北师大版数学高一必修1 第二章2.1 函数概念 课时作业

合集下载

2024-2025年北师大版数学选择性必修第一册1.1.1-1.1.2直线与直线的方程(带答案)

2024-2025年北师大版数学选择性必修第一册1.1.1-1.1.2直线与直线的方程(带答案)

第一部分课时作业 第一章 直线与圆§1 直线与直线的方程1.1 一次函数的图象与直线的方程 1.2 直线的倾斜角、斜率及其关系必备知识基础练知识点一 直线的倾斜角与斜率1.直线x =1的倾斜角和斜率分别是( ) A .45°,1 B .135°,-1 C .90°,不存在 D .180°,不存在2.若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60°C .30°或150°D .60°或120°3.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 24.若两直线的斜率互为相反数,则它们的倾斜角的关系是________.知识点二 直线的斜率公式5.已知直线l 经过点A (0,-1),B (1,1),则直线l 的斜率是( ) A .2 B .-2C .12D .-126.(1)如图,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求l 1,l 2的斜率;(2)求经过两点A (a ,2),B (3,6)的直线的斜率.知识点三 斜率公式的应用7.若点P (x ,y )在函数y =2x +1(-2≤x ≤2)的图象上运动,则yx的取值范围是( )A .⎣⎡⎭⎫52,+∞B .⎝⎛⎦⎤-∞,32C .⎣⎡⎦⎤32,52D .⎝⎛⎦⎤-∞,32 ∪⎣⎡⎭⎫52,+∞ 8.设点A (m ,-m +3),B (2,m -1),C (-1,4),若直线AC 的斜率等于直线BC 的斜率的3倍,则实数m 的值为________.9.若A (2,2),B (a ,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.关键能力综合练一、选择题1.[多选题]下列命题中,正确的是( ) A .任意一条直线都有唯一的倾斜角B .一条直线的倾斜角可以是-π3C .倾斜角为0的直线有无数条D .若直线的倾斜角为α,则sin α∈(0,1)2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°3.以下两点确定的直线的斜率不存在的是( ) A .(4,2)与(-4,1) B .(0,3)与(3,0) C .(3,-1)与(2,-1) D .(-2,2)与(-2,5)4.已知直线经过点A (a ,4),B (2,-a ),且斜率为4,则a 的值为( )A .-6B .-145C .45D .45.[易错题]直线l 经过点A (1,2),与x 轴交点的横坐标的取值范围是(-3,3),则其斜率的取值范围是( )A .⎝⎛⎭⎫-1,15 B .(-∞,-1)∪⎝⎛⎭⎫12,+∞ C .(-∞,-1)∪⎝⎛⎭⎫15,+∞ D .⎝⎛⎭⎫-∞,12 ∪(1,+∞) 二、填空题6.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率的取值范围是________.7.已知斜率为12的直线经过A (3,5),B (x ,-1),C (7,y )三点,则x ,y 的值分别为________.8.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为________.三、解答题9.[探究题]已知f (x )=log 2(x +1),且a >b >c >0,试用图示法比较f (a )a ,f (b )b ,f (c )c的大小关系.学科素养升级练1.已知点A (2,-3),B (-3,-2),直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率k 的取值范围是________.2.[学科素养——数学运算]已知一条光线从点A (-1,3)出发,射在x 轴上又反射出去,反射光线经过点B (2,7),求x 轴上光照点的坐标.§1 直线与直线的方程1.1 一次函数的图象与直线的方程 1.2 直线的倾斜角、斜率及其关系必备知识基础练1.解析:∵直线x =1与y 轴平行,∴倾斜角为90°,斜率不存在. 答案:C2.解析:如图,直线l 有两种情况,故l 的倾斜角为60°或120°.答案:D3.解析:由题图可知,直线l 1的倾斜角为钝角,所以k 1<0;直线l 2与直线l 3的倾斜角为锐角,且直线l 2的倾斜角较大,所以k 2>k 3>0,所以k 2>k 3>k 1.答案:D4.解析:两直线的斜率互为相反数,则它们的倾斜角互补. 答案:互补5.解析:因为直线l 经过点A (0,-1),B (1,1),所以直线l 的斜率为1-(-1)1-0 =2.故选A.答案:A6.解析:(1)l 1的斜率k 1=tan α1=tan 30°=33. ∵l 2的倾斜角α2=90°+30°=120°,∴l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=-3 . (2)当a =3时,斜率不存在; 当a ≠3时,直线的斜率k =43-a .7.解析:已知函数y =2x +1(-2≤x ≤2)的图象是一条线段,设为AB ,其中A (2,5),B (-2,-3).yx 的几何意义是线段AB 上的任意一点P (x ,y )与坐标原点O (0,0)连线的斜率,易得k OA =52 ,k OB =32 ,根据图象可知,yx的取值范围是⎝⎛⎦⎤-∞,32 ∪⎣⎡⎭⎫52,+∞ . 答案:D8.解析:依题意知直线AC 的斜率存在,则m ≠-1,由k AC =3k BC 得-m +3-4m -(-1) =3×m -1-42-(-1),所以m =4. 答案:49.解析:由题意可知直线AB ,AC 的斜率存在,∴a ≠2.由k AB =k AC 得2-02-a =2-b2-0,即a +b =12 ab ,又ab ≠0,∴1a +1b =12.关键能力综合练1.解析:任意一条直线都有唯一的倾斜角,倾斜角α的范围为[0,π),故sin α∈[0,1],倾斜角为0的直线有无数条,因此A 正确,B 错误,C 正确,D 错误.故选AC.答案:AC 2.解析:由倾斜角的取值范围知,只有当0°≤α+45°<180°(0°≤α<180°),即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°(如图).答案:D3.解析:两点(-2,2),(-2,5)的横坐标相同,因此过此两点的直线斜率不存在. 答案:D4.解析:∵A (a ,4),B (2,-a ),且斜率为4,∴k AB =-a -42-a =4,解得a =4.答案:D5.解析:过定点A 的直线经过点B (3,0)时,直线l 与x 轴交点的横坐标为3,此时k =2-01-3=-1;过定点A 的直线经过点C (-3,0)时,直线l 与x 轴交点的横坐标为-3,此时k =2-01+3 =12 .数形结合(如图所示)可知满足条件的直线l 的斜率的取值范围为(-∞,-1)∪⎝⎛⎭⎫12,+∞ .答案:B6.解析:如图,当直线l 在l 1位置时,k =tan 0°=0;当直线l 在l 2位置时,k =2-01-0=2,故直线l 的斜率的取值范围是[0,2].答案:[0,2]7.解析:由题意可知k AB =k AC =12 ,即5+13-x =y -57-3 =12 ,解得x =-9,y =7.答案:-9 78.解析:由题意知k P A =-1.设x 轴上点P 1(m ,0),y 轴上点P 2(0,n )满足题意.由0-2m -1=n -20-1=-1,得m =n =3.所以点P 的坐标为(3,0)或(0,3). 答案:(3,0)或(0,3) 9.解析:f (x )x 表示经过点O (0,0)和点A (x ,f (x ))的直线的斜率,所以我们可以赋予f (a )a ,f (b )b ,f (c )c几何意义:表示3个斜率.作函数f (x )=log 2(x +1)的图象如图所示. 因为a >b >c >0,在函数图象上找到对应点(a ,f (a )),(b ,f (b )),(c ,f (c )),将这三点与原点相连,可得f (c )c >f (b )b >f (a )a.学科素养升级练1.解析:如图所示,过点P 作直线PC ⊥x 轴交线段AB 于点C ,作出直线P A ,PB .①直线l 与线段AB 的交点在线段AC (除去点C )上时,直线l 的倾斜角为钝角,斜率的范围是k ≤k P A .②直线l 与线段AB 的交点在线段BC (除去点C )上时,直线l 的倾斜角为锐角,斜率的范围是k ≥k PB .因为k P A =-3-12-1 =-4,k PB =-2-1-3-1 =34 ,所以直线l 的斜率k 满足k ≥34 或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞2.解析:设点A 关于x 轴的对称点为A ′,则A ′(-1,-3),连接A ′B ,与x 轴交于点C ,则点C 即为光照点.不妨设C (a ,0),由题意可知A ′,B ,C 三点共线,∴k A ′C =k BC ,即0-(-3)a -(-1)=0-7a -2 ,解得a =-110 .∴x 轴上光照点的坐标为⎝⎛⎭⎫-110,0 .。

高中数学第二章函数 函数概念学案含解析北师大版必修1

高中数学第二章函数 函数概念学案含解析北师大版必修1

§2对函数的进一步认识2.1函数概念知识点一函数的有关概念[填一填]1.定义2.相关名称(1)自变量是x.(2)函数的定义域是集合A.(3)函数的值域是集合B.3.函数的记法集合A上的函数可记作:f:A→B或y=f(x),x∈A.[答一答]1.任何两个集合之间都可以建立函数关系吗?提示:不是.首先这两个集合必须为数集,其次满足对一个集合中的任意一个数x,在另一个集合中都有唯一确定的数与之对应.2.对于一个函数y=f(x),在定义域内任取一个x值,有几个函数值与其对应?提示:有唯一确定的一个函数值与其对应.3.f(x)与f(a)的区别与联系是什么?提示:当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f(a)是f(x)的一个特殊值.4.如何理解函数的对应法则?提示:对应法则指的是自变量与因变量之间的存在关系.知识点二区间及有关概念[填一填]1.区间的定义条件:a<b(a,b为实数).结论:区间闭区间开区间左闭右开区间左开右闭区间符号[a,b](a,b)[a,b)(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)5.数集都能用区间表示吗?提示:不能.连续不间断数集可以用区间表示.不连续数集不能用区间表示.6.“∞”是一个数吗?提示:“∞”不是一个数,它指的是“无穷大”.7.区间之间可以像集合之间那样进行“交、并、补”运算吗?若A=(1,+∞),B=(-∞,2],A∩B如何表示?提示:可以运算.A∩B=(1,2].1.对函数概念的三点说明(1)函数必须是建立在非空数集上的一个概念.若自变量的取值为空集,则这时函数是不存在的.(2)根据函数的概念,两个变量之间是否具有函数关系需要检验:定义域和对应法则是否给出;在对应法则之下每一个x是否只与唯一的y对应.(3)由于函数的值域被函数的定义域和对应法则完全确定,这样确定一个函数就只需要函数的定义域和对应法则,从而判定两个函数是否为同一个函数只需看其定义域和对应法则是否相同即可.2.对函数符号y=f(x)的理解在这个函数符号y=f(x)中,x是自变量,f表示的是对应法则,它可以看作是对x施行的某种运算法则,可以是一个代数式、也可以是一个表格,还可以是一个图像.3.f(x)与f(a)的区别与联系当x和a都表示自变量时,f(x)与f(a)为同一个函数,但自变量表示不同.f(x)表示以x为自变量的函数.f(a)表示以a为自变量的函数.当x表示自变量,a表示常量时,(1)区别:f(a)是当x=a时函数f(x)的值,是一个常量.而f(x)是自变量x的函数,一般情况下它是一个变量.(2)联系:f (a )是f (x )的一个特殊值. 4.对区间的四点说明(1)区间表示的就是一个集合,只是一个特殊的集合——非空数集. (2)区间的左端点对应的值一定比右端点对应的值小.(3)区间的端点在区间内则写成闭的,如果不在区间内则写成开的.(4)在数轴上表示区间时,用实心的点表示闭区间的端点,用空心点表示开区间的端点.类型一 相同函数的判断【例1】 下列各组函数是否表示同一个函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=|x -1|与g (x )=⎩⎪⎨⎪⎧x -1 (x ≥1),1-x (x <1);(4)f (n )=2n -1与g (n )=2n +1(n ∈Z ); (5)f (x )=x 2-2x 与g (t )=t 2-2t .【思路探究】 根据解析式判断两个函数f (x )和g (x )是否是同一个函数的步骤是:①先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相同,如果定义域相同,再执行下一步;②化简函数的解析式,如果化简后的函数解析式相同,那么它们相同,否则它们不相同.【解】 (1)g (x )=|2x +1|,f (x )与g (x )的对应关系不同,因此是不同的函数. (2)f (x )=x -1(x ≠0),f (x )与g (x )的定义域不同,因此是不同的函数.(3)f (x )=⎩⎪⎨⎪⎧x -1 (x ≥1)1-x (x <1),f (x )与g (x )的定义域相同,对应关系相同,因此是相同的函数.(4)f (n )与g (n )的对应关系不同,因此是不同的函数.(5)f (x )与g (t )的定义域相同,对应关系相同,自变量用不同字母表示,仍为同一函数. 规律方法 函数概念含有三个要素,即定义域A ,值域C 和对应关系f ,其中核心是对应关系f ,它是函数关系的本质特征.只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数.换言之就是:(1)定义域不同,两个函数也就不同. (2)对应关系不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系.(1)下列每组函数是同一函数的是( B ) A .f (x )=x -1,g (x )=(x -1)2B .f (x )=|x -3|,g (x )=(x -3)2C .f (x )=x 2-4x -2,g (x )=x +2D .f (x )=(x -1)(x -3),g (x )=x -1·x -3 (2)下列每组中两个函数是同一函数的组数为3. ①f (x )=x 2+1和f (v )=v 2+1 ②y =1-x 2|x +2|和y =1-x 2x +2③y =x 和y =x 3+x x 2+1解析:①中对应法则相同,定义域相同,只是表示自变量的字母不同,所以是同一函数. ②中定义域相同,化简后对应法则相同,所以是同一函数. ③化简后对应法则相同,定义域也都是R ,所以是同一函数. 类型二 求函数的定义域 【例2】 求下列函数的定义域. (1)f (x )=4-xx +1; (2)y =-x2x 2-3x -2;(3)f (x )=2x +3-12-x +1x; (4)y =31-1-x.【思路探究】 若一个函数是由两个或两个以上的数学式子的和、差、积、商构成的,则定义域是使各部分有意义的自变量的取值集合的交集.【解】 (1)由已知得⎩⎪⎨⎪⎧4-x ≥0,x +1≠0,解得x ≤4且x ≠-1.所求定义域为{x |x ≤4且x ≠-1}.(2)由已知得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12.所求定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (3)由已知得⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2且x ≠0.所求定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2且x ≠0.(4)由已知得⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.规律方法 函数y =f (x )以解析式的形式给出时,函数的定义域就是使这个解析式有意义的自变量的取值范围,具体来说,常有以下几种情况:(1)f (x )为整式型函数时,定义域为R ;(2)f (x )为分式型函数时,定义域为使分母不为零的实数的集合; (3)f (x )为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4)函数y =x 0中的x 不为0;(5)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合,即列出不等式组求各不等式解集的交集.求下列函数的定义域: (1)f (x )=1x -2; (2)f (x )=2x +6; (3)f (x )=1-x +15+x ;(4)f (x )=4-x 22+x.解:(1)因为使式子1x -2有意义的实数的集合为{x |x ≠2},所以函数f (x )=1x -2的定义域为{x |x ≠2}.(2)因为使式子2x +6有意义的实数的集合为{x |x ≥-3},所以函数f (x )=2x +6的定义域为{x |x ≥-3}.(3)因为使式子1-x 有意义的实数的集合为{x |x ≤1},使式子15+x有意义的实数的集合为{x |x ≠-5},所以函数f (x )=1-x +15+x的定义域为{x |x ≤1,且x ≠-5}.(4)因为使式子4-x 22+x 有意义的实数的集合为{x |x ≠-2},所以函数f (x )=4-x 22+x 的定义域为{x |x ≠-2}.类型三 求函数的值域 【例3】 求下列函数的值域: (1)y =12x 2-1,x ∈{-1,0,1,2,3,4};(2)y =3+x 4-x ;(3)y =2x 2-4x +3; (4)y =1-x 21+x 2.【思路探究】 求函数的值域就是通过函数定义域中x 的取值,根据对应关系确定y 的取值.【解】 (1)(观察法)将x =-1,0,1,2,3,4分别代入y =12x 2-1,得y =-12,-1,-12,1,72,7.∴此函数的值域为⎩⎨⎧⎭⎬⎫-1,-12,1,72,7.(2)方法1(分离常数法):y =3+x 4-x =-(4-x )+74-x =-1+74-x. ∵74-x≠0,∴y ≠-1,∴此函数的值域为{y |y ≠-1}. 方法2(反解法):∵y =3+x4-x ,∴4y -xy =x +3,∴x =4y -3y +1,y ≠-1,∴此函数的值域为{y |y ≠-1}.(3)(配方法)∵2x 2-4x +3=2(x -1)2+1≥1, ∴y =2x 2-4x +3≥1=1, ∴此函数的值域为[1,+∞).(4)(分离常数法)∵y =1-x 21+x 2=-1+21+x 2,而该函数的定义域为R , ∴1+x 2≥1,∴0<21+x 2≤2,∴-1<-1+21+x 2≤1,∴此函数的值域为(-1,1].规律方法 求函数的值域时,一定要将最终的结果表示成集合或者区间的形式.在用列举法表示函数的值域时,如(1),要注意相同的元素归入一个集合时,只能算作一个.(1)如果f (x )=x 2-x -6,则f (5)=14. (2)函数y =8x 2(1≤x ≤2)的值域为[2,8].(3)函数y =2x 3x -4的值域是(-∞,23)∪(23,+∞).解析:(1)由f (x )=x 2-x -6得f (5)=25-5-6=14. (2)因为1≤x ≤2,所以1≤x 2≤4,14≤1x 2≤1,故2≤8x2≤8.(3)y =2x 3x -4=23(3x -4)+833x -4=23+83(3x -4),因为83(3x -4)恒不为零,而且可以取到其他的所有实数,所以y ≠23.——易错误区—— 忽视函数的定义域导致的错误【例4】 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )【错解】 选A 或选D.【正解】 B 选项A 中,在集合M 中,当x >0时的元素在N 中没有数与之对应①,不符合函数的定义; 选项C 中,一个变量x 可能对应着两个y 的值,也不符合函数的定义; 选项D 中,一个x 对应着一个y ,但N 为值域②,所以集合N 中的每一个数在M 中也必须有数与之对应,但是N 中存在数在M 中没有数与之对应.故选B.【错因分析】 1.忽视①处即函数定义域中的每一个元素都要有元素与之对应; 2.忽视题目给出的条件即②处N 是函数的值域,而导致错选D. 【防范措施】 1.深刻理解函数定义中的条件对于定义域中的每一个数在对应法则之下都要有唯一一个数与之对应,只要在定义域中存在一个数找不到与之对应的元素,或者是一个数对应着两个或以上的数时均不能称为函数.如本例中的A 项在x >0时,没有数与之对应,故不是函数y =f (x )的图像.2.认真审题解题时,除了掌握常规的知识外,还要认真审题,如本例中的集合N 为值域,故也要保证N 中的每个数在M 中也要有数与之对应.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如图所示的四个图形,其中能表示从集合M 到集合N 的函数关系的有( B )A .0个B .1个C .2个D .3个解析:由函数的定义知,M 中任一元素在N 中都有唯一的元素与之对应,即在x 轴上的区间[0,2]内任取一点作y 轴的平行线,与图像只有一个交点即可.由函数定义知①不是,因为集合M 中1<x ≤2时,在N 中无元素与之对应;③中的x =2对应元素y =3∉N ,所以③不是;④中x =1时,在N 中有两个元素与之对应,所以④不是.一、选择题1.下列关于函数与区间的说法正确的是( D ) A .函数定义域必不是空集,但值域可以是空集 B .函数定义域和值域确定后,其对应法则也就确定了 C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应解析:函数的定义域和值域都是非空的数值,故A 错;函数的定义域和对应法则确定后,函数的值域也就确定了,故B 错;数集不一定能用区间表示,故C 错,选D.2.符号y =f (x )表示( B ) A .y 等于f 与x 的积 B .y 是x 的函数C .对于同一个x ,y 的取值可能不同D .f (1)表示当x =1时,y =1解析:符号y =f (x )是一个整体符号,表示y 是x 的函数,则A 错,B 正确;由函数的定义知,对于同一个自变量x 的取值,变量y 有唯一确定的值,则C 错; f (1)表示x =1对应的函数值,则D 错.故选B.3.与y =x 是同一个函数的是( D ) A .y =|x | B .y =x 2 C .y =x 2xD .y =t解析:对于函数y =x 定义域和值域均为R ,而选项A 与B 的值域为[0,+∞),故A 与B 错;对选项C,定义域为{x |x ∈R 且x ≠0},只有D 正确.二、填空题4.函数y =x +1x的定义域为{x |x ≥-1,且x ≠0}. 解析:本题考查函数定义域,要使y =x +1x 有意义,则⎩⎪⎨⎪⎧x +1≥0x ≠0,所以解得x ≥-1且x ≠0,即函数定义域为{x |x ≥-1,且x ≠0},求函数定义域和值域的结果都应写成“解集”形式.本题结果还可表示为[-1,0)∪(0,+∞)等.5.下列函数是同一函数的序号为(3).(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0,-1 x <0;(2)f (x )=x 2与g (x )=3x 3; (3)f (x )=x 2-2x +1与g (t )=(t -1)2.解析:对于(1)来说,f (x )的定义域中不含有0,而g (x )的定义域为R ,定义域不同. 对于(2)来说,两个函数的定义域都为R ,但f (x )=|x |,而g (x )=x ,解析式不同. 故(1)(2)都不是同一函数.而对于(3)来说,尽管两个函数的自变量一个用x 表示,另一个用t 表示,但它们定义域相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者是同一函数.三、解答题6.已知函数f (x )=x 2+x -1,求 (1)f (2); (2)f (1x+1);(3)若f (x )=5,求x 的值. 解:(1)f (2)=4+2-1=5.(2)f (1x +1)=(1x +1)2+(1x +1)-1=1x 2+3x +1.(3)f (x )=5,即x 2+x -1=5. 由x 2+x -6=0得x =2或x =-3.。

2022_2023学年新教材高中数学课时作业一集合的概念与表示北师大版必修第一册

2022_2023学年新教材高中数学课时作业一集合的概念与表示北师大版必修第一册

课时作业(一) 集合的概念与表示[练基础]1.下列关系中正确的是( )A .0∈∅ B.2∈QC .0∈ND .1∈{(0,1)}2.设集合A ={-1,1,2},集合B ={x |x ∈A 且2-x ∉A },则B =( )A .{-1}B .{2}C .{-1,2}D .{1,2}3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .04.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }B .不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R5.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A ,B 相等,则实数a =________.6.若集合A ={x |ax 2+ax -1=0}只有一个元素,则a =________. [提能力]7.[多选题]若以集合中的三个元素为边可构成一个三角形,则该三角形可能是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8.已知a ,b 均为非零实数,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =|a |a +b |b |+ab |ab |,则集合A 中元素的个数为( )A .2B .3C .4D .59.已知集合A ={x |ax 2-3x +2=0}至多有一个元素,则a 的取值范围是________.10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.课时作业(一) 集合的概念与表示1.解析:A 中,空集是不含有任何元素的集合,所以A 不正确;由2是无理数,所以2∈Q 不正确;根据元素与集合的关系,1∈{(0,1)}不正确;又由0是自然数,所以0∈N ,故选C.答案:C2.解析:当x =-1时,2-(-1)=3∉A ;当x =1时,2-1=1∈A ;当x =2时,2-2=0∉A.∴B ={-1,2}.答案:C3.解析:集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,a =2∈A,6-a =4∈A , 所以a =2,或者a =4∈A,6-a =2∈A ,所以a =4,综上所述,a =2或4.故选B.答案:B4.解析:选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{ }”与“全体”意思重复. 答案:D5.解析:由集合相等的概念得⎩⎪⎨⎪⎧ a2-1=0,a2-3a =-2,解得a =1.6.解析:由题意知⎩⎪⎨⎪⎧ a ≠0,Δ=0即⎩⎪⎨⎪⎧ a ≠0,a2+4a =0.解得a =-4.答案:-47.解析:若以集合中的三个元素为边可构成一个三角形,则由集合元素的互异性可得,三个元素互不相等,即三边都不相等.故选ABC.答案:ABC8.解析:当a>0,b>0时,x =1+1+1=3;当a>0,b<0时,x =1-1-1=-1;当a<0,b>0时,x =-1+1-1=-1;当a<0,b<0时,x =-1-1+1=-1.故x 的所有值组成的集合为{-1,3}.答案:A9.解析:当a =0时,-3x +2=0,即x =23,A =⎩⎨⎧⎭⎬⎫23,符合题意;当a ≠0时,ax2-3x +2=0至多有一个解,所以Δ=9-8a ≤0,解得a ≥98.综上a 的取值范围为:a ≥98或a =0.答案:a ≥98或a =010.证明:(1)若a ∈A ,则11-a ∈A ,∵2∈A ,∴11-2=-1∈A ,∵-1∈A ,∴11--1=12∈A ,∵12∈A ,∴11-12=2∈A ,∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a ,即a2-a +1=0,方程无解,∴a ≠11-a ,∴集合A 不可能是单元素集.。

高中数学课时作业(北师大版选修第一册)课时作业(一)

高中数学课时作业(北师大版选修第一册)课时作业(一)

课时作业(一) 一次函数的图象与直线的方程 直线的倾斜角、斜率及其关系[练基础]1.如图所示,直线l 与y 轴的夹角为45°,则l 的倾斜角为( )A .45°B .135°C .0°D .无法计算2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( )A .5B .8C.132D .7 3.经过第二、四象限,则直线l 的倾斜角α的范围是( )A .0°≤α<90°B .90°≤α<180°C .90°<α<180°D .0°<α<180°4.若直线过A (1,2),B (4,2+3),则此直线倾斜角为( )A .30°B .45°C .60°D .90°5.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( )A.12 B .-12C .-2D .26.[多选题]下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .一条直线的倾斜角为-30°C .若直线的倾斜角为α,则sin α≥0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α7.经过A (1,3),B (-1,0)两点的直线的方向向量为(1,k ),则k =________.8.经过A (m,3),B (1,2)两点的直线的倾斜角α的取值范围是________.(其中m ≥1)9.已知某直线l 的倾斜角α=45°,又P 1(2,y 1),P 2(x 2,5),P 3(3,1)是此直线上的三点,则x 2=________,y 1=________.10.如图所示,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.[提能力]11.[多选题]已知直线kx +y +2=0和以M (-2,1),N (3,2)为端点的线段相交,则实数k 的值可以为( )A .-2B .-1C .1D .212.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率k 的最大值是( )A .0B .1C.12D .2 13.在直角坐标系xOy 中,已知点A (0,-1),B (2,0),过点A 的直线交x 轴于点C (a,0),若直线AC 的倾斜角是直线AB 倾斜角的2倍,则a =________.14.已知P 是函数f (x )=lg x (x ∈[1,10])图象上一点,点Q 的坐标为(-1,4),则直线PQ 的斜率k 的取值范围为________.15.已知点A (1,2),在坐标轴上求一点P 使直线P A 的倾斜角为60°.[培优生]16.已知x ,y 满足2x +y =8,当2≤x ≤3时,y +1x -1的取值范围是________.。

(完整版)北师大版高中数学课本目录

(完整版)北师大版高中数学课本目录

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)

北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(含解析)北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(原卷版)角一、选择题1. 顶点在原点,焦点为F的抛物线的标准方程是(C)A.y2=xB.y2=3xC.y2=6xD.y2=-6x2. 过抛物线y2=16x的焦点的最短弦长为(A)A.16B.8C.32D.4弦长即通径长,故长度为2p=16.3. 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(B)A. B.2C. D.34. 已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF的中点坐标是(2,2),则p的值为(D)A.1B.2C.3D.4=2×2,解得p=4.5. O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(C)A.2B.2C.2D.46. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点(k,-2)与F点的距离为4,则k的值是(B)A.4B.4或-4C.-2D.2或-27. 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是(A)A.B.C.D.8. (多选题)对于抛物线y2=10x,下列结论正确的是(AD)A.焦点在x轴上B.抛物线上横坐标为1的点到焦点的距离等于6C.抛物线的通径长为5D.抛物线的准线方程为x=-二、填空题9. 已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9. 则该抛物线的方程为y2=8x;此抛物线的准线方程为x=-2.10. 抛物线C:y=ax2的准线方程为y=-,则其焦点坐标为,实数a 的值为1 .11. 若抛物线y2=mx与椭圆=1有一个共同的焦点,则m=±8.三、解答题12. 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.13. 设抛物线C:y2=4x,O为C的顶点,F为C的焦点,过F的直线l与C相交于A,B两点.(1)设l的斜率为1,求|AB|的大小;(2)求证:是一个定值. +14. 已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(B)A.x=1B.x=-1C.x=2D.x=-215. 已知平行于x轴的直线l交抛物线x2=4y于A,B两点,且|AB|=8,则l的方程为y=4.16. 如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB 的斜率.北师大高中数学选择性必修第一册第二章课时作业19抛物线的简单几何性质(解析版)一、选择题1. 顶点在原点,焦点为F的抛物线的标准方程是(C)A.y2=xB.y2=3xC.y2=6xD.y2=-6x解析:顶点在原点,焦点为F的抛物线的标准方程可设为y2=2px(p >0),由题意知,故p=3. 因此,所求抛物线的标准方程为y2=6x.2. 过抛物线y2=16x的焦点的最短弦长为(A)A.16B.8C.32D.4解析:过抛物线焦点的最短弦长即通径长,故长度为2p=16.3. 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(B)A. B.2C. D.3解析:由题可知l2:x=-1是抛物线y2=4x的准线,设抛物线的焦点为F(1,0),则动点P到l2的距离等于|PF|,则动点P到直线l1和直线l2的距离之和的最小值,即焦点F到直线l1:4x-3y+6=0的距离,所以最小值是=2.4. 已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,MF 的中点坐标是(2,2),则p的值为(D)A.1B.2C.3D.4解析:抛物线C:y2=2px(p>0)的焦点为F,设M,由中点坐标公式可知=2×2,y1+0=2×2,解得p=4.5. O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(C)A.2B.2C.2D.4解析:设点P的坐标为(x0,y0),则由抛物线的焦半径公式得|PF|=x0+=4,x0=3,代入抛物线的方程,得|y0|=2,S△POF=|y0|·|OF|=2,故选C.6. 设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点(k,-2)与F点的距离为4,则k的值是(B)A.4B.4或-4C.-2D.2或-2解析:由题意,设抛物线的标准方程为x2=-2py,由题意,得+2=4,△p=4,x2=-8y. 又点(k,-2)在抛物线上,△k2=16,k=±4. 故选B.7. 如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是(A)A.B.C.D.解析:由图形可知,△BCF与△ACF有公共的顶点F,且A,B,C三点共线,易知△BCF与△ACF的面积之比就等于. 由抛物线方程知其焦点F(1,0),作准线l,则l的方程为x=-1. △点A,B在抛物线上,过A,B分别作AK,BH与准线垂直,垂足分别为点K,H,且与y轴分别交于点N,M. 由抛物线定义,得|BM|=|BF|-1,|AN|=|AF|-1. 在△CAN中,BM△AN,△. 故选A.8. (多选题)对于抛物线y2=10x,下列结论正确的是(AD)A.焦点在x轴上B.抛物线上横坐标为1的点到焦点的距离等于6C.抛物线的通径长为5D.抛物线的准线方程为x=-解析:对于A,y2=10x的焦点为,故A正确;对于B,准线方程为x=-,抛物线上横坐标为1的点到焦点的距离为1+,故B错误;对于C,通径长为2p=10. 故C错误;对于D,准线方程为x=-,故D正确. 故选AD.二、填空题9. 已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9. 则该抛物线的方程为y2=8x;此抛物线的准线方程为x=-2.解析:易知直线AB的方程是y=2,与y2=2px联立,消去y得4x2-5px+p2=0,则x1+x2=①. 由焦点弦长公式得|AB|=x1+x2+p =9 ②. 由①②解得p=4,从而抛物线的方程是y2=8x. 抛物线的准线方程为x=-2.10. 抛物线C:y=ax2的准线方程为y=-,则其焦点坐标为,实数a 的值为1.解析:由题意得焦点坐标为,抛物线C的方程可化为x2=y,由题意得-,解得a=1.11. 若抛物线y2=mx与椭圆=1有一个共同的焦点,则m=±8.解析:椭圆焦点为(-2,0)和(2,0),因为抛物线与椭圆有一个共同焦点,故m=±8.三、解答题12. 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.解:设抛物线方程为y2=-2px(p>0),则准线方程为x=,由抛物线定义,M点到焦点的距离等于M点到准线的距离,有-(-3)=5,所以p=4.所求抛物线方程为y2=-8x,又因为点M(-3,m)在抛物线上,故m2=(-8)×(-3),所以m=±2.13. 设抛物线C:y2=4x,O为C的顶点,F为C的焦点,过F的直线l与C相交于A,B两点.(1)设l的斜率为1,求|AB|的大小;(2)求证:是一个定值.解:(1)△焦点坐标为F(1,0),△直线l的方程为y=x-1,与y2=4x联立消去y可得x2-6x+1=0.设A(x1,y1),B(x2,y2),则x1+x2=6,从而焦点弦长|AB|=x1+x2+p=6+2=8.(2)证明:设直线l的方程为x=ky+1,与y2=4x联立消去x可得y2-4ky-4=0. 设A(xA,yA),B(xB,yB),则yA+yB=4k,yAyB=-4.△xAxB=(kyA+1)(kyB+1)=k2yAyB+k(yA+yB)+1=-4k2+4k2+1=1.△=xAxB+yAyB=1-4=-3.即是一个定值.14. 已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(B)A.x=1B.x=-1C.x=2D.x=-2解析:设A(x1,y1),B(x2,y2),代入抛物线方程得①-②得,(y1+y2)(y1-y2)=2p(x1-x2).又△y1+y2=4,△=k=1,△p=2. △所求抛物线的准线方程为x=-1. 故选B.15. 已知平行于x轴的直线l交抛物线x2=4y于A,B两点,且|AB|=8,则l的方程为y=4.解析:如图,|AB|=8 xB=4,将xB=4代入x2=4y得yB=4,则直线l的方程为y=4.16. 如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y2=2px(p>0).因为点P(1,2)在抛物线上,所以22=2p×1,解得p=2.故所求抛物线的方程是y2=4x,准线方程是x=-1.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.则kPA=(x1≠1),kPB=(x2≠1),因为PA与PB的斜率存在且倾斜角互补,所以kPA=-kPB.由A(x1,y1),B(x2,y2)均在抛物线上,得所以,所以y1+2=-(y2+2).所以y1+y2=-4.由①-②得,=4(x1-x2),所以kAB==-1(x1≠x2).。

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2.1函数概念课后篇巩固提升A组基础巩固1.对于函数y=f(x),下列命题正确的个数为()①y是x的函数;②对于不同的x值,y值也不同;③f(a)表示当x=a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示.A.1B.2C.3D.4解析:①③正确.对于②,不同的x值可对应同一个y值,如y=x2;f(x)不一定是函数关系式,也可以用图像或表格等形式来体现.答案:B2.函数f(x)=--的定义域是()A.[2,3)B.(3,+∞)C.[2,3)∪(3,+∞)D.(2,3)∪(3,+∞)解析:由--解得x≥2,且x≠3.故函数f(x)的定义域为[2,3)∪(3,+∞).答案:C3.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=()2B.f(x)=--,g(x)=x+1C.f(x)=|x|,g(x)=D.f(x)=-,g(x)=-解析:对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数.对于B选项,f(x)的定义域为{x|x≠1},g(x)的定义域为R,∴不是同一函数.对于C选项,f(x)的定义域为R,g(x)的定义域为R,且两函数解析式化简后为同一解析式,∴是同一函数.对于D选项,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,-1]∪[1,+∞),∴不是同一函数.故选C.答案:C4.下列式子不能表示函数y=f(x)的是()A.x=y2+1B.y=2x2+1C.x-2y=6D.x=解析:B中,y=2x2+1是二次函数;C中,y=x-3;D中,y=x2,x≥0;A中,y=±-,y不是x的函数.答案:A5.已知f(x)=x2-3x,且f(a)=4,则实数a等于()A.4B.-1C.4或-1D.-4或1解析:由已知可得a2-3a=4,即a2-3a-4=0,解得a=4或a=-1.答案:C6.下表表示y是x解析:∵5<6≤10,∴6对应的函数值是3.答案:37.函数f(x)=x2-2x,x∈{-2,-1,0,1}的值域为.解析:因为f(-2)=(-2)2-(-2)=6,f(-1)=(-1)2-2×(-1)=3,f(0)=02-2×0=0,f(1)=12-2×1=-1,所以f(x)的值域为{6,3,0,-1}.答案:{6,3,0,-1}8.已知函数f(x)=.(1)求f(2);(2)若f(m)=2,求m的值.解:(1)f(2)=.(2)∵f(m)==2,∴m=-3.9.求下列函数的定义域:(1)f(x)=-;(2)f(x)=--+2;(3)f(x)=-.解:(1)当x-|x|≠0,即|x|≠x,也即x<0时,f(x)有意义,故函数f(x)的定义域为(-∞,0).(2)要使函数有意义,应满足--解得1≤x≤4.故函数f(x)的定义域为[1,4].(3)要使函数f(x)有意义,应满足-解得x≤1,且x≠-1.故函数f(x)的定义域为(-∞,-1)∪(-1,1].10.求下列函数的值域:(1)y=1-;(2)y=;(3)f(x)=3-2x,x∈[0,2].解:(1)∵函数的定义域为{x|x≥0},∴≥0.∴1-≤1.∴函数y=1-的值域为(-∞,1].(2)∵y==2-,且其定义域为{x|x≠-1},∴≠0,即y≠2.∴函数y=的值域为{y|y∈R,且y≠2}.(3)∵0≤x≤2,∴0≤2x≤4.∴-1≤3-2x≤3,即-1≤f(x)≤3,故函数f(x)的值域是[-1,3].B组能力提升1.如图所示,可表示函数y=f(x)的图像的是()解析:由函数定义可知D正确.答案:D2.已知g(x)=1-2x,f(g(x))=-(x≠0),则f等于()A.1B.3C.15D.30解析:由已知1-2x=,∴x=,∴f -=15,故选C.答案:C3.若函数y=f(x+2)的定义域为[0,1],则函数y=f(x)的定义域为()A.[2,3]B.[0,1]C.[-2,-1]D.[0,-1]解析:解决此类问题的关键要弄清函数定义域是指x的变化范围,而借助的理论依据是y=f(x)中对应关系f所施加的对象取值是一致的.对于本题函数y=f(x)的定义域其实为函数y=f(x+2)中“x+2”的整体范围,因此可得y=f(x)的定义域为[2,3].答案:A4.导学号85104026(信息题)若一系列函数的关系式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数关系式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个解析:由2x2-1=1,得x=±1;由2x2-1=7,得x=±2.因此当y=2x2-1的定义域为{-2,-1},{-1,2},{-2,1},{1,2},{-2,2,1},{-2,2,-1},{2,-1,1},{-2,-1,1},{-1,1,2,-2}时,函数值域均为{1,7}.答案:B5.函数f(x)=--的值域为.解析:由--解得x=2 018.所以函数的定义域为{2 018}.显然f(2 018)=0+0=0.所以函数的值域为{0}.答案:{0}6.有下列三个命题:①y=|x|,x∈{-2,-1,0,1,2,3},则它的值域是{0,1,4,9};②y=--,则它的值域为R;③y=-,则它的值域为{y|y≥0}.其中正确命题的序号是.解析:对于①,当x=-2,-1,0,1,2,3时,|x|=2,1,0,1,2,3.因此函数的值域为{0,1,2,3}.故①不正确.对于②,∵y=--=x+1(x≠1),∴x=y-1≠1,∴y≠2.即值域为(-∞,2)∪(2,+∞).故②不正确.对于③,∵y=-≥0,∴其值域为[0,+∞),故③正确.答案:③7.已知函数f(x)=x2+x-1.(1)求f(2),f;(2)若f(x)=5,求x的值.解:(1)f(2)=22+2-1=5,f-1=-.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2或x=-3.8.已知函数f(x)=.(1)求f(1),f(2)+f的值;(2)证明:f(x)+f等于定值;(3)求f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f的值.(1)解:f(1)=;f(2)=,f,所以f(2)+f=1.(2)证明:f,所以f(x)+f=1,为定值.(3)解:由(2)知,f(x)+f=1.所以f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2 018)+f=….。

2-1、2-1函数概念

2-1、2-1函数概念

第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
(3)依题意,f(1)=f(3)=3,f(3)=4,即 A 中的每一个元素 在对应关系 f 之下,在 B 中都有唯一元素与之对应,虽然 B 中有很多元素在 A 中无元素与之对应,但依函数的定义,仍 能构成函数.
第二章 ·§1、§2 ·第1课时
第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
(4)f(n)=2n-1 与 g(n)=2n+1(n∈Z); (5)f(x)=x2-2x 与 g(t)=t2-2t. [分析] 对于根式、分式、绝对值式,要先化简再判断,
在化简时要注意等价变形,否则等号不成立.
第二章 ·§1、§2 ·第1课时
第二章 函数
成才之路 ·数学 ·北师大版 · 必修1
重点难点
重点:1.集合观点下的函数概念以及对函数概念的理解和 认识; 2.函数的单调性与最值,函数的奇偶性; 3.以一次、二次函数为载体,学习研究函数的方法. 难点:1.函数及其有关性质及应用; 2.函数的单调性的判定及应用; 3.二次函数的应用.
(1)x2+y2=2;(2) x-1+ y-1=1; (3)y= x-2+ 1-x. [分析] 依据函数的定义来判断.
第二章 ·§1、§2 ·第1课时
成才之路 ·数学 ·北师大版 · 必修1
[解析]
(1)由 x2+y2=2,得 y=± 2-x2,因此由它不能
确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个,即± 1. (2)由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 的值与 之对应,故由它可以确定 y 是 x 的函数.

2014版高中数学复习方略课时提升作业:2.1函数及其表示(北师大版)(北师大版·数学理·通用版)

2014版高中数学复习方略课时提升作业:2.1函数及其表示(北师大版)(北师大版·数学理·通用版)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业(四)一、选择题1.(2012·江西高考)若函数f(x)=则f(f(10))= ( )(A)lg101 (B)2 (C)1 (D)02.(2013·南昌模拟)下列各组函数是同一函数的是( )①f(x)=与g(x)=x;②f(x)=|x|与g(x)=;③f(x)=x0与g(x)=;④f(x)=x2-2x-1与g(t)=t2-2t-1.(A)①②(B)②④(C)②③④(D)①②④3.(2013·宝鸡模拟)图中的图像所表示的函数的解析式为( )(A)y=|x-1|(0≤x≤2)(B)y=-|x-1|(0≤x≤2)(C)y=-|x-1|(0≤x≤2)(D)y=1-|x-1|(0≤x≤2)4.设f(x)=则f(5)的值为( )(A)10 (B)11 (C)12 (D)135.函数f(x)=+lg的定义域是( )(A)(2,4) (B)(3,4)(C)(2,3)∪(3,4] (D)[2,3)∪(3,4)6.(2013·宜春模拟)若f(x)=,则方程f(4x)=x的根是( )(A)(B)-(C)2 (D)-27.已知g(x)=1-2x,f(g(x))=(x≠0),那么f()等于( )(A)15 (B)1 (C)3 (D)308.(2013·合肥模拟)函数f(x)=若f(1)+f(a)=2,则a的所有可能值为( )(A)1 (B)-(C)1,-(D)1,9.已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是( )(A)[0,] (B)[-1,4](C)[-5,5] (D)[-3,7]10.(能力挑战题)已知函数y=f(x)的图像关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为( )(A)f(x)=-(B)f(x)=-(C)f(x)=(D)f(x)=-二、填空题11.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其函数对应关系如表所示:则方程g(f(x))=x的解集为.12.(2013·西安模拟)已知f(x-)=x2+,则f(x)= .13.(2013·安庆模拟)已知函数f(x)=x2-2x+acosπx(a∈R),且f(3)=5,则f(-1)= .14.(能力挑战题)已知f(x)=则不等式x+(x+2)·f(x+2)≤5的解集是.三、解答题15.如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,(1)求f(2),f(3),f(4)的值.(2)求+++…+++的值.答案解析1.【解析】选B.≧f(10)=lg 10=1,≨f(f(10))=f(1)=12+1=2.2.【解析】选C.对于①,两函数的解析式不同,故不是同一函数;②③④定义域相同,解析式可转化为相同解析式,故是同一函数.3.【解析】选B.当0≤x<1时,y=x,当1≤x≤2时,设y=kx+b,由图像知≨≨y=-x+3,综上知y=4.【解析】选B.f(5)=f(f(11))=f(9)=f(f(15))=f(13)=11.【方法技巧】求函数值的四种类型及解法(1)f(g(x))型:遵循先内后外的原则.(2)分段函数型:根据自变量值所在区间对应求值,不确定时要分类讨论.(3)已知函数性质型:对具有奇偶性、周期性、对称性的函数求值,要用好其函数性质,将待求值调节到已知区间上求解.(4)抽象函数型:对于抽象函数求函数值,要用好抽象的函数关系,适当赋值,从而求得待求函数值.5.【解析】选 D.要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).6.【解析】选A.≧f(4x)=x,≨=x(x≠0).化简得4x2-4x+1=0,≨x=.7.【解析】选A.令g(x)=,则1-2x=,x=,f()=f(g())==15.8.【解析】选C.f(1)=e1-1=1,由f(1)+f(a)=2,得f(a)=1.当a≥0时,由f(1)=1知a=1;当-1<a<0时,sin(πa2)=1,则a2=,≨a=-.9.【解析】选A.由-2≤x≤3,得-1≤x+1≤4.由-1≤2x-1≤4,得0≤x≤,故函数y=f(2x-1)的定义域为[0,].10.【思路点拨】函数y=f(x)的图像关于直线x=-1对称,则有f(x)=f(-x-2). 【解析】选D.设x<-2,则-x-2>0.由函数y=f(x)的图像关于x=-1对称,得f(x)=f(-x-2)=,所以f(x)=-.11.【解析】当x=1时,f(x)=2,g(f(x))=2,不合题意;当x=2时,f(x)=3,g(f(x))=1,不合题意;当x=3时,f(x)=1,g(f(x))=3,符合要求,故方程g(f(x))=x的解集为{3}.答案:{3}12.【解析】≧f(x-)=(x-)2+2,≨f(x)=x2+2.答案:x2+213.【解析】≧f(3)=32-2×3+acos3π=3-a=5,≨a=-2,即f(x)=x2-2x-2cosπx,≨f(-1)=(-1)2-2×(-1)-2cos(-π)=5.答案:514.【思路点拨】分x+2≥0和x+2<0两种情况求解.【解析】当x+2≥0,即x≥-2时,f(x+2)=1,则x+x+2≤5,-2≤x≤;当x+2<0,即x<-2时,f(x+2)=-1,则x-x-2≤5,恒成立,即x<-2.综上可知,≨x≤.答案:(-≦,]15.【解析】(1)≧对任意实数x,y,都有f(x+y)=f(x)〃f(y),且f(1)=2,≨f(2)=f(1+1)=f(1)〃f(1)=22=4,f(3)=f(2+1)=f(2)〃f(1)=23=8,f(4)=f(3+1)=f(3)〃f(1)=24=16.(2)由(1)知=2,=2,=2,…,=2.故原式=2×1007=2014.【变式备选】已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.【解析】f(ax+b)=(ax+b)2+4(ax+b)+3=x2+10x+24,a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24,≨得或≨5a-b=2.关闭Word文档返回原板块。

北师大高中数学选择性必修第一册第二章1.2 椭圆的简单几何性质课时作业14椭圆的简单几何性质(含答案

北师大高中数学选择性必修第一册第二章1.2 椭圆的简单几何性质课时作业14椭圆的简单几何性质(含答案

北师大高中数学选择性必修第一册第二章1.2 椭圆的简单几何性质课时作业14椭圆的简单几何性质(含答案)北师大高中数学选择性必修第一册第二章课时作业14椭圆的简单几何性质(原卷版)角一、选择题1. 椭圆=1的离心率为(C)A. B.C. D.2. 椭圆16x2+25y2=400的长轴和短轴的长、离心率分别是(A)A.10,8,B.5,4,C.10,8,D.5,4,3. 已知椭圆=1(a>b>0)与椭圆=1有相同的长轴,椭圆=1(a>b>0)的短轴长与=1的短轴长相等,则(D)A.a2=15,b2=16B.a2=9,b2=25C.a2=25,b2=9或a2=9,b2=25D.a2=25,b2=94. 椭圆=1的焦点坐标是(C)A.(±2,0)B.(±4,0)C.(0,±2)D.(0,±4)5. 椭圆=1(a>b>0)和=k(k>0)具有(C)A.相同的长轴长B.相同的焦点C.相同的离心率D.相同的顶点6. 已知焦点在x轴上的椭圆C:=1的焦距为4,则C的离心率为(C)A. B.C. D.7. 在椭圆=1中,A1,A2分别为椭圆的左、右顶点,F1为左焦点,M是椭圆上的点,△MF1A2面积的最大值为(A)A.16B.32C.16D.328. (多选题)已知椭圆=1(a>b>0)的左、右焦点是F1,F2,P是椭圆上一点,若|PF1|=2|PF2|,则椭圆的离心率可以是(BCD)A. B.C. D.二、填空题9. 椭圆+y2=1的离心率是,焦距是2 .10. 已知椭圆的半短轴长为1,离心率0<e≤,则长轴长的取值范围为(2,4].11. 在平面直角坐标系xOy中,设椭圆=1(a>b>0)的焦距为2C.以点O为圆心,a为半径作圆M. 若过点P作圆M的两条切线互相垂直,则该椭圆的离心率为(2,4].三、解答题12. 求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的3倍,且过点(3,-1);(2)椭圆过点(3,0),离心率e=.13. 如图,已知椭圆上横坐标等于焦点横坐标的点M,其纵坐标等于短半轴长的,求椭圆的离心率.14. 若焦点在x轴上的椭圆C:=1(a>0)的离心率为,则a的值为(C)A.9B.6C.3D.2C.15. 设F1,F2为椭圆C:=1(a>b>0)的两个焦点,点P在C上,e 为C的离心率. 若△PF1F2是等腰直角三角形,则e=或-1;若△PF1F2是等腰钝角三角形,则e的取值范围是(2,4].16. 已知F1,F2是椭圆=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,若=0,椭圆的离心率等于,△AOF2(O为坐标原点)的面积为2,求椭圆的方程.北师大高中数学选择性必修第一册第二章课时作业14椭圆的简单几何性质(解析版)一、选择题1. 椭圆=1的离心率为(C)A. B.C. D.解析:在椭圆=1中,a=4,b=3,c=,因此,该椭圆的离心率为e =. 故选C.2. 椭圆16x2+25y2=400的长轴和短轴的长、离心率分别是(A)A.10,8,B.5,4,C.10,8,D.5,4,解析:把椭圆方程化为标准方程=1,得到a=5,b=4,则c=3,所以长轴和短轴的长分别为10,8,椭圆的离心率e=. 故选A.3. 已知椭圆=1(a>b>0)与椭圆=1有相同的长轴,椭圆=1(a>b>0)的短轴长与=1的短轴长相等,则(D)A.a2=15,b2=16B.a2=9,b2=25C.a2=25,b2=9或a2=9,b2=25D.a2=25,b2=9解析:因为椭圆=1(a>b>0)与椭圆=1有相同的长轴,所以a2=25. 又因为椭圆=1(a>b>0)的短轴长与=1的短轴长相等,所以b2=9. 故选D.4. 椭圆=1的焦点坐标是(C)A.(±2,0)B.(±4,0)C.(0,±2)D.(0,±4)解析:由条件可知a2=10,b2=6,△c2=a2-b2=4,并且焦点在y轴,所以焦点坐标是(0,±2). 故选C.5. 椭圆=1(a>b>0)和=k(k>0)具有(C)A.相同的长轴长B.相同的焦点C.相同的离心率D.相同的顶点解析:椭圆=1的离心率e1==k可化为=1(k>0),其离心率e2=. △e1=e2. 故选C.6. 已知焦点在x轴上的椭圆C:=1的焦距为4,则C的离心率为(C)A. B.C. D.解析:由题得a2-4=4,△a2=8,△|a|=2. 所以椭圆的离心率为e =. 故选C.7. 在椭圆=1中,A1,A2分别为椭圆的左、右顶点,F1为左焦点,M是椭圆上的点,△MF1A2面积的最大值为(A)A.16B.32C.16D.32解析:由题意可知点M为短轴端点时,△MF1A2的面积取最大值,因为椭圆方程为=1,所以a=5,b=4,c=3,即有S=(a+c)×b=×8×4=16. 故选A.8. (多选题)已知椭圆=1(a>b>0)的左、右焦点是F1,F2,P是椭圆上一点,若|PF1|=2|PF2|,则椭圆的离心率可以是(BCD)A. B.C. D.解析:由椭圆的定义,可得|PF1|+|PF2|=2a,又由|PF1|=2|PF2|,解得|PF1|=a,|PF2|=a,又由|PF1|-|PF2|≤|F1F2|,可得a≤2c,所以e=,即椭圆的离心率e的取值范围是. 故选BCD.二、填空题9. 椭圆+y2=1的离心率是,焦距是2.解析:由椭圆方程+y2=1得a=2,b=1,c=,所以椭圆+y2=1的离心率是,椭圆的焦距为2.10. 已知椭圆的半短轴长为1,离心率0<e≤,则长轴长的取值范围为(2,4].解析:△e=,b=1,0<e≤,△.则1<a≤2,△2<2a≤4. 即长轴长的取值范围是(2,4].11. 在平面直角坐标系xOy中,设椭圆=1(a>b>0)的焦距为2C.以点O为圆心,a为半径作圆M. 若过点P作圆M的两条切线互相垂直,则该椭圆的离心率为.解析:设切点为Q,B,如图所示. 切线QP,PB互相垂直,又半径OQ垂直于QP,所以△OPQ为等腰直角三角形,可得,所以e=.三、解答题12. 求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的3倍,且过点(3,-1);(2)椭圆过点(3,0),离心率e=.解:(1)设椭圆的标准方程为=1或=1(a>b>0). 由已知a=3b且椭圆过点(3,-1),△=1或=1,△或故所求椭圆的方程为=1或=1.(2)当椭圆的焦点在x轴上时,由题意知a=3,,△c=.△b2=a2-c2=9-6=3.△椭圆的标准方程为=1. 当椭圆的焦点在y轴上时,由题意知b=3,,△,△a2=27.△椭圆的标准方程为=1.综上,所求椭圆的标准方程为=1或=1.13. 如图,已知椭圆上横坐标等于焦点横坐标的点M,其纵坐标等于短半轴长的,求椭圆的离心率.解:解法一:设焦点坐标为F1(-c,0),F2(c,0),依题意设M点坐标为. 在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2,即4c2+b2=|MF1|2,而|MF1|+|MF2|=b=2a,整理,得3c2=3a2-2aB.又c2=a2-b2,所以3b=2a,所以,所以e2==1-,所以e=.解法二:设M,代入椭圆方程,得=1,所以,所以,即e=.14. 若焦点在x轴上的椭圆C:=1(a>0)的离心率为,则a的值为(C)A.9B.6C.3D.2解析:焦点在x轴上的椭圆C:=1(a>0),可得c=,由离心率为,可得,解得a=3. 故选C.15. 设F1,F2为椭圆C:=1(a>b>0)的两个焦点,点P在C上,e 为C的离心率. 若△PF1F2是等腰直角三角形,则e=或-1;若△PF1F2是等腰钝角三角形,则e的取值范围是.解析:当PF1△F1F2或PF2△F1F2时,两条直角边长为2c,斜边长为2c,由椭圆定义,可得2c+2c=2a,所以e=-1;当PF1△PF2时,斜边长为2c,直角边长为c,由椭圆定义,可得c=2a,所以e=. 故e=或-1.当△PF1F2为钝角时,PF1=F1F2=2c,由椭圆定义,可得PF2=2a-2c,再根据形成三角形的条件以及余弦定理,可得2a-2c<2c+2c,(2a-2c)2>4c2+4c2,解得-1;当△PF2F1为钝角时,同上可得-1;当△F1PF2为钝角时,PF1=PF2=a,F1F2=2c,所以a2+a2<4c2,解得<e<1. 故-1或<e<1.16. 已知F1,F2是椭圆=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,若=0,椭圆的离心率等于,△AOF2(O为坐标原点)的面积为2,求椭圆的方程.解:如图,△=0,△AF2△F1F2,△椭圆的离心率e=,△b2=a2,设A(x,y)(x>0,y>0),由AF2△F1F2知x=c,△A(c,y)代入椭圆方程得=1,△y=. △△AOF2的面积为2,△c·=2,而,△b2=8,a2=2b2=16,故椭圆的标准方程为=1.。

学高中数学第二章映射讲解与例题北师大版必修1

学高中数学第二章映射讲解与例题北师大版必修1

2.3 映射两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的映射,记作f:A→B.A中的元素x称为原像,B中的对应元素y称为x的像,记作f:x→y.谈重点映射定义的理解(1)映射中的集合A和B是非空集合,它们可以是数集、点集或由图形组成的集合以及其他元素的集合.(2)映射是一种特殊的对应,其特殊性在于:集合A中的每一个元素,在集合B中都有唯一的元素与之对应,这种集合A中元素的任意性和集合B中对应的元素的唯一性构成了映射的核心.对应关系常用图示或文字描述的方式来表达.(3)对应有“方向性”,即“从A到B的对应”与“从B到A的对应”一般是不同的,因此,从A到B的映射与从B到A的映射是不同的.(4)映射允许集合A中不同的元素在集合B中有相同的像,即映射可以是“多对一”或“一对一”,但不能是“一对多”.(5)映射允许集合B中的某些元素在集合A中没有原像,也就是由像组成的集合C⊆B.【例1-1】给出下列四个对应,其中构成映射的是( ).A.(1)(2) BC.(1)(3)(4) D.(3)(4)解析:判断一个对应是否为映射,必须严格根据定义,观察A中每一个元素是否在B中都有唯一的元素与之对应.说明一种对应关系不是映射,只需找到一个反例即可.在(2)中,集合A中的元素3在集合B中没有元素与它对应;在(3)中,集合A中的元素2在集合B中有两个元素4和5与它对应,因此(2)和(3)不是映射,故选B.答案:B解技巧判断映射的技巧映射应满足存在性(即A中每一个元素在B中都有像)和唯一性(即像唯一).所以,判断一个对应是否为映射,关键是看是否具备:①“一对一”或“多对一”;②A中元素都有像.【例1-2】下列对应是不是从A到B的映射?(1)A=B=N+,f:x→|x-3|;(2)A={x|x≥2,x∈N},B={y|y≥1,y∈Z},f:x→y=x2-2x+2;(3)A=R,B={0,1},f:x→y=10 00xx≥⎧⎨<⎩,,,;(4)A={x|x>0},B={y|y∈R},f:x→y=(5)设A={矩形},B={实数},对应关系f为矩形到它的面积的对应;(6)设A={实数},B={正实数},对应关系f为x→1||x.解:(1)当x=3∈A时,|x-3|=0∉B,即A中的元素3按对应关系f,在B中没有元素和它对应,故(1)不是映射.(2)∵y=x2-2x+2=(x-1)2+1,对任意的x,总有y≥1.又当x∈N时,x2-2x+2必为整数,即y∈Z.∴当x ∈A 时,x 2-2x +2∈B .∴对A 中每一个元素x ,在B 中都有唯一的y 与之对应,故(2)是映射.(3)按照对应关系f ,在A 中任意一个非负数,在B 中都有唯一的数1与之对应;在A 中任意一个负数,在B 中都有唯一的数0与之对应,故(3)是映射.(4)对任意的x ∈A ={x |x >0},按对应法则f :x →y=,存在两个y ∈B ={y |y ∈R },即y =y =与之对应,故(4)不是映射.(5)∵对每一个矩形,它的面积是唯一确定的,∴对于集合A 中的每一个矩形,B 中都有唯一的实数与之对应,故(5)是映射.(6)∵实数0的绝对值还是0,其没有倒数,∴对于A 中的实数0,B 中没有元素与之对应,故(6)不是映射.2.一一映射的概念若从A 到B 的映射满足下列条件:①A 中每一个元素在B 中都有唯一的像与之对应;②A 中的不同元素的像也不同;③B 中的每一个元素都有原像.就称此映射为一一映射.有时,我们把集合A ,B 之间的一一映射也叫作一一对应.映射造出多少个映射?其中有多少个一一映射?分析:可根据映射的定义,构造从集合A 到集合B 的映射,即让A 中的每一个元素在B 中都有唯一的元素与之对应.从集合A 到集合B 的映射,若对应关系不同,则所得到的映射不同.最后依据一一映射的概念从中数出一一映射的个数.解:从集合A 到集合B 可构造如下映射(其中的对应关系用箭头表示):(3),A 到集合B 能构造出4个映射,其中有2个一一映射.【例2-2】若M ={x |0≤x ≤2},N ={y |0≤y ≤1},下列对应关系f :x →y 是从M 到N 的一一映射的是( ).A .12y x =B .13y x = C .212y x = D .y =(x -1)2 解析:一一映射首先是映射,其次是A 中的不同元素在B 中的像不同,且B 中的每一个元素在A 中都有原像,只有满足这三个条件的对应关系,才是从A 到B 的一一映射.在选项A 中,当0≤x ≤2时,0≤y ≤1,对于集合M 中的每一个元素在N 中都有唯一的像与之对应,且M 中的不同元素的像也不同,N 中的每个元素都有原像,符合一一映射的三个条件;在选项B 中,当0≤x ≤2时,0≤y ≤23,所以集合N 中的元素y ∈213y y ⎧⎫<≤⎨⎬⎩⎭在M 中没有原像;在选项C 中,当0≤x ≤2时,0≤y ≤2,所以集合M 中的元素x ∈{x x ≤2}在N 中没有像;在选项D 中,当x =0和2时,都有y =1,所以集合M 中的不同元素的像可能相同,故选A.(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素:非空集合A 、非空集合B 以及A ,B 之间的对应关系.(2)函数定义中的两个集合为非空数集;映射中两个非空集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个数x ,在值域中都有唯一确定的函数值和它对应,在映射中,对集合A 中的任意元素a 在集合B 中都有唯一确定的像b 和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的值和它对应;在映射中,对于集合B 中的任一元素b ,在集合A 中不一定有原像.(5)函数是一种特殊的映射,是从非空数集到非空数集的映射.函数概念可以叙述为:设A ,B 是两个非空数集,f 是A 到B 的一个映射,那么映射f :A →B 就叫作A 到B 的函数.在函数中,原像的集合称为定义域,像的集合称为值域.(1)A =R ,B =R ,f :x →y =11x +;(2)A ={三角形},B ={圆},f :三角形的内切圆; (3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →x 2+y 2=1.分析:映射是一种特殊的对应,函数是一种特殊的映射,判断两个集合间的对应关系是否为函数时,只需把握两点:一、两个集合是否都是非空数集;二、对应关系是否为映射.解:(1)当x =-1时,y 的值不存在,所以不是映射,更不是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,也是A 到B 的映射.(4)取x =0,则由x 2+y 2=1,得y =±1,即A 中的一个元素0与B 中的两个元素±1对应,因此(4)不是A 到B 的映射,也不是从A 到B 的函数.警误区 关系式x =1是函数吗?有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?函数是一种特殊的映射,是非空数集间的一种映射.对于关系式x=1,显然有x∈{1},y∈R,则1与全体实数建立对应关系,不符合函数的定义,因此,“x=1”不是y关于x的函数.4.像与原像的求解问题(1)对于一个从集合A到集合B的映射f而言,A中的每个元素x,在f的作用下,在B 中都对应着唯一的元素y,则y称为像,而x叫原像.(2)对于给出原像求像的问题,只需将原像代入对应关系式中,即可求出像.对于给出像求原像的问题,可先设出原像,再代入对应关系式中得到像,而它与已知的像是同一个元素,从而求出原像;也可根据对应关系式,由像逆推出原像.解答此类问题,关键是:①分清原像和像;②搞清楚由原像到像的对应关系.例如:已知M={自然数},P={正奇数},映射f:a(a∈M)→b=2a-1(b∈P).则在映射f下,M中的元素11对应着P中的元素________;P中的元素11对应着M中的元素________.∵2×11-1=21,∴M中的元素11对应着P中的元素21.由2a-1=11,得a=6,∴P中的元素11对应着M中的元素6.【例4-1】已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原像分别对应6和9,则19在f作用下的像为( ).A.18 B.30 C.272D.28解析:由题意,可知64,910,a ba b+=⎧⎨+=⎩解得a=2,b=-8,∴对应关系为y=2x-8.故19在f作用下的像是y=2×19-8=30.答案:B【例4-2】已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y +1,4x+3y-1).(1)求A中元素(1,2)的像;(2)求B中元素(1,2)的原像.分析:解答(1)可利用x=1,y=2代入对应关系求出3x-2y+1与4x+3y-1的值便可,解答(2)可利用方程的观点解方程组321=1431=2x yx y-+⎧⎨+-⎩,,求出x,y的值便可.解:(1)当x=1,y=2时,3x-2y+1=0,4x+3y-1=9,故A中元素(1,2)的像为(0,9).(2)令32114312x yx y-+=⎧⎨+-=⎩,,得6,179.17xy⎧=⎪⎪⎨⎪=⎪⎩故B中元素(1,2)的原像是69, 1717⎛⎫ ⎪.(1)一般地,若集合A中含有m个元素,集合B中含有n个元素,则从A到B的映射有n m 个,从B到A的映射有m n个.例如:求集合A={a,b,c}到集合B={-1,1}的映射的个数.按照映射的定义,A中元素可都对应B中同一个元素,即a→-1,b→-1,c→-1或a→1,b→1,c→1,共有2个不同的映射;A中元素也可对应B中两个元素,即a→-1,b→-1,c→1或a→-1,b→1,c→-1或a→1,b→-1,c→-1或a→1,b→1,c→-1或a→1,b→-1,c→1或a→-1,b→1,c→1,共有6个不同的映射,综上可知,从A到B的映射共有2+6=8=23个.以后可以根据两个集合中元素的个数直接计算映射的个数.(2)计算满足某些特定要求的映射的个数时,关键是将映射具体化、形象化(如用列表法、图像法、数形结合等).例如,设M={a,b,c},N={-1,0,1},若从M到N的映射f满足f(a)+f(b)=f(c),求这样的映射f的个数.要确定映射f,则只需要确定M中的每个元素对应的像即可,即确定f(a),f(b),f(c)的值.而f(a),f(b),f(c)∈{-1,0,1},还满足f(a)+f(b)=f(c),因此要确定这样的映射f的个数,则只需要确定由-1,0,1能组成多少个等式( )+( )=( ).注意到映射不要求N f(c)的取值情况表示出来.【例5-1】集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.解析:由于f(3)=3,因此只需考虑剩下的两个元素1和2的像的问题,总共有如图所示的4种可能(也可直接利用公式得到这样的映射共有22=4个).答案:4【例5-2】已知集合A={a,b,c},B={1,2},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有________个.解析:要确定映射f,则只需确定A中的每个元素对应的像即可,即确定f(a), f(b),f(c)的值,而f(a),f(b),f(c)∈{1,2},还满足f(a)+f(b)+f(c)=4,所以f(a),f(b),f(c)中有一个是2,另两个是3个.答案:3【例5-3】设集合A={1,2,3},集合B={a,b,c},那么从集合A到集合B的映射的个数为________,从集合A到集合B的一一映射的个数为________.解析:因为集合A中有3个元素,集合B中有3个元素,所以从集合A到集合B的映射有33=27个.其中A到B的一一映射有下面6种情形.答案:27 6。

新教材高中数学第二章函数3函数的单调性和最值第1课时函数的单调性素养作业北师大版必修第一册

新教材高中数学第二章函数3函数的单调性和最值第1课时函数的单调性素养作业北师大版必修第一册

第二章 §3 第1课时A 组·素养自测一、选择题1.如图中是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( C )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上不单调[解析] 若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接. 2.函数y =1x -1的单调减区间是( A ) A .(-∞,1),(1,+∞) B .(-∞,1)∪(1,+∞) C .{x ∈R |x ≠1}D .R[解析] 单调区间不能写成单调集合,也不能超出定义域,故C,D 不对,B 表述不当.3.函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,-x 2,x <0的单调递增区间为( A ) A .(-∞,0),[0,+∞) B .(-∞,0) C .[0,+∞)D .(-∞,+∞)[解析] 分段函数求单调区间可借助图象来求,图象不熟悉就借助定义分段求. 4.若函数f (x )=|x +2|在[-4,0]上的最大值为M ,最小值为m ,则M +m =( B ) A .1 B .2 C .3D .4[解析] 作出函数f (x )=|x +2|=⎩⎪⎨⎪⎧x +2(-2≤x ≤0),-x -2(-4≤x <-2)的图象如图所示,由图象可知M =f (x )max =f (0)=f (-4)=2,m =f (x )min =f (-2)=0,所以M +m =2.故选B .5.若函数y =2ax -b 在[1,2]上的最大值与最小值的差为2,则实数a 的值是( C ) A .1 B .-1 C .1或-1D .0[解析] 当a >0时,最大值为4a -b ,最小值为2a -b ,差为2a ,∴a =1;当a ≤0时,最大值为2a -b ,最小值为4a -b ,差为-2a ,∴a =-1.6.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( C )A .-1B .0C .1D .2[解析] f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a , ∴函数f (x )图象的对称轴为直线x =2, ∴f (x )在[0,1]上单调递增. 又∵f (x )min =f (0)=a =-2, ∴f (x )max =f (1)=-1+4-2=1. 二、填空题7.若函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是__(-∞,1)和(1,+∞)__.[解析] 由图象可知,f (x )的单调递增区间为(-∞,1)和(1,+∞). 8.函数f (x )=x -2x在[1,2]上的最大值是__1__.[解析] 函数f (x )=x -2x在[1,2]上是增函数,∴当x =2时,f (x )取最大值f (2)=2-1=1.三、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间. [解析] y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3(x ≥0),-x 2-2x +3(x <0) =⎩⎪⎨⎪⎧-(x -1)2+4(x ≥0),-(x +1)2+4(x <0). 函数图象如图,由图象可知,在(-∞,-1)和[0,1]上,函数是增函数, 在[-1,0]和(1,+∞)上,函数是减函数.10.已知函数f (x )=|x |(x +1),试画出函数f (x )的图象,并根据图象解决下列两个问题.(1)写出函数f (x )的单调区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-1,12的最大值.[解析] f (x )=|x |(x +1)=⎩⎪⎨⎪⎧-x 2-x (x ≤0)x 2+x (x >0)的图象如图所示.(1)f (x )在⎝ ⎛⎦⎥⎤-∞,-12和[0,+∞)上是增函数,在⎣⎢⎡⎦⎥⎤-12,0上是减函数,因此f (x )的单调增区间为⎝ ⎛⎦⎥⎤-∞,-12,[0,+∞),单调减区间⎣⎢⎡⎦⎥⎤-12,0.(2)∵f ⎝ ⎛⎭⎪⎫-12=14,f ⎝ ⎛⎭⎪⎫12=34,∴f (x )在区间⎣⎢⎡⎦⎥⎤-1,12的最大值为34.B 组·素养提升一、选择题1.下列函数在[1,4]上最大值为3的是( A ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A .2.随着海拔的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y (g/m 3)与大气压强x (kPa)成正比例函数关系.当x =36kPa 时,y =108g/m 3,则y 与x 的函数关系式为( A )A .y =3x (x ≥0)B .y =3xC .y =13x (x ≥0)D .y =13x[解析] 由题意设y =kx ,将(36,108)代入解析式,得k =3,故y =3x .同时考虑到实际问题的实际意义可知x ≥0.3.(多选题)已知f (x )=x -1-x ,则( AD ) A .定义域为[0,1]B .f (x )max =2,f (x )无最小值C .f (x )min =1, f (x )无最大值D .f (x )max =1, f (x )min =-1[解析] 要使f (x )有意义,应满足⎩⎪⎨⎪⎧x ≥01-x ≥0,∴0≤x ≤1,显然f (x )在[0,1]上单调递增,所f (x )max =1,f (x )min =-1.故选AD .4.(多选题)已知函数f (x )=x 2-2x +2,关于f (x )的最大(小)值有如下结论,其中正确的是( BCD )A .f (x )在区间[-1,0]上的最小值为1B .f (x )在区间[-1,2]上既有最小值,又有最大值C .f (x )在区间[2,3]上有最小值,最大值5D .当0<a <1时,f (x )在区间[0,a ]上的最小值为f (a ),当a >1时,f (x )在区间[0,a ]上的最小值为1[解析] 函数f (x )=x 2-2x +2=(x -1)2+1的图象开口向上,对称轴为直线x =1.在选项A 中,因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最小值为f (0)=2,A 错误;在选项B 中,因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,所以f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5,B 正确;在选项C 中,因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5,C 正确;在选项D 中,当0<a <1时,f (x )在区间[0,a ]上是减函数,f (x )的最小值为f (a ),当a >1时,由图象知f (x )在区间[0,a ]上的最小值为1,D 正确.二、填空题5.函数y =x 2-2x -1的值域是__[-2,+∞)__.[解析] 因为二次函数图象开口向上,所以它的最小值为4×1×(-1)-(-2)24=-2.故值域为[-2,+∞).6.已知函数f (x )在区间[2,+∞)上是增函数,则f (2)__≤__f (x 2-4x +6).(填“≥”“≤”或“=”)[解析] ∵x 2-4x +6=(x -2)2+2≥2,且f (x )在区间[2,+∞)上是增函数,∴f (2)≤f (x 2-4x +6).三、解答题 7.已知函数f (x )=xx -1.(1)求f (x )的定义域和值域;(2)判断函数f (x )在区间(2,5)上的单调性,并用定义来证明所得结论. [解析] (1)f (x )=xx -1=x -1+1x -1=1+1x -1, 定义域为{x |x ≠1},值域为{y |y ≠1}.(2)由函数解析式可知该函数在(2,5)上是减函数,下面证明此结论. 证明:任取x 1,x 2∈(2,5), 设x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-1-x 2x 2-1=x 2-x 1(x 1-1)(x 2-1). 因为2<x 1<x 2<5,所以x 2-x 1>0,x 1-1>0,x 2-1>0, 所以f (x 1)>f (x 2). 故函数在(2,5)上为减函数.8.已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称. (1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.[解析] (1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3)且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0.所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m ,f (x )max =f (3)=9-6=3, 所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1,f (x )max =f (3)=3, 所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1,f (x )max =f (m )=m 2-2m , 所以f (x )的值域为[-1,m 2-2m ].综上当1≤m <3时,f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )的值域为[-1,3];当m<-1时,f(x)的值域为[-1,m2-2m].。

【创新设计】2022-2021学年高一数学北师大版必修一课时作业与单元检测:2.2 习题课

【创新设计】2022-2021学年高一数学北师大版必修一课时作业与单元检测:2.2 习题课

习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会依据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.通过具体实例,理解简洁的分段函数,并能简洁应用.1.下列图形中,不行能作为函数y =f (x )图像的是( )2.已知函数f :A →B (A 、B 为非空数集),定义域为M ,值域为N ,则A 、B 、M 、N 的关系是( ) A .M =A ,N =B B .M ⊆A ,N =B C .M =A ,N ⊆B D .M ⊆A ,N ⊆B 3.函数y =f (x )的图像与直线x =a 的交点( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 4.已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1)x 2 (-1<x <2)2x (x ≥2),若f (a )=3,则a 的值为( )A. 3 B .-3C .± 3D .以上均不对 5.若f (x )的定义域为[-1,4],则f (x 2)的定义域为( ) A .[-1,2] B .[-2,2] C .[0,2] D .[-2,0]6.函数y =xkx 2+kx +1的定义域为R ,则实数k 的取值范围为( )A .k <0或k >4B .0≤k <4C .0<k <4D .k ≥4或k ≤0一、选择题1.函数f (x )=x x 2+1,则f (1x )等于( )A .f (x )B .-f (x ) C.1f (x ) D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( ) A .[-2,2] B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是( )4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .y =⎩⎪⎨⎪⎧x (x >0)-x (x <0) D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( ) A .[1,+∞) B .(1,+∞) C .[2,+∞) 题 号 1 2 3 4 5 6 答 案二、填空题7.设集合A =B ={(x ,y )|x ∈R ,y ∈R },点(x ,y )在映射f :A →B 的作用下对应的点是(x -y ,x +y ),则B 中点(3,2)对应的A 中点的坐标为________.8.已知f (x +1)=x +2x ,则f (x )的解析式为________.9.已知函数f (x )=⎩⎪⎨⎪⎧x (x ≥0)x 2 (x <0),则f (f (-2))=______________.三、解答题10.若3f (x -1)+2f (1-x )=2x ,求f (x ).11.已知f (x )=⎩⎪⎨⎪⎧x (x +4) (x ≥0)x (x -4) (x <0),若f (1)+f (a +1)=5,求a 的值.力量提升12.已知函数f (x )的定义域为[0,1],则函数f (x -a )+f (x +a )(0<a <12)的定义域为( )A .∅B .[a,1-a ]C .[-a,1+a ]D .[0,1] 13.已知函数f (x )=⎩⎪⎨⎪⎧x +5, x ≤-1x 2, -1<x <1,2x , x ≥1.(1)求f (-3),f [f (-3)];(2)画出y =f (x )的图像;(3)若f (a )=12,求a 的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,假如函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要留意分式的字母不能为零;偶次根式内的被开方式子必需大于或等于零.2.函数图像是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图像可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等. 3.函数的表示方法有列举法、解析法、图像法三种.依据解析式画函数的图像时,要留意定义域对函数图像的制约作用.函数的图像既是争辩函数性质的工具,又是数形结合方法的基础.习题课双基演练1.C [C 选项中,当x 取小于0的一个值时,有两个y 值与之对应,不符合函数的定义.] 2.C [值域N 应为集合B 的子集,即N ⊆B ,而不肯定有N =B .] 3.C [当a 属于f (x )的定义域内时,有一个交点,否则无交点.] 4.A [当a ≤-1时,有a +2=3,即a =1,与a ≤-1冲突; 当-1<a <2时,有a 2=3,∴a =3,a =-3(舍去);当a ≥2时,有2a =3,∴a =32与a ≥2冲突.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4, ∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立, 当k =0时,1≠0恒成立,∴k =0符合题意. 当k ≠0时,Δ=k 2-4k <0,解得0<k <4, 综上,知0≤k <4.] 作业设计1.A [f (1x )=1x 1x 2+1=x1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3, ∴-1≤x 2-1≤2, ∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.] 5.B [用分别常数法. y =2(x -3)+7x -3=2+7x -3.∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞). ∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎪⎨⎪⎧x -y =3x +y =2,∴⎩⎨⎧x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1, ∴f (x )=x 2-1.由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4, 又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25.即f (x )=2x +25.11.解 f (1)=1×(1+4)=5, ∵f (1)+f (a +1)=5,∴f (a +1)=0. 当a +1≥0,即a ≥-1时, 有(a +1)(a +5)=0, ∴a =-1或a =-5(舍去). 当a +1<0,即a <-1时, 有(a +1)(a -3)=0,无解. 综上可知a =-1.12.B [由已知,得⎩⎪⎨⎪⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎪⎨⎪⎧-a ≤x ≤1-a ,a ≤x ≤1+a .又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5, ∴f (-3)=-3+5=2, ∴f [f (-3)]=f (2)=2×2=4.(2)函数图像如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1;当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1);当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去.故a 的值为-92或±22.。

2022_2023学年新教材高中数学课时作业十六函数概念北师大版必修第一册

2022_2023学年新教材高中数学课时作业十六函数概念北师大版必修第一册

课时作业(十六) 函数概念[练基础]1.已知函数f (x )=-1,则f (2)的值为( )A .-2B .-1C .0D .不确定2.下列四组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=|x |,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1 D .f (x )=x +1·x -1,g (x )=x 2-13.函数y =21-1-x的定义域为( ) A .(-∞,1]B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)4.函数f (x )=x 2-4的值域为( )A .(0,+∞) B.[0,+∞)C .(2,+∞) D.[2,+∞)5.函数y =x -2+(x -3)0的定义域为________.6.已知函数f (x )=-x 2-3x +4,x ∈[-3,1],则该函数的值域为________. [提能力]7.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个8.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.9.已知f (x )=1-x 1+x(x ∈R ,且x ≠-1),g (x )=x 2-1. (1)求f (2),g (3)的值;(2)求f (g (3))的值.[战疑难]10.若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2x -1x -1的定义域是( ) A.⎝ ⎛⎦⎥⎤1,32 B.⎣⎢⎡⎦⎥⎤1,32 C .(1,3) D .[1,3]课时作业(十六) 函数概念1.解析:因为函数f(x)=-1,所以不论x 取何值其函数值都等于-1,故f(2)=-1.故选B.答案:B2.解析:对于A :f(x)=|x|,g(x)=x2=|x|,两个函数的定义域和对应关系都相同,表示同一函数;对于B :f(x)的定义域为R ,g(x)的定义域为[0,+∞),两个函数的定义域不同,不是同一函数;对于C :f(x)=x +1(x ≠1)的定义域为{x|x ≠1},g(x)=x +1的定义域为R ,两个函数的定义域不同,不是同一函数;对于D :f(x)的定义域为{x|x ≥1},g(x)的定义域为{x|x ≤-1或x ≥1},两个函数的定义域不同,不是同一函数.故选A. 答案:A3.解析:要使函数有意义,则⎩⎨⎧ 1-x ≥01-1-x ≠0⇒x ≤1且x ≠0.故选B.答案:B 4.解析:由x2-4≥0可知 x2-4≥0,则函数f(x)的值域为[0,+∞).答案:B5.解析:要使函数有意义,则⎩⎪⎨⎪⎧ x -2≥0x -3≠0,解得x ≥2且x ≠3,所以函数的定义域为[2,3)∪(3,+∞).答案:[2,3)∪(3,+∞)6.解析:f(x)=-x2-3x +4=-⎝ ⎛⎭⎪⎫x +322+254,x ∈[-3,1],f(x)min =f(1)=0,f(x)max =f ⎝ ⎛⎭⎪⎫-32=254,所以该函数的值域为⎣⎢⎡⎦⎥⎤0,254. 答案:⎣⎢⎡⎦⎥⎤0,254 7.解析:由2x2-1=1,得x1=1,x2=-1;由2x2-1=7,得x3=-2,x4=2.所以定义域为2个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个.因此共有9个“孪生函数”.答案:B8.解析:f(x)的定义域为R ,则mx2+4mx +3≠0,对任意的x ∈R 恒成立.①当m =0时,3≠0,满足题意;②当m ≠0时,只需Δ=16m2-12m<0即可,∴0<m<34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34. 答案:⎣⎢⎡⎭⎪⎫0,34 9.解析:(1)f(2)=1-21+2=-13,g(3)=32-1=8. (2)f(g(3))=f(8)=1-81+8=-79. 10.解析:因为y =f(x)的定义域是[0,2],可得g(x)中的f(2x -1),0≤2x -1≤2,解得12≤x ≤32.再由x -1>0,得x>1.综上,得1<x ≤32.故选A. 答案:A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学业水平训练]
1.若函数f (x )的定义域是[-1,1],则函数f (x +1)的定义域是( ) A .[-2,0] B .[-1,1] C .[1,2] D .[0,2] 解析:选A.∵f (x )的定义域是[-1,1],∴-1≤x +1≤1⇒-2≤x ≤0,故选A. 2.下列对应或关系中是A 到B 的函数的是( ) A .A ∈R ,B ∈R ,x 2+y 2=1
B .A ={1,2,3,4},B ={0,1},对应关系如图:
C .A =R ,B =R ,f :x →y =
1x -2
D .A =Z ,B =Z ,f :x →y =2x -1
解析:选B.对于A 项,x 2+y 2=1可化为y =±1-x 2,显然对任意x ∈A ,y 值不唯一,故不符合.对于B 项,符合函数的定义.对于C 项,2∈A ,但在集合B 中找不到与之相对应的数,故不符合.对于D 项,-1∈A ,但在集合B 中找不到与之相对应的数,故不符合.
3.与函数y =x 相等的函数是( ) A .y =(x )2 B .y =3
x 3
C .y =x 2
D .y =x 2
x
解析:选B.A 中,函数定义域为[0,+∞). C 中,y =|x |与y =x 的解析式不同. D 中,函数的定义域为{x ∈R |x ≠0}.
4.已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )
A .R
B .{x |x >0}
C .{x |0<x <5} D.⎩⎨⎧⎭
⎬⎫
x ⎪⎪
52<x <5 解析:选D.由题意可知0<y <10,即0<10-2x <10,解得0<x <5,又底边长y 与腰长x
应满足2x >y ,即2x >10-2x ,x >5
2
.
综上可知5
2
<x <5.
5.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3}
解析:选A.∵函数y =x 2-2x 的定义域为{0,1,2,3},
∴自变量x 取0,1,2,3四个实数,将x 的值依次代入函数解析式,得因变量的值依次为0,-1,0,3,
故其值域为{-1,0,3}.
6.下表表示
解析:∵5<6≤10,
∴当x =6时,对应的函数值是3. 答案:3
7.已知函数f (x )=1
1+x
,g (x )=x 2+2,则f (g (2))=________,g (f (2))=________.
解析:g (2)=22+2=6,f (g (2))=f (6)=11+6=17,f (2)=11+2=1
3,g (f (2))=g ⎝⎛⎭⎫13=⎝⎛⎭⎫132+2=199
. 答案:17 199
8.求下列函数的定义域:
(1)y =(x +1)2
x +1-1-x ;
(2)y =(x +1)0
|x |-x ;
(3)y =1
1+
1x
.
解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧
x +1≠0
1-x ≥0
,即⎩⎨⎧
x ≠-1x ≤1,所以函
数的定义域为{x |x ≤1且x ≠-1}.
(2)要使函数有意义,需满足⎩⎪⎨⎪⎧
x +1≠0
|x |-x ≠0
,即⎩⎨⎧
x ≠-1|x |≠x ,
∴x <0且x ≠-1,
∴函数的定义域为{x |x <0且x ≠-1}.
(3)要使函数有意义,需满足⎩⎪⎨⎪⎧
x ≠01+1x
≠0,即⎩⎨⎧
x ≠0
x +1≠0,
即x ≠0且x ≠-1,
∴函数的定义域为{x |x ∈R 且x ≠0且x ≠-1}. 9.求下列函数的值域.
(1)y =x 2-4x +32x 2-x -1;
(2)y =2x -x -1.
解:(1)∵y =x 2-4x +32x 2-x -1=(x -1)(x -3)(x -1)(2x +1)=x -32x +1
(x ≠1且x ≠-1
2),
又∵x -32x +1=12(2x +1)-722x +1
=12-7
2(2x +1),
∵72(2x +1)
≠0,∴y ≠12.
当x =1时,x -32x +1=1-32×1+1=-2
3.
∴函数的值域为⎩⎨⎧
⎭⎬⎫yy ∈R ,且y ≠12,且y ≠-23.
(2)令
x -1=t ,则t ≥0,x =t 2+1.
∴y =2(t 2+1)-t =2t 2-t +2=2⎝⎛⎭⎫t -142+158
. ∵t ≥0,∴y ≥15
8
.
∴函数y =2x -x -1的值域是⎣⎡⎭⎫15
8,+∞. 10.已知a ,b ∈N +,f (a +b )=f (a )f (b ),f (1)=2,求f (2)f (1)+f (3)f (2)+…+f (2 014)f (2 013)+f (2 015)
f (2 014)
.
解:由f (a +b )=f (a )f (b )知,令a =b =1,得f (2)=f (1)f (1)=4,∴f (2)
f (1)
=2.
令a =2,b =1,得f (3)=f (2)f (1)=8,∴f (3)
f (2)
=2.
由此猜测f (x )
f (x -1)=2(x ≥2,x ∈N +),下面证明此结论.
令a =x -1,b =1,则f (x )=f (x -1+1)=f (x -1)·f (1)=2f (x -1), ∴f (x )f (x -1)
=2(x ≥2,x ∈N +), ∴f (2)f (1)+f (3)f (2)+…+f (2 014)f (2 013)+f (2 015)f (2 014) =2+2+…+22 014个=4 028.
[高考水平训练]
1.若函数y =mx -1mx 2+4mx +3
的定义域为R ,则实数m 的取值范围是( )
A.⎝⎛⎦⎤0,34
B.⎝⎛⎭⎫0,34
C.⎣⎡⎦⎤0,34
D.⎣⎡⎭⎫0,34 解析:选D.由题意知mx 2+4mx +3≠0对x ∈R 恒成立. 当m =0时,符合题意;
当m ≠0时,Δ=(4m )2-12m <0,
即0<m <3
4
.
综上m 的取值范围是[0,3
4
).
2.已知函数f (x )=x -1.若f (a )=3,则实数a =________. 解析:因为f (a )=a -1=3,所以a -1=9,即a =10.
答案:10
3.求y =2x 2+4x -7
x 2+2x +3的值域.
解:已知函数式可变形为: yx 2+2yx +3y =2x 2+4x -7, 即(y -2)x 2+2(y -2)x +3y +7=0,
当y ≠2时,将上式视为关于x 的一元二次方程. ∵x ∈R ,∴Δ≥0.
即[2(y -2)]2-4(y -2)(3y +7)≥0.
解得-9
2≤y <2.
当y =2时,3×2+7≠0. ∴y ≠2,∴函数的值域为⎣⎡⎭
⎫-9
2,2. 4.已知集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },a ∈N +,k ∈N +,x ∈A ,y ∈B ,f :
x →y =3x +1是从定义域A 到值域B 的一个函数,求a ,k ,A ,B .
解:根据对应法则f ,有: 1→4;2→7;3→10;k →3k +1.
若a 4=10,则a ∉N +,不符合题意,舍去; 若a 2+3a =10,
则a =2(a =-5不符合题意,舍去). 故3k +1=a 4=16,得k =5.
综上:a =2,k =5,集合A ={1,2,3,5},B ={4,7,10,16}.。

相关文档
最新文档