六西格玛设计和可靠性设计

合集下载

六西格玛设计DFSS

六西格玛设计DFSS

将客户需求转化 为CTQ
确定客户需求以增加满意 度与特性 “客户声音VOC”
从“有用的很多”中 找出“关键的少数” 识别客户
一个项目的成功与否取决于CTQ是 否选择正确!
DFSS - Introduction 22
Kano模型
客户满意
单维
很高兴有 无功能 全功能
必须有
客户不满意
DFSS - Introduction 23
工具:

Kano图 客户调查方法

树状图 质量功能展开 (QFD)
DFSS - Introduction 21
确定CTQ路线图
确定CTQs : • QFD • 优先化 • 选择最重要的
收集整理数据: • 制订收集程序 • 客户声音程序 理解客户需求 : • Kano图 • 理解客户声音 客户优先化 : • 市场细分 建立商业案例 : • 团队章程
DFSS - Introduction 1
六西格码设计-DFSS 课程介绍及培训
DFSS - Introduction 2
议程 :

DFSS综述 – 什么是六西格玛设计 (DFSS)? – 为什么使用六西格玛设计 (DFSS)? – 什么时候使用 DFSS? – DFSS如何和 DMAIC相联系
六西格码商业设计 DFSS Commercial
DFSS - Introduction 18
流程概述
定义
确定服务,产品或流程

章程/ 范围 客户 调查 客户 需求图 QFD #1 客户需求 CTQ’s 定义
测量

确定 CTQ’s
和你的客户交谈 !
头脑风暴 选择 高阶 流程图 QFD #2 产品要求 优先 Pugh 矩阵 可行的 解决方案 否

六西格玛设计的产生及核心价值

六西格玛设计的产生及核心价值

六西格玛设计的产生及核心价值到底什么是六西格玛设计DesignforSixSigma?六西格玛设计是一种高度规范化的业务流程和方法,它将六西格玛的原则和方法尽量早地运用到产品的设计和开发的流程中去,并成为一种独立于六西格玛的方法论。

六西格玛设计是客户需求驱动的,创造性使用一系列现代产品设计方法,最终由设计带来的最大满足客户需求的六西格玛产品质量。

六西格玛设计不仅适用在产品设计领域,也用于流程设计领域;不仅用于传统制造业,也用于服务业。

六西格玛设计的产生:六西格玛的天花板美国摩托罗拉首创,通用电气公司发扬光大的“六西格玛”质量持续改善方法,成为制造业的标杆参考。

六西格玛是指产品缺陷的发生率在正态分布正负六倍标准差以外,也就是长期百万分之3.4的缺陷率,它代表一种理想的质量水平,也有一套完整的六西格玛的方法和理论体系。

在六西格玛在业界日益普遍接受和采用后几年,也就是2000年前后,人们发现产品质量水平在达到4-5个西格玛后,再进一步提高时,常常会遇见一个问题:产品质量提高的受阻是“原生的”,靠六西格玛方法改善生产流程去达到,代价非常高昂,有时甚至是不可能。

也就是,六西格玛是对现有产品和流程的改进于产品的设计方面产生的潜在问题,并不能很好地解决。

比如,由于产品设计的不合理,造成生产工艺上的困难,而进一步造成高质量水平难以达到。

要真正达到理想的六西格玛质量水平,从最初的设计就要采用面向六西格玛质量的理念和方法。

这也就是六西格玛设计的由来。

六西格玛设计DFSS方法论:质量不单单是产品六西格玛设计的核心是实现客户价值。

客户价值简而言之是客户愿意为某产品或者服务而付出的代价。

这种代价并不能简单地等同于产品价格,但它一定意味着利润空间。

例如,苹果公司的新款iPhone推出,客户不仅愿意接受相对高昂的定价,而且愿意排队抢购,或者较长时间的交货期。

这都是客户愿意为产品和服务付出的代价。

这意味着,质量不单单是产品自身的概念。

07什么是六西格玛设计精品资料

07什么是六西格玛设计精品资料

六西格玛树
为什么要六西格玛设计
甜美的果实 六西格设计
流程设计项目 - DMADV -
5s 墙, 改进设计
大量的果实 流程改进和优化
流程改进项目 - DMAIC -
4s 墙, 改进阶段
低处悬挂的果实 七个质量工具,5S,TQC
一般性的项目
3s 墙, 挤压供应商
地面上的果实 直觉、经验和逻辑
DFSS by Jim Jin Aug. 2005
何时需要六西格玛设计
业务需要
No
Yes
不必改进 现有运营
有否相应 的过程/产 品或服务
No Yes
满足顾 客要求? No
Yes
一般过程管理
流程最佳状 Yes 态能否满足 客户需求?
No
DFSS (DMADV)
DMAIC Step 1: 定义Define Step 2:测量 Measure Step 3: 分析Analyze
13 验证生产过程的能力 14 建立、测试并固化原型 15 进行试生产
I 识别
D 定义 D 定义 O 优化 V 验证
DFSS by Jim Jin Aug. 2005
六西格玛设计DMADV的过程(二)
1 产生和选择项目 2 确定项目和团队的大纲 3 识别关键质量特性(CTQ) 4 确定关键过程特性(CTP) 5 量化CTQ和CTP 6 对现有的关键质量项目制定测量计划 7 收集和分析现有关键质量项目的性能数据 8 进行风险评估 9 认别关键的质量设计参数 10 认别关键设计参数 11 认别关键质量的关键波动源 12 起草设计方案 13 决定最佳设计 14 确定稳健设计容差 15 设计控制计划 16 验认关键质量性能上达到可预见性 17 估计成本 18 监控关键质量的性能 19 经验总结和学习

六西格玛设计的可靠性和维修性设计

六西格玛设计的可靠性和维修性设计

六西格玛设计的可靠性和维修性设计可靠性作为质量的时间延续特性,已越来越多地受到人们的重视。

六西格玛设计的核心是稳健设计(包括QFD、系统设计、实验设计、参数设计、容差设计等方法),其宗旨是提高产品抵御环境变化、制造误差和磨损老化等各种干扰的能力,减少产品质量波动。

而实质上,稳健设计在减少产品质最波动的同时,也肯定提高了产品的可靠性。

下面天行健管理顾问介绍面向可靠性的经典设计方法。

可靠性设计的目标是在顾客所要求的寿命期内不出或尽可能少出故障,即满足顾客关于寿命和平均故障间隔时间的要求并降低全寿命周期费用(LCC)。

这个目标只有从产品研制开始就紧密结合产品研制深入开展可靠性设计和分析工作才有可能达到。

可采用的可靠性设汁方法包括可靠性指标论证与确定,可靠性分配与预计,制定和贯彻可靠性设计准则,开展简化设计、热设计、降额设计、余度设计、耐环境设计等;可采用的可靠性分析方法包括FMEA分析以及故障树分析(FTA)、事件树分析(ETA)、热分析、容差分析等。

1、可靠性指标论证与确定对于电子产品等偶然失效占统治地位的产品,应论证与确定平均故障间隔时间MTBF的指标,对于耗损失效占统治地位的产品,应论证与寿命指标;对于兼有偶然失效和耗损失效的产品应论证与确定平均故障间隔时间MTBF和寿命两种指标。

产品的寿命不是越长越好,应当根据顾客的需求来确定。

在产品的寿命期间,平均故障间隔时间MTBF应尽可能长。

2、可靠性分配与预计为了保证产品能满足顾客对可靠性的指标要求,应当在设计早期自顶向下地将基本可靠性和任务可靠性指标分配到各部件和零件,并自下而上地对零部件和整机的基本可靠性和任务可靠性指标进行预计,以便评估在实现可靠性指标方面设计方案的可行性。

通过可靠性预计,可以发现可靠性的薄弱环节,对这些薄弱环节应采取设计和工艺的改进措施,以提高产品的可靠性水平。

3、可靠性设计准则可靠性设计准则是有助于提高产品可靠性的定性设计要求的归纳总结,应制定并要求设计员贯彻可靠性设计准则,在设计评审时进行可靠性设计准则的符合性检查。

六西格玛设计

六西格玛设计

间接法:引入新的物体,通过它与目标物的相互作用来控制
工具为控制车轮转向与加减速的机构。
处理创造性问题的40个原则 矛盾矩阵图。
质量损失函数
1、望目特性的损失函数 设产品的质量特性y为望目特性,m为目标值。则损失函数: L(y)=k(y-m)2 式中k=A0/△0=A/ △2。( △0为产品的功能界限,A0为产品丧 失功能时的损失; △为产品的容差,A为产品的不合格损失。) 若已知质量特性y的n个观测值:y1,y2,……,yn时,则产品的平 均质量损失为: 1 n
安全系数

A
0
A
望目、望小特性的容差
A A
0

0


0

M=120v,功能界限25%*m,丧失功能后用 户的平均损失A0=500元,工厂内超出规格 的产品,进行调整损失A=2元,试求安全系 数和容差。 解 A0 500 15 . 8 解
A 2
望大特性容差
容差

0
六西格玛设计的意义
从技术角度:设计质量决定了产品的固有质量。 产品设计 工艺设计 生产控制
为了真正实现六西格玛质量,必须开展六西格玛设计,只有 在设计阶段就赋予产品很高的固有质量,才有可能实现六西格 玛的质量目标。 从管理角度:ห้องสมุดไป่ตู้
质量策划/设计 质量控制 质量改进
把质量管理向产品的源头延伸,变“救火”为“防火”,根 除隐患。
1)识别:寻找市场机会、识别顾客需求、制定项目特许任务 书三步骤。
2)界定:顾客需求的确定和展开、产品总体设计方案的论证 和确定。
3)设计:产品设计的优化、过程设计的优化。
5)验证:设计质量的验证、制造质量的验证、产品的验证与 确认。

【全面】六西格玛(6σ)管理工具梳理,知识点全部到位

【全面】六西格玛(6σ)管理工具梳理,知识点全部到位

【全面】六西格玛(6σ)管理工具梳理,知识点全部到位写在前面作为经典的质量管理手段,六西格玛备受质量人追捧。

下面把六西格玛管理中20种常用工具分享给大家。

01FMEA和FTA分析故障模式与影响分析(FMEA)和故障树分析(FTA)均是在可靠性工程中已广泛应用的分析技术,国外已将这些技术成功地应用来解决各种质量问题。

在ISO 9004:2000版标准中,已将FMEA和FTA分析作为对设计和开发以及产品和过程的确认和更改进行风险评估的方法。

我国目前基本上仅将FMEA与FTA技术应用于可靠性设计分析,根据国外文献资料和我国部分企业技术人员的实践,FMEA和FTA可以应用于过程(工艺)分析和质量问题的分析。

质量是一个内涵很广的概念,可靠性是其中一个方面。

通过FMEA和FTA分析,找出了影响产品质量和可靠性的各种潜在的质量问题和故障模式及其原因(包括设计缺陷、工艺问题、环境因素、老化、磨损和加工误差等),经采取设计和工艺的纠正措施,提高了产品的质量和抗各种干扰的能力。

根据文献报道,某世界级的汽车公司大约50%的质量改进是通过FMEA和FTA/ETA来实现的。

02Kano模型日本质量专家Kano把质量依照顾客的感受及满足顾客需求的程度分成三种质量:理所当然质量、期望质量和魅力质量。

A:理所当然质量:当其特性不充足(不满足顾客需求)时,顾客很不满意;当其特性充足(满足顾客需求)时,无所谓满意不满意,顾客充其量是满意。

B:期望质量:也有称为一元质量,当其特性不充足时,顾客很不满意,充足时,顾客就满意。

越不充足越不满意,越充足越满意。

C:魅力质量:当其特性不充足时,并且是无关紧要的特性,则顾客无所谓,当其特性充足时,顾客就十分满意。

理所当然的质量是基线质量,是最基本的需求满足。

期望质量是质量的常见形式。

魅力质量是质量的竞争性元素。

通常有以下特点:1、具有全新的功能,以前从未出现过;2 、性能极大提高;3、引进一种以前没有见过甚至没考虑过的新机制,顾客忠诚度得到了极大的提高;4、一种非常新颖的风格。

六西格玛方法论

六西格玛方法论

六西格玛方法论引言六西格玛方法论(Six Sigma)是一种管理方法和质量管理工具,旨在将过程中的变异降至最低,以提高产品质量和组织绩效。

它于20世纪80年代起源于美国,最初被应用于制造业,后来逐渐扩展到服务业和其他领域。

本文将介绍六西格玛方法论的原理、关键概念以及实施步骤。

原理六西格玛方法论的核心原理是基于统计学,将过程变异分为随机变异和系统性变异,并通过数据分析和改进措施来降低系统性变异。

它采用一系列的工具和技术,包括数据收集和分析、过程测量和控制以及绩效评估等,以实现质量改进和绩效提升。

关键概念1.六西格玛水平:六西格玛以标准差为度量,表示在特定期间内,过程输出的变异程度。

通常,目标是将过程的六西格玛水平提高到接近99.99966%的准确率,即每百万个机会只有不到3.4个缺陷。

2.DMC:DMC是六西格玛项目的五个阶段:定义(Define)、测量(Measure)、分析(Analyze)、改进(Improve)和控制(Control)。

这个阶段性的方法可以帮助团队系统地解决问题,从而实现质量的持续改进。

3.CTQ:CTQ(Critical to Quality)是关键质量特征的缩写,它代表了对顾客至关重要的产品或服务特征。

确定并关注CTQ可以帮助企业关注核心问题,以实现对顾客价值的最大化。

实施步骤1.定义阶段:–确定项目的目标和范围,明确团队成员的角色和职责。

–了解顾客和利益相关方的需求和期望,确定关键质量特征(CTQ)。

–建立项目计划,明确时间表和关键的里程碑。

2.测量阶段:–收集相关数据,进行测量和观察,了解当前过程的性能和变异程度。

–确定过程的输入和输出指标,并建立测量系统,以确保数据的准确性和可靠性。

3.分析阶段:–分析数据,找出导致问题和变异的根本原因。

–使用统计工具和技术,如直方图、散点图和回归分析等,帮助理解过程的特征和关联性。

–确认适用的改进方向,并制定改进措施。

4.改进阶段:–设计和实施改进措施,以消除根本原因并提高过程的性能。

六西格玛实验设计方法

六西格玛实验设计方法
一系列的系统检验在此过程中通过对各类输入变量xs直接的巧妙处理并观察其对对输出变量ys的影响确定哪个xs对ys的影响最大?有影响的xs使y的中心落在目标上?有影响的xs使y的变异最小化?有影响的xs最小化噪音变量的影响设计很好的实验会消除所要检验之外的所有可能的原因如果出现了影响关键流程输出变量kpov的情况那么可能是直接和你所操作的关键输入变量kpiv联系在一起的简单实验5rev
验证流程的稳定性和长期能力
. SPC; 流程能力分析
项目最终成果
. 项目指标(Y)的变化对比; 财务收益再计算
向学员介绍实验设计的概念 介绍一些实验设计 的关键术语 提供处理噪音变量的方法 提供洞察推论导览和实验的有效性的方法 介绍实验设计计划的工作路径
目标
认知的方法
被动地 - 观察自然发生的信息事件 (多变量研究)
如果行得通? 如果行不通?
单因子法
问题: 我们希望节省燃料,每加仑可以行驶 30 英里
试着按两水平设置改变输入变量,相信会伴随着节省燃料情况的显著变化. 看看会发 生什么.
速度 55 60 60 60
辛烷 85 85 90 85
轮胎压力 30 30 30 35
加仑里程(英里)
23 29 23 24
计算效应
我们将计算实验的效应 。首先针对 温度,我们将 水平为 (-1) 及 (1) 的 RATING 值 分別相加并计算平均值 (Sum/4).
Temp
-1 1 -1 1 -1 1 -1 1
Time
-1 -1 1 1 -1 -1 1 1
Chip
-1 -1 -1 -1 1 1 1 1
Rating
60 72 54 68 52 83 45 80
➢ 有影响的 X’s ,使Y的中心落在目标上 ➢ 有影响的 X’s ,使Y的变异最小化 ➢ 有影响的 X’s,最小化噪音变量的影响

六西格玛设计在实际工作中的运用

六西格玛设计在实际工作中的运用

/ 六西格玛设计在实际工作中的运用什么是六西格玛设计:设计是通过组合已知思想和事物在解决问题过程中形成有补充价值的新的合成方案,它不同于发明和发现。

而设计自身并不是工程师们独有的知识领域,设计是每一个人的事情,如果你在工作你就在设计,我们设计项目、设计流程、设计报告和计划。

六西格玛的设计可以被成功而有效地运用到我们每天实际参与的每个行动中。

比如我们可以用六西格玛设计来设计一个成本效率高且无缺陷的昼夜交付系统;或者设计一个重量更轻更结实的汽车轮轴盖;或者为公司设计一个效率更高的内部电子邮件系统,以减少公司内部电子邮件的地址错误等等。

六西格玛设计就是按照合理的流程、运用科学的方法准确理解和把握顾客需求,对新产品、新流程进行健壮设计,使产品、流程在低成本下实现六西格玛质量水平。

同时使产品、流程本身具有抵抗各种干扰的能力,既是使用环境恶劣或操作者瞎折腾,产品仍能满足顾客的需求。

六西格玛设计就是帮助你实现在提高产品质量和可靠性的同时降低成本和缩短研制周期的有效方法,具有很高的实用价值。

通过六西格玛设计的产品、流程的质量水平甚至可达到七西格玛水平。

六西格玛设计是6Sigma管理的最高境界。

进收益和数据收集难度及其成本,对于收据收集比较困难或者数据收集成本较高的项目,则可以采取快速群策群力的形式来做。

六西格玛设计按照I-D-O-V(Identify(识别)、Design(设计)、Optimize(优化)、Verify(验证))路径,并结合实际案例研讨和现场试验来教学。

课程学习旨在实现以下目标:①了解DFSS方法论的发展背景,熟悉DFSS的实施路径及特点;②掌握IDOV研发路线图各阶段的核心工作与关键输出;③理解IDOV研发路线图与传统研发管理流程的关系及区别;④掌握统计方法及工具在IDOV研发过程中的应用,包括:MSA、DOE、ANOVA、SPC、假设检定、相关与回归、蒙特卡罗模拟、可靠性分析等;⑤能够熟练运用质量功能展开(QFD)准确挖掘顾客心声,并识别出关键的设计要求(买点、改善与蛙跳机会);⑥能够运用TRIZ创新路线图解决设计中遭遇的技术矛盾问题,并产生专利;⑦掌握试验设计的建模优化思路及步骤(筛选、量化、优化、稳健);⑧理解田口品质损失函数和S/N比等概念,掌握稳健设计方法;⑨能够独立带领团队实施DFSS项目。

六西格玛设计和可靠性设计

六西格玛设计和可靠性设计

Design for SixSigma(DFSS)& Design for Reliability(DFR) 六西格玛设计和可靠性设计The Journey1998 – Seagate adopts Six Sigma defect reduction,cost savings1999 – Lean in Manufacturing &Supply ChainIntro BE July 20102001 – DFSS in Product & ProcessDevelopmentPage 2DFSS in the BeginningIterativeUse of historical requests Test and re-testShort term estimates Isolated CTQ optimizationPredictiveRequirements hierarchy Model buildingLong term estimates System optimizationInitial Approach:Top down Educate the masses in design centers -> “DFSS Certified”• DFSS Foundation – 2 weeks of Statistics • DFSS Project – Systems Engineering – 3 days Train the suppliers and factory BrB/BB/MBBs in DFSSIntro BE July 2010Page 3What Is Design for Six Sigma?Design for Six Sigma (DFSS):• Allows us to set “need-based” requirements for CTQs and to evaluate our capability to meet those requirements.• Is a process that focuses on predictive product design. • Emphasizes the use of statistical methods to predictproduct quality early in the design process.• Is a complement to good engineering/decision making practices.Intro BE July 2010Page 4Six Sigma Improvement Methodology1 ADefineYES2NO1.MeasureIdentify2.YES3NOAnalyzeDesign3.OptimizeYES4NOImprove5YESA4.NOValidate5.ControlA high level Business need is identified(CTQ gap)Does a Current Business Process/Product exist to address the gapAre the Processes/Products that support your key outputs optimized but still not capable of meeting customer requirements?Is the solution or part of the solution a new process, product, or service.Does the capability of one or more KPIV need to be improved to optimize KPOV?Intro BE July 2010Page 5Statistical DesignIdentify DesignOptimize ValidateIntro BE July 2010Identify Customer RequirementsTranslate Into Critical To Quality (CTQ) Measures and Key Process/Product Output Variable (KPOV) LimitsFormulate Designs/Concepts//SolutionsValidate The Measurement Systems Evaluate DesignsFor Each Top Level CTQ, Identify Key Product/Process Input Variables (KPIV’s) Develop Transfer Functions Between KeyInput and Output VariablesOptimize DesignPerform Tradeoffs to Ensure that All CTQ’s Are MetNot OKNot OK OKException ReviewDetermine TolerancesAssess Process Capability to Achieve Critical Design Parameters and Meet CTQ Limits DFSS ScoringTest & ValidationPerform Tradeoffs to Ensure that All CTQ’s Are MetNot OK OKNot OK Exception ReviewAssess Performance, Failure Modes, Reliability and RisksOKFeasibility Point TollgateNot OKPage 6BreakthroughSix Sigma and Design for Six SigmaDesign for Six SigmaDesign robust products so thatspecs can be loosenedDefectsDMAIC Six SigmaFocus on reducing variation around the meanLower Spec LimitUpper Spec Limit• Design for Six Sigma and “Standard” Six Sigma work together!Intro BE July 2010Page 7Design EvolutionFROMEvolving Design requirements Design rework Build and test performance assessment Performance and manufacturability after product is designed Quality is “tested in”REACTIVEIntro BE July 2010TODisciplined CTQ flowdown Controlled design parameters Performance modeled and simulated Design for robust performance and manufacturabilityPREDICTIVEPage 8Key Elements• Systems relationships Transfer Functions, KPIV & KPOV• Statistical Design: Meeting not only target but address variations in design• Identify, Design, Optimize, & Verify (IDOV)Intro BE July 2010Page 9Systems Engineering - FlowdownQFD/FMEASystem CTQsSubsystem CTQsSub-assembly CTQsComponents CTQsProcess CTQsIntro BE July 2010Page 10Systems View Of a Hard Disc Drive38 CTQsCustomer CTQsServo-Mech RSS-H/MMech ServoProcess CTQs7 CTQsElec/InterfaceASIC111 Subsystem CTQs FirmwareAssembly/TestCert/Test>120 Factory CTQsHSA HGA Motor/Base HDA Encl. Head Media Channel/PreampComponent CTQs...Intro BE July 2010Page 11Transfer FunctionWhat is a Transfer Function?X1X2X3f(X1,X2,…, Xn)Y…Xn• It is a relationship of the CTQ (Y) to the key input variables (X’s). • It is not necessarily as rigorous as a process model. • It is key to predicting product performance before buildingprototypes.Intro BE July 2010Page 12Getting to the y = f(x1, x2…)Physical Models - dedicated experts ü Explore design space – run simulations with DOE ü Model management processStatistical Models ü DOE, Regression, Response Surface, etc ü Parametric data analysis – especially for reliability ü MSA“All models are wrong, some are useful.” - George BoxIntro BE July 2010Page 13Flowdown/Flowup ProcessSystemIdentify Customer CTQs. Translate into System CTQs.Identify Measurement for each system CTQ.Adjust tradeoffs to reduce cost (as new σ improvementsare made).PNCTrade off mean/variance requirements to x1,x2,…,xn to best meet system CTQ need.Determine Specifications for each system CTQ (Y).Identify Transfer FunctionY=f(x1,x2,…,xn)YesCapabilitiesof allNox1,x2,…,xnknown?Obtain process capabilities for those x’s that are not yetknown.Use transfer function and experience/judgement to allocate requirements for x1,x2,…,xn to meet systemCTQ need.SubsystemsIntro BE July 2010Page 14After y = f(x1,x2..), then…Internally developed tool – handles up to 20 transfer functions Ø Runs Sensitivity Analysis, Monte Carlo simulation and determines PNC Ø Optimizes for a Figure of Merit (cost, PNC, Z-score, user specified) Ø Helps set tolerances for all inputsOptimize to a Figure of MeritWhat the customerwantsInput w VariationsIntro BE July 2010Page 15Transfer FunctionsMeeting expectation?Screened Parts?Allocate OptimizedSpecsDesign & Engineering Benefits• KPOVs & KPIVs defined by transfer function • Clear ownership of CTQs • Visibility for trade-off managementIntro BE July 2010Page 16DFSS Process IntegrationCTQ FlowdownCustomer• Marketing Inputs • Product RoadmapsPNCCTQ’sSystem• System Models/Specs • System Eng. RoadmapPNCCTQ’sSubsystems• Subsystem Simulations • Subsystem RoadmapsPNCCTQ’sComponents• Eng. Design Tools • Process CharacterizationPNCCTQ’sParts• Parts CharacterizationParts/Process/Performance Capability FlowupOwnersMarketing /Systems EngineeringSystems EngineeringSubsystem EngineeringDesign Process Centers Mfg/Suppliers/Service Mfg/Suppliers/Sourcing Design TeamsIntro BE July 2010Page 17Prospects• Understanding customer needs • Complete understanding of systems relationships • Considers not only the target but the variation indesign • Integrating models & simulators to estimate Probabilityof Non-Conformance (PNC) • Not about the number 6 but a cultural changeIntro BE July 2010Page 18Design OpportunityMost current Six Sigma effort is here.$Must move quality effort here!Cost to Correct Quality and ReliabilityResearchDesignPrototypeDefects are:Difficult to see/predict Easy to fixProductionCustomerEasy to see Costly to fixIntro BE July 2010Page 19Cost to Design and Manufacture Product6 Sigma vs. Optimal SigmaDESIGN COST MATERIALS COST MANUFACTURING COSTOptimal SettingIntro BE July 2010ZST LEVELPage 20What workedProduct & Process Development culture transformed by DFSS ü More rigorous VOC process ü Doing Systems Engineering vs components (organization change) ü Speaking the “same language” in CTQ flow down (requirements) ü Emphasis on transfer function development - Models, DOE, regression, etc. ü Using statistical thinking vs target only - Monte Carlo simulation, tolerance analysis, etc ü Applying DFR early in product & technology development, FMEAs up front ü More data driven decisionsAvg Development TimeIntro BE July 2010Page 21But Something Still Needs Beefing Up1998 – Seagate adopts Six Sigma1999 – Lean in Manufacturing &Supply ChainIntro BE July 20102001 – DFSS in Product & ProcessDevelopment2006 – Revised Design forReliability (DFR)Page 22Design for ReliabilityDFSSANOVA RegressionHypothesis TestingVOC FlowdownQFD FMEADFREnvironmental & Usage ConditionsLife Data AnalysisPhysics of FailureGeneral Linear Model Control Plans Accelerated Life TestingMSAReliability GrowthSensitivity AnalysisModelingDOEWarranty PredictionsTolerancingFA recognition– Many common tools – DFSS enables achieving high quality at launch with nominal stress conditions – DFR focuses on achieving high quality over time and across stress levelsIntro BE July 2010Page 23Enhanced DFR ProcessUpfront use of DFR Assessment Matrix in the development cycle to identify and address reliability issuesModeling Physics ofFailureDFR Summary page: Key Reliability Risks / Failure ModesIssues from prior productsParetos , Post Mortem, …Competitive AnalysisNew technologiesFMEA’s , brainstorming, …Prioritized list of key reliability risksSys FMEANew market environmental & usage conditionsPotential Failure mode *CFM team?Maturity of physics of failure modelsUnderstand fieldenvironment stressorsEffective Stress testEffective FA recognitionParametric data analysisManufacturing/ supplier controlstrategy/ metrologyDFR TeamDesign OptionsArea Specific RepresentativeFailure Mode 1YesFailure Mode 2YesFailure Mode 3YesFailure Mode 4 NoFailure Mode 5YesFailure Mode 6NoFailure Mode 7YesFailure Mode 8 Yes• The status of the DFR activities will be updated at each progra m phase gate with a DFR review of the activities associated with the stoplight matrix above.• New Key Reliability Risks / Failure Modes should be added or pa rked when engineering data justifies that action.© Seagate ConfidentialPage 2Intro BE July 2010Page 24Integration into Product DevelopmentProduct Planning, Design and Development ProcessVOCLessons LearnedRequirements Management Phase-Gates & DeliverablesData Storage DeviceDesign for Design for SixReliabilitySigmaEngineering Models and Six Sigma Tool SetsIntro BE July 2010Page 25The Journey Forward1998 – adopts DMAIC Six SigmaToday – Business Excellence1999 – Lean in Manufacturing &Supply Chain2000 – DFSS in Product & ProcessDevelopment2006 – Integrated DFRwith DFSS2007 – Research ExcellenceIntro BE July 2010Page 26Integration into Product DevelopmentLean Design & DevelopmentProduct Planning, Design and Development ProcessVOCLessons LearnedRequirements Management Phase-Gates & DeliverablesData Storage DeviceDesign for Design for SixReliabilitySigmaEngineering Models and Six Sigma Tool SetsIntro BE July 2010Page 27Tools We UseSIX SIGMA• Traditional DMAIC toolset• Traditional DFSS toolset• DFR tools• Value StreamMapping • Value-add Analysis • Error-proofing • 5S • Cycle time analysis • Benchmarking • 5 why’s • Potential problemanalysis • Work measurement•Setup reduction•Pull systems•Total productive maintenance•Shop floor management• OEE•Lean assessment•Lean diagnostic•48 hour study •Layout optimizationLEAN•Batch size reduction•Time studies•Work sampling•Red flag analysisChange Mgmt•Current reality tree •Future reality tree •Conflict resolutionThroughput focus•Critical chain project mgmt •Prerequisite tree •Transition TreeTOCIntro BE July 2010Page 28Business Excellence“Today” and “Tomorrow” elementsLeanDFSS/DFRDMAIC 6σIntro BE July 2010Research & Technology DevelopmentFutureCommitment to technology developmentAdvanced Drive Integration & PlatformTomorrowStaging, aligning and integrating technologyProduct/ ComponentDesign & Manuf.TodayExecuting to product plansFactory & DeliveryPage 29SLAM II Context DiagramProduct and Technology Portfolio ManagementProduct Planning Process Platform Integration/Technology AlignmentBi-Annual ProcessesFramework Mini MR MRMiniPOREMGen 1 Gen 2Start EM RR Gen 1 RR Gen 2SAD CTU orDRArch.MR Declare Declare Declare Declare ECQPTADrive Development à(Click here forAdvanced Drive Development (ADD) Feasibility Phase 0 DesignIntegration Qualification PilotRampMilestoneDefinitions)FrameMRDrive Development Primary Market Segment-work MRMini MRMini DRADD ExitFeas ExitEMD/ Ph0 ExitProduct Phase-Based Gen1DeclareGen2 DeclareCTU DeclareSADProcPeTAssesEC MarketT-36 T-32T-25T-22T-19T-15T-10T-6T-2T=0T+4PS MarketT-32 T-28T-25T-22T-15T-12T-9T-6T-2T=0T+X# Months prior to SADSeagate ConfidentialIntro BE July 2010Page 30Learning ObjectivesAfter completing this training, the student will be able to:•Tie together the tools and methodology covered in thisclass.•Understand how DFSS, DFR and DMAIC are interrelated.•Apply the knowledge gained to current projects.IDOV ProcessFeasibility Point TollgateException ReviewPerform Tradeoffs to Ensure thatAll CTQ ’s Are MetOKNot OKNot OKNot OKValidateOptimizeDesignIdentifyOKTranslate Into Critical To Quality (CTQ) Measures and Key Process/Product Output Variable (KPOV) LimitsFormulate Designs/Concepts//Solutions Evaluate DesignsFor Each Top Level CTQ, Identify Key Product/Process Input Variables (KPIV ’s)Identify Customer RequirementsDevelop Transfer Functions Between KeyInput and Output VariablesAssess Process Capability to Achieve Critical Design Parameters and Meet CTQ LimitsOptimize Design DFSS ScoringDetermine TolerancesTest & ValidationAssess Performance, Failure Modes,Reliability and Risks Validate The Measurement SystemsNot OKException ReviewOKPerform Tradeoffs to Ensure thatAll CTQ ’s Are MetNot OKStatistical DesignWhat ’s NeededRM Software & Business ProcessIntegration intoProductDevelopment Flow & Phase-Gate ProcessTools Development& Model ManagementIdentify VOC, CTC, Environmental,System Level CTQsRequirement Management common repository, data structure, CTQ dictionary, flowdownDesign & Optimize Transfer FunctionsAllocationsTools Application simulators, models, DOEs, Monte Carlo, optimization, etc.VerifyStress Test, MSAMeasurement Systems & Builds sample sizes, cost, qualification test, etc.Appendix: DFSS Phase ReviewIdentify Phase1. What are you designing?2. Who is the customer?3. What business need will your design fill?4. When is your design needed?5. What does the cost/benefit (effort-to-impact) analysis show?6. What priority does this development effort have in the list of active and future projects?7. Who is going to champion this design effort?8. What are the CTQ requirements for this project?9. How are you sure these are the correct and complete list of requirements? (TTM, technical, environmental, etc)10. How did you determine which requirements are critical and which are non-critical?11. What are the targets and limits for each CTQ requirement?12. How did you determine the limits for each requirement?13. What requirements or limits do you expect to change either before or after project completion? How do you plan to handle this?14. How will you measure the CTQ’s? Who owns the equipment?15. What are the potential technological barriers? Describe your plan to overcome those barriers (alternative technology, costs, etc)?16. What elements of your design will be leveraged from existing designs, and/or will be used in future designs?17. What data do you have on existing similar designs?18. How does your design compare to our competitors?19. What resources are available (both personnel and budget)?20. Who are the critical players who can significantly impact this project? Are they “on board” with the development?21. What is your timeline and milestones?22. What obstacles do you foresee? Describe how you plan to overcome them?23. What does the feasibility / risk assessment indicate? What is your risk mitigation plan?I8-1Design Phase24. What design(s) are you considering?25. Where did the design(s) come from?26. Which design best satisfies the CTQ requirements?27. What existing knowledge are you leveraging into this design?28. What are the most complex elements of your design?29. What are the critical manufacturing/process steps for your design?30. Have you demonstrated technological/manufacturing feasibility?31. What is the risk associated with each design? (risk elements include: time to market, cost, capability, meeting volume,necessary resources, technological barriers, customer receptiveness, environmental regulations and vendor/supplier support)32. What data have you collected on the design(s)?33. How was the data collected?34. What additional output will you need to measure?35. What are the gauge R & R’s for all key measurable inputs and outputs? Who takes the measurements? Who owns the gauging?36. If a better gauge is needed, what would be the cost?37. What are the critical outputs (Vital Few) affecting each CTQ?38. What are the critical inputs (Vital Few) affecting each critical output?39. Who participated in developing the list of ALL (Trivial Many) the inputs/outputs initially analyzed and what were they?40. How were the critical inputs/outputs determined?41. What are the functional relationships between the critical outputs and the CTQ’s?42. What are the functional relationships between the critical inputs and critical outputs43. What are the tentative optimums for the inputs/outputs?44. What data do you have to support your decisions?45. How did you collect your data?46. How many parts and why?47. How do you know that you took enough samples to see a real effect and not just noise? What is your confidence that the effects is real?48. For suppliers, do they agree with your analysis of what the Vital Few are?49. What will be the process flow for your design?50. Who are the potential suppliers?51. What is the supplier’s capacity? Is it sufficient to meet short and long term capacity?I8-1Optimize Phase52. What are the product tolerances for each critical input/output?53. How were the tolerances determined?54. What data do you have to support these tolerances?55. How did you collect your data?56. How many parts and why?57. How do you know that you took enough samples?58. What is the capability for each tolerance?59. Is the capability score based on short or long-term estimates of variability?60. How sensitive is the performance to the critical inputs varying at the same time (i.e. interactions) over their tolerance ranges?61. Which environmental factors impact your design the most?62. How will you compensate for environmental influences?63. What are the key reliability issues?64. How did you test for reliability?65. What is your confidence in the predicted level of capability and reliability?66. Who are the suppliers? Have they been qualified? What is their capability?67. How will the parts be inspected?68. Do you have standards to ensure inspection test reproducibility?69. What does the product design / process flow diagram look like?70. Which steps in the process are value added and which are non-value added (rework, testing, inspecting, etc)?71. What is your plan for eliminating non-value added work?72. Are all the CTQ/S limits met or exceeded by using these product/process tolerances? If not, how do you plan to resolve that fact?73. What data do you have to support that all the CTQ/S’s are being met by this design?74. What is the predicted capacity?75. What are the biggest capacity constraints?76. What is the predicted cost?77. What are the areas of greatest risk?78. What is your plan for mitigating the risk? Is the risk acceptable?I8-2Validate Phase79. What is your validation test plan and criteria?80. What data do you have to support that the CTQ’s have been met?81. What is your confidence that the CTQ’s have been met?82. Which variables are the most important to control?83. What type of process control is being implemented?84. What are the action limits and action plans?85. What is the timing of the implementation?86. Who is involved with the implementation?87. Who will take the long-term responsibility for maintaining the controls?88. What plans do you have in place to revisit the process in the future to ensure the capability is being maintained?89. When will you transfer your design?90. How will you verify successful transfer of your design?All Phases91. What success(es) have you had in this phase (beyond what you expected)?92. What roadblocks did you encounter that you needed or still need help with?93. What do you see as your next steps?94. What would you have done differently?I8-2Appendix: MiscAcronyms and SymbolsRSM Response Surface Methodology RSS Root Sum of Squaress standard deviation of a sample s 2Variance of a sample S pSystem Capability IndexSDM Statistical Design Methods SESystems EngineeringSea.DOT Seagate Design Optimization Tool SEI Software Engineering Institute SPC Statistical Process Control SS Sum of SquaresSS p Subsystem Capability Index S/W Software T Target Level TF Transfer FunctionTol ToleranceTTM Time to MarketUCL Upper Confidence Limit (Upper Control Limit in SPC)USL Upper Spec limit VOC Voice of the Customer WC Worst Casex Mean of a sampleZNumber of σ‘s that can fit between Mean and Spec limitI & T Integration & Test Phase of a Program IDOV Identify, Design, Optimize, Validate IV Independent VariableKPIV Key Product/Process Input Variable KPOV Key Product/Process Output Variable KT Kepner-TregoeLCL Lower Confidence Limit (Lower Control Limit in SPC)LSL Lower Spec LimitMAIC Measure, Analyze, Improve, Control MBB Master Black BeltME Mechanical EngineeringMGPD Multi-Generation Product Development MS Mean Sum of SquaresMSA Measurement Systems Analysis MTBF Mean Time Between Failures MTTF Mean Time To Failure p probability of an occurrence PCB Printed Circuit BoardPCD Process Capability Database PCM Process Capability ModelsPNC Probability of Non-Conformance to specificationsPp, Ppk Long term capability measures PPM Parts per MillionQFD Quality Function Deployment R&R Repeatability & Reproducibility RPNRisk Priority NumberµMean of a populationσStandard Deviation of a Population σ2Variance of a population 1-D One dimensional linear stack-up ANOVA Analysis of VarianceBBBlack BeltBOM Bill of MaterialsCp, Cpk Process Capability Index, Short Term CI Confidence Interval COQ Cost of Quality CTQ Critical to Quality df Degrees of Freedom DFA Design for AssemblyDFM Design for Manufacturability DFSS Design for Six Sigma DoEDesign of ExperimentsDPLOC Defects per line of code DPPM Defective Parts per Million DPU Defects Per Unit DV Dependent Variable EE Electrical Engineering ETTR Elapsed Time To RepairFEA Finite Element AnalysisFMEA Failure Modes and Effects Analysis GLM General Linear ModelGR&R Gage Repeatability & Reproducibility H/WHardware。

6-08 六西格玛设计(DFSS)-- IDDOV模式

6-08  六西格玛设计(DFSS)-- IDDOV模式

六西格玛设计(DFSS)-- IDDOV模式课程介绍六西格玛作为一种过程改进方法,一般遵循的是DMAIC思路。

其工作重点是有选择地改进过程,克服造成过程失败的根本原因,减少缺陷。

但由于内在特性,DMAIC可能在大约5%的过程改进项目中失败。

一个比较常见的原因是:过程的状况太糟,已经失去了改进的意义,在这种情况下需要的是一个新过程。

还有一种情况,现行过程能力的局限性太大,渐进式变更和改进已不足以再次提升它,所需要的是一个新的过程。

这时如果把六西格玛改进方法运用于新产品的引入活动,各种问题就将搅和在一起。

想在新产品引入中继续尝试和验证“六西格玛改进”将遭遇两个障碍:第一,没有什么可以度量,因为是“新产品”;第二,在处理问题时往往围绕产品或服务,而不是过程。

在这种情况下“六西格玛改进”就难以满足新的要求,于是“六西格玛设计(Design For Six Sigma ,简称DFSS)”就应运而生。

今天六西格玛设计与六西格玛改进并列成为六西格玛管理中的两大方法体系。

DFSS系统方法的核心是,在产品的早期开发阶段应用完善的统计工具,从而以大量数据证明预测设计的可实现性和优越性。

在产品的早期开发阶段就预测产品或服务在客户处的绩效表现是实现更高客户满意度、更高利润和更大市场占有率的关键。

DFSS可以使企业从以下方面获得利润:当产品满足顾客需求,提高了本公司产品在市场的占有率,销售量增加带来利润的增加。

产品质量超出了顾客的预期,生产具有魅力质量的产品企业就有提高价格的理由。

提价为企业带来利润。

六西格玛从客户声音的收集、质量机能展开、健壮设计(参数设计、容差设计)、失效模式与影响分析、可制造性技术等使产品实现了低成本下的高质量,经过参数设计的产品其理论成本必然下降,即原材料等成本下降为企业带来了直接的经济效益。

此外高质量意味着产品质量稳定,产品良好的稳定性,也减少了内外质量故障等劣质成本,同时还为企业降低了管理成本。

六西格玛及其不同行业应用介绍

六西格玛及其不同行业应用介绍
提升客户满意度
通过了解客户需求,提供定制化、个性化 的产品或服务,提升客户满意度。
流程设计
创新性设计
采用全新的理念和设计方法,创造全新的 产品或服务。
适应性设计
根据市场需求和变化,调整产品或服务的 设计和功能。
稳健性设计
在产品或服务的设计中考虑各种不确定因 素,确保产品的稳健性。
可持续性设计
在产品或服务的设计中考虑环境影响和资 源利用效率,实现可持续发展。
03
六西格玛的核心理念是关注客 户需求、关注流程改进、关注 团队合作,以实现持续的质量 改进和客户满意度的提高。
六西格玛的核心价值观
关注流程改进
六西格玛强调对流程的分析和 改进,以提高流程的效率和可 靠性。
预防缺陷
六西格玛注重预防缺陷,通过 改进流程和消除问题根源来减 少缺陷的发生。
以客户为中心
六西格玛将客户的需求放在首 位,通过满足客户需求来实现 组织的目标。
六西格玛及其不 同行业应用介绍
汇报人: 2023-10-29
contents
目录
• 六西格玛简介 • 六西格玛实施流程 • 六西格玛在不同行业的应用 • 六西格玛实施的成功案例 • 六西格玛的未来发展趋势和挑战
01
CATALOGUE
六西格玛简介
六西格玛的概念
六西格玛是一种追求卓越的质量管理方法,旨在提高组织的 流程质量和客户满意度。它通过运用统计工具和方法,对流 程进行分析和改进,以实现持续改进和优化。
六西格玛将质量定义为满足客户需求的能力水平,并强调对 流程的改进和对缺陷的预防。它以客户为中心,通过跨部门 的团队合作,来实现持续的质量改进。
六西格玛的发展历程
01
六西格玛起源于20世纪80年代 的美国摩托罗拉公司,最初是 为了解决生产过程中的质量问 题而开发的。

6西格玛质量管理体系

6西格玛质量管理体系

金融业:提高风险管理水平,降低 不良贷款率
成功案例分享
应用领域:制造业、服务业、医疗 保健等
案例2:某医疗机构采用6西格玛质 量管理体系,优化了医疗流程,提 高了医疗服务水平。
添加标题
添加标题
添加标题
添加标题
案例1:某汽车制造公司采用6西格 玛质量管理体系,提高了产品质量 和客户满意度。
案例3:某快递公司采用6西格玛质 量管理体系,提高了物流效率和客 户满意度。
汇报人:XX
在不同行业的实践经验
制造业:通过6西格玛质量管理体系,提高产品质量和生产效率,降低不良 率。
服务业:运用6西格玛方法,优化服务流程,提高客户满意度,增强竞争优 势。
医疗保健:借助6西格玛理念,提升医疗服务的准确性和可靠性,保障患者 安全。
金融业:通过6西格玛工具和方法,提高风险管理水平,优化业务流程。
6西格玛质量管理体系
汇报人:XX
单击输入目录标题 6西格玛质量管理体系的起源和概念 6西格玛质量管理体系的实施过程 6西格玛质量管理体系的益处和挑战
6西格玛质量管理体系的应用领域和案例
如何建立有效的6西格玛质量管理体系
添加章节标题
6西格玛质量管理体系的起源 和概念
起源和背景
6西格玛质量管理体系起源于20世纪80年代的美国摩托罗拉公司,旨在提高产品质量和降低缺陷 率。
降低成本和提高效率
降低成本:通过减少缺陷和错误,降低产品成本和浪费 提高效率:优化流程和减少变异,提高生产效率和产品质量 改进决策:提供准确的数据和信息,帮助企业做出更好的决策 提升客户满意度:提高产品和服务质量,增强客户忠诚度和满意度
提升组织竞争力
提高产品质量和客户满意度 降低成本和减少浪费 优化流程和提升效率 增强员工参与和团队合作

现代质量管理(六西格玛管理)

现代质量管理(六西格玛管理)
促进企业创新
六西格玛管理鼓励企业不断寻求改进 和创新的机会,从而推动企业实现持 续创新和发展。
未来发展趋势和前景
数字化和智能化
随着数字化和智能化技术的不断发展,六 西格玛管理将更加注重数据分析和智能决 策,提高企业的决策效率和准确性。
强调客户体验
在消费者需求日益多样化的背景下,六西格 玛管理将更加注重客户体验的提升,通过优 化产品和服务设计,提高客户满意度和忠诚 度。
教育领域
一些学校和教育机构运用六西格玛管 理改进教育流程,提高学生学习成绩 和毕业率,提升教育质量和效益。
05
CATALOGUE
六西格玛管理与其他质量管理方法的比较
与TQM的比较
理念差异
六西格玛管理强调以数据和事实为基础,追求零缺陷;而 TQM(全面质量管理)则更注重全员参与和持续改进。
工具与方法
工具与方法
精益生产采用价值流分析、5S、看板管理等工具;六西格玛管理则运用DMAIC、FMEA等统计 工具。
应用范围
精益生产适用于生产现场和流程优化,强调速度和灵活性;六西格玛管理则适用于复杂问题的解 决,强调数据分析和精确性。
与ISO9000的比较
标准差异
ISO9000是国际质量管理体 系标准,强调过程控制和持 续改进;六西格玛管理则是 一种质量管理方法,关注流
玛管理致力于提高顾客满意度。
建立顾客忠诚度
03
通过持续改进和提供卓越的顾客体验,六西格玛管理帮助组织
建立顾客忠诚度,从而增加市场份额和收益。
流程优化
识别和改进关键流程
六西格玛管理关注组织内部的关键流程,通过数据分析和改进工 具来识别瓶颈和问题,并提出优化方案。
减少浪费和提高效率

六西格玛介绍解读课件

六西格玛介绍解读课件

通过各种监控和控制方法,确保 过程稳定性和产品质量的持续性 。
将改进后的操作标准化,确保团 队成员能够按照统一的标准进行 操作和管理。
04
六西格玛的效益与价值
提高产品质量
减少缺陷和误差
六西格玛管理通过严格的数据分析和 流程改进,能够显著减少产品中的缺 陷和误差,提高产品的一次性合格率 。
优化产品设计
六西格玛方法鼓励跨部门团队合作, 从多角度审视产品设计,从而发现并 改进潜在的问题,提升产品设计的合 理性和可靠性。
降低成本
减少浪费和返工
六西格玛注重流程优化和减少浪费,通过消除不必要的过程和减少产品缺陷,降低生产 成本和返工成本。
提高生产效率
六西格玛管理有助于提高生产线的稳定性和效率,减少停机和等待时间,从而降低单位 产品的制造成本。
跨部门协作与沟通
总结词
六西格玛的实施往往涉及多个部门,因此,良好的跨 部门协作与沟通至关重要。
详细描述
建立有效的沟通机制,促进不同部门之间的信息交流和 经验分享。通过定期召开跨部门会议、团队建设活动等 方式,加强团队之间的联系和合作。同时,鼓励员工提 出改进意见和建议,促进跨部门的知识共享和创新。
帕累托图可以帮助团队识别最常见或最严重的问题,并优先处理这些问题。它通常由横轴和纵轴组成,横轴表示事件或问题 的类型,纵轴表示发生频率或严重程度。通过分析帕累托图,团队可以确定哪些问题需要优先解决,并制定相应的改进措施 。
直方图
直方图是一种柱状图,用于展示数据的分布 情况,包括数据的最大值、最小值、平均值 、中位数等统计指标。
提升客户满意度
提高客户忠诚度
六西格玛关注客户需求和反馈,通过改进产 品和服务质量,增强客户满意度,进而提高 客户忠诚度。

六西格玛设计方法论字母

六西格玛设计方法论字母

六西格玛设计方法论字母六西格玛(Six Sigma)是一种以数据为基础的管理方法,旨在通过减少变异、提高过程质量和效率,从而实现持续的质量改进。

六西格玛方法论起源于20世纪80年代的美国,最初由摩托罗拉公司引入,并在后来被通用电气公司广泛采用。

六西格玛的核心思想是通过统计分析和数据驱动的方法,将业务过程的缺陷率控制在每百万次操作中不超过3.4次,从而实现业务质量的显著提升。

六西格玛的名称来源于统计学中的标准差符号σ,它代表了一个过程的变异性。

而“六西格玛”一词则表示了一个极高的质量水平,相当于每个过程在正常分布曲线中位于6个标准差之内。

根据统计学的原理,当一个过程能够达到六西格玛的水平时,其缺陷率已经非常低,几乎可以忽略不计。

六西格玛方法论的实施需要按照一定的步骤进行。

首先,确定关键的业务过程,并建立适当的指标来衡量其性能。

其次,收集和分析大量的数据,以了解过程的当前状态和存在的问题。

然后,通过应用各种统计工具和技术,找出造成问题的根本原因,并制定改进策略。

最后,跟踪和监控改进效果,确保所采取的措施能够持续产生积极的影响。

在六西格玛方法论中,有一些常用的工具和技术被广泛采用。

例如,流程图可以帮助识别和分析业务流程中的关键环节和瓶颈,帮助确定改进的重点。

而直方图和散点图则可以用来分析数据的分布和相关性,找出异常值和异常规律。

此外,假设检验和方差分析等统计方法可以用来验证改进效果的显著性和可靠性。

六西格玛方法论的应用范围非常广泛,几乎适用于任何类型的组织和业务过程。

许多公司和组织都将六西格玛作为其质量管理体系的核心方法,以实现业务的持续改进和优化。

六西格玛不仅可以用于制造业的质量管理,还可以应用于服务行业和软件开发等领域。

六西格玛的实施可以带来许多益处。

首先,通过减少缺陷和变异性,可以提高产品和服务的一致性和可靠性,从而增强顾客满意度。

其次,六西格玛还可以帮助组织降低成本和提高效率,通过优化业务流程和资源利用率来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Design for SixSigma(DFSS) & Design for Reliability(DFR) 六西格玛设计和可靠性设计The Journey1998 – Seagate adopts Six Sigma defect reduction, cost savings1999 – Lean in Manufacturing & Supply Chain2001 – DFSS in Product & Process DevelopmentIntro BE July 2010Page 2DFSS in the BeginningIterativeUse of historical requests Test and re-test Short term estimates Isolated CTQ optimizationPredictiveRequirements hierarchy Model building Long term estimates System optimizationInitial Approach: Top down Educate the masses in design centers -> “DFSS Certified” • DFSS Foundation – 2 weeks of Statistics • DFSS Project – Systems Engineering – 3 days Train the suppliers and factory BrB/BB/MBBs in DFSSIntro BE July 2010Page 3What Is Design for Six Sigma?Design for Six Sigma (DFSS): • Allows us to set “need-based” requirements for CTQs and to evaluate our capability to meet those requirements. • Is a process that focuses on predictive product design. • Emphasizes the use of statistical methods to predict product quality early in the design process. • Is a complement to good engineering/decision making practices.Intro BE July 2010Page 4Six Sigma Improvement Methodology1YESDefine2NO1. A high level Business need isidentified(CTQ gap)MeasureIdentify Design Optimize2. Does a Current BusinessProcess/Product exist to address the gap3NOYES3. Are the Processes/Productsthat support your key outputs optimized but still not capable of meeting customer requirements?AAnalyze4NOYES NO5YESA 4.Is the solution or part of the solution a new process, product, or service. more KPIV need to be improved to optimize KPOV?Improve ControlIntro BE July 2010Validate5. Does the capability of one orPage 5Statistical DesignIdentify Customer RequirementsIdentifyTranslate Into Critical To Quality (CTQ) Measures and Key Process/Product Output Variable (KPOV) Limits Formulate Designs/Concepts//Solutions Validate The Measurement Systems Evaluate DesignsPerform Tradeoffs to Ensure that All CTQ’s Are MetDesignFor Each Top Level CTQ, Identify Key Product/Process Input Variables (KPIV’s) Develop Transfer Functions Between Key Input and Output Variables Optimize Design Determine Tolerances Not OK OKNot OKException ReviewOptimizeAssess Process Capability to Achieve Critical Design Parameters and Meet CTQ Limits DFSS Scoring Not OK Test & Validation OKPerform Tradeoffs to Ensure that All CTQ’s Are MetNot OK Exception ReviewValidateIntro BE July 2010Assess Performance, Failure Modes, Reliability and Risks OKNot OKFeasibility Point TollgatePage 6BreakthroughSix Sigma and Design for Six SigmaDesign for Six SigmaDesign robust products so that specs can be loosenedDMAIC Six SigmaFocus on reducing variation around the meanDefectsLower Spec LimitUpper Spec Limit• Design for Six Sigma and “Standard” Six Sigma work together!Intro BE July 2010 Page 7Design EvolutionFROMEvolving Design requirements Design rework Build and test performance assessment Performance and manufacturability after product is designed Quality is “tested in”TODisciplined CTQ flowdown Controlled design parameters Performance modeled and simulated Design for robust performance and manufacturabilityREACTIVEIntro BE July 2010PREDICTIVEPage 8Key Elements• Systems relationships Transfer Functions, KPIV & KPOV • Statistical Design: Meeting not only target but address variations in design • Identify, Design, Optimize, & Verify (IDOV)Intro BE July 2010Page 9Systems Engineering - FlowdownQFD/FMEASystem CTQsSubsystem CTQsSub-assembly CTQsComponents CTQsProcess CTQsIntro BE July 2010Page 10Systems View Of a Hard Disc Drive38 CTQsServo-MechMech ServoHSAHGACustomer CTQsMotor/Base HDA Encl. HeadRSS-H/M Elec/Interface ASICMedia Channel/PreampComponent CTQs111 Subsystem CTQs FirmwareProcess CTQs7 CTQsAssembly/TestCert/Test ...>120 Factory CTQsIntro BE July 2010Page 11Transfer FunctionWhat is a Transfer Function?X1 X2 X3 Xn • It is a relationship of the CTQ (Y) to the key input variables (X’s). • It is not necessarily as rigorous as a process model. • It is key to predicting product performance before building prototypes.Intro BE July 2010 Page 12f(X1,X2,…, Xn)Y…Getting to the y = f(x1, x2…)Physical Models - dedicated experts ü Explore design space – run simulations with DOE ü Model management process Statistical Models ü DOE, Regression, Response Surface, etc ü Parametric data analysis – especially for reliability ü MSA“All models are wrong, some are useful.” - George BoxIntro BE July 2010Page 13Flowdown/Flowup ProcessSystemIdentify Customer CTQs. Translate into System CTQs. Adjust tradeoffs to reduce cost (as new σ improvements are made).PNCIdentify Measurement for each system CTQ. Trade off mean/variance requirements to x1,x2,…,xn to best meet system CTQ need. Obtain process capabilities for those x’s that are not yet known. Use transfer function and experience/judgement to allocate requirements for x1,x2,…,xn to meet system CTQ need.SubsystemsDetermine Specifications for each system CTQ (Y).YesCapabilities of all x1,x2,…,xn known?Identify Transfer FunctionNoY=f(x1,x2,…,xn)Intro BE July 2010Page 14After y = f(x1,x2..), then…Internally developed tool – handles up to 20 transfer functionsØ Runs Sensitivity Analysis, Monte Carlo simulation and determines PNC Ø Optimizes for a Figure of Merit (cost, PNC, Z-score, user specified) Ø Helps set tolerances for all inputsOptimize to a Figure of MeritTransfer FunctionsMeeting expectation? What the customer wantsScreened Parts?Input w VariationsAllocate Optimized SpecsIntro BE July 2010Page 15Design & Engineering Benefits• KPOVs & KPIVs defined by transfer function • Clear ownership of CTQs • Visibility for trade-off managementIntro BE July 2010Page 16DFSS Process IntegrationCTQ FlowdownCustomerPNC CTQ’sOwners• Marketing Inputs • Product Roadmaps Marketing /Systems EngineeringSystemPNC CTQ’s• System Models/Specs • System Eng. RoadmapSystems EngineeringSubsystemsPNC CTQ’s• Subsystem Simulations • Subsystem RoadmapsSubsystem EngineeringComponentsPNC CTQ’s• Eng. Design Tools • Process CharacterizationDesign Process Centers Mfg/Suppliers/ServicePartsParts/Process/Performance Capability Flowup• Parts CharacterizationMfg/Suppliers/Sourcing Design TeamsIntro BE July 2010Page 17Prospects• Understanding customer needs • Complete understanding of systems relationships • Considers not only the target but the variation in design • Integrating models & simulators to estimate Probability of Non-Conformance (PNC) • Not about the number 6 but a cultural changeIntro BE July 2010Page 18Design OpportunityMost current Six Sigma effort is here.Cost to Correct Quality and Reliability$Must move quality effort here!ResearchDesignPrototypeProductionCustomerDefects are:Intro BE July 2010Difficult to see/predict Easy to fixPage 19Easy to see Costly to fix6 Sigma vs. Optimal SigmaCost to Design and Manufacture ProductDESIGN COST MATERIALS COST MANUFACTURING COSTOptimal SettingZST LEVELIntro BE July 2010 Page 20What workedProduct & Process Development culture transformed by DFSSü More rigorous VOC process ü Doing Systems Engineering vs components (organization change) ü Speaking the “same language” in CTQ flow down (requirements) ü Emphasis on transfer function development - Models, DOE, regression, etc. ü Using statistical thinking vs target only - Monte Carlo simulation, tolerance analysis, etc ü Applying DFR early in product & technology development, FMEAs up front ü More data driven decisionsAvg Development TimeIntro BE July 2010Page 21But Something Still Needs Beefing Up1998 – Seagate adopts Six Sigma1999 – Lean in Manufacturing & Supply Chain2006 – Revised Design for Reliability (DFR) 2001 – DFSS in Product & Process DevelopmentIntro BE July 2010Page 22Design for ReliabilityDFSSANOVA Regression Hypothesis Testing General Linear Model Sensitivity Analysis Tolerancing VOC Flowdown QFD FMEA Control Plans MSA Modeling DOEDFREnvironmental & Usage Conditions Life Data Analysis Physics of Failure Accelerated Life Testing Reliability Growth Warranty Predictions FA recognition– Many common tools – DFSS enables achieving high quality at launch with nominal stress conditions – DFR focuses on achieving high quality over time and across stress levelsIntro BE July 2010Page 23Enhanced DFR ProcessUpfront use of DFR Assessment Matrix in the development cycle to identify and address reliability issuesDFR Summary page: Key Reliability Risks / Failure ModesIssues from prior productsParetos , Post Mortem, …Competitive Analysis Prioritized list of key reliability risksSys FMEANew technologiesFMEA’s , brainstorming, …Modeling Physics of FailureNew market environmental & usage conditionsPotential Failure mode *CFM team?Maturity of physics of failure modelsUnderstand field environment stressorsEffective Stress testEffective FA recognitionParametric data analysisManufacturing/ supplier control strategy/ metrologyDFR TeamDesign OptionsArea Specific RepresentativeFailure Mode 1 Failure Mode 2 Failure Mode 3 Failure Mode 4 Failure Mode 5 Failure Mode 6 Failure Mode 7 Failure Mode 8Yes Yes Yes No Yes No Yes Yes• •The status of the DFR activities will be updated at each progra m phase gate with a DFR review of the activities associated with the stoplight matrix above. New Key Reliability Risks / Failure Modes should be added or pa rked when engineering data justifies that action.© Seagate Confidential Page 2Intro BE July 2010Page 24Integration into Product DevelopmentProduct Planning, Design and Development ProcessVOC Lessons Learned Requirements Management Phase-Gates & Deliverables Data Storage DeviceDesign for ReliabilityDesign for Six SigmaEngineering Models and Six Sigma Tool SetsIntro BE July 2010Page 25The Journey Forward1998 – adopts DMAIC Six SigmaToday – Business Excellence1999 – Lean in Manufacturing & Supply Chain 2000 – DFSS in Product & Process Development 2006 – Integrated DFR with DFSS2007 – Research ExcellenceIntro BE July 2010Page 26Integration into Product DevelopmentLean Design & DevelopmentProduct Planning, Design and Development ProcessVOC Lessons Learned Requirements Management Phase-Gates & Deliverables Data Storage DeviceDesign for ReliabilityDesign for Six SigmaEngineering Models and Six Sigma Tool SetsIntro BE July 2010 Page 27Tools We UseSIX SIGMA• Traditional DMAIC toolset • Traditional DFSS toolset • DFR tools • Value Stream Mapping • Value-add Analysis • Error-proofing • 5S • Cycle time analysis • Benchmarking • 5 why’s • Potential problem analysis • Work measurement Change Mgmt • Current reality tree • Future reality tree • Conflict resolution Throughput focus • Setup reduction • Pull systems • Total productive maintenance • Shop floor management • OEE • Lean assessment • Lean diagnostic • 48 hour study • Layout optimization • Batch size reduction • Time studies • Work sampling • Red flag analysisLEAN•Critical chain project mgmt •Prerequisite tree •Transition TreeTOCIntro BE July 2010Page 28Business Excellence“Today” and “Tomorrow” elementsResearch & Technology DevelopmentFutureCommitment to technology developmentLeanDFSS/DFRAdvanced Drive Integration & PlatformTomorrowStaging, aligning and integrating technologyProduct/ Component Design & Manuf.TodayExecuting to product plansDMAIC 6σ Factory & DeliveryIntro BE July 2010Page 29SLAM II Context DiagramProduct and Technology Portfolio ManagementProduct Planning Process Platform Integration/Technology AlignmentBiBi -Annual ProcessesFramework Mini MR MR Drive Development à(Click here for Milestone Definitions)Mini DRPOR Arch.EM Start MRGen 1 Gen 2 RR RR EM Gen 1 Gen 2 Declare Declare DeclareSAD CTU or Declare ECQPTAAdvanced Drive Development (ADD) Feasibility Phase 0 DesignFrame -work MR MR Feas ExitIntegration Qualification PilotRampPrimary Market Segment Drive DevelopmentMini MRMini DRADD ExitEMD/ Ph0 ExitGen1 DeclareDeclare Gen2 Declare SAD Processes PTA Product Phase Phase-BasedCTUEC Market PS MarketT-36 T-32T-32 T-28T-25 T-25T-22 T-22T-19 T-15T-15 T-12T-10 T-9T-6 T-6T-2 T-2T=0 T=0T+4 T+X# Months prior to SAD Seagate ConfidentialIntro BE July 2010Page 30Learning ObjectivesAfter completing this training, the student will be able to:•Tie together the tools and methodology covered in thisclass.•Understand how DFSS, DFR and DMAIC are interrelated.•Apply the knowledge gained to current projects.IDOV ProcessFeasibility Point TollgateException ReviewPerform Tradeoffs to Ensure thatAll CTQ ’s Are MetOKNot OKNot OKNot OKValidateOptimizeDesignIdentifyOKTranslate Into Critical To Quality (CTQ) Measures and Key Process/Product Output Variable (KPOV) LimitsFormulate Designs/Concepts//Solutions Evaluate DesignsFor Each Top Level CTQ, Identify Key Product/Process Input Variables (KPIV ’s)Identify Customer RequirementsDevelop Transfer Functions Between KeyInput and Output VariablesAssess Process Capability to Achieve Critical Design Parameters and Meet CTQ LimitsOptimize Design DFSS ScoringDetermine TolerancesTest & ValidationAssess Performance, Failure Modes,Reliability and Risks Validate The Measurement SystemsNot OKException ReviewOKPerform Tradeoffs to Ensure thatAll CTQ ’s Are MetNot OKStatistical DesignWhat ’s NeededRM Software & Business ProcessIntegration intoProductDevelopment Flow & Phase-Gate ProcessTools Development& Model ManagementIdentify VOC, CTC, Environmental,System Level CTQsRequirement Management common repository, data structure, CTQ dictionary, flowdownDesign & Optimize Transfer FunctionsAllocationsTools Application simulators, models, DOEs, Monte Carlo, optimization, etc.VerifyStress Test, MSAMeasurement Systems & Builds sample sizes, cost, qualification test, etc.Appendix: DFSS Phase ReviewIdentify Phase1. What are you designing?2. Who is the customer?3. What business need will your design fill?4. When is your design needed?5. What does the cost/benefit (effort-to-impact) analysis show?6. What priority does this development effort have in the list of active and future projects?7. Who is going to champion this design effort?8. What are the CTQ requirements for this project?9. How are you sure these are the correct and complete list of requirements? (TTM, technical, environmental, etc)10. How did you determine which requirements are critical and which are non-critical?11. What are the targets and limits for each CTQ requirement?12. How did you determine the limits for each requirement?13. What requirements or limits do you expect to change either before or after project completion? How do you plan to handle this?14. How will you measure the CTQ’s? Who owns the equipment?15. What are the potential technological barriers? Describe your plan to overcome those barriers (alternative technology, costs, etc)?16. What elements of your design will be leveraged from existing designs, and/or will be used in future designs?17. What data do you have on existing similar designs?18. How does your design compare to our competitors?19. What resources are available (both personnel and budget)?20. Who are the critical players who can significantly impact this project? Are they “on board” with the development?21. What is your timeline and milestones?22. What obstacles do you foresee? Describe how you plan to overcome them?23. What does the feasibility / risk assessment indicate? What is your risk mitigation plan?I8-1Design Phase24. What design(s) are you considering?25. Where did the design(s) come from?26. Which design best satisfies the CTQ requirements?27. What existing knowledge are you leveraging into this design?28. What are the most complex elements of your design?29. What are the critical manufacturing/process steps for your design?30. Have you demonstrated technological/manufacturing feasibility?31. What is the risk associated with each design? (risk elements include: time to market, cost, capability, meeting volume,necessary resources, technological barriers, customer receptiveness, environmental regulations and vendor/supplier support)32. What data have you collected on the design(s)?33. How was the data collected?34. What additional output will you need to measure?35. What are the gauge R & R’s for all key measurable inputs and outputs? Who takes the measurements? Who owns the gauging?36. If a better gauge is needed, what would be the cost?37. What are the critical outputs (Vital Few) affecting each CTQ?38. What are the critical inputs (Vital Few) affecting each critical output?39. Who participated in developing the list of ALL (Trivial Many) the inputs/outputs initially analyzed and what were they?40. How were the critical inputs/outputs determined?41. What are the functional relationships between the critical outputs and the CTQ’s?42. What are the functional relationships between the critical inputs and critical outputs43. What are the tentative optimums for the inputs/outputs?44. What data do you have to support your decisions?45. How did you collect your data?46. How many parts and why?47. How do you know that you took enough samples to see a real effect and not just noise? What is your confidence that the effects is real?48. For suppliers, do they agree with your analysis of what the Vital Few are?49. What will be the process flow for your design?50. Who are the potential suppliers?51. What is the supplier’s capacity? Is it sufficient to meet short and long term capacity?I8-1Optimize Phase52. What are the product tolerances for each critical input/output?53. How were the tolerances determined?54. What data do you have to support these tolerances?55. How did you collect your data?56. How many parts and why?57. How do you know that you took enough samples?58. What is the capability for each tolerance?59. Is the capability score based on short or long-term estimates of variability?60. How sensitive is the performance to the critical inputs varying at the same time (i.e. interactions) over their tolerance ranges?61. Which environmental factors impact your design the most?62. How will you compensate for environmental influences?63. What are the key reliability issues?64. How did you test for reliability?65. What is your confidence in the predicted level of capability and reliability?66. Who are the suppliers? Have they been qualified? What is their capability?67. How will the parts be inspected?68. Do you have standards to ensure inspection test reproducibility?69. What does the product design / process flow diagram look like?70. Which steps in the process are value added and which are non-value added (rework, testing, inspecting, etc)?71. What is your plan for eliminating non-value added work?72. Are all the CTQ/S limits met or exceeded by using these product/process tolerances? If not, how do you plan to resolve that fact?73. What data do you have to support that all the CTQ/S’s are being met by this design?74. What is the predicted capacity?75. What are the biggest capacity constraints?76. What is the predicted cost?77. What are the areas of greatest risk?78. What is your plan for mitigating the risk? Is the risk acceptable?I8-2Validate Phase79. What is your validation test plan and criteria?80. What data do you have to support that the CTQ’s have been met?81. What is your confidence that the CTQ’s have been met?82. Which variables are the most important to control?83. What type of process control is being implemented?84. What are the action limits and action plans?85. What is the timing of the implementation?86. Who is involved with the implementation?87. Who will take the long-term responsibility for maintaining the controls?88. What plans do you have in place to revisit the process in the future to ensure the capability is being maintained?89. When will you transfer your design?90. How will you verify successful transfer of your design?All Phases91. What success(es) have you had in this phase (beyond what you expected)?92. What roadblocks did you encounter that you needed or still need help with?93. What do you see as your next steps?94. What would you have done differently?I8-2Appendix: MiscAcronyms and SymbolsRSM Response Surface Methodology RSS Root Sum of Squaress standard deviation of a sample s 2Variance of a sample S pSystem Capability IndexSDM Statistical Design Methods SESystems EngineeringSea.DOT Seagate Design Optimization Tool SEI Software Engineering Institute SPC Statistical Process Control SS Sum of SquaresSS p Subsystem Capability Index S/W Software T Target Level TF Transfer FunctionTol ToleranceTTM Time to MarketUCL Upper Confidence Limit (Upper Control Limit in SPC)USL Upper Spec limit VOC Voice of the Customer WC Worst Casex Mean of a sampleZNumber of σ‘s that can fit between Mean and Spec limitI & T Integration & Test Phase of a Program IDOV Identify, Design, Optimize, Validate IV Independent VariableKPIV Key Product/Process Input Variable KPOV Key Product/Process Output Variable KT Kepner-TregoeLCL Lower Confidence Limit (Lower Control Limit in SPC)LSL Lower Spec LimitMAIC Measure, Analyze, Improve, Control MBB Master Black BeltME Mechanical EngineeringMGPD Multi-Generation Product Development MS Mean Sum of SquaresMSA Measurement Systems Analysis MTBF Mean Time Between Failures MTTF Mean Time To Failure p probability of an occurrence PCB Printed Circuit BoardPCD Process Capability Database PCM Process Capability ModelsPNC Probability of Non-Conformance to specificationsPp, Ppk Long term capability measures PPM Parts per MillionQFD Quality Function Deployment R&R Repeatability & Reproducibility RPNRisk Priority NumberµMean of a populationσStandard Deviation of a Population σ2Variance of a population 1-D One dimensional linear stack-up ANOVA Analysis of VarianceBBBlack BeltBOM Bill of MaterialsCp, Cpk Process Capability Index, Short Term CI Confidence Interval COQ Cost of Quality CTQ Critical to Quality df Degrees of Freedom DFA Design for AssemblyDFM Design for Manufacturability DFSS Design for Six Sigma DoEDesign of ExperimentsDPLOC Defects per line of code DPPM Defective Parts per Million DPU Defects Per Unit DV Dependent Variable EE Electrical Engineering ETTR Elapsed Time To RepairFEA Finite Element AnalysisFMEA Failure Modes and Effects Analysis GLM General Linear ModelGR&R Gage Repeatability & Reproducibility H/WHardware。

相关文档
最新文档