高中数学-公式-平面向量

合集下载

高中数学《平面向量》知识点总结

高中数学《平面向量》知识点总结
(1)平面向量的坐标表示
在直角坐标系内,我们分别取与 轴、 轴方向相同的两个单位向量 、 作为基底 任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、 ,使得 .我们把 叫做向量 的(直角)坐标,记作 ,其中 叫做 在 轴上的坐标, 叫做 在 轴上的坐标.
(2)若 , ,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
2、两个向量平行的充要条件
向量共线定理:向量 与非零向量 共线的充要条件是:有且只有一个非零实数λ,使 =λ
∥ =
3、两个向量垂直的充要条件
设 , ,则
4、平面内两点间的距离公式
(1)设 ,则 或
(2)如果表示向量 的有向线段的起点和终点的坐标分别为A 、B ,那么 (平面内两点间的距离公式)
5、两向量夹角的余弦( )cos=
9、实数与向量的积:实数λ与向量 的积是一个向量,记作 ,它的长度与方向规定如下:
(Ⅰ) ;(Ⅱ)当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, ,方 向是任意的
10、两个向量的数量积:
已知两个非零向量 与 ,它们的夹角为 ,则 叫做 与 的数量积(或内积) 规定
11、向量的投影
附:三角形的四个“心”
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
非零向量 与 有关系是: 是 方向上的单位向量
注意:(1)结合律不成立: ;
(2)消去律不成立 不能得到
(3) 不能得到 或
乘法公式成立:
6、线段的定比分点公式:设点 分有向线段 所成的比为 ,即 = ,则

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结引言:平面向量是解决几何问题中常用的数学工具之一。

在高中数学课程中,平面向量的概念和性质被广泛学习和应用。

下面将对高中平面向量的知识点进行总结,以加深对该内容的理解和应用。

一、平面向量的定义和表示法平面向量是有大小和方向的量,通常表示为带箭头的有向线段。

向量的大小称为模,表示为|v|,方向可以用角度或者与坐标轴的夹角表示。

在坐标系中,我们可以使用有序数对(x, y)来表示向量。

二、平面向量的运算1. 向量的加法和减法:向量的加法和减法可以分别用三角形法则和平行四边形法则进行计算。

具体来说,向量A + 向量B等于以向量A和向量B为边的三角形的第三边,而向量A - 向量B等于以向量A和向量B为对角线的平行四边形的对角线。

2. 向量的数量乘法:向量的数量乘法指的是将向量的大小与一个实数相乘。

具体来说,给定向量A和实数k,kA等于以向量A的起点为端点,且长度为|k|倍的向量。

3. 向量的点积和叉积:向量的点积和叉积是向量运算中的两种重要形式。

向量的点积表示为A·B,计算公式为A·B = |A||B|cosθ,其中θ为A和B之间的夹角。

向量的点积满足交换律和分配律。

向量的叉积表示为A×B,计算公式为A×B = |A||B|sinθn,其中θ为A和B之间的夹角,n为单位法向量。

向量的叉积具有反交换律和分配律。

三、向量的共线性和垂直性1. 向量的共线性:给定两个非零向量A和B,如果存在一个实数k,使得A=kB,那么向量A和向量B共线。

2. 向量的垂直性:给定两个非零向量A和B,如果A·B=0,那么向量A和向量B垂直。

该性质可以用来解决垂直向量的判断和运算问题。

四、向量在平面几何中的应用1. 平面向量与平移:平面向量的加法和减法可以用于描述平移过程。

给定向量a表示原点O到点A的位移向量,那么点B的坐标可以表示为B = A + a。

同样地,如果我们知道点A和点B的坐标,那么向量AB的坐标可以表示为AB = B - A。

高考数学一轮复习知识点大全-平面向量

高考数学一轮复习知识点大全-平面向量

特别提醒:①,sin()sin ,sincos 22A B C A B C A B C π++=-+==: ②锐角三角形⇒sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭⇒sin sin sin cos cos cos A B C A B C ++>++.(2)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). 注意:①正弦定理的一些变式: ()sin sin i a b A B :=:;()sin 2a ii A R =;()2sin iii a R A =; ②已知三角形两边及一边的对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc +-=+-=等, 解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.(4)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径). (5)大边对大角:当出现多个解时,常用于判断哪些是符合题意的解、哪些不是.在三角形中,sin sin A B A B >⇔>,这是“正弦定理+大边对大角”的应用.14. 致命易错点提示:(1)特殊角三角函数值、诱导公式和三角变换公式使用错误;(2)大题第一步化简错误(应在化简完后立刻检验);(3)已知三角函数值求角、同角三角函数之间的互化、三角函数值域和最值的研究经常会忽略角的范围.第五部分 平面向量1. 向量有关概念:(1)向量的概念:既有大小又有方向的量,叫向量. 向量常用有向线段来表示.注意向量和数量的区别.(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的.(3)单位向量:长度为一个单位长度的向量叫做单位向量.(与AB 共线的单位向量有两个:AB±,一个同向,一个反向).(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性.(5)相反向量:长度相等方向相反的向量叫做相反向量, a 的相反向量是-a .(6)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行.提醒:①两个向量平行与两条直线平行是不同的两个概念,两个向量平行包含基线平行与重合两种情况, 但两条直线平行不包含两条直线重合.②三点A B C 、、共线⇔AB ∥AC .2. 向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意前为起点,后为终点.(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等.(3)坐标表示法:在平面直角坐标系内,以与x 轴、y 轴正方向同向的两个单位向量i ,j 为基底,则平面内任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.3. 平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2.如:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(用,a b 表示)(答:1322a b -). (2)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0).4. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:(1);a a λλ=(2)当λ0>时,λa 的方向与a 的方向相同;当λ0<时,λa 的方向与a 的方向相反;当λ=0时,0a λ=,注意:λa ≠0. 5. 平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角.当θ=0时,a ,b 同向;当θ=π时,a ,b 反向;当θ=2π时,a ,b 垂直.(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积,或点积),记作:b a ⋅,即b a ⋅=cos a b θ.规定:零向量与任一向量的数量积是0.注意数量积是一个实数,不再是一个向量.如:①2=5=,3-=⋅b a ,则a b +等于____.) ②已知非零向量,a b 满足a b a b ==-,则,a a b 〈+〉的大小为____.(答:30)(3)b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0. 如:已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在→b 上的投影为____.(答:512) (4)b a ⋅的几何意义:数量积b a ⋅等于a 的模||a 与b 在a 上的投影数量的积.(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0=⋅⇔⊥b a b a .②当a ,b 同向时,b a ⋅=a b ,特别地,22||a a a a =⋅=,||a = 当a 与b 反向时,b a ⋅=-a b .当θ为锐角时,b a ⋅>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件.当θ为钝角时,b a ⋅<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件.③非零向量a ,b 夹角θ的计算公式:||||cos b a b a =θ ④||||||b a b a ≤⋅.如 :已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______.(答:43λ<-或0λ>且13λ≠) 6.向量的运算:(1)几何运算:①向量加法:利用“平行四边形法则”进行.向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC叫做a 与b 的和,即a b AB BC AC +=+=.②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么, 由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同.(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±.②实数与向量的积:()()1111,,a x y x y λλλλ==.③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.④平面向量数量积:2121y y x x b a +=⋅.⑤向量的模:222222||,||a x y a a x y =+==+.⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =.7. 向量的运算律: (1)交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅.( 2 ) 结合律:()(),a b c a b c a b c a b c ++=++--=-+,)()()(b a b a b a λλλ⋅=⋅=⋅.(3)分配律:()(),a a a a b a b λμλμλλλ+=++=+, c b c a c b a ⋅+⋅=⋅+)(.如:在下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(.② →→→→→→⋅⋅=⋅⋅c b a c b a )()(. ③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+. ④ 若0=⋅→→b a ,则0=→a 或0=→b . ⑤ 若,a b c b ⋅=⋅则a c =.⑥22a a =. ⑦2a bb a a ⋅=.⑧222()a b a b ⋅=⋅. ⑨222()2a b a a b b -=-⋅+.其中正确的是______.(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约). (2)向量的“乘法”不满足结合律,即c b a c b a )()(⋅≠⋅.(为什么?)8. 向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0.如:(1)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =___.(答:4).(2)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 三点共线.(答:-2或11)9. 向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如:已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = .(答:32)10.向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.(2)||||||||||||a b a b a b -≤±≤+,特别地,当 a b 、同向或有0⇔||||||a b a b +=+≥||||||||a b a b -=-. 当 a b 、反向或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.当 a b 、不共线⇔||||||||||||a b a b a b -<±<+. (这些和实数比较类似)(3)在ABC ∆中,①若()()()112233,,,,,A x y B x y C x y ,则其重心坐标为123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭. 如 :若ABC ∆的三边的中点坐标分别为(2,1)、(-3,4)、(-1,-1),则ABC ∆的重心坐标为_______.(答:24(,)33-) ②1()3PG PA PB PC =++⇔G 为ABC ∆的重心, 特别地,0PA PB PC P ++=⇔为ABC ∆的重心.③PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.④向量()(0)||||AC AB AB AC λλ+≠的基线经过ABC ∆的内心. (4)P 为12P P 的中点122MP MP MP +⇔=. (5)向量 PA PB PC 、、的终点A B C 、、共线⇔存在实数αβ、,使得PA PB PC αβ=+,且1αβ+=.如:平面直角坐标系中,O 为坐标原点,已知)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是____. (答:直线AB ) 第六部分 数列1.数列的定义:数列是一个定义域为正整数集*N (或它的有限子集{}n ,,3,2,1 )上 的特殊函数,数列的通项公式也就是相应函数的解析式.2. 一般数列的通项n a 与前n 项和n S 的关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 3. 等差数列的概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数).(2)等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d =+-.(3)等差数列的前n 项和:1()2n n n a a S +=1(1)2n n na d -=+, 注意n S 与中间项的关系.(4)等差中项:若,,a A b 成等差数列,那么A 叫做a 与b 的等差中项,2a b A +=. 4.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是。

(完整版)高中数学平面向量知识点总结及常见题型

(完整版)高中数学平面向量知识点总结及常见题型

平面向量一.向量的基本概念与基本运算1①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法,(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0|a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x2121y y x x2求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC uuu r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a; (ii) a +(a )=(a )+a =0 ; (iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0 ②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律5向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底7特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r作为基底量的基本定理知,该平面内的任一向量a r 可表示成a xi yj r r r,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r 的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr (2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r,则1212a b x x y y r r若a b rr ,则02121 y y x x3及其各运算的坐标表示和性质三.平面向量的数量积 1已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r ︱·︱b r ︱cos 叫做a r 与b r的数量积(或内积) 规定0a r r2︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影为射影3a r ·b r 等于a r的长度与b r 在a r 方向上的投影的乘积42||a a a a r r r r52222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r 或b r =r7已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =121x x y y 已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =222221212121y x y x y y x x当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件:a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量.(2)若两个向量不相等,则它们的终点不可能是同一点. (3)与已知向量共线的单位向量是唯一的.(4)四边形ABCD 是平行四边形的条件是AB CD u u u r u u u r. (5)若AB CD u u u r u u u r,则A 、B 、C 、D 四点构成平行四边形.(6)因为向量就是有向线段,所以数轴是向量.(7)若a r 与b r 共线, b r 与c r 共线,则a r 与c r共线. (8)若ma mb r r ,则a b r r.(9)若ma na r r,则m n .(10)若a r 与b r 不共线,则a r 与b r都不是零向量. (11)若||||a b a b r r r r,则//a b r r . (12)若||||a b a b r r r r,则a b r r .题型2.向量的加减运算1.设a r 表示“向东走8km ”, b r 表示“向北走6km ”,则||a b r r.2.化简()()AB MB BO BC OM u u u r u u u r u u u r u u u r u u u u r.3.已知||5OA u u u r ,||3OB u u u r ,则||AB uuu r的最大值和最小值分别为 、 .4.已知AC AB AD u u u r u u u r u u u r 为与的和向量,且,AC a BD b u u u r r u u u r r ,则AB u u u r ,AD u u u r.5.已知点C 在线段AB 上,且35AC AB u u u r u u u r ,则AC u u u r BC uuu r ,AB u u u rBC uuu r .题型3.向量的数乘运算1.计算:(1)3()2()a b a b r r r r (2)2(253)3(232)a b c a b c r r r r r r2.已知(1,4),(3,8)a b r r ,则132a b rr .题型4.作图法球向量的和已知向量,a b r r ,如下图,请做出向量132a b r r和322a b r r .a rb r题型5.根据图形由已知向量求未知向量1.已知在ABC 中,D 是BC 的中点,请用向量AB AC u u u r u u u r ,表示AD u u u r. 2.在平行四边形ABCD 中,已知,AC a BD b u u u r u u u r rr ,求AB AD u u u r u u u r 和.题型6.向量的坐标运算1.已知(4,5)AB u u u r,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ u u u r,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F r ,2(2,3)F r ,3(1,4)F r,则合力的坐标为 .4.已知(3,4)a r,(5,2)b r ,求a b r r ,a b r r ,32a b r r .5.已知(1,2),(3,2)A B ,向量(2,32)a x x y r与AB u u u r 相等,求,x y 的值. 6.已知(2,3)AB u u u r ,(,)BC m n u u u r ,(1,4)CD u u u r ,则DA u u u r.7.已知O 是坐标原点,(2,1),(4,8)A B ,且30AB BC u u u r u u u r r ,求OC uuu r的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e u r u u r是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e u r u u r u r u u r 和 B.1221326e e e e u r u u r u u r u r 和4 C.122133e e e e u r u u r u u r u r 和 D.221e e e u u r u u r u r 和2.已知(3,4)a r ,能与a r构成基底的是( ) A.34(,)55 B.43(,)55 C.34(,)55 D.4(1,)3题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA u u u r ,150xOA o,求OA u u u r 的坐标.2.已知O 是原点,点A 在第一象限,||OA u u u r ,60xOA o,求OA u u u r 的坐标.题型9.求数量积1.已知||3,||4a b r r ,且a r 与b r 的夹角为60o,求(1)a b r r ,(2)()a a b r r r , (3)1()2a b b r r r ,(4)(2)(3)a b a b r r r r .2.已知(2,6),(8,10)a b r r ,求(1)||,||a b r r ,(2)a b r r ,(3)(2)a a b rr r ,(4)(2)(3)a b a b r r r r.题型10.求向量的夹角1.已知||8,||3a b r r,12a b r r ,求a r 与b r 的夹角.2.已知(2)a b r r,求a r 与b r 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC . 题型11.求向量的模1.已知||3,||4a b r r ,且a r 与b r 的夹角为60o,求(1)||a b r r ,(2)|23|a b r r .2.已知(2,6),(8,10)a b r r ,求(1)||,||a b r r ,(5)||a b r r ,(6)1||2a b rr .3.已知||1||2a b r r ,,|32|3a b r r ,求|3|a b r r .题型12.求单位向量 【与a r 平行的单位向量:||ae a rr r 】1.与(12,5)a r平行的单位向量是 . 2.与1(1,)2m r平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a r,(3,)b m r ,当m 为何值时,(1)//a b r r ?(2)a b r r ?2.已知(1,2)a r,(3,2)b r ,(1)k 为何值时,向量ka b r r 与3a b r r 垂直? (2)k 为何值时,向量ka b r r 与3a b r r平行?3.已知a r 是非零向量,a b a c r r r r ,且b c r r ,求证:()a b c r rr .题型14.三点共线问题1.已知(0,2)A ,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设5),28,3()2AB a b BC a b CD a bu u u r rr u u u r r r u u u r r r ,求证:A B D 、、三点共线.3.已知2,56,72AB a b BC a b CD a b u u u r r r u u u r r r u u u r r r,则一定共线的三点是 .4.已知(1,3)A ,(8,1)B ,若点(21,2)C a a 在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B ,(1,1)C ,是否存在常数t ,使OA tOB OC u u u r u u u r u u u r成立?题型15.判断多边形的形状1.若3AB e u u u r r ,5CD e u u u r r ,且||||AD BC u u u r u u u r,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A ,(6,3)B ,(0,5)C ,求证:ABC 是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC u u u r u u u r u u u r,求证:ABC 是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a r,(2,1)b r ,当k 为何值时,向量ka b r r 与3a b r r 平行?2.已知a r,且a b r r ,||2b r ,求b r 的坐标. 3.已知a b r r 与同向,(1,2)b r,则10a b r r ,求a r 的坐标.3.已知(1,2)a r ,(3,1)b r ,(5,4)c r,则c r a r b r .4.已知(5,10)a r ,(3,4)b r ,(5,0)c r,请将用向量,a b r r 表示向量c r .5.已知(,3)a m r,(2,1)b r ,(1)若a r 与b r 的夹角为钝角,求m 的范围;(2)若a r 与b r的夹角为锐角,求m 的范围.6.已知(6,2)a r,(3,)b m r ,当m 为何值时,(1)a r 与b r 的夹角为钝角?(2)a r 与br 的夹角为锐角?7.已知梯形ABCD 的顶点坐标分别为(1,2)A ,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD ,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B ,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30o 角,求水流速度与船的实际速度.10.已知ABC 三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,(1)若0AB AC u u u r u u u r,求c 的值;(2)若5c ,求sin A 的值.【备用】1.已知||3,||4,||5a b a b r r r r ,求||a b r r 和向量,a b r r的夹角.2.已知x a b r r r ,2y a b u r r r ,且||||1a b r r ,a b r r ,求,x y r u r的夹角的余弦.1.已知(1,3),(2,1)a b r r ,则(32)(25)a b a b r r r r.4.已知两向量(3,4),(2,1)a b r r,求当a xb a b r r r r 与垂直时的x 的值. 5.已知两向量(1,3),(2,)a b r r,a b r r 与的夹角 为锐角,求 的范围.11 变式:若(,2),(3,5)a b r r ,a b r r 与的夹角 为钝角,求 的取值范围.选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c r r r ,则c r ( ) A.1322a b r r B.1322a b r r C.3122a b r r D.3122a b r r 2.排除法例:已知M 是ABC 的重心,则下列向量与AB u u u r 共线的是( )A.AM MB BC u u u u r u u u r u u u rB.3AM AC u u u u r u u u rC.AB BC AC u u u r u u u r u u u rD.AM BM CM u u u u r u u u u r u u u u r。

高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)

高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)

第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向; 当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a||b| cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a||b|cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b|cos θ叫做向量b 在向量a 的方向上的投影,|a|cos θ叫做向量a 在向量b 的方向上的投影.(2)a·b 的几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a·b =b·a.(2)数乘结合律:(λa)·b =λ(a·b)=a·(λb). (3)分配律:(a +b)·c =a·c +b·c.向量数量积的运算不满足乘法结合律,即(a·b)·c 不一定等于a·(b·c),这是由于(a·b)·c 表示一个与c 共线的向量,a·(b·c)表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a. (4)cos θ=a ·b|a ||b |.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a|=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式 (1)(a +b)·(a -b)=a 2-b 2; (2)(a±b)2=a 2±2a·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)(2018·新乡二模)若向量m =(2k -1,k )与向量n =(4,1)共线,则m·n =( ) A .0 B .4 C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172.(2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a·b =0, ∵|a|=2,|b|=1,∴AC ―→·CB ―→=(a +b)·(-b)=-a·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a·(b +a)=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a|=5, 由a·(b +a)=2,可得a·b +a 2=2, ∴a·b =-3,∴向量b 在a 方向上的投影为a·b |a|=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14. 答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a·b =-12,向量c 与a +b 共线,则|a +c|的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a|=3,∴a·(a +b)=a 2+a·b =|a||a +b|cos π4,∴|a +b|=32,将|a +b|=32两边平方可得,a 2+2a·b +b 2=18,解得|b|=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b)(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c)2=(t +1)2a 2+2t (t +1)·a·b +t 2b 2, ∵向量a ,b 为单位向量,且a·b =-12,∴(a +c)2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c|≥32,∴|a +c|的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a|=1,|b|=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b|2=|a|2+4|b|2+4a·b =1+1+4×1×12×cos π3=3,所以|a +2b|= 3.又(a +2b)·b =a·b +2|b|2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=a +2b ·b|a +2b||b|=343×12=32, 所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b|cos 〈a ,b 〉=-3,又|a|=12+32=2,所以a·b =|a||b|cos 〈a ,b 〉=-6,又a·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b|=32+-332=6,所以cos 〈a ,b 〉=a·b |a||b|=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a|=223|b|,且(a -b)⊥(3a +2b),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a|=223|b|,(a -b)⊥(3a +2b), 所以(a -b)·(3a +2b)=3|a|2-2|b|2-a·b =83|b|2-2|b|2-223|b|2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→ ·BC ―→=0,即AP ―→ ·BC ―→=(λAB ―→+AC ―→ )·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n)⊥(m -n),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b|=1,|2a -b|=1,则|a|=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b|=1,∴a·b =|a|×1×12=|a|2,∵|2a -b|=1,∴|2a -b|2=4a 2-4a·b +b 2=4|a|2-2|a|+1=1,∴4|a|2-2|a|=0,∴|a|=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a|=1,|b|=2,a +b =(1,3),记向量a ,b 的夹角为θ,则tan θ=________.解析:∵|a|=1,|b|=2,a +b =(1,3),∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =1+3,∴a·b =-12,∴cos θ=a·b |a|·|b|=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴tan θ=sin θcos θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a|=1,|b|=23,a 与b 的夹角的余弦值为sin 17π3,则b·(2a -b)等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a·b =-3,b·(2a -b)=2a·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b)·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a|=1,b =(2,1),且a·b =0,则|a -b|=( ) A.6 B.5 C .2D.3解析:选A 因为|a|=1,b =(2,1),且a·b =0,所以|a -b|2=a 2+b 2-2a·b =1+5-0=6,所以|a -b|= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c)∥b ,c ⊥(a +b),则c =( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c)∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12 D.⎝⎛⎭⎫-∞,12 解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b|=|a -b|=2|b|,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b|=|a -b|,∴|a +b|2=|a -b|2,∴a·b =0.又|a +b|=2|b |,∴|a +b|2=4|b|2,|a|2=3|b|2,∴|a|=3|b|,cos 〈a +b ,a 〉=a +b ·a |a +b||a|=a 2+a·b |a +b||a|=|a|22|b||a|=|a|2|b|=32,故a +b 与a 的夹角为π6.7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e|=1,a·e =1,b·e =-2,|a +b|=2,则a·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b|=1+m +n2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn=4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a·b =-2+mn ≤-54,综上可得a·b 的最大值为-54.9.已知平面向量a ,b 满足a·(a +b)=3,且|a|=2,|b|=1,则向量a 与b 的夹角的正弦值为________.解析:∵a·(a +b)=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a|=1,|b|=2,若(λa +b)⊥(a -2b),则λ=________.解析:∵|a|=1,|b|=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b)⊥(a -2b),∴(λa +b)·(a -2b)=0,即(λa +b)·(a -2b)=λa 2-2b 2+(1-2λ)a·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a|=1,|b|=2,|a +b|=3,则a 在b 方向上的投影等于________.解析:∵|a|=1,|b|=2,|a +b|=3, ∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =3, ∴a·b =-1,∴a 在b 方向上的投影为a·b |b|=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→ ·(OB ―→-OA ―→ )=(OA ―→+AC ―→ )·AB ―→=OA ―→ ·AB ―→+AC ―→ ·AB ―→= 2 c os 3π4+24 ×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a|=|b|=1,且|2a -b|= 5. (1)求|2a -3b|的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b|2=4a 2-4a·b +b 2=4-4a·b +1=5,∴a·b =0, ∴|2a -3b|=4a 2-12a·b +9b 2=4+9=13.(2)cos θ=3a -b ·a -2b |3a -b||a -2b|=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22, ∵θ∈[0,π],∴θ=π4.。

高中数学平面向量知识点总结

高中数学平面向量知识点总结
a2 b2 c2 2bc cos A
b2 a2 c2 2ac cos B
c2 a2 b2 2ab cos C
4.强调几个问题: 1熟悉定理的结构,注意“平方”“夹角”“余弦”等 2知三求一 3当夹角为 90时,即三角形为直角三角形时即为勾股定理(特例)
λ =0
P 与 P2 重合
λ 不存在
2 中点公式是定比分点公式的特例
3
始点终点很重要,如 P 分 P1P2 的定比λ
=1 2
4 公式:如 x1, x2, x, λ 知三求一
十.平面向量的数量积及运算律
则 P 分 P2 P1 的定比λ =2
(一)平面向量数量积
1.定义:平面向量数量积(内积)的定义,ab = |a||b|cos,
坐标。
4.实数与向量积的坐标运算:已知
a
=(x,
y)
实数λ
则λ
a

(x i +y j )=λ
x i +λ
yj
∴λ
a
=(λ
x,
λ
y)
结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
八.向量平行的坐标表示
结论:
a

b
( b 0 )的充要条件是 x1y2-x2y1=0
特别的 aa = |a|2 或| a | a a
4cos = a b | a || b |
5|ab| ≤ |a||b| 十一. 平面向量的数量积的运算律
1. 交换律:a b = b a 2. 结合律:( a)b = (ab) = a( b) 3. 分配律:(a + b)c = ac + bc 十二. 平面向量的数量积的坐标表示 1.设 a = (x1, y1),b = (x2, y2),x 轴上单位向量 i,y 轴上单位向量 j,则:ii = 1, jj = 1,ij = ji = 0 2.ab = x1x2 + y1y2 3.长度、角度、垂直的坐标表示

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

高中数学第五章_平面向量

高中数学第五章_平面向量

第五章⎪⎪⎪平面向量第一节平面向量的概念及其线性运算1.向量的有关概念平行四边形法则向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案:D3.若D 是△ABC 的边AB 上的中点,则向量CD ―→等于( ) A .-BC ―→+12BA ―→B .-BC ―→-12 BA ―→C .BC ―→ -12BA ―→D .BC ―→+12BA ―→答案:A4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件. 解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念(基础送分型考点——自主练透)[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 和b 不共线,则a 和b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等解析:选C 选项A 中向量与有向线段是两个完全不同的概念,故正确;选项B 中零向量与任意向量共线,故a ,b 都是非零向量,故正确;选项C 中是共线向量,故错误;选项D 中既然方向相反就一定不相等,故正确.3.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点 (1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.考点二 向量的线性运算(基础送分型考点——自主练透)[题组练透]1.(2018·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2018·温州模拟)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB ―→+AC ―→)=12(AB―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.3.(2019·郑州第一次质量预测)如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→,则实数m 的值为( )A .1 B.13C.911D.511解析:选D AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→=⎝⎛⎭⎫m +211AB ―→+211(AC ―→-AB ―→)=m AB ―→+211AC ―→,设BP ―→=λBN ―→(0≤λ≤1),则AP ―→=AB ―→+λBN ―→=AB ―→+λ(AN ―→-AB ―→)=(1-λ)AB ―→+λAN ―→,因为AN ―→ =13AC ―→,所以AP ―→=(1-λ)AB ―→+13λAC ―→,则⎩⎪⎨⎪⎧m =1-λ,211=13λ,解得⎩⎨⎧λ=611,m =511,故选D.[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用(重点保分型考点——师生共研)[典例引领]1.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )·AC ―→,则x 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 解析:选D 设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→)=-y AB ―→+(1+y ) AC ―→,∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x ∈⎝⎛⎭⎫-13,0. 2.设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→.∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.2.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( ) A .2OA ―→-OB ―→B .-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→. 2.(2019·石家庄质检)在△ABC 中,点D 在边AB 上,且BD ―→=12DA ―→,设CB ―→=a ,CA ―→=b ,则CD ―→=( )A.13a +23bB.23a +13b C.35a +45b D.45a +35b 解析:选B ∵BD ―→=12DA ―→,∴BD ―→=13BA ―→,∴CD ―→=CB ―→+BD ―→=CB ―→+13BA ―→=CB ―→+13(CA ―→-CB ―→)=23CB ―→+13CA ―→=23a +13b . 3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→. 又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13. 答案:135.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,因为在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形ANDM 为菱形,因为AB =4,所以AN =AM =3,AD =3 3.答案:3 3二保高考,全练题型做到高考达标1.已知向量a ,b ,且AB ―→=a +2b ,BC ―→=-5a +6b ,CD ―→=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:选A AD ―→=AB ―→+BC ―→+CD ―→=3a +6b =3AB ―→.因为AB ―→与AD ―→有公共点A ,所以A ,B ,D 三点共线.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(2019·浙江六校联考)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23b B .-13a -23bC .-13a +23b D.13a -23b解析:选C 如图,因为点E 为CD 的中点,CD ∥AB ,所以BFEF =ABEC =2,所以BF ―→=23BE ―→=23(BC ―→+CE ―→)=23⎝⎛⎭⎫b -12a =-13a +23b . 4.(2018·遂昌期初)已知a ,b 是两个不共线的非零向量,且起点在同一点上,若a ,t b ,13(a +b )三向量的终点在同一直线上,则实数t 的值为( )A .2B .1C .23D .12解析:选D 由题可设13(a +b )=λa +μt b ,因为a ,t b ,13(a +b )三向量的终点在同一直线上,所以有λ+μ=1.所以13=λ,μ=23,所以13=23t ,解得t =12.5.(2019·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC=6,则△PAB 的面积为( )A .2B .3C .4D .8解析:选A ∵PA ―→+PB ―→+PC ―→=2AB ―→=2(PB ―→-PA ―→),∴3PA ―→=PB ―→-PC ―→=CB ―→,∴PA ―→∥CB ―→,且方向相同,∴S △ABC S △PAB =BC AP =|CB ―→||PA ―→|=3,∴S △PAB =S △ABC3=2. 6.已知O 为△ABC 内一点,且2AO ―→=OB ―→+OC ―→,AD ―→=t AC ―→,若B ,O ,D 三点共线,则t 的值为________.解析:设线段BC 的中点为M ,则OB ―→+OC ―→=2OM ―→. 因为2AO ―→=OB ―→+OC ―→,所以AO ―→=OM ―→,则AO ―→=12AM ―→=14(AB ―→+AC ―→)=14⎝⎛⎭⎫AB ―→+1t AD ―→=14AB ―→+14t AD ―→.由B ,O ,D 三点共线,得14+14t =1,解得t =13.答案:137.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0. 其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ. 解得k =12.10.已知a ,b 不共线,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.三上台阶,自主选做志在冲刺名校1.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.2.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:133.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B ,∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0.∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1. 第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______.答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -134.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 答案:-11.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[题组练透]1.(2019·温州模拟)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→D .-13AB ―→+23AD ―→解析:选C 如图,取AB 的中点G ,连接DG ,CG ,易知四边形DCBG 为平行四边形,∴BC ―→=GD ―→=AD ―→-AG ―→=AD ―→-12AB ―→,∴AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23⎝⎛⎭⎫AD ―→-12AB ―→=23AB ―→+23AD ―→,于是BF ―→=AF ―→-AB ―→=12AE ―→-AB ―→=12⎝⎛⎭⎫23AB ―→+23AD ―→-AB ―→=-23AB ―→+13AD ―→,故选C.2.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -16L ,且AK ―→=3.如图,已知平行四边形ABCD 的边BC ,CD 的中点分别是K ,e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,CD ―→.解:设BC ―→=x ,CD ―→=y ,则BK ―→=12x ,DL ―→=-12y .由AB ―→+BK ―→=AK ―→,AD ―→+DL ―→=AL ―→,得⎩⎨⎧-y +12x =e 1, ①x -12y =e 2, ②①+②×(-2),得12x -2x =e 1-2e 2,即x =-23(e 1-2e 2)=-23e 1+43e 2,所以BC ―→=-23e 1+43e 2.同理可得y =-43e 1+23e 2,即CD ―→=-43e 1+23e 2.[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A.2.已知M (3,-2),N (-5,-1),且MP ―→=12MN ―→,则P 点的坐标为( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1)解析:选B 设P (x ,y ),则MP ―→= (x -3,y +2),而12MN ―→=12(-8,1)=⎝⎛⎭⎫-4,12,所以⎩⎪⎨⎪⎧x -3=-4,y +2=12,解得⎩⎪⎨⎪⎧x =-1,y =-32,所以P ⎝⎛⎭⎫-1,-32. 3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示(重点保分型考点——师生共研)[典例引领]1.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)2.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[由题悟法]向量共线的充要条件 (1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6.当m =-6时,a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件.2.(2018·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________. 解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0. 答案:03.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:∵a 与b 方向相反,∴可设a =λb (λ<0), ∴a =λ(2,1)=(2λ,λ).由|a |=5λ2=25,解得λ=-2或λ=2(舍去), 故a =(-4,-2). 答案:(-4,-2)4.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值等于________.解析:AB ―→=(a -2,-2),AC ―→=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案:12一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,∴3(m +3)-6(m +1)=0, ∴m =1.故选A.3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.(2019·舟山模拟)已知向量a =(2,3),b =(-1,2),若m a +b 与a -2b 共线,则m 的值为________. 解析:由a =(2,3),b =(-1,2),得m a +b =(2m -1,3m +2),a -2b =(4,-1),又m a +b 与a -2b 共线,所以-1×(2m -1)=(3m +2)×4,解得m =-12.答案:-125.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:12二保高考,全练题型做到高考达标1.(2018·温州十校联考)已知a =(-3,1),b =(-1,2),则3a -2b =( ) A .(7,1) B .(-7,-1) C .(-7,1)D .(7,-1)解析:选B 由题可得,3a -2b =3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π3解析:选B 因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3.3.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC ―→=2CB ―→,则实数a 等于( )A .2B .1C .45D .53解析:选A 设C (x ,y ),则AC ―→=(x -7,y -1),CB ―→=(1-x,4-y ),∵AC ―→=2CB ―→,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3). 又∵点C 在直线y =12ax 上,∴3=12a ×3,∴a =2.4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.12a +14bC.23a +13bD.13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b , ∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎡⎦⎤-12 BD ―→⎝⎛⎭⎫-12AC ―→=16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C.6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________,若c =x a +y b ,则x +y 的值为________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.因为c =x a +y b ,所以(3,2)=(x -2y,3x +y ),即x -2y =3,3x +y =2,解得x =1,y =-1,所以x +y =0.答案:-1 07.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC ―→=λDB ―→+μAP ―→,则λ+μ的最大值为________.解析:以A 为坐标原点,以AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为2,则B (2,0),C (2,2),D (0,2),P (x,2),x ∈[0,2]. ∴AC ―→=(2,2),DB ―→=(2,-2),AP ―→=(x,2).∵AC ―→=λDB ―→+μAP ―→,∴⎩⎪⎨⎪⎧2λ+xμ=2,-2λ+2μ=2,∴⎩⎪⎨⎪⎧λ=2-x2+x ,μ=42+x ,∴λ+μ=6-x 2+x .令f (x )=6-x2+x(0≤x ≤2), ∵f (x )在[0,2]上单调递减,∴f (x )max =f (0)=3,即λ+μ的最大值为3. 答案:39.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝⎛⎭⎫13b -a =16b -a , CD ―→=CF ―→+FD ―→=-12b -⎝⎛⎭⎫16b -a =a -23b . 三上台阶,自主选做志在冲刺名校1.在平面直角坐标系xOy 中,已知点A (2,3),B (3,2),C (1,1),点P (x ,y )在△ABC 三边围成的区域(含边界)内,设OP ―→=m AB ―→-n CA ―→(m ,n ∈R ),则2m +n 的最大值为( )A .-1B .1C .2D .3解析:选B 由已知得AB ―→=(1,-1),CA ―→=(1,2),设OP ―→=(x ,y ),∵OP ―→=m AB ―→-n CA ―→,∴⎩⎪⎨⎪⎧x =m -n ,y =-m -2n ,∴2m +n =x -y .作出平面区域如图所示,令z =x -y ,则y =x -z ,由图象可知当直线y =x -z 经过点B (3,2)时,截距最小,即z 最大.∴z 的最大值为3-2=1,即2m +n 的最大值为1.2.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3―→=λA 1A 2―→(λ∈R ),A 1A 4―→=μA 1A 2―→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c,0),D (d,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c =λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d =μ.根据1λ+1μ=2,得1c +1d =2.线段AB 的方程是y =0,x ∈[0,1].若C 是线段AB 的中点,则c =12,代入1c +1d =2得,1d =0,此等式不可能成立,故选项A 的说法不正确;同理选项B 的说法也不正确;若C ,D 同时在线段AB 上,则0<c ≤1,0<d ≤1,此时1c ≥1,1d ≥1,1c +1d ≥2,若等号成立,则只能c =d =1,根据定义,C ,D 是两个不同的点,矛盾,故选项C 的说法也不正确;若C ,D 同时在线段AB 的延长线上,即c >1,d >1,则1c +1d <2,与1c +1d =2矛盾,若c <0,d <0,则1c +1d 是负值,与1c +1d =2矛盾,若c >1,d <0,则1c <1,1d <0,此时1c +1d <1,与1c +1d =2矛盾,故选项D 的说法是正确的.3.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→,所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝⎛⎭⎫a +b 22, 即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A.π6 B.π3 C.2π3 D.5π6 答案:D2.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =( ) A .1 B .2 C .3D .4解析:选C 由题意可得a ·b =|a |·|b |·cos 〈a ,b 〉=2×3×32=3. 3.已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |=( ) A.7 B.10 C.13D .4解析:选C 依题意得a ·b =12,则|a +3b |=a 2+9b 2+6a ·b =13.4.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =________.解析:因为向量a ,b 为单位向量,所以b 2=1,又向量a ,b 的夹角为60°,所以a ·b =12,由b ·c =0,得b ·[t a +(1-t )b ]=0,即t a ·b +(1-t )b 2=0,所以12t +(1-t )=0,所以t =2.答案:25.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ―→·BD ―→=________.解析:选向量的基底为AB ―→,AD ―→,则BD ―→=AD ―→-AB ―→,AE ―→=AD ―→+12AB ―→,所以AE ―→·BD ―→=⎝⎛⎭⎫AD ―→+12AB ―→ ·(AD ―→-AB ―→)=2. 答案:21.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量. 2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 4.在用|a |=a 2求向量的模时,一定要把求出的a 2再进行开方. [小题纠偏]1.若a ,b 是两个互相垂直的非零向量,给出以下式子:①a ·b =0;②a +b =a -b ;③|a +b |=|a -b |;④a 2+b 2=(a +b )2.其中正确的个数是( )A .1B .2C .3D .4解析:选C 因为a ,b 是两个互相垂直的非零向量,所以a·b =0;所以(a +b )2=a 2+b 2+2a·b =a 2+b 2;(a -b )2=a 2+b 2-2a ·b =a 2+b 2;所以(a +b )2=(a -b )2,即|a +b |=|a -b |.故①③④是正确的,②是错误的.2.设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=________.解析:|a +2b |=(a +2b )2=|a |2+4a ·b +4|b |2= 1+4×⎝⎛⎭⎫-12+4= 3. 答案: 3考点一 平面向量的数量积的运算(基础送分型考点——自主练透)[题组练透]1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.(2018·浙江考前冲刺)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |=4,则向量a 在a +b 上的投影为( )A. 3 B .3 C. 6D .6解析:选B 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0, 由|a +b |=2|b |,得a 2+2a ·b +b 2=4b 2,即a 2=3b 2,所以|a |=3|b |=23, 所以向量a 在a +b 上的投影为a ·(a +b )|a +b |=a 2|a +b |=3.中点,则AB ―→·AD―→3.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→)=AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系,由题意得A (0,2),B (-2,0), D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:64.(2019·台州模拟)以O 为起点作三个不共线的非零向量OA ―→,OB ―→,OC ―→,使AB ―→=-2BC ―→,|OA ―→|=4,OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,则OA ―→·BC ―→=________. 解析:法一:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,平方得OA ―→|OA ―→|·OB ―→|OB ―→|=-12,即cos ∠AOB =-12,因为OA ―→,OB ―→不共线,所以0°<∠AOB <180°,所以∠AOB =120°.因为AB ―→=-2BC ―→,所以C 为线段AB 的中点.由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|两边同乘以OC ―→|OC ―→|,得cos ∠AOC +cos ∠BOC =1,即cos ∠AOC +cos(120°-∠AOC )=1,解得∠AOC =60°,所以OC 为∠AOB 的平分线,所以OC ―→⊥AB ―→.又|OA ―→|=4,所以|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.法二:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|及AB ―→=-2BC ―→,结合向量加法的平行四边形法则得OC 为∠AOB 的平分线,C 为AB 的中点,所以OC ―→⊥AB ―→,且|OA ―→|=|OB ―→|=4,|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.答案:12[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质(题点多变型考点——多角探明) [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题. 常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直;(4)与最值、范围有关问题.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:法一:∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.法二:由题可得,不妨设e 1=(1,0),e 2=⎝⎛⎭⎫12,32,b =(x ,y ). ∵b ·e 1=b ·e 2=1,∴x =1,12x +32y =1,解得y =33.∴b =⎝⎛⎭⎫1,33,∴|b |= 1+13=233. 答案:233角度二:平面向量的夹角2.(2018·浙江十校联盟适考)若向量a ,b 满足|a |=4,|b |=1,且(a +8b )⊥a ,则向量a ,b 的夹角为( ) A.π6 B.π3C.2π3D.5π6解析:选C 由(a +8b )⊥a ,得|a |2+8a ·b =0,因为|a |=4,所以a ·b =-2,所以cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3. 3.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:因为a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),|a |=5,|b |=25, 所以c ·a =5m +8,c ·b =8m +20. 因为c 与a 的夹角等于c 与b 的夹角, 所以c ·a |c |·|a |=c ·b|c |·|b |, 即5m +85=8m +2025,解得m =2. 答案:2角度三:平面向量的垂直4.(2019·南宁模拟)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 答案:7125.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β。

高中数学必修第二章平面向量公式及定义

高中数学必修第二章平面向量公式及定义

平面向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=x+x',y+y'.a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:a+b+c=a+b+c.2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=x,y b=x',y' 则 a-b=x-x',y-y'.4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:λa•b=λa•b=a•λb.向量对于数的分配律第一分配律:λ+μa=λa+μa.数对于向量的分配律第二分配律:λa+b=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积内积、点积是一个数量,记作a•b.若a、b不共线,则a •b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a交换律;λa•b=λa•b关于数乘法的结合律;a+b•c=a•c+b•c分配律;向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:a•b•c≠a•b•c;例如:a•b^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由 a•b=a•c a≠0,推不出 b=c.3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积外积、叉积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a 和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;λa×b=λa×b=a×λb;a+b×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式向量P1P=λ•向量PP2设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1x1,y1,P2x2,y2,Px,y,则有OP=OP1+λOP21+λ;定比分点向量公式x=x1+λx2/1+λ,y=y1+λy2/1+λ.定比分点坐标公式我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.向量垂直的充要条件a⊥b的充要条件是 a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.1、线性运算①a+b=b+a ②a+b+c=a+b+c ③λμa=λμa. ④λ+μa=λa+μa. ⑤λa±b=λa±λb ⑥a,b共线→b=λa2、坐标运算,其中ax1,y1, bx2,y2①a+b= x1+x2,y1+y2 ②a-b= x1-x2,y1-y2 ③λa=λx1,λy1 ④点Aa,b,点Bc,d,则向量AB=c-a,b-d ⑤点Aa,b,点Bc,d,则向量BA=a-c,b-d3、数量积运算①ab=∣a∣∣b∣cosθ②ab=ba 交换律③λab=λab =a λb结合律,注意向量间无结合律④a±bc=ac±bc分配律⑤若ab-c=0,则b=c或a垂直于b-c ⑥a±b2=a2±2ab+b2 ⑦a+ba-b=a2-b2⑧ax1,y1, bx2,y2,则ab=x1x2+y1y2,∣a∣2 =x2+y2,∣a∣=√x2+y2 a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:cosθ=ab/∣a∣∣b∣=x1x2+y1y2/√x12+y12√x22+y22。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

高中数学平面向量知识点归纳

高中数学平面向量知识点归纳

高中数学平面向量知识点归纳1、向量是既有大小又有方向的量,而数量只有大小没有方向。

有向线段的三要素是起点、方向和长度。

零向量是长度为0的向量,单位向量是长度为1的向量。

平行向量是方向相同或相反的非零向量,零向量与任何向量平行,相等向量是长度相等且方向相同的向量。

2、向量加法有三种运算法则:三角形法则,平行四边形法则和三角形不等式。

三角形法则的特点是首尾相连,平行四边形法则的特点是共起点。

三角形不等式是a-b≤a+b≤a+b。

向量加法的运算性质包括交换律、结合律和a+0=a。

坐标运算中,设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2)。

3、向量减法有两种运算法则:三角形法则和坐标运算。

三角形法则的特点是共起点,连终点,方向指向被减向量。

坐标运算中,设a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2)。

设A和B两点的坐标分别为(x1,y1)和(x2,y2),则AB=(x1-x2,y1-y2)。

4、向量数乘是实数与向量的积,记作λa。

当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0.向量数乘的运算律包括分配律、结合律和数乘1的性质。

坐标运算中,设a=(x,y),则λa=(λx,λy)。

5、向量共线定理:向量a和b不共线,当且仅当有唯一一个实数λ,使b=λa。

设a=(x1,y1),b=(x2,y2),且b≠0,则当且仅当x1y2-x2y1=0时,向量a和b共线。

6、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.不共线的向量e1、e2作为这一平面内所有向量的一组基底。

7、分点坐标公式:设点R是线段R1R2上的一点,R1、R2的坐标分别是(x1,y1)和(x2,y2),则R的坐标为[(x2-x1)×(R-R1)的长度/R1R2的长度 + x1.(y2-y1)×(R- R1)的长度/R1R2的长度 + y1]。

高中数学-公式-平面向量

高中数学-公式-平面向量

平面向量1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。

〔1〕向量式:a ∥b (b ≠0)⇔a =λb ;〔2〕坐标式:a ∥b (b ≠0)⇔x 1y 2-x 2y 1=0;2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), 〔1〕向量式:a ⊥b (b ≠0)⇔a b =0; 〔2〕坐标式:a ⊥b ⇔x 1x 2+y 1y 2=0;3.设a =(x 1,y 1),b =(x 2,y 2),那么a b θ=x 1x 2+y 1y 2;其几何意义是a b 等于a 的长度与b 在a 的方向上的投影的乘积;4.设A 〔x 1,x 2〕、B(x 2,y 2),那么S ⊿AOB =122121y x y x -; 5.平面向量数量积的坐标表示:〔1〕假设a =(x 1,y 1),b =(x 2,y 2),那么a b =x 1x 2+y 1y 2221221)()(y y x x -+-=; 〔2〕假设a =(x,y),那么a 2=a a =x 2+y 2,22y x a +=;十、向量法 1、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线平行:l ∥m ⇔a ∥b ⇔=a kb〔2〕线面平行:l ∥α⇔a ⊥u 0⇔=a u〔3〕面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.2、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕线线垂直:⊥⇔l m a ⊥b 0⇔=a b〔2〕线面垂直:α⊥⇔l a ∥u ⇔=a ku〔3〕面面垂直:αβ⊥⇔u ⊥v 0⇔=u v3、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,那么: 〔1〕直线、m l 所成的角(0)2πθθ≤≤,cos θ⋅=a ba b〔2〕直线l 与平面α所成的角(0)2πθθ≤≤,sin θ⋅=a ua u〔3〕平面α与平面β所成的二面角的平面角(0)θθπ≤≤,cos θ⋅=u vu v教学过程:二、新课讲授1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模.3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a +b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c );⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a .4. 推广:⑴12233411n n n A A A A A A A A A A -++++=;⑵122334110n n n A A A A A A A A A A -+++++=;方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量. 向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理,二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.a 平行于b 记作a //b .2.关于空间共线向量的结论有共线向量定理及其推论: 共线向量定理:空间任意两个向量a 、b 〔b ≠0〕,a //b 的充要条件是存在实数λ,使a =λb . 理解:⑴上述定理包含两个方面:①性质定理:假设a ∥b 〔a ≠0〕,那么有b =λa ,其中λ是唯一确定的实数。

高中数学平面向量基本定理

高中数学平面向量基本定理
1
解得λ =±1.
1 N在线段BD上,且有BN= BD,求证:M、N、C三点共线。 3
如图,在平行四边形ABCD中,点M是AB中点,点
D
C
N A M B
1.如果两个向量的基线互相垂直,则称这两
个向量互相垂直 ; 2. 如果两个基向量e1、e2互相垂直,则称
{e1,e2} 为正交基底 3. 若向量e1、e2为单位正交基底,且a xe1 ye2 则称(x,y)为向量a的坐标.N来自Ae2 O e1
M
我们把不共线向量e1,e2叫做这一平面内 所有向量的一组基底,记为{e1,e2}, a1e1+a2e2叫做向量a关于基底{e1,e2}的
分解式。
例1
ABCD中,E、F分别是DC和AB
的中点,试判断AE,CF是否平行?
D E C
A
F
B
例2、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别是DC,AB 的中点. 请大家动手, D 在图中确定一组 基底,将其他向 量用这组基底表 A 示出来。
问题:(1)向量a是否可以用含有e1、e2的式
子来表示呢?怎样表示? (2)若向量a能够用e1、e2表示,这种表示
是否唯一?请说明理由.
平面向量基本定理
如果e1、e2是平面内的两个不共线向量,那 么对于这一平面内的任一向量a,有且只有一 对实数a1、a2,使 a a1e1 a2e2 说明:① e1、e2是两个不共线的向量; ② a是平面内的任一向量; ③ a1,a2实数,唯一确定.
2.2.1平面向量基本定理
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量
AB, CD, EF , GH

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。

向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。

向量的大小即向量的模(长度),记作|AB|或|a|。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。

③单位向量:模为1个单位长度的向量。

向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上。

方向相同或相反的向量,称为平行向量,记作a∥b。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

⑤相等向量:长度相等且方向相同的向量。

相等向量经过平移后总可以重合,记为a b。

大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。

设AB a,BC b,则a+b=AB BC=AC。

1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。

当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。

向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。

3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。

零向量的相反向量仍是零向量。

关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。

高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。

记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。

若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

AB BA =-。

8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=?。

当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。

(7)若a 与b 共线, b 与c 共线,则a 与c 共线。

高中数学必修二第六章 平面向量及其应用(知识梳理)

高中数学必修二第六章 平面向量及其应用(知识梳理)

1.数量与向量(1)概念:在数学中,既有大小又有方向的量叫做向量,而只有大小没有方向的量称为数量 2.向量的两个要素向量由大小与方向两个要素组成,大小是代数的特征,方向是几何特征 3.有向线段 (1)有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示. (3)向量的表示以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度叫做有向线段AB →的长度记作|AB →|. 4.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(印刷用黑体a ,b ,c ,书写时用a →, b →, c →). 3.模、零向量、单位向量向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量.1.平行向量:方向相同或相反的非零向量叫做平行向量(平行向量也可叫做共线向量) 用有向线段表示向量的a 与b 是两个平行向量,如若平行。

则记作a ∥b .2.相等向量:长度相等且方向相同的向量叫做相等向量 用有向线段表示向量的a 与b 是相等,记作a =b .注意向量相关概念的注意点(1)表示有向线段时,起点一定要写在终点的前面. (2)要注意0与0的区别及联系,0是一个实数,0是一 向量,且有|0|=0.一、向量的加法运算1.定义:求两个向量和的运算,叫做向量的加法2.向量加法的运算法则:(1)向量加法的三角法则+,已知非零向量a,b在平面内任取一点A,做AB=a,BC=b,则向量AC叫做a与b的和,记作a b +=+=,这种求向量和的方法,称为向量加法的三角形法则即a b AB BC AC三角形法则的使用条件:一个向量的终点为另一个向量的起点(2)平行四边形法则以同一O为起点的两个已知向量a,b,以OA,OB为邻边做OACB,则以O为起点的向量OC,(OC 是OACB的对角线)就是向量a与b的和,我们把这种作两个向量和的方法叫做向量加法的平行四边形法则规定:对于零向量与任意向量a,我们规定a+0=0+a=a3.向量加法的运算律(1),交换律:a+b=b+a(2):结合律:(a+b)+c=a+(b+c)平行四边形法则的适用条件:两个向量起点相同二、向量的减法运算1.相反向量:与向量a,长度相等,方向相反的向量,叫做a的相反向量,记作﹣a规定:零向量的相反向量仍是零向量2. 向量的减法向量a 加上b 的相反向量,叫做a 与b 的差,则a -b=a+(-b).求两个向量差的运算则是向量的减法3.向量减法的几何意义已知向量a ,b ,在平面内任取一点O ,作OA a =,OB b =,则BA a b =- 即a b -可以表示为从b 的终点指向向量a 的终点的向量 三、向量的数乘运算 1.向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa , 它的长度与方向规定如下;a a λλ=当λ>0时,λa 的方向与a 的方向相同;当γ<0时,λa 的方向与a 的方向相反. 2.向量数乘的几何意义向量数乘的几何意义是把向量沿着它的方向或反方向放大或缩小.特别地,一个向量的相反向量可以看成-1与这个向-a)=lt 量的乘积,即-a=(-1 )a. 3.向量数乘的运算律 设λ,μ是实数,a,b 是向量 (1)结合律:λ(μa )=(λμ)+a (2)第一分配律:(λμ)a=λa+μa (3)第二分配律:λ(a+b )=λa+λb 四.向量的数量积 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角(如图所示).当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 3. 垂直:如果a 与b 的夹角是π2,则称a 与b 垂直,记作a向量数量积的定义非零向量a ,b 的夹角为θ,数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定:零向量与任一向量的数量积等于0. 平面向量数量积的运算律 1.a ·b =b ·a (交换律).2.(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律).3.(a +b )·c =a ·c +b ·c (分配律).平面向量的坐标表示1.在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).2.在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 平面向量数乘运算的坐标表示已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 则a ·b =x 1x 2+y 1y 2. (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1),(x 2,y 2),则a =(x 2-x 1,y 2-y 1),|a |=x 2-x 12+y 2-y 12.(2)a ∥b ∥x 1x 2+y 1y 2=0.(3)cos θ=a·b|a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.用向量方法讨论物理学中的相关问题,一般来说分为四个步骤: (1)问题转化,即把物理问题转化为数学问题. (2)建立模型,即建立以向量为载体的数学模型. (3)求解参数,即求向量的模、夹角、数量积等. (4)回答问题,即把所得的数学结论回归到物理问题.余弦定理三角形中任何一方的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即;,cos 2222A bc c b a -+=B ca a c b cos 2222-+=,C ab b a c cos 2222-+=余弦定理得推论;cosA=bc a c b 2222-+,cosB=ca b a c 2222-+,cosC=ab c b a 2222-+正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即;.sin sin sin Cc B b A a == 正弦定理的变形公式:1.a =2R sin A ,b =2R sin B ,c =2R sin C .2.sin A =a 2R ,sin B =b 2R ,sin C =c2R(其中R 是∥ABC 外接圆的半径).。

高中数学向量解题技巧必看

高中数学向量解题技巧必看

高中数学向量解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些高中数学向量解题技巧的学习资料,希望对大家有所帮助。

高二数学向量重点学习方法高二数学向量重点-向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a.向量b=|向量a|.|向量b|.Cosα=x1x2+y1y2Cosα=向量a.向量b/|向量a|.|向量b|(x1x2+y1y2)=————————————————————根号(x1平方+y1平方).根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a⊥向量b那么向量a.向量b=0如果向量a//向量b那么向量a.向量b=±|向量a|.|向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a.向量b=(向量a±向量b)平方高二数学向量重点-三角函数公式:1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina.cosb=[sin(a+b)+sin(a-b)]/2cosa.sinb=[sin(a+b)-sin(a-b)]/2cosa.cosb=[cos(a+b)+cos(a-b)]/2sina.sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]高考数学平面向量易错点分析1.数0有区别,0的模为数0,它不是没有方向,而是方向不定。

(推荐)高中数学平面向量公式

(推荐)高中数学平面向量公式

1、向量的的数量积定义:已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。

若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b。

2、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。

若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。

若a、b共线,则a×b=0。

向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。

3、向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。

(1)向量式:a ∥b (b ≠0)⇔a =λb ;(2)坐标式:a ∥b (b ≠0)⇔x 1y 2-x 2y 1=0;2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), (1)向量式:a ⊥b (b ≠0)⇔a b =0; (2)坐标式:a ⊥b ⇔x 1x 2+y 1y 2=0;3.设a =(x 1,y 1),b =(x 2,y 2),则a b θ=x 1x 2+y 1y 2;其几何意义是a b 等于a 的长度与b 在a 的方向上的投影的乘积;4.设A (x 1,x 2)、B(x 2,y 2),则S ⊿AOB =122121y x y x -;5.平面向量数量积的坐标表示:(1)若a =(x 1,y 1),b =(x 2,y 2),则a b =x 1x 2+y 1y 2221221)()(y y x x -+-=; (2)若a =(x,y),则a 2=a a =x 2+y 2,22y x a +=;十、向量法1、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,则: (1)线线平行:l ∥m ⇔a ∥b ⇔=a kb (2)线面平行:l ∥α⇔a ⊥u 0⇔=a u (3)面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.2、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,则: (1)线线垂直:⊥⇔l m a ⊥b 0⇔=a b (2)线面垂直:α⊥⇔l a ∥u ⇔=a ku(3)面面垂直:αβ⊥⇔u ⊥v 0⇔=u v3、设直线、m l 的方向向量分别是、a b ,平面αβ、的法向量分别是、u v ,则: (1)直线、m l 所成的角(0)2πθθ≤≤,cos θ⋅=a b a b(2)直线l 与平面α所成的角(0)2πθθ≤≤,sin θ⋅=a u a u(3)平面α与平面β所成的二面角的平面角(0)θθπ≤≤,cos θ⋅=u v u v教学过程: 二、新课讲授1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模.3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a+b = b+ a;⑵加法结合律:(a+ b) + c =a+ (b+ c ); ⑶数乘分配律:λ(a+ b) =λa+λb; ⑶数乘结合律:λ(u a ) =(λu )a. 4. 推广:⑴12233411n n n A A A A A A A A A A -++++=;⑵122334110n n n A A A A A A A A A A -+++++=;方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa .称平面向量共线定理,二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作a b a b b a b a b 理解:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa ,其中λ是唯一确定的实数。

②判断定理:若存在唯一实数λ,使b =λa (a ≠0),则有a ∥b (若用此结论判断a 、b 所在直线平行,还需a (或b )上有一点不在b (或a )上).⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向,当λ<0时与a 反向的所有向量.3. 推论:如果l为经过已知点A且平行于已知非零向量a 的直线,那么对于任意一.点O,点P在直线l上的充要条件是存在实数t满足等式OP OA t=+a平面向量基本定理:如果e1、e2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中不共线向量e1、e2叫做表示这一平面内所有向量的一组基底.1. 定义:如果表示空间向量a的有向线段所在直线与已知平面α平行或在平面α内,则称向量a平行于平面α,记作a定义:平行于同一平面的向量叫做共面向量.共面向量不一定是在同一平面内的,但可以平移到同一平面内.5. 得出共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得p= x a+y b.证明:必要性:由已知,两个向量a、b不共线.∵向量p与向量a、b共面∴由平面向量基本定理得:存在一对有序实数对x,y,使得p= x a+y b.充分性:如图,∵x a,y b分别与a、b共线,∴x a,y b都在a、b确定的平面内.又∵x a+y b是以|x a|、|y b|为邻边的平行四边形的一条对角线所表示的向量,并且此平行四边形在a、b确定的平面内,∴ p= x a+y b在a、b确定的平面内,即向量p与向量a、b共面.说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内.6. 共面向量定理的推论是:空间一点P在平面MAB内的充要条件是存在有序实数对x,y,使得MP xMA yMB=+,①或对于空间任意一定点O,有=++.②OP OM xMA yMB分析:⑴推论中的x、y是唯一的一对有序实数;⑵由OP OM xMA yMB=++得:OP x y OM xOA yOB=--++③OP OM x OA OM y OB OM=+-+-,∴(1)()()1. 两个非零向量夹角的概念:已知两个非零向量a与b,在空间中任取一点O,作OA=a,OB=b,则∠AOB叫做向量a与b的夹角,记作<a,b>.说明:⑴规定:0≤<a,b>π≤.当<a、b>=0时,a与b同向;当<a、b >=π时,a与b反向;π时,称a与b垂直,记a⊥b.当<a、b>=2⑵两个向量的夹角唯一确定且<a,b>=<b,a>.⑶注意:①在两向量的夹角定义中,两向量必须是同起点的.②<a,b>≠(a,b)2. 两个向量的数量积:已知空间两个向量a与b,|a||b|cos<a、b>叫做向量a、b的数量积,记作a·b,即a·b=|a||b|cos<a,b>.说明:⑴零向量与任一向量的数量积为0,即0·a=0;⑵符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.几何意义:已知向量AB=a和轴l,e是l上和l同方向的单位向量.作点A在l 上的射影A′,点B在l上的射影B′,则''A B叫做向量AB在轴l上或在e方向上的正射影,简称射影.可以证明:''A B=|AB|cos<a,e>=a·e.说明:一个向量在轴上的投影的概念,就是a·e的几何意义.3. 空间数量积的性质:根据定义,空间向量的数量积和平面向量的数量积一样,具有以下性质:⑴a ·e =|a |·cos <a ,e >; ⑵a ⊥b ⇔a ·b =0⑶当a 与b 同向时,a ·b =|a |·|b |; 当a 与b 反向时,a ·b =-|a |·|b |.特别地,a ·a =|a |2或|a⑷cos <a ,b >=a b a b⋅⋅; ⑸|a ·b |≤|a |·|b |.4. 空间向量数量积的运算律:与平面向量的数量积一样,空间向量的数量积有如下运算律:⑴(λa )·b =λ(a ·b )=a ·(λb ) (数乘结合律); ⑵ a ·b =b ·a (交换律); ⑶a ·(b +c )=a ·b +a ·c (分配律)说明:⑴(a ·b )c ≠a (b ·с);⑵有如下常用性质:a 2=|a |2,(a +b )2=a 2+2a ·b +b 23. 空间向量的坐标表示:给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使a =1a i +2a j +3a k .空间中相等的向量其坐标是相同的.→讨论:向量坐标与点的坐标的关系 向量在空间直角坐标系中的坐标的求法:设A 111(,,)x y z ,B 222(,,)x y z ,则AB =OB -OA =222(,,)x y z -111(,,)x y z =212121(,,)x x y y z z ---.5. 两个向量共线或垂直的判定:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a ⇔⇔112233,,a b a b a b λλλ===()R λ∈⇔312123a a ab b b ==⇔⇔1122330a b a b a b ++=123(,,)a a a 123(,,)b b b |a,|b向量的长度公式.这个公式的几何意义是表示长方体的对角线的长度. 2. 夹角公式推导:∵ a ·b =|a ||b |cos <a ,b >∴112233a b a b a b ++·cos <a ,b >由此可以得出:cos <a ,b这个公式成为两个向量的夹角公式.利用这个共识,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:当cos <a 、b >=1时,a 与b 同向;当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .3. 两点间距离共识:利用向量的长度公式,我们还可以得出空间两点间的距离公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x y z ,则A B d 、,其中A B d 、表示A 与B 两点间的距离.5. 用向量方法证明:如果两条直线同垂直于一个平面,则这两条直线平行.。

相关文档
最新文档