尼龙66的性质

合集下载

尼龙66介绍

尼龙66介绍

4.其他行业
利用PA66耐蠕变特性和耐溶剂性,可以制造一系列的 日用品,如以非增韧的尼龙66注塑成的气体打火机和气雾 剂喷嘴、太阳镜片、梳子、纽扣等。
增韧的尼龙66用于制造冰鞋、滑雪板零件、网球拍线 套、帆板连接器等耐寒耐磨产品。玻纤增强增韧尼龙66用 于自行车轮、刀柄和枪托的生产中。
在家具行业中,也经常采用尼龙66制造的连接件、装饰 品、抽屉滑轮、滑轨等。
● 1939年10月24日,杜邦在总部所在地公开销售
尼龙丝长袜时引起轰动,被视为珍奇之物争相抢购, 混乱的局面迫使治安机关出动警察来维持秩序。
从第二次世界大战爆发直到1945年: ●尼龙工业被转向军工产品。
●最初十年间产量增加25倍,1964年占合成纤维的 一半以上。
●至今聚酰胺纤维的产量虽说总产量已不如聚酯纤维 多,但仍是三大合成纤维之一。
3.机械设备
列车客车的门把手、货车的制动器接合盘等可用 PA66制作。其它如绝缘垫圈、挡板座、船舶上的涡轮、 螺旋桨轴、螺旋推进器、滑动轴承等也可以用PA66制 作。
高抗冲击性尼龙66还可制作管钳、塑料模具、无 线电控制车身等。未增强级尼龙66通常用于制造低蠕 变、无腐蚀的螺母、螺栓、螺钉、喷嘴等;增强级尼 龙66用于生产链条、传送带、扇叶、齿轮、叶轮和脚 手架固定脚扣等。
尼龙66ቤተ መጻሕፍቲ ባይዱ聚合
*己二酸、己二胺缩聚反应 尼龙-66。 *工业上为了己二酸和己二胺以等摩尔。
反应式如下:
OOH+nH2N(CH2)6NH2 →HO-[OC(CH2)4COHN(CH2)6NH]n-H+(2n-1)H2O
尼龙66发展史
●1930年,卡罗瑟斯用乙二醇和癸二酸缩合制取
聚酯
● 1935年初,卡罗瑟斯用戊二胺和癸二酸合成聚

尼龙66的基本性质

尼龙66的基本性质

聚合过程与工艺己二酸和己二胺发生缩聚反应即可得到尼龙-66。

工业上为了己二酸和己二胺以等摩尔比进行反应,一般先制成尼龙-66盐后再进行缩聚反应,反应式如下:在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。

所以体系内水的扩散速度决定了反应速度,因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。

上述缩聚过程既可以连续进行也可以间歇进行。

在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66的分子量降低的副反应。

尼龙-66盐的制备尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35, 结构式:[+H3N(CH2)6NH3+ -OOC(CH2)4COO-]。

尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。

室温下,干燥或溶液中的尼龙-66盐比较稳定,但温度高于200℃时,会发生聚合反应。

其主要物理性质列于表01-63中。

表01-63 尼龙-66盐的主要物理性质(1)水溶液法以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。

其工艺流程图如图01-40所示。

图01-40 水溶液法生产尼龙-66盐工艺流程1—己二酸配制槽 2—己二胺配制槽 3—中和反应器 4—脱色罐 5—过滤器6、9、11、12—贮槽 7—泵 8—成品反应器 10—鼓风机 13—蒸发反应器将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50℃、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。

在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。

成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66盐与空气接触而被氧化,在生产系统中充以氮气保护。

在真空状态下,将50%的尼龙-66盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66盐。

尼龙66简述范文

尼龙66简述范文

尼龙66简述范文尼龙66是一种合成纤维,也称为聚合酰胺纤维或尼龙6,6,它是由己内酰胺和己二酸的聚合反应生成的。

尼龙66是最早被商业化生产的尼龙类型之一,也是最常用的尼龙材料之一、它具有许多独特的特性,如高强度、耐磨性、耐腐蚀性和耐高温性等,在各个领域广泛应用。

尼龙66的聚合过程是将己内酰胺(尼龙6)和己二酸在高温和压力下反应形成聚己二酰氨。

这种聚合反应通常在无水介质中进行,以防止水和反应物发生竞争反应,从而影响产品质量。

尼龙66的生产过程相对简单,但需要高温和压力,因此需要专业设备和技术。

尼龙66是一种热塑性材料,意味着它可以在一定温度范围内重复熔化和固化而不损失原有的性能。

这种特性使得尼龙66易于加工成各种形状和尺寸的制品。

尼龙66可通过纺丝、注塑、挤出和压延等工艺制成纤维、薄膜、片材和制品等。

尼龙66的主要特点是高强度和耐磨性。

它的强度比许多其他合成纤维高,可以达到较高的断裂拉伸强度。

此外,尼龙66还具有良好的耐磨性,能够抵抗摩擦和磨损。

因此,尼龙66常用于制造耐磨、耐用的制品,如汽车零部件、工业机械和运动用品等。

此外,尼龙66还具有优异的耐腐蚀性和耐高温性。

它能够抵抗许多化学溶剂、酸碱等腐蚀性物质的侵蚀,因此广泛应用于化工、医药等领域。

尼龙66的熔点较高,能够在高温下保持良好的性能,因此也用于制造耐高温的制品,如机械零部件、电器配件等。

尼龙66虽然具有许多优良特性,但也存在一些局限性。

首先,尼龙66在水中吸湿性较高,容易被水分吸附,导致尺寸增大。

其次,尼龙66的热稳定性较差,易于分解和老化。

再次,尼龙66的价格较高,不适用于低成本产品。

总结而言,尼龙66是一种具有高强度、耐磨性、耐腐蚀性和耐高温性等优良特性的合成纤维。

它的制造相对简单,但需要专业设备和技术。

尼龙66广泛应用于各个领域,如汽车工业、化工、医药、电子等,为人们的生活和工作带来了许多便利。

然而,尼龙66也有其局限性,需要在应用中注意其吸湿性、热稳定性和成本等因素。

尼龙66材料

尼龙66材料

尼龙66材料
尼龙66是一种常见的工程塑料,也被称为聚酰胺66。

它具有优异的机械性能、热稳定性和耐磨性,因此被广泛应用于汽车零部件、电子设备、纺织品和其他领域。

下面我们将详细介绍尼龙66材料的特性、应用和加工工艺。

首先,尼龙66具有优异的强度和刚性,使其成为制造高强度零部件的理想选择。

同时,它还具有良好的耐热性和耐磨性,能够在高温和高摩擦环境下保持稳定的性能。

此外,尼龙66还具有较好的化学稳定性和耐候性,不易受化学品和紫外
线的侵蚀,因此在户外环境中也能长期稳定使用。

其次,尼龙66在汽车工业中有着广泛的应用。

它常被用于制造发动机罩、汽
车内饰件、传动系统零部件等。

由于尼龙66具有较高的耐热性和耐磨性,能够满
足汽车零部件在高温和高摩擦条件下的使用要求,因此受到汽车制造商的青睐。

此外,尼龙66还被广泛应用于电子设备领域,如制造电子外壳、插座、连接器等。

此外,尼龙66的加工工艺相对简单,可以采用注塑、挤出、吹塑等方法进行
加工。

在注塑成型过程中,尼龙66的熔体流动性较好,能够填充模具的细小空腔,得到较为精密的零件。

在挤出和吹塑过程中,尼龙66的熔体粘度适中,易于形成
均匀的薄壁制品,因此适用于生产管材、薄膜等制品。

总的来说,尼龙66材料具有优异的机械性能、热稳定性和耐磨性,被广泛应
用于汽车零部件、电子设备、纺织品等领域。

其加工工艺简单,能够满足复杂零件的成型要求。

随着工程塑料需求的增加,尼龙66材料的市场前景十分广阔,将在
未来得到更广泛的应用和发展。

尼龙 种类 特点

尼龙 种类 特点

尼龙种类特点尼龙是一种合成纤维,由于它的轻便、坚韧、坚固和易于染色等特点,在服装、袜子、包等行业得到广泛应用。

以下是尼龙种类的特点详细介绍。

一、尼龙66(Nylon66)1.优良的机械性能尼龙66的强度和弹性模量很高,其强度和坚韧性大约是与聚丙烯相同的十倍左右,是聚乙烯和聚丙烯的两倍以上。

此外,尼龙66具有耐磨性、耐低温性、抗腐蚀性等优点。

2.易于染色尼龙66的分子结构中含有较多的酰胺基,可以与染料间发生氢键作用,易于染色,染色后不易褪色。

3.耐热性能好尼龙66可以在高温下运转,其熔点较高,可以达到260℃左右,但热稳定性不佳。

尼龙6的强度和坚韧性较好,强度和弹性模量大约和聚乙烯相同,抗拉强度较尼龙66低,但弹性模量较高。

2.成本较低尼龙6是尼龙家族中比较便宜的成员之一,其成本较低,因此在许多应用中使用较多。

尼龙6可被生物降解,不对环境造成污染,因此得到人们的普遍认可。

三、Kevlar(凯夫拉纤维)凯夫拉纤维有极高的热稳定性,高达450℃,可以承受极高温度下的剧变。

2.超强的抗拉强度凯夫拉纤维的强度极高,是其他工程材料的5倍以上,弹性模量和刚度也非常高。

3.防弹性能强凯夫拉纤维是一种特殊的工程塑料,其纤维结构非常紧密,具有极高的抗弹性能,专门用于制作防弹衣、安全带、气囊等安全用品。

1.耐腐蚀性好尼龙12具有较好的酸、碱、溶剂等化学品的耐腐蚀性能,能够较好地承受大部分化学介质的腐蚀。

尼龙12硬度较高,表面光洁度好,因此具有较好的耐摩擦性能。

3.抗静电能力强尼龙12具有较好的抗静电能力,能够有效消除静电积聚,防止静电导致的损失。

1.质地轻盈尼龙610密度较小,因此比其他尼龙材料更轻盈,适合用于制作轻型工业、民用产品等。

尼龙610具有很好的耐磨性能,适合于制作高磨损的产品。

尼龙610具有良好的染色性能,能够与染料发生氢键作用,因此染色时容易上色、上浆,且染色后不易褪色。

六、尼龙1010(Nylon1010)1.生物降解性好尼龙1010是一种绿色环保材料,由于其分子中含有较多的亚酰胺键和脂肪族基团,因此可被微生物分解,而不会对环境造成污染。

尼龙-66范文

尼龙-66范文

尼龙-66范文
尼龙-66范文
首先,尼龙-66具有很高的强度和刚性。

它的拉伸强度和模量都很高,使其成为许多结构材料的理想选择。

尼龙-66的强度也受到温度和湿度的
影响较小,使其在不同环境下都能保持稳定的性能。

其次,尼龙-66还具有良好的耐磨性和耐腐蚀性。

它的耐磨性是由于
其分子链中的苯环结构,使其能够承受较高的摩擦和磨损。

这使得尼龙-
66成为一种广泛用于制造耐用衣物和车辆部件的材料。

此外,尼龙-66也
具有良好的抗化学腐蚀能力,能够耐受多种化学物质的侵蚀。

另外,尼龙-66还具有良好的热稳定性和耐热性。

它的熔点较高,能
够承受高温环境下的长期使用。

此外,尼龙-66的热膨胀系数较低,使其
能够在温度变化时保持较稳定的尺寸和形状。

尼龙-66广泛应用于各个领域。

在纺织行业中,它被用于制造高强度、耐磨的织物和线缆。

在汽车工业中,它被用于制造机械部件、电缆、管道等。

在电子行业中,尼龙-66被用于制造电缆保护管和连接器等。

此外,
尼龙-66还被用于制造塑料制品、化妆品包装等消费品。

尼龙66衣料用途-概述说明以及解释

尼龙66衣料用途-概述说明以及解释

尼龙66衣料用途-概述说明以及解释1.引言1.1 概述尼龙66衣料是一种采用尼龙66纤维制成的面料,具有许多优异的特性,广泛应用于各个领域。

尼龙66衣料具有高强度、耐磨损、耐腐蚀、轻质、易清洗等特点,因此在时装、户外运动装备、汽车内饰、家居纺织品等方面有着重要的用途。

时装领域是尼龙66衣料的主要用途之一。

尼龙66衣料可以制作出时尚、舒适的衣物,具有光滑的质感和良好的延展性,能够满足人们对于时尚与舒适的追求。

同时,尼龙66衣料具有耐洗、耐磨损的特点,能够经受住日常穿着和清洗的考验,减少了衣物的损耗,延长了服装的使用寿命。

户外运动装备领域也是尼龙66衣料的主要应用之一。

尼龙66衣料具有耐磨损、耐腐蚀的特性,非常适合用于户外运动装备的制作。

比如登山服、防风衣、雨衣等,这些装备需要具备一定的防水、耐磨、防风等功能,尼龙66衣料可以满足这些需求,保护运动者免受外界环境的影响。

汽车内饰领域也是尼龙66衣料的重要用途之一。

尼龙66衣料具有高强度、耐磨损、耐腐蚀的特点,非常适合用于汽车内饰的制作,如座椅面料、车门板、顶棚等。

尼龙66衣料可以增加汽车内饰的舒适度和美观度,同时也能够提供一定程度的防水、耐磨等功能,提升汽车内部的使用体验。

家居纺织品领域是尼龙66衣料的另一个主要用途。

尼龙66衣料具有柔软、耐久的特性,非常适合用于家居纺织品的制作。

比如床品、窗帘、沙发套等,尼龙66衣料可以提供舒适的触感和持久的使用寿命,同时也具备一定的防尘、防污等功能,方便日常的清洁和维护。

综上所述,尼龙66衣料在时装、户外运动装备、汽车内饰和家居纺织品等方面都有着广泛的应用。

其优异的特性使其成为了制作高品质、耐用的面料的首选之一,为人们的日常生活提供了便利和舒适。

展望未来,随着技术的不断进步,尼龙66衣料有望在更多领域发挥作用,为各行各业提供更多可能性。

1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构:文章主要分为引言、正文和结论三部分。

增强尼龙66基本参数

增强尼龙66基本参数

增强尼龙66是一种高性能的塑料材料,具有较高的强度和耐化学性等优点,主要用于制造机械零件、电气部件和汽车零部件等。

其主要参数如下:
1. 物理性质:增强尼龙66具有较高的强度和刚性,同时还具有较高的耐化学性、耐热性和耐磨性等特点。

其密度为1.35g/cm3,吸水率在1.5%以下。

2. 机械性质:增强尼龙66的拉伸强度和弯曲强度较高,并且其刚性和硬度也较好。

此外,其冲击强度也较好,能够承受较大的冲击载荷而不易断裂。

3. 电气性质:增强尼龙66具有良好的绝缘性能和抗电弧性,适用于制造电气部件。

4. 加工性质:增强尼龙66具有较好的加工性能,可以通过注塑、挤出、压延等方式进行加工。

同时,其表面还可以进行涂覆处理,以提高其耐腐蚀性和耐磨性等性能。

增强尼龙66的主要优点是其强度高、刚性和硬度好,同时还具有良好的耐化学性和耐磨性等优点,因此广泛应用于制造机械零件、电气部件和汽车零部件等。

但是,其缺点是热稳定性较差、耐候性较差,容易受到紫外线等因素的影响而老化。

此外,增强尼龙66的价格相对较高,生产成本较高。

在应用方面,增强尼龙66主要用于制造高强度和高精度度的零件,如轴承、齿轮、管道、电气部件等。

此外,它还可以用于制造汽车零部件、建筑材料、医疗器械等领域。

在生产过程中,需要注意控制温度和压力等工艺参数,以保证产品的质量和性能。

总之,增强尼龙66是一种高性能的塑料材料,具有较高的强度、刚性和硬度等特点,适用于制造各种机械和汽车零部件等。

在应用中需要注意其缺点和工艺参数等问题,以保证产品的质量和性能。

尼龙66

尼龙66

尼龙66中文别名:锦纶66短纤维;尼龙-66;尼龙66树脂;聚酰胺-66;聚己二酰己二胺;锦纶-66。

尼龙66疲劳强度和钢性较高,耐热性较好,摩擦系数低,耐磨性好,但吸湿性大,尺寸稳定性不够。

通常应用于中等载荷,使用温度<100-120度无润滑或少润滑条件下工作的耐磨受力传动零件。

尼龙66为聚己二酰己二胺,工业简称PA66。

常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。

各种聚酰胺的共同特点是耐燃,抗张强度高(达104千帕),耐磨,电绝缘性好。

物理性能比重:PA6 1.14克/立方厘米,PA66 1.15克/立方厘米,PA1010 1.05克/立方厘米成型收缩率:PA6 0.8-2.5% ,PA66 1.5-2.2%干燥条件:100-110℃/12小时坚韧、耐磨、耐油、,耐水、抗酶菌、但吸水大燃烧鉴别方法:火焰上端黄色,下端蓝色,燃烧后塑料熔滴落,起泡,离火后特殊的羊毛,指甲烧焦味和带芹菜味尼龙6:弹性好,冲击强度,吸水较大尼龙66:性能优于尼龙6,强度高,耐磨性好尼龙610:与尼龙66相似,但吸水小,刚度低尼龙1010:半透明,吸水小。

耐寒性较好。

适于制作一般机械零件、减磨耐磨零件、传动零件以及化工、电器、仪表等零件[1]特点1.优良的力学性能。

尼龙的机械强度高,韧性好。

2.自润性、耐摩擦性好。

尼龙具有很好的自润性,摩擦系数小,从而,作为传动部件其使用寿命长。

3.弹性好,耐疲劳性好,可经得住数万次的双挠曲4.耐腐蚀性能佳,不霉,不怕蛀,有耐碱的能力,但不耐酸和氧化剂5.染色性能良好6.相对密度小,仅为1.04-1.14,除聚烯烃纤维外,是纤维中最轻的[2]。

尼龙66介绍

尼龙66介绍

尼龙66盐
尼龙-66盐是聚己二酰己二胺盐的俗称
分子式:C12H26O4N2 分子量:262.35 结构式:[+H3N(CH2)6NH3+ -OOC(CH2)4COO-]
性质:
尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状 单斜晶系结晶。室温下,干燥或溶液中的尼龙-66盐比较稳定, 但温度高于200℃时,会发生聚合反应。
1.汽车工业
由于尼龙66优良的耐热性、耐化学药品性、强度大和 加工方便等,因而在汽车工业得到了大量应用,目前几乎 已能用于汽车的所有部位,如发动机部位,电器部位和车 体部位。
2.电子电器工业
●PA66可生产电子电器绝缘件、精密电子仪器部件、电 工照明器具和电子电器的零部件等,可用于制作电饭锅、 电动吸尘器、高频电子食品加热器等。 ● PA66具有优良的耐焊锡性,广泛用作接线盒、开关和 电阻器等的生产。 ●阻燃级PA66可用于彩电导线夹、固定夹和聚焦旋钮。
尼龙66的聚合
*己二酸、己二胺缩聚反应 尼龙-66。 *工业上为了己二酸和己二胺以等摩尔。
反应式如下:
OOH+nH2N(CH2)6NH2 →HO-[OC(CH2)4COHN(CH2)6NH]n-H+(2n-1)H2O
尼龙66发展史
●1930年,卡罗瑟斯用乙二醇和癸二酸缩合制取
聚酯
● 1935年初,卡罗瑟斯用戊二胺和癸二酸合成聚
尼龙66
PLease follow us . let’s go
尼龙66的结构组成
尼龙-66盐是聚己二酰己二胺的俗称 (简称:PA66 又称:锦纶66) 结构式:[-HN(CH2)6NH -OC(CH2)4CO-]n。
尼龙66性质:优良的耐磨性、自润滑性,机 械强度较高、耐油、耐酸、碱以及卤代烷、 烃类、酯类和酮类溶剂,无噪音,能自熄。

尼龙66简述范文

尼龙66简述范文

尼龙66简述范文尼龙66是一种合成纤维,由尼龙6和尼龙66两种原料经过间接聚合而得到。

它有很好的机械性能,热稳定性和化学稳定性,广泛应用于纺织、汽车、电子、航空航天和建筑等领域。

本文将从尼龙66的发现历史、制备方法、性能特点、主要应用以及未来发展等方面进行详细的介绍。

尼龙66最早由Wallace Carothers在1935年发现,是他继发现尼龙6后又一重要的合成纤维。

尼龙66的制备方法相对较为复杂,主要是通过将尼龙6和尼龙66两种单体在适当的条件下反应而得到。

首先,尼龙6和尼龙66单体在高温下进行加热,生成具有两种功能基团的二聚体。

然后,在高温下进行聚合反应,将二聚体进一步聚合为高分子量的尼龙66聚合物。

最后,通过拉伸、纺丝和后处理等步骤,将尼龙66聚合物转变为纤维形态的尼龙66合成纤维。

尼龙66的性能特点主要体现在以下几个方面。

首先,尼龙66具有较高的拉伸强度和模量,使其成为一种优良的结构材料。

其次,尼龙66具有较好的热稳定性,能够在高温下保持较高的强度和稳定性。

此外,尼龙66还具有良好的耐磨性和耐化学品腐蚀性能,使其在汽车和航空航天等领域得到广泛应用。

尼龙66还具有良好的绝缘性能、抗紫外线性能和耐候性能,适用于电子和建筑领域。

尼龙66的主要应用领域包括纺织、汽车、电子、航空航天和建筑等。

在纺织领域,尼龙66的高拉伸强度和柔软度使其成为制作高品质服装和家居用品的理想材料。

在汽车领域,尼龙66的高强度和热稳定性使其成为制造汽车零部件的理想选择。

在电子领域,尼龙66的绝缘性能和耐化学品性能使其成为电线和电缆的外包材料。

在航空航天领域,尼龙66的轻质、高强度和耐热性使其成为制造飞机零部件的理想材料。

在建筑领域,尼龙66的耐候性能和耐磨性使其成为户外装饰和隔热材料的理想选择。

尼龙66未来的发展主要集中在提高其性能和降低生产成本两个方面。

在性能方面,研究人员正在努力改善尼龙66的强度、模量和耐热性能,以满足不同领域的需求。

PA66物理性能

PA66物理性能

PA66又称尼龙66;聚己二酸己二胺;nylon 66,缩写 NY66。

化学式:[-NH(CH2)6-NHCO(CH2)4CO]n-性状半透明或不透明乳白色结晶形聚合物,具有可塑性。

密度1.15g/cm3。

熔点252℃。

脆化温度-30℃。

热分解温度大于350℃。

连续耐热80-120℃,平衡吸水率2.5%。

能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀,但易溶于苯酚、甲酸等极性溶剂。

具有优良的耐磨性、自润滑性,机械强度较高。

但吸水性较大,因而尺寸稳定性较差。

外观白包或带黄色颗粒状密度(g/cm3) 1.10-1.14 拉伸强度(MPa) 60. 0-80.0 络氏硬度118 冲击强度(kJ/m2) 60-100 静弯曲强度(MPa) 100-120 马丁耐热(℃) 50-60 弯曲弹性模星 (MPa) 2000~3000 体积电阻率(Ωcm)×1015介电常数1.63 应用广泛用于制造机械、汽车、化学与电气装置的零件,如齿轮、滚子、滑轮、辊轴、泵体中叶轮、风扇叶片、高压密封围、阀座、垫片、衬套、各种把手、支撑架、电线包层等。

亦可制成薄膜用作包装材料。

此外,还可用于制作医疗器械、体育用品、日用品等。

物理性能玻璃化转变温度55-58°C密度-cm3机械性能弹性(弯曲模量)-3GPa低温韧性(低温缺口冲击强度)27-35J/m断裂伸长率150-300%拉伸强度50-95MPa拉伸屈服强度45-85MPa洛氏硬度30-80屈服伸长-30%韧性(室温缺口冲击强度)50-150J/m肖氏硬度D80-95杨氏模量1-硬度(弯曲模量)-3GPa尺寸稳定性24小时吸水性1-3%收缩-3%线性热膨胀系数5-14 10-5°C-1电性能耗散因数100-400 10-4介电常数4-5介电刚性20-30kv/mm耐电弧性130-140sec体积电阻系数14 10^辐射电阻伽玛辐射电阻良耐紫外光弱光学特性光泽65-150%燃烧性能可燃烧性可燃耐火性(LOI)21-27%使用温度热变形温度180-240°C热变形温度65-105°C韧性/脆性温度-80--65°C最低持续工作温度-80--65°C最高持续工作温度80-140°C其他绝热(导热系数)绝热(导热系数)耐灭菌性耐灭菌性。

PA66(聚酰胺66或尼龙66)介绍

PA66(聚酰胺66或尼龙66)介绍

PA66(聚酰胺66或尼龙66),同PA6相比,PA66更广泛应用于汽车工业、仪器壳体以及其它需要有抗冲击性和高强度要求的产品。

编辑本段基本资料PA66又称尼龙66;聚己二酸己二胺;nylon 66,缩写NY66。

化学式:[-NH(CH2)6-NHCO(CH2)4CO]n-外观白包或带黄色颗粒状密度(g/cm3)1.10-1.14拉伸强度(MPa)60. 0-80.0xx氏硬度118冲击强度(kJ/m2)60-100xx弯曲强度(MPa) 1 00-120xx耐热(℃) 50-60弯曲弹性模量(MPa) 2000~3000体积电阻率(Ωcm)1.83×1015介电常数1.63编辑本段性状半透明或不透明乳白色结晶形聚合物,具有可塑性。

密度1.15g/cm3。

熔点252℃。

脆化温度-30℃。

热分解温度大于350℃。

连续耐热80-120℃,平衡吸水率2.5%。

能耐酸、碱、大多数无机盐水溶液、卤代烷、烃类、酯类、酮类等腐蚀,但易溶于苯酚、甲酸等极性溶剂。

具有优良的耐磨性、自润滑性,机械强度较高。

但吸水性较大,因而尺寸稳定性较差。

编辑本段应用广泛用于制造机械、汽车、化学与电气装置的零件,如齿轮、滚子、滑轮、辊轴、泵体中叶轮、风扇叶片、高压密封围、阀座、垫片、衬套、各种把手、支撑架、电线包层等。

亦可制成薄膜用作包装材料。

此外,还可用于制作医疗器械、体育用品、日用品等。

编辑本段注塑模工艺条件干燥处理:如果加工前材料是密封的,那么就没有必要干燥。

然而,如果储存容器被打开,那么建议在85℃的热空气中干燥处理。

如果湿度大于0.2%,还需要进行105℃,12小时的真空干燥。

熔化温度:260~290℃。

对玻璃添加剂的产品为275~280℃。

熔化温度应避免高于300℃。

模具温度:建议80℃。

模具温度将影响结晶度,而结晶度将影响产品的物理特性。

对于薄壁塑件,如果使用低于40℃的模具温度,则塑件的结晶度将随着时间而变化,为了保持塑件的几何稳定性,需要进行退火处理。

尼龙66的合成实验报告

尼龙66的合成实验报告

尼龙66的合成实验报告班级:应131-1组别:第七组组员:尼龙66的合成一、实验目的1、学习由环己醇(醇氧化物)制备环己酮(酮氧化物)原理、方法、实验操作。

2、学习由环己酮制备己二酸的原理、方法、实验操作。

3、学习尼龙66的制造工艺,应用,发展前途。

4、熟练准确的掌握有机实验的基本操作。

二、实验原理(一)尼龙66的性质尼龙66名为聚己二酸己二胺,为半透明或不透明的乳白色的热塑性结晶形聚合物,相对密度,熔融温度255℃ ,热分解温度大于370℃ ,连续使用温度大于105℃,因分子主键中含有强极性的酰胺基,而酰胺基间的氢键使分子间的结合力较强,易使结构发生结晶化,具有较高的刚性、韧性(良好的力学性能)和优良的耐磨性、自润滑性、染色性、耐油性及耐化学药品性和自熄性 ,其力学强度较高,耐热性优良,耐寒性好 ,使用温度范围宽[1]。

因此,尼龙66为热塑性树脂中发展最早、产量最大的品种,其性能优良,也是化学纤维的优良聚合材料,应用范围最广,因此产量逐年增长 ,已位居五大工程塑料之首。

(二)主要有关物质介绍1.环己酮环己酮(cyclohexanone),有机化合物,是六个碳的环酮,室温下为无色油状液体,有类似薄荷油和丙酮的气味,久置颜色变黄。

微溶于水,可与大多数有机溶剂混溶。

不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。

易燃,与高热、明火有引起燃烧的危险,与氧化剂接触猛烈反应,与空气混合爆炸极与开链饱和酮相同。

环己酮在工业上被用作溶剂以及一些氧化反应的触发剂,也用于制取己二酸、环己酮树脂、己内酰胺以及尼龙。

2.己二酸己二酸(Adipicacid)又称肥酸,是一种白色的结晶体,有骨头烧焦的气味。

微溶于水,易溶于酒精、乙醚等大多数有机溶剂。

当己二酸中的氧气含量高于14%时,易产生静电引起着火。

己二酸是脂肪族二元酸中最有应用价值的二元酸,能发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物,其对眼睛、皮肤、粘膜和上呼吸道有刺激作用。

尼龙66研究报告

尼龙66研究报告

尼龙66研究报告
尼龙66,又称聚酰胺66,是一种合成纤维材料,具有高强度、高耐热性和耐化学性等优良特性。

以下是关于尼龙66的研究
报告:
1. 基本介绍:该报告首先介绍了尼龙66的基本特性和制备方法,包括原材料的选择、聚合反应的条件和后续的纺丝加工过程。

2. 物理性能测试:该报告针对尼龙66进行了一系列物理性能
测试,如抗张强度、断裂伸长率和硬度等指标的测定。

结果表明,尼龙66具有较高的强度和良好的韧性。

3. 热性能测试:该报告还研究了尼龙66的热稳定性和热传导
性能。

通过热失重分析和热导率测试,得出了尼龙66在高温
环境下的稳定性和导热性能。

4. 化学性能测试:该报告对尼龙66进行了一些化学性能测试,如耐溶剂性、耐酸碱性和耐氧化性等。

结果显示,尼龙66在
一定的条件下具有较好的化学稳定性,适用于多种工业应用。

5. 应用研究:最后,该报告还探讨了尼龙66在汽车制造、纺
织品和电子产品等领域的应用前景,分析了其优势和局限性,并提出了进一步研究的方向。

综上所述,该研究报告详细介绍了尼龙66的物理性能、热性
能和化学性能,并对其应用前景进行了评估。

这些研究结果对于指导尼龙66的生产和开发具有一定的参考意义。

尼龙66和尼龙6的比较

尼龙66和尼龙6的比较

尼龙66和尼龙6的比较1935年美国杜邦公司卡罗瑟斯研究成功了用己二酸和己二胺缩聚成“尼龙66”聚合物,1936到1937年发现用熔融法纺丝制造尼龙66纤维的技术。

1939年底由美国杜邦公司工业化。

1938年德国IG公司施拉克研究成功用单一的己内酰胺为原料ε-氨基己酸作引发剂加热聚合制成聚己内酰胺,1939年进行尼龙6纤维的实验生产。

1943年由德国法本公司工业化生产。

一、尼龙66和尼龙6的物理性质尼龙66的单体尼龙66盐由己二酸和己二胺反应而成。

尼龙66盐缩聚脱水得尼龙66,其分子式为:-[NH(CH2)6NHOC(CH2)4CO]n-尼龙6的单体是己内酰胺。

己内酰胺开环聚合N的尼龙6,其分子式为:-[HN(CH2)5CO]n -二、尼龙66和尼龙6单体生产过程尼龙66的单体尼龙66盐及尼龙6的单体己内酰胺在工业生产中已有多中工艺、多种路线。

尼龙66盐的生产主要为环己烷二步氧化法。

环己烷先用空气氧化生成环己醇酮,再用硝酸氧化成己二酸;己二酸经加氨、加氢的己二胺,最后己二酸和己二胺反应成盐。

空气一步氧化法制得的己二酸质量不纯,不能用作纤维原料。

用苯酚为原料加氢得环己醇再用硝酸氧化制己二酸只占尼龙66总产量的5%。

己二胺虽可由丙烯腈电解偶联法耗电太大,由丁二烯氨化、氧化、加氢法耗用大量氯气及氢氰酸,所占比重不大。

己内酰胺的生产,氧化法占60%以上。

环己烷用空气氧化得环己醇酮并分离为环己酮及环己醇,环己醇脱氢为环己酮。

环己酮用羟胺肟化、发烟硫酸转位得转位酯,再用氨中和及精制得己内酰胺,同时副产硫铵。

此外,光亚硝化法、甲苯及己内酯法虽有工业化生产,但规模都不大。

三、尼龙66和尼龙6的聚合纺丝为了使纤维具有较好的牵伸性能,对聚合物的聚合度有一定的要求,工艺上一般用相对粘度作为控制指标。

尼龙66盐缩聚过程为50%水溶液在250-270℃、16-17公斤/厘米2压力下进行,聚合时间2-3小时,可得到平均聚合度为100的尼龙66聚合物。

尼龙66分解温度

尼龙66分解温度

尼龙66分解温度【最新版】目录1.尼龙 66 的概述2.尼龙 66 分解温度的影响因素3.尼龙 66 分解温度的测试方法4.尼龙 66 分解温度在实际应用中的意义正文尼龙 66 是一种聚酰胺类聚合物,具有优良的力学性能、化学稳定性和热稳定性。

在工程塑料领域,尼龙 66 被广泛应用于汽车、电子、建筑等行业。

了解尼龙 66 的分解温度对于保证产品性能和安全性至关重要。

一、尼龙 66 的概述尼龙 66 是由己二酸和己二胺通过缩聚反应得到的高分子化合物。

其分子结构中含有大量的尼龙基团,赋予了尼龙 66 良好的韧性和强度。

尼龙 66 在合成过程中,可通过调节原料比例、反应条件等手段,调控其性能。

二、尼龙 66 分解温度的影响因素尼龙 66 的分解温度受多种因素影响,主要包括以下几个方面:1.分子结构:尼龙 66 分子中含有多个氨基,氨基之间的氢键作用力会影响其热稳定性。

2.物化性质:尼龙 66 的熔点、玻璃化转变温度等物化性质会影响其分解温度。

3.添加剂:在尼龙 66 加工过程中,往往会加入一些添加剂,如阻燃剂、增强剂等,这些添加剂对尼龙 66 的热稳定性有一定影响。

三、尼龙 66 分解温度的测试方法常用的尼龙 66 分解温度测试方法有以下几种:1.热重分析法(TGA):通过测量尼龙 66 在一定温度下的质量损失,确定其分解温度。

2.差示扫描量热法(DSC):通过测量尼龙 66 在一定温度下的热量变化,判断其分解温度。

3.热失重分析法:通过测量尼龙 66 在一定温度下的失重速率,推算其分解温度。

四、尼龙 66 分解温度在实际应用中的意义了解尼龙 66 的分解温度,有助于我们更好地把握材料的加工工艺和应用范围。

在实际应用中,尼龙 66 的分解温度意义重大:1.保证产品性能:在加工过程中,需要确保尼龙 66 不分解,以保证产品的力学性能和尺寸稳定性。

2.确保产品安全:在使用过程中,需要确保尼龙 66 在高温环境下不分解,避免产生有毒气体,确保产品使用安全。

尼龙66的合成实验报告

尼龙66的合成实验报告

尼龙66的合成实验报告班级:应131-1组别:第七组组员:尼龙66的合成一、实验目的1、学习由环己醇(醇氧化物)制备环己酮(酮氧化物)原理、方法、实验操作。

2、学习由环己酮制备己二酸的原理、方法、实验操作。

3、学习尼龙66的制造工艺,应用,发展前途。

4、熟练准确的掌握有机实验的基本操作。

二、实验原理(一)尼龙66的性质尼龙66名为聚己二酸己二胺,为半透明或不透明的乳白色的热塑性结晶形聚合物,相对密度1.14,熔融温度255℃ ,热分解温度大于370℃ ,连续使用温度大于105℃,因分子主键中含有强极性的酰胺基,而酰胺基间的氢键使分子间的结合力较强,易使结构发生结晶化,具有较高的刚性、韧性(良好的力学性能)和优良的耐磨性、自润滑性、染色性、耐油性及耐化学药品性和自熄性 ,其力学强度较高,耐热性优良,耐寒性好 ,使用温度围宽[1]。

因此,尼龙66为热塑性树脂中发展最早、产量最大的品种,其性能优良,也是化学纤维的优良聚合材料,应用围最广,因此产量逐年增长 ,已位居五大工程塑料之首。

(二)主要有关物质介绍1.环己酮环己酮(cyclohexanone),有机化合物,是六个碳的环酮,室温下为无色油状液体,有类似薄荷油和丙酮的气味,久置颜色变黄。

微溶于水,可与大多数有机溶剂混溶。

不纯物为浅黄色,随着存放时间生成杂质而显色,呈水白色到灰黄色,具有强烈的刺鼻臭味。

易燃,与高热、明火有引起燃烧的危险,与氧化剂接触猛烈反应,与空气混合爆炸极与开链饱和酮相同。

环己酮在工业上被用作溶剂以及一些氧化反应的触发剂,也用于制取己二酸、环己酮树脂、己酰胺以及尼龙。

2.己二酸己二酸(Adipicacid)又称肥酸,是一种白色的结晶体,有骨头烧焦的气味。

微溶于水,易溶于酒精、乙醚等大多数有机溶剂。

当己二酸中的氧气含量高于14%时,易产生静电引起着火。

己二酸是脂肪族二元酸中最有应用价值的二元酸,能发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物,其对眼睛、皮肤、粘膜和上呼吸道有刺激作用。

pa66粒子

pa66粒子

pa66粒子PA66粒子是指聚酰胺66(Nylon 66)材料制成的微小颗粒。

在工业中,PA66粒子被广泛应用于塑料制品、纺织品、电气电子设备和汽车零部件等领域。

本文将探讨PA66粒子的性质、制备方法以及应用领域,并对其未来的发展前景进行展望。

一、PA66粒子的性质PA66粒子是一种高性能工程塑料微粒,具有以下主要性质:1. 优异的物理性能:PA66粒子具有高强度、高硬度和优异的耐磨性,具备良好的耐久性和抗冲击性,能够在恶劣环境中保持稳定的综合性能。

2. 良好的热稳定性:PA66粒子能够在高温环境下保持良好的物理性能,其热变形温度通常在200℃以上,使其在高温应用中具备出色的表现。

3. 优异的化学稳定性:PA66粒子具有较好的耐腐蚀性,对大多数化学品具有良好的抵抗能力,能够适应多种复杂的工作环境。

4. 良好的加工性能:PA66粒子在加工过程中易于熔化,可通过注塑成型、挤出成型等工艺加工成各种形状的制品,并能够满足不同产品对于尺寸和外观的要求。

二、PA66粒子的制备方法PA66粒子的制备主要通过以下两种方法进行:1. 直接聚合法:将己内酰胺和己二酸在合适的条件下反应生成PA66聚合物,再将聚合物通过研磨等机械力作用破碎成粒子。

2. 溶液法:先将PA66溶解于适当的溶剂中,形成高浓度溶液,然后通过快速蒸发或喷雾干燥等方法使溶液中的PA66析出成粒子。

三、PA66粒子的应用领域由于其优异的性能,PA66粒子在各行业中得到了广泛应用,主要包括以下几个领域:1. 塑料制品:PA66粒子被广泛应用于塑料制品制造中,如汽车零部件、电子产品外壳、工业设备配件等,其高强度和耐磨性使得制品具备较好的机械性能和寿命。

2. 纺织品:PA66粒子能够用于制作各种功能性纤维和织物,如运动服、绝缘材料和劳动保护用品等,其独特的性能为纺织品赋予了抗菌、阻燃和防静电等功能。

3. 电气电子设备:PA66粒子在电气电子设备制造中具有广泛应用,用于制作连接器、绝缘件、线束等,其高温稳定性和耐化学性能确保设备在复杂的工作环境下安全可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尼龙66的基本性质
热性质
(1)熔点(Tm)
熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。

通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。

实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来:
尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。

如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。

接近理论熔解温度259℃。

(2)玻璃化温度(Tg)
高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。

在这一温度附近,模量、振动频率、介电常数等也开始发生变化。

尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。

Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ]。

结晶和结晶度
(1)结晶构造
Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]。

Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73。

从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。

相邻的分子以氢键连成平面的片状,其模型如图01-68所示。

表01-68尼龙-66稳定晶形的晶格常数
晶体 a b c(纤维轴) αβγ
α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm48½° 77°63½°
计算密度=1.24g/cm3
图01-44尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ]
线条:链状分子;○:氧原子
从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。

对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。

(2)球晶
熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶。

球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。

球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ]。

尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ]。

球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。

(3)结晶度
一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。

在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质。

结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便。

分子量和分子量分布
综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差。

已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行。

热分解和水解反应
与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化。

当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。

其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关。

在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等。

在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。

在有氧和水等存在时,尼龙-66在200℃就显示出明显的分解倾向。

在有氧存在时,加热还会引起分子链之间的交联,如下式所示[107]:
尼龙-66对室温水和沸水是稳定的,但在高温尤其是在熔融状态下则会发生水解。

另外,尼龙-66在碱性水溶液中也很稳定,即使在10%的NaOH溶液中于85℃处理16小时也观察不到明显的变化。

但在酸性水溶液中容易发生水解。

尼龙6与尼龙66
* 结构:尼龙6为聚己内酰胺,而尼龙66为聚己二酸己二胺。

尼龙66比尼龙6要硬12%,而理论上说,硬度越高,纤维的脆性越大,从而越容易断裂。

但在地毯使用中这点微小的差别是无法分别的。

* 清洗性及防污性:影响这两种性能的是是纤维的截面形状及后道的防污处理。

而纤维本身的强度及硬度对清洗及防污性影响很小。

* 熔点及弹性:尼龙6的熔点为220C而尼龙66的熔点为260C。

但对地毯的使用温度条件而言,这并不是一个差别。

而较低的熔点使得尼龙6与尼龙66相比具有更好的回弹性,抗疲劳性及热稳定性。

* 色牢度:色牢度并不是尼龙的一个特性,是尼龙中的染料而不是尼龙本身在光照下褪色。

* 耐磨性及抗尘性:美国Clemson大学曾在Tampa国际机场分别用巴斯夫Zeftron500尼龙6地毯和杜邦Antron XL尼龙66地毯进行了一个长达两年半的实验。

地毯处于人流量极高的状态下,结果表明:巴斯夫Zeftron500尼龙在颜色保持性及绒头耐磨性方面要稍好于杜邦Antron XL。

两种纱线的抗尘性能没有差别。

v。

相关文档
最新文档