成错误!未找到引用源。
+k 的形式,从而确定开口方向、对称轴和顶点坐标。
学习难点能通过配方把二次函数错误!未找到引用源。
化成错误!未找到引用源。
+k 的形式,从而确定开口方向、对称轴和顶点坐标。
教学过程一 复习巩固1、抛物线y=-2(x-2)2的开口_______,对称轴__________,顶点坐标_____,当x 为______时,有最小值是_______.2、抛物线y=-2(x-2)2+3是由抛物线y=-2(x-2)2向_____平移____单位而得到的。
3.将抛物线y=0.5(x+2)2向左平移1 个单位而得到的函数解析式为 _4.顶点为(-2,0),开口方向、形状与y=0.3x 2的图象相同的函数解析式:5.说出抛物线y=-6(x+2)2-7的开口方向、顶点坐标和对称轴。
那么对于抛物线y=3x 2-2x+1如何确定其顶点坐标和对称轴。
二、探索新知例1:用配方法把下列二次函数化成y=a (x-h )2+k 的形式,再写出它们的开口方向、顶点坐标和对称轴1)y=2x2-8x+4 (2)y=-x2-4x+1 (3)例2:通过配方求抛物线y=ax2+bx+c 的对称轴和顶点坐标例3画出函数y=2x2+4x-3的图象练习:通过配方,确定下列抛物线的开口方向、对称轴和顶点坐标1)y=-x 2-2x+1 (2)y=2x 2+2x-12、抛物线y=x 2-bx+3的对称轴是x=2,求b 的值.3.已知二次函数y=-x 2+2x+c 的最大值是4,求c 的值.例4:若抛物线y=x 2-4x+c 的顶点在x 轴上,求c 的值 变化:抛物线y=x 2-4x+c 的顶点在y=x+1上,求c 的值。
江苏省姜堰市大伦中学九年级数学下册【6.2二次函数的图像与性质】教案(3) 苏科版
6.2 二次函数的图像与性质(3)
时间
课型
新授
课时
第3课时
主备人
审核人
【目标】
1. 经历探索二次函数y=ax2(a≠0)及y=a(x-h)2(a≠0)的图象作法和性质
的过程;
2. 能够理解函数y=a(x-h)2(a≠0)与y=ax2的图象的关系,了解a,h,k对
二次函数图象的影响。
3.能正确说出函数 y=a(x-h)2的图象的开口方向,顶点坐标和对称轴。
动手操作、探究:
在同一平面内画出函数 与y=(x-1)2的图象。比较它们的性质,你可以
得到什么结论?
【探究问题1】
形如 的二次函数的开口方向,对称轴,顶点坐标各是什么?
我们已经了解到,函数 的图象,可以由函数 的图象上下
平移所得,那么函数 的图象,是否也可以由函数 平移
而得呢?画图试一试,你能从中发现什么规律吗?
把抛物线y=ax2(a≠0)向右平移|h|个单位得到抛物线y=a(x-h)2
(2)抛物线y=a(x-h)2(a≠0)的顶点坐标是(h,0),对称轴是直线x=h,
当a>0时,若x=h,y有最小值0,当a<0时,若a=h,y有最大值0
【重点】
理解函数y=a(x-h)2(a≠0)与y=ax2的图象的关系及性质;
【难点】
理解函数y=a(x-h)2(a≠0)与y=ax2的图象的关系及性质;
同学们还记得一次函数y=2x与y=2(x-1)的图象的2的图象之间的关系吗?那么
与y=(x-1)2的图象之间又有何关系?
1、在平面直角坐标系中,并画出函数 的图象。
2、比较它与函数 的图象之间的关系。
结论:
(1)抛物线y=a(x-h)2(a≠0)与抛物线y=ax2(a≠0)的形状一样,只是位置不
中考数学复习方案 第15课时 二次函数的图象及其性质课件 苏科
第15课时 │ 回归教材
回归教材
教材母题 [江苏科技版九下 P22 读一读]
学会“读”图 从二次函数 y=x2-4x+3 的图象(图 15-2),可以“读”出 许多信息.比如图象告诉我们:
图 15-2
·江苏科技版
第15课时 │ 回归教材
当 x=2 时,y 有最小值,最小值是-1; 当 x<2 时,y 随 x 增大而减小; 当 x>2 时,y 随 x 增大而增大. 图象还告诉我们:它与 x 轴交于两点 M(1,0)、N(3,0),并且在点 M 左侧和点 N 右侧的图象都在 x 轴的上方,在这两点之间的图象在 x 轴的下方. 这就是说: 当 x=1、x=3 时,y=0,也就是说,x=1、x=3 是一元二次方 程 x2-4x+3=0 的根; 当 x<1 或 x>3 时,图象上所有点的纵坐标都大于 0.也就是说, 当 x<1 或 x>3 时,y>0,即 x2-4x+3>0; 当 1<x<3 时,图象上所有点的纵坐标都小于 0.也就是说,当 1 <x<3 时,y<0,即 x2-4x+3<0.
右侧,即当 x>-2ba时,y 随 x 的增 右侧,即当 x>-2ba时,y 随 x 的
大而增大,简记左减右增
增大而减小,简记左增右减
抛物线有最低点,当 x=-2ba时, 抛物线有最高点,当 x=-2ba时,
y 有最小值,y 最小值=4ac4-a b2
y 有最大值,y 最大值=4ac4-a b2
[注意] 应结合图形理解二次函数的性质.
x…0 1 2 3 4 … y … 3 0 -1 0 3 … y=x2-4x+3 的图象如图.
·江苏科技版
第15课时 │ 归类示例
(3)y1>y2 (4)如图,点 C,D 的横坐标 x3,x4 为方程 x2-4x+3 =2 的两根.
江苏省兴化市昭阳湖初级中学九年级数学下册《6.2-2二次函数的图象和性质(2)》教案
教学目标:1.掌握形如二次函数)0(2≠=aaxy的图象及其性质2.会用待定系数法确定二次函数的解析式教学重难点:掌握形如二次函数)0(2≠=aaxy的图象及其性质教学过程一、情境创设情境:展示上节课练习中学生所画的221xy=、221xy-=、22xy=、22xy-=的图象,讨论它们的共同点和不同点。
先独立思考并交流二、探索活动通过这个活动引导学生思考并发现抛物线的基本性质,包括开口方向、对称轴、顶点坐标、增减性。
学生可以相继补充回答,培养学生观察图形并解决问题的能力.2.试说明函数值的最大或最小.让学生理解二次函数值的增减性的特殊性,它不是单调的,而是在不同的取值范围内有不同的变化趋势,正因为这个“拐点”的出现才导致函数值有了最大或最小。
活动三:概述二次函数)0(2≠=aaxy的图象及性质在理解了抛物线的几个方面的性质后,让学生整合进行完整概述,目的是培养学生的归纳能力,提高数学语言的表达能力三、例题讲解活动一:观察这四个图象的形状和走势,回答下列问题。
活动二:用数学语言概括二次函数的图象性质,并有条理地表达。
1.从自变量与函数的变化关系解释图象的上升或下降。
时)y 随着x 的增大而增大;在对称轴的 (即当x___时)y 随着x 的增大而减小。
(3)当x= 时,函数y 的值最小,最小值是 。
1.填空:抛物线y=2x 2中:(1)开口向___ ,顶点坐标是 ,(2)在对称轴的 (即当x_____(4)该抛物线除顶点外,在x 轴的 _____方。
2.说说下列函数图象的开口方向、对称轴、顶点坐标、增减性、最值。
(1)27x y = (2)23x y -=(3)232x y = (4)243x y -=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识归纳
(5)a+b+c的符号: 由x=1时抛物线上的点的位置确定 (6)a-b+c的符号: 由x=-1时抛物线上的点的位置确定
知识归纳
例1.抛物线y=ax2+bx+c如图所示,试确定a、b、c、 △的符号. y
o
x
尝试练习
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
尝试练习
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
尝试练习
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
o
x
典例研习
例2.若抛物线 y (m 1) x 2mx m 3 位于x轴上方,求m的取值范围.
初中数学九年级下册(苏科版)
6.2 二次函数的图象和性质(7)
兴化市板桥初级中学 顾厚春
二次函数中的符号问题
(a、b、c、△)
兴化市板桥初级中学 顾厚春
温故知新
二次函数y=ax2+bx+c的图象有什么性质?
温故知新
由a,b,c,
△的符号确定抛物线在坐 标系中的大致位置
由抛物线在坐标系中的位置确定
2
巩固练习
1.已知:二次函数y=ax2+bx+c的图象如图所示,则点 b M( ,a)在( D ) c y A、第一象限 B、第二象限 C、第三象限 D、第四象限
o x
巩固练习
2、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;② a+b+c<0 ③ a-b+c>0 ; ④a+b-c>0; ⑤ b=2a正确的个数是 ( ) C A、2个 B、3个
交点在x轴下方
经过坐标原点
c=0
知识归纳
(3)b的符号:由对称轴的位置确定: 对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴 (4)b2-4ac的符号: 由抛物线与x轴的交点个数确定: 与x轴有两个交点 与x轴有一个交点 与x轴无交点 a、b同号 a、b异号 b=0 简记为:左同右异
b2-4ac>0
y y y y
o
x
o x
o x
o
x
A
B
C
D
巩固练习 5. 二次函数y=ax2+bx+c的图象的一部分如图,已知它的 顶点M在第二象限,且经过A(1,0),B(0,1),请判断实数a的 范围,并说明理由.
y M 1 B A x O 1
巩固练习
6.如图,在平面直角坐标系中,二次函数y=ax2+c(a<0) 的图象过正方形ABOC的三个顶点A、B、C,则ac的值 是 -2 .
a,b,c, △等符号及有关a,b,c的代数 式的符号
温故知新
1、抛物线y=ax2+bx+c的开口方向与什么有关?
2、抛物线y=ax2+bx+c与y轴的交点是 3、抛物线y=ax2+bx+c的对称轴是
.
.
知识归纳
抛物线y=ax2+bx+c的符号问题: (1)a的符号: 由抛物线的开口方向确定 开口向上 开口向下 (2)C的符号:由抛物线与y轴的交点位置确定: 交点在x轴上方 c>0 c<0 a>0 a<0
y
C、4个
D、5个
;
-1 o
1
x
巩固练习
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①b>0;②c<0;③4a+2b+c > 0; ④(a+c)2<b2,其中正确的个数是 ( B ) A、4个 C、2个 B、3个 D、1个 y
o x=1
x
巩固练习
4.如图,在同一坐标系中,函数y=ax+b与 y=ax2+bx(ab≠0)的图象只可能是( )
2.若关于x的函数y=(a-2)x2-(2a-1)x+a的图象与坐标轴有两个 交点,则a可取的值为 ; 3.已知抛物线y=ax2+bx+c (a<0)经过点(-1,0), 且满足4a+2b+c>0.以下结论:①a+b>0;②a+c>0;③ -a+b+c>0;④b2-2ac>5a2.其中正确的个数有( (A)1个 (B)2个 (C)3个 (D)4个 )
巩固练习 7. 如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点 (-1,2)和(1,0),且与y轴相交于负半轴. (以下有(1)、(2)两问,你只需选答一问,若两问都答,则只以 第(2)问计分) 第(1)问:给出四个结论: ①a>0;② b>0;③c>0;④ a+b+c=0.其中正确结论的序号 是 ①④ (答对得3分,少选、错选均不得分). 第(2)问:给出四个结论: ① abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序 号是 ② ③ ④(答对得5分,少选、错选均不得分).
y
2
x -1 O 1
课堂小结
这节课你有哪些体会?
1.a,b,c等符号与二次函数y=ax2+bx+c有密切的 联系; 2.解决这类问题的关键是运用数形结合思想, 即会观察图象;如遇到2a+b,2a-b要与对称轴联 系等; 3.要注意灵活运用数学知识,具体问题具体分 析
课外思考
1.如图是二次函数y1=ax2+bx+c和 一次函数y2=mx+n的图象,观察 图象写出y2 ≥y1时,x的取值范围 是________;