矩阵键盘检测实验
实验一 矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计。
二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长。
目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。
按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。
全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。
由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。
此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连。
单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。
单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告一、实验目的本次实验的目的是掌握原理和方法,利用单片机识别矩阵键盘并编程实现键码转换功能,控制LED点亮显示。
二、实验原理矩阵键盘是一种由多路单向控制器输入行选择信号与列选择信号连接而形成的一一对应矩阵排列结构。
它广泛应用于电子游戏机、办公自动化设备、医疗仪器、家电控制及书籍检索机器等方面。
本次实验采用的矩阵键盘是一个4 x 4矩阵,用4段数码管显示按键编码,每个按键都可以输入一个代码,矩阵键盘连接单片机,实现一个软件算法来识别键码转化。
从而将键盘中的按键的按下信号转换成程序能够识别的代码,置于相应的输出结果中,控制LED点亮,从而可以实现矩阵键盘按键的转换功能。
三、实验方法1.硬件搭建:矩阵键盘(4行4列)与单片机(Atmel AT89C51)相连,选择引脚连接,并将数码管和LED与单片机相连以实现显示和点亮的功能。
2.程序设计:先建立控制体系,利用中断服务子程序识别和码值转换,利用中断服务子程序实现从按键的按下信号转换为程序能够识别的代码,然后将该代码段编写到单片机程序中,每次按下矩阵键盘按键后单片机给出相应的按键编码输出,用数码管显示,控制LED点亮。
四、实验结果经过实验,成功实现了矩阵键盘与单片机之间的连接,编写了中断服务子程序,完成了按键编码输出与LED点亮的功能。
实验完成后,数码管显示各种按键的编码,同时LED会点亮。
本次实验介绍了矩阵键盘的原理,论述了键码转换的程序设计步骤,并实验完成矩阵键盘与单片机的连接,实现用LED点亮以及数码管显示按键的编码。
通过本次实验,受益匪浅,使我对使用单片机编写算法与程序有了更深入的认识,同时丰富了课堂学习的内容,也使我更加热爱自己所学的专业。
单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
键盘扫描程序实验报告

一、实验目的1. 理解键盘扫描的基本原理。
2. 掌握使用C语言进行键盘扫描程序设计。
3. 学习键盘矩阵扫描的编程方法。
4. 提高单片机应用系统的编程能力。
二、实验原理键盘扫描是指通过检测键盘矩阵的行列状态,判断按键是否被按下,并获取按键的值。
常见的键盘扫描方法有独立键盘扫描和矩阵键盘扫描。
独立键盘扫描是将每个按键连接到单片机的独立引脚上,通过读取引脚状态来判断按键是否被按下。
矩阵键盘扫描是将多个按键排列成矩阵形式,通过扫描行列线来判断按键是否被按下。
这种方法可以大大减少引脚数量,降低成本。
本实验采用矩阵键盘扫描方法,使用单片机的并行口进行行列扫描。
三、实验设备1. 单片机开发板(如51单片机开发板)2. 键盘(4x4矩阵键盘)3. 连接线4. 调试软件(如Keil)四、实验步骤1. 连接键盘和单片机:将键盘的行列线分别连接到单片机的并行口引脚上。
2. 编写键盘扫描程序:(1)初始化并行口:将并行口设置为输入模式。
(2)编写行列扫描函数:逐行扫描行列线,判断按键是否被按下。
(3)获取按键值:根据行列状态,确定按键值。
(4)主函数:调用行列扫描函数,读取按键值,并根据按键值执行相应的操作。
3. 调试程序:将程序下载到单片机,观察键盘扫描效果。
五、实验程序```c#include <reg51.h>#define ROW P2#define COL P3void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 123; j++);}void scan_key() {unsigned char key_val = 0xFF;ROW = 0xFF; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值}void main() {while (1) {scan_key();if (key_val != 0xFF) {// 执行按键对应的操作}}}```六、实验结果与分析1. 实验结果:程序下载到单片机后,按键按下时,单片机能够正确读取按键值。
实验6 矩阵键盘的检测

实验6 矩阵键盘的检测一、实验目的1、掌握七段数码管显示的软件译码方法;2、掌握矩阵键盘的使用。
二、实验内容矩阵键盘来控制数码管显示:实验板上电时,数码管不显示,顺序按下4*4矩阵键盘后,在数码管上依次显示0-F,6个数码管同时静态显示即可。
三、实验方法和手段多媒体教学、演示、讲练结合、软件仿真、实物焊接四、实验条件实验指导书、计算机、Proteus软件、Keil C51软件、耗材、电烙铁五、实验学时2学时六、实验步骤1、Proteus设计电路原理图(1)按照图6-1,在Proteus软件中绘制好电路原理图。
图6-1 电路原理图说明:矩阵键盘行线接P3口低4位(第一行P3.0),列线接P3口高4位(第一列接P3.4)。
(2)电路原理图中所需要的元件见表6-1。
表6-1 元件列表元件名称型号数量Proteus中的名称单片机芯片AT89C51 1个AT89C51 晶振12MHz 1个CRYSTAL电容22PF 2个CAP电解电容22uF/16V 1个CAP-ELEC电阻1K 1个RES排阻1K 1个RESPACK_8 六位一体共阴极数码管1个7SEG-MPX6_CC 锁存芯片74HC573 2个74HC573按键开关16个BUTTON 2、编程控制在Keil软件中进行程序编制,完成目标:顺序按下4*4矩阵键盘后,6个数码管同时静态依次显示0-F。
将下面的参考程序补充完整,也可自行编写新程序。
参考程序代码如下:3、仿真调试将生成的HEX文件加载到Proteus中,进行软件仿真,查看效果。
4、实物调试(1)程序烧制(2)使用焊接成功的电路板,通电调试,查看效果。
七、思考题1、如果采用双数码管显示按键值(0-15),应如何修改程序代码?2、如果行线接P3口低4位,列线接P2口低4位,程序代码如何修改?。
矩阵键盘检测

实验报告九课程名称:微机原理与接口技术指导老师:李素敏学生姓名:向春霞学号:1243013 专业:通信工程日期:5月地点:理工603实验九矩阵键盘检测1. 实验目的和要求①学会使用编写关于矩阵按键的查询和显示的程序2. 主要仪器设备电脑,Keil软件3.实验内容实验内容:对实验板上4*4矩阵键盘的16个按键S6---S21进行按键次数统计。
键号06、07……21用最左边2位数码管显示,按键次数用右侧4位数码管显示。
有键按下时,显示相应键号和该键累计按键次数,没键按下时,数码管不亮。
(无论键号还是按键次数都用其十进制数显示。
)(1)设计思路:①利用反转法查询按键的键码②把按键键码的十位和各位分别表示出来。
③用30H到3FH单元记按键次数(2)源程序:ORG 0000HAJMP MAINORG 0030HMAIN: MOV R2,#10H ;给30H-3FH单元清零MOV R1,#30HMOV A,#00HXH: MOV @R1,AINC R1DJNZ R2,XHLOOP: LCALL KEYLCALL XSLJMP LOOPXS: MOV A,60HMOV P0,#0FFHMOV DPTR,#DUANMOVC A,@A+DPTR ;把十位给最左边的数码管MOV P0,ACLR P2.6SETB P2.7MOV P0,#0FEHCLR P2.7LCALL DEL0MOV A,61HMOVC A,@A+DPTR ;把个位数用数码管表示SETB P2.6MOV P0,#0FFHMOV P0,ACLR P2.6SETB P2.7MOV P0,#0FDHCLR P2.7LCALL DEL0MOV A,62HMOV P0,#0FFHMOVC A,@A+DPTRSETB P2.6MOV P0,ACLR P2.6SETB P2.7MOV P0,#0FBHCLR P2.7LCALL DEL0MOV A,63HMOVC A,@A+DPTR ;把个位数用数码管表示SETB P2.6MOV P0,ACLR P2.6SETB P2.7MOV P0,#0F7HCLR P2.7LCALL DEL0RETKEY : MOV P3,#0FH ;将P3的高四位给"0"MOV A,P3 ;读P3ANL A,#0FH ;判断p3的高4位有没有变化,给AMOV B,A ;将变换后的信息放入b暂存MOV P3,#0F0H ;给P3的低四位赋0ANL A,#0F0H ;判断p3的低4位有没有变化,给AORL A,B ;合成特征码CJNE A,#0FFH,KEY1AJMP RETNKEY1: MOV B,A ; 存特征码MOV DPTR,#TABLE ;取表头地址MOV R3,#0FFH ;给初值,也是空键的代码KEY2: INC R3MOV A,R3MOVC A,@A+DPTR ;查找键值CJNE A,B,KEY2 ;判断是否查完MOV A,R3 ;找到键值存入AADD A,#06MOV R6,A ;把A暂存到30H单元MOV B,#10DIV AB ;A/B=A.....BMOV 60H,AMOV 61H,BCOUNT: MOV A,R6ADD A,#2AHMOV R0,A ;按键计数INC @R0MOV A,@R0MOV B,#10DIV AB ;A/B=A.....BMOV 62H,AMOV 63H,BAG: MOV P3,#0FH ;将P3的高四位给"0"MOV A,P3 ;读P3CJNE A,#0FH,AG ;判断p3的高4位有没有变化,给A RETN: RETTABLE:DB 0EEH,0DEH,0BEH,7EH ;6-9DB 0EDH,0DDH,0BDH,7DH ;10-13DB 0EBH,0DBH,0BBH,7BH ;14-17DB 0E7H,0D7H,0B7H,77H ;18-21DB 0FFH ;空键DUAN:DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH ;段选地址表DEL0: MOV R4,#2 ;延时1ms DEL1: MOV R5,#248NOPDEL2: DJNZ R5,DEL2DJNZ R4,DEL1RETEND。
矩阵式键盘设计实训报告

一、实验目的1. 掌握矩阵式键盘的工作原理及电路设计方法。
2. 熟悉单片机与矩阵键盘的接口连接及编程技巧。
3. 提高动手实践能力,培养创新意识。
二、实验设备1. 单片机实验平台2. 矩阵键盘模块3. 数字多用表4. 编译器(如Keil51)5. 连接线三、实验原理矩阵键盘是一种常用的键盘设计方式,通过行列交叉点连接按键,从而实现多个按键共用较少的I/O端口。
矩阵键盘通常采用逐行扫描的方式检测按键状态,当检测到按键按下时,根据行列线的电平状态确定按键位置。
四、实验内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘测试与调试五、实验步骤1. 电路设计(1)根据矩阵键盘的规格,确定行线和列线的数量。
(2)将行线和列线分别连接到单片机的I/O端口。
(3)在行线上串联电阻,防止按键抖动。
(4)连接电源和地线。
2. 编程(1)初始化单片机的I/O端口,将行线设置为输出,列线设置为输入。
(2)编写逐行扫描程序,逐行拉低行线,读取列线状态。
(3)根据行列线状态判断按键位置,并执行相应的操作。
3. 测试与调试(1)将编写好的程序下载到单片机中。
(2)连接矩阵键盘,观察按键是否正常工作。
(3)使用数字多用表检测行列线电平,确保电路连接正确。
(4)根据测试结果,对程序进行调试,直到矩阵键盘正常工作。
六、实验结果与分析1. 电路连接正确,按键工作正常。
2. 逐行扫描程序能够正确检测按键位置。
3. 按键操作能够触发相应的程序功能。
七、实验总结1. 通过本次实训,掌握了矩阵式键盘的工作原理及电路设计方法。
2. 熟悉了单片机与矩阵键盘的接口连接及编程技巧。
3. 提高了动手实践能力,培养了创新意识。
八、心得体会1. 在实验过程中,遇到了电路连接错误和程序调试困难等问题,通过查阅资料、请教老师和同学,最终成功解决了问题。
2. 本次实训让我深刻体会到理论知识与实际操作相结合的重要性,同时也认识到团队合作的重要性。
九、改进建议1. 在电路设计过程中,可以考虑增加去抖动电路,提高按键稳定性。
矩阵式键盘实验报告

矩阵键盘实验报告佘成刚学号2010302001班级08041202时间2016.01.20一、实验目的1.学习矩列式键盘工作原理;2.学习矩列式接口的程序设计。
二、实验设备普中HC6800ESV20开发板三、实验要求要现:用4*4矩阵键盘,用按键形式输入学号,在数码管上显示对应学号。
四、实验原理工作原理:矩阵式由行线和列线组成,按键位于行、列的交叉点上。
如图所示,一个4*4 的行、列结构可以构成一个由16 个按键的键盘。
很明显,在按键数量较多的场合,矩阵式键盘与独立式键盘相比,要节省很多的I/0 口。
(1)矩阵式键盘工作原理按键设置在行、列交节点上,行、列分别连接到按键开关的两端。
行线通过下拉电阻接到GND 上。
平时无按键动作时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平决定。
列线电平如果为低,行线电平为高,列线电平如果为高,则行线电平则为低。
这一点是识别矩阵式键盘是否被按下的关键所在。
因此,各按键彼此将相互发生影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。
(2)按键识别方法下面以3 号键被按下为例,来说明此键是如何被识别出来的。
前已述及,键被按下时,与此键相连的行线电平将由与此键相连的列线电平决定,而行线电平在无键按下时处于高电平状态。
如果让所有列线处于高电平那么键按下与否不会引起行线电平的状态变化,始终是高电平,所以,让所有列线处于高电平是没法识别出按键的。
现在反过来,让所有列线处于低电平,很明显,按下的键所在行电平将也被置为低电平,根据此变化,便能判定该行一定有键被按下。
但我们还不能确定是这一行的哪个键被按下。
所以,为了进一步判定到底是哪—列的键被按下,可在某一时刻只让一条列线处于低电平,而其余所有列线处于高电平。
当第1 列为低电平,其余各列为高电平时,因为是键3 被按下,所以第1 行仍处于高电平状态;当第2 列为低电平,其余各列为高电平时,同样我们会发现第1 行仍处于高电平状态,直到让第4 列为低电平,其余各列为高电平时,因为是3 号键被按下,所以第1 行的高电平转换到第4 列所处的低电平,据此,我们确信第1 行第4 列交叉点处的按键即3 号键被按下。
矩阵键盘设计实验报告

矩阵键盘设计实验报告
矩阵键盘是一种特殊的电子输入设备,其特殊性在于每个按键可以仅由几根线连接而成。
这可以将按键尺寸缩小,同时也减少了接線复杂度。
在本次实验中,我们设计了一个4*4的矩阵键盘。
矩阵键盘的外型是4 *4的按键,其中每个按键由一个PIN组成,连接起来分别连接在一个不同的ROW与COL上。
在使用矩阵键盘时,我们将其连接到一台电脑上,通过电脑程序监视每行每列的通断状态,当一行或者一列被按下,程序会自动捕捉,来表示一个字符或者code.
首先,我们先准备一台电脑,再连接矩阵键盘的各个PIN,用8个信号线将矩阵键盘连接到单片机,再用USB线将单片机连接到电脑上,使用PL 2303驱动链接矩阵键盘和电脑终端。
单片机负责捕获ROW和COL的信号,计算并识别矩阵键盘的按键,将计算出的字符发送至电脑终端,进行小程序的检测。
在电脑端,我们使用Apple系统的终端运行.bash,编写简单的shell脚本实现对矩阵键盘信号识别。
脚本将不断检测矩阵键盘信号状态,根据捕捉到的ROW和COL信号,将其映射出字符信息,在一定时间内输出至终端。
在实验的最后,我们检验了所设计的矩阵键盘是否符合预期效果。
通过代码发送进行按键操作,能检测到正确的字符,表明矩阵键盘的设计及实现满足要求。
本次实验可以作为以后矩阵键盘的参考,深入研究程序软件,提高实验效率。
矩阵键盘实验报告

矩阵键盘实验报告矩阵键盘实验报告引言:矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。
本实验旨在通过对矩阵键盘的研究和实验,深入了解其原理和工作机制,并探索其在实际应用中的潜力。
本文将从实验目的、实验步骤、实验结果和讨论四个方面进行论述。
实验目的:1. 理解矩阵键盘的工作原理;2. 掌握矩阵键盘的接线方法;3. 通过实验验证矩阵键盘的可靠性和稳定性。
实验步骤:1. 准备实验材料:矩阵键盘、电路板、导线等;2. 连接电路:将矩阵键盘与电路板通过导线连接;3. 编写程序:使用C语言编写程序,实现对矩阵键盘的扫描和按键检测;4. 烧录程序:将编写好的程序烧录到单片机中;5. 运行实验:按下矩阵键盘上的按键,观察电路板上的指示灯是否亮起。
实验结果:经过实验,我们成功地完成了矩阵键盘的接线和程序烧录,并进行了按键测试。
在按下不同的按键时,电路板上相应的指示灯亮起,证明了矩阵键盘的正常工作。
讨论:1. 矩阵键盘的工作原理:矩阵键盘是由行线和列线组成的,每个按键都与行线和列线相连。
当按下某个按键时,对应的行线和列线会短接,从而使得电流流过该按键,被检测到。
2. 矩阵键盘的接线方法:在本实验中,我们采用了常见的4行4列的接线方式,即将矩阵键盘的4个行线连接到单片机的4个输入引脚上,将4个列线连接到单片机的4个输出引脚上。
3. 矩阵键盘的可靠性和稳定性:通过实验,我们发现矩阵键盘具有较高的可靠性和稳定性。
即使在长时间使用和频繁按键的情况下,矩阵键盘仍能正常工作,并且按键的检测准确率较高。
4. 矩阵键盘的应用潜力:矩阵键盘广泛应用于各种电子产品中,如计算机、手机、电视遥控器等。
它具有结构简单、成本低廉、易于集成等优点,因此在电子产品设计中具有广阔的应用前景。
结论:通过本次实验,我们对矩阵键盘的工作原理和接线方法有了更深入的了解,并验证了其可靠性和稳定性。
矩阵键盘作为一种常见的输入设备,在电子产品设计中具有重要的地位和潜力。
实验三 矩阵键盘检测实验

实验三矩阵键盘识别实验
一、实验目的
掌握单片机I/O口的输入检测的方法、矩阵按键的识别方法、键盘消抖等。
学会实时程序的调试技巧。
二、实验原理
我们在手动按键的时候,由于机械抖动或是其它一些非人为的因素很有可能会造成误识别,一般手动按下一次键然后接着释放,按键两片金属膜接触的时间大约为50ms 左右,在按下瞬间到稳定的时间为5-10ms,在松开的瞬间到稳定的时间也为5-10ms,如果我们在首次检测到键被按下后延时10ms 左右再去检测,这时如果是干扰信号将不会被检测到,如果确实是有键被按下,则可确认,以上为按键识别去抖动的原理。
三、实验内容
实验板上电时,数码管不显示,顺序按下矩阵键盘后,在数码管上依次显示0到F,6个数码管同时静态显示即可。
下图中按键s6-s218条线分别联接p3口相连,p3.0~p3.3控制1~4行,p3.4~p3.7控制1~4列。
图1 实验板键盘电路原理图
四、实验步骤
1、按实验要求在Keil中创建项目,编辑、编译程序。
2、将编译生成的目标码文件(后缀为.Hex)传入实验板中。
3、在实验板上运行程序,观察实验运行结果并记录。
矩阵式键盘实验报告

矩阵式键盘实验报告矩阵键盘设计实验报告南京林业大学实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程院系班级学号姓名指导老师机电一体化设计基础机械电子工程学院杨雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
3、掌握利用Keil51软件对程序进行编译。
4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。
5、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。
2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。
能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。
2、硬件:PC机,串口线,并口线,单片机开发板四、实验内容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。
2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。
4、运用仿真软件对电路进行仿真。
五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。
2、编写程序使数码管显示当前闭合按键的键值。
3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。
4、用keil51软件编写程序,并生成HEX文件。
5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。
6、用通用编程器或ISP下载HEX程序到MCU。
矩阵键盘显示实验

矩阵键盘显示实验报告20 -20 学年第学期学院电子信息学院课程矩阵键盘显示实验姓名学号指导老师日期 20XX年XX月XX日矩阵键盘显示实验一、实验目的1、掌握矩阵键盘检测的原理和方法;2、掌握按键消抖的方法;3、再次熟悉数码管的显示。
二、实验任务从4×4矩阵键盘输入4位字符(如“15EF”),并显示于4位数码管。
三、实验原理在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图1-1所示。
在矩阵键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
图1-1 矩阵键盘矩阵键盘的按健识别方法很多,其中最常见的方法是行扫描法。
行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,下面介绍矩阵键盘的扫描过程。
(1)判断有无键按下第一步:向所有的列输出口线输出低电平;第二步:然后将行线的电平状态读入;第三步:判断读入的行线值。
若无键按下,所有的行线仍保持高电平状态;若有键按下,行线中至少应有一条线为低电平。
(2)去除按键的抖动去抖原理:当判断到键盘上有键按下后,则延时一段时间再判断键盘的状态,若仍为有键按下状态,则认为有一个键按下,否则当作按键抖动来处理。
(3)按键识别(列或行扫描法)在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将列(行)线置为低电平,即在置某根列(行)线为低电平时,其列(行)线为高电平,再逐行(列)检测各行(列)线的电平状态。
若某行为低电平,则该行线与置为低电平的列线交叉处的按键就是闭合的按键。
(4)求按键的键值根据闭合键的行值row和列值col采用计算法(如健值=行号×4+列号)或查表法将闭合键的行值和列值转换成所定义的键值。
电路原理图如下图所示。
图1-2 键盘显示实验电路四、程序流程图五、实验结果及分析总结(1)实验测试效果图如下:(2)分析总结:1、在这次的实验中我们将初始化部分、键盘扫描部分、数码管显示部分等分别写成了独立的函数,这样的程序看起来简洁、明了,在使用的时候直接调用就好了。
实验8-矩阵键盘扫描实验

//查询按键键值
key = Key_Scan() ;
if( key != 0xff )
printf( "Interrupt occur... K%d is pressed!\n", key ) ;
//重新初始化IO口
rGPGCON = rGPGCON & (~((3<<12)|(3<<4))) | ((1<<12)|(1<<4)) ;//GPG6,2 set output
6.EINT19、EINT11、EINT2、EINT0中断开启
}
6.2键盘中断响应
void __irq KeyISR(void)
{
1.GPG13、GPG11、GPF2、GPF0设为input端口
2.清楚中断EINT19、EINT11、EINT2、EINT0
3.键盘扫描Key_Scan(),并在串口输出
else if( (rGPGDAT&(1<< 3)) == 0 )return 14 ;
else if( (rGPGDAT&(1<<11)) == 0 )return 13 ;
//扫描键盘第2列K11、K8、K5、K2
rGPGDAT = rGPGDAT & (~((1<<6)|(1<<2))) | (0<<6) | (1<<2) ;//GPG6 output 0;GPG2 output 1
rEXTINT0 &= ~(7|(7<<8));
rEXTINT0 |= (2|(2<<8));//set eint0,2 falling edge int
单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告
实验名称:单片机矩阵键盘实验
实验目的:掌握单片机矩阵键盘的原理和应用,能够使用单片机按键输入
实验内容:利用Keil C51软件,采用AT89C51单片机实现一个4x4的矩阵键盘,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。
实验步骤:
1、搭建实验电路,将矩阵键盘与单片机相连,连接好电源正负极,然后将电路焊接成一个完整的矩阵键盘输入电路。
2、打开Keil C51软件,新建一个单片机应用工程,然后编写代码。
3、通过代码实现对矩阵键盘输入的扫描功能,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。
4、编译代码,生成HEX文件,下载HEX文件到单片机中,将单片机与电源相连,然后就可以测试了。
5、测试完成后,根据测试结果修改代码,重新编译生成HEX 文件,然后下载到单片机中进行验证。
实验结果:
经过测试,实验结果良好,能够准确地输入按键的值,显示在液晶屏上。
实验感想:
通过这次实验,我深深地认识到了矩阵键盘技术的重要性以及应用价值,同时也更加深入了解单片机的工作原理和应用技术,这对我的学习和工作都有很好的帮助。
矩阵键盘扫描实验

班级07电本一班学号2007050352姓名钟发炫同组人
实验日期2010. 05.27 室温大气压成绩
实验题目:矩阵键盘扫描实验
一、实验目的
1.掌握键盘信号的输入,DSP I/O的使用;
2.掌握键盘信号之间的时序的正确识别和引入。
二、实验设备
1. 一台装有CCS软件的计算机;
2. DSP试验箱的TMS320F2812主控板;
3. DSP硬件仿真器。
三、实验原理
实验箱上提供一个 4 * 4的行列式键盘。
TMS320F2812的8个I / O口与之相连,这里按键的识别方法是扫描法。
当有键被按下时,与此键相连的行线电平将由此键相连的列线电平决定,而行线的电平在无法按键按下时处于高电平状态。
如果让所有的列线也处于高电平,那么键按下与否不会引起行线电平的状态变化,始终为高电平。
所以,在让所有的列线处于高电平是无法识别出按键的。
现在反过来,让所有的列线处于低电平,很明显,按键所在的行电平将被拉成低电平。
根据此行电平的变化,便能判断此行一定有按键被按下,但还不能确定是哪个键被按。
矩阵键盘扫描与数码管显示实验结果分析

矩阵键盘扫描与数码管显示实验结果分析
矩阵键盘扫描与数码管显示实验是一种常见的数字电路实验。
在这个实验中,我们可以通过按下矩阵键盘上的按键,控制数码管上的数字显示。
实验结果分析主要包括以下几个方面:
1. 矩阵键盘扫描:在实验中按下键盘上的某个按键,可以通过扫描算法检测到按键的位置,并将对应按键的行列信息送入微处理器或控制电路。
分析实验结果时,可以观察是否可以正常检测到按键的位置,并且是否能够正确传递给其他部分的电路或处理器。
2. 数码管显示:通过实验中的控制电路,可以将微处理器或其他控制器输出的数字信号转换成数码管上的对应数字显示。
在分析实验结果时,可以观察数码管是否能够正常显示所期望的数字,并且是否能够响应输入信号的变化。
3. 信号传递与处理:在整个实验电路中,信号的传递和处理是关键部分。
可以分析信号在各个部分的传递过程中是否出现错误或干扰,是否能够实现正确的数据传输和处理。
4. 稳定性和可靠性:实验结果的分析还需要考虑电路的稳定性和可靠性。
即在长时间使用或复杂环境条件下,电路能否保持正常工作,并且不出现意外错误或故障。
总结来说,矩阵键盘扫描与数码管显示实验结果的分析需要关注按键的检测和传递、数码管的正确显示、信号传递与处理等方面,同时也需要考虑电路的稳定性和可靠性。
单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
实验二 矩阵键盘实验

实验二矩阵键盘实验一、实验目的(1)掌握矩阵键盘行列设计方法;(2)掌握矩阵键盘识别方法;(3)掌握矩阵键盘去抖原理;(4)掌握矩阵键盘控制LED或数码管的设计方法;二、实验原理电路图参考实验板电路。
1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学信息工程与自动化学院学生实验报告
(2013 —2014 学年第 2 学期)
课程名称:单片机原理及接口技术开课实验室: 2014年5月27日
一、上机目的及内容
上机目的:掌握单片机I/O口的输入检测的方法、矩阵按键的识别方法、键盘消抖等。
学会实时程序的调试技巧。
上机内容:实验板上电时,数码管不显示,顺序按下矩阵键盘后,在数码管上依次显示0到F,6个数码管同时静态显示即可。
二、实验原理及本技术路线图(方框原理图或程序流程图)
我们在手动按键的时候,由于机械抖动或是其它一些非人为的因素很有可能会造成误识别,一般手动按下一次键然后接着释放,按键两片金属膜接触的时间大约为50ms 左右,在按下瞬间到稳定的时间为5-10ms,在松开的瞬间到稳定的时间也为5-10ms,如果我们在首次检测到键被按下后延时10ms 左右再去检测,这时如果是干扰信号将不会被检测到,如果确实是有键被按下,则可确认,以上为按键识别去抖动的原理。
下图中按键s6-s218条线分别联接p3口相连,p3.0~p3.3控制1~4行,p3.4~p3.7控制1~4列。
三、所用仪器、材料(设备名称、型号、规格等或使用软件)
Pc机一台,keil软件,stc-isp
四、实验方法、步骤(或:程序代码或操作过程)
1、按实验要求在KeilC中创建项目,编辑、编译程序。
2、将编译生成的目标码文件(后缀为.Hex)下载到实验板电路中。
3、在实验板中运行程序,观察实验运行结果并记录。
程序代码:
org 0000h
wei bit p2.7
duan bit p2.6
main: mov p3,#0ffh
mov a,p3
setb wei
mov p0,#0ffh
clr wei
mov dptr,#table
m1: mov p3,#0feh
mov a,p3
cjne a,#0feh,s1
jmp s7
s1: call delay
mov a,p3
cjne a,#0feh,s2
jmp s7
s2: mov a,p3
cjne a,#0eeh,s3
mov r2,#0
jmp s8
s3: mov a,p3
cjne a,#0deh,s4
mov r2,#1
jmp s8
s4: mov a,p3
cjne a,#0beh,s5
mov r2,#2
jmp s8
s5: mov a,p3
cjne a,#7eh,s8
mov r2,#3
jmp s8
s8: mov a,p3
cjne a,#0feh,s8
call display
s7: nop
jmp m2
m2: mov p3,#0fdh
mov a,p3
cjne a,#0fdh,l0
jmp l0
l0: call delay
mov a,p3
cjne a,#0fdh,l2
jmp l7
l2: mov a,p3
cjne a,#0edh,l3
mov r2,#4
jmp l8
l3: mov a,p3
cjne a,#0ddh,l4
mov r2,#5
jmp l8
l4: mov a,p3
cjne a,#0bdh,l5
mov r2,#6
jmp l8
l5: mov a,p3
cjne a,#7dh,l8
mov r2,#7
jmp l8
l8: mov a,p3
cjne a,#0fdh,l8
call display
l7: nop
jmp m3
m3 : mov p3,#0fbh
mov a,p3
cjne a,#0fbh,a0
jmp a0
a0: call delay
mov a,p3
cjne a,#0fbh,a2
jmp a7
a2: mov a,p3
cjne a,#0ebh,a3
mov r2,#8
jmp a8
a3: mov a,p3
cjne a,#0dbh,a4
mov r2,#9
jmp a8
a4: mov a,p3
cjne a,#0bbh,a5
mov r2,#10
jmp a8
a5: mov a,p3
cjne a,#7bh,a8
mov r2,#11
jmp a8
a8: mov a,p3
cjne a,#0fbh,a8
call display
a7: nop
jmp m4
m4: mov p3,#0f7h
mov a,p3
cjne a,#0f7h,b0
jmp b0
b0: call delay
mov a,p3
cjne a,#0f7h,b2
jmp b7
b2: mov a,p3
cjne a,#0e7h,b3
mov r2,#12
jmp b8
b3: mov a,p3
cjne a,#0d7h,b4
mov r2,#13
jmp b8
b4: mov a,p3
cjne a,#0b7h,b5
mov r2,#14
jmp b8
b5: mov a,p3
cjne a,#77h,b8
mov r2,#15
jmp b8
b8: mov a,p3
cjne a,#0f7h,b8
call display
b7: nop
jmp m1 display:setb wei
mov p0,#0c0h
clr wei
setb duan
mov a,r2
movc a,@a+dptr
mov p0,a
clr duan
ret
delay: mov r4,#20
dl0: mov r7,#248
djnz r7,$
djnz r4,dl0
ret
table: db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh
db 77h,7ch,39h,5eh,79h,71h
end
五、实验过程原始记录( 测试数据、图表、计算等)
六、实验结果、分析和结论(误差分析与数据处理、成果总结等。
其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)。