第三章 化学势

合集下载

第3篇化学势

第3篇化学势

第3篇化学势化学势,这个在化学领域中被频繁提及的概念,对于许多初学者来说,可能显得有些抽象和难以理解。

它是一个描述物质在化学反应中能量的变化和传递的重要参数,是理解化学反应热力学性质的关键。

那么,化学势究竟是什么呢?它又是如何影响化学反应的呢?我们需要明确化学势的定义。

化学势是一个物质在特定条件下的自由能变化率,它表示了该物质在反应中的能量状态。

简单来说,化学势越高,物质的能量就越高,它就越有可能发生反应。

那么,化学势是如何影响化学反应的呢?化学势决定了物质的反应活性。

当两种物质的化学势相差较大时,它们之间发生反应的可能性就越大。

这是因为化学势高的物质具有更高的能量,它们更倾向于释放能量,从而发生反应。

化学势还影响着反应的方向。

在封闭系统中,化学反应总是朝着化学势降低的方向进行。

这是因为系统会自发地朝着能量更低、更稳定的状态发展。

因此,通过控制化学势,我们可以预测和控制化学反应的方向。

化学势还与反应的平衡状态有关。

在化学反应中,当正反应和逆反应的速率相等时,系统达到平衡状态。

此时,反应物和物的浓度不再发生变化,系统的化学势达到最低。

通过改变反应条件,如温度、压力等,我们可以改变系统的化学势,从而影响反应的平衡状态。

化学势是一个描述物质在化学反应中能量变化的重要参数。

它不仅影响着物质的反应活性,还决定了反应的方向和平衡状态。

理解化学势的概念,对于我们深入理解化学反应的热力学性质具有重要意义。

在深入探讨化学势之前,我们还需要了解化学势与温度、压力等外界条件的关系。

这些外界条件的变化,会直接影响物质的化学势,进而影响化学反应的进行。

温度对化学势的影响。

根据热力学原理,温度的升高会导致物质的分子运动加剧,从而增加物质的化学势。

因此,在高温条件下,化学反应的速率通常会加快,因为反应物分子的碰撞频率和能量都增加了。

然而,对于放热反应来说,温度的升高反而会导致反应速率的降低,因为物的化学势降低了。

压力对化学势的影响。

第三章 化学势资料

第三章 化学势资料

2020/10/10
-- 11 --
写成一般式有: U nBUB
B
H nB HB B
A nB AB
B
S nBSB B
G nBGB B
U U B ( nB )T , p,nc (cB)
H
HB
( nB
)T
, p,nc
( c B)
A
AB
( nB
)T , p,nc (cB)
S
SB
( nB
其中:
zB
z nB
T , p,nC (CB)
zB 定T、p条件下, 往无限大的系统中(可看 作其浓度不变), 加入 1mol B组分所引起系统容量 性质的改变.
② 指定T、p条件下, 在有限量系统中, 其它组 分不变 (nC不变)的条件下, 加入无限小量 dnB 摩尔 的 B 组分所引起系统容量性质的改变.
-- 2 --
但对于多组分均相系统, 仅规定 T 和 p系统的 状态并不能确定.
100kPa、20℃时不同浓度的100g乙醇水溶液体积的实验结果。
2020/10/10
-- 3 --
从实验数据看, 溶液的体积并不等于各组分纯 态体积之和, 且体积改变随溶液浓度不同而异. 虽然 乙醇和水的 m、T、p 固定, 还必须规定系统中每种 物质的量方可确定系统的状态. 因而得出如下结论:
摩尔Helmholz自由能(molar Helmholz free energy)
A* m ,B
A nB
摩尔Gibbs 自由能(molar Gibbs free energy)
G* m ,B
G nB
这些摩尔热力学函数值都是强度性质。
2020/10/10

物化——化学势

物化——化学势
在两相中的化学势相等,即有: B,l B,g
若蒸气为理想气体,则有:
B,g
B,g
T
RT
ln
pB
B,g
T
RT
ln
pB* xB
若xB 1时,
B,l
* B,l
T, p
因此理想液态混合物中物质B的化学势为
B,l
* B,l
T ,
p
RT
ln
xB
3、理想溶液的混合性质(通性)
(1) mixV 0 (2) mix H 0
[A] 0.140 dm3·mol-1 ; [B] 0.072 dm3·mol-1 ; [C] 0.028 dm3·mol-1 ; [D] 0.010 dm3·mol-1 。
吉布斯-杜亥姆公式
系统中各物质的偏摩尔量间是相互联系的
k
nidZi,m 0
i1
k
xidZi,m 0
i1
§4.2 化 学 势
T , p,n,
称为系统中第i种物质的偏摩尔量
以符号Zi
表示
,m
物理意义:
在温度、压力和组成不变的条件下,加入 1mol 第i种物质 对系统广度性质状态函数的 改变值。
1:只有系统的容量性质才有偏摩尔量,系统的强 度性质是没有偏摩尔量。
2:只有在定温定压条件下才称为偏摩尔量,其它 条件下的不是。
p p
RT
ln
p p
(T ,
p)
(T )
RT
ln
p p
标准态化学势, 是温度的函数
上式即为理想气体化学势表达式。
(2)混合理想气体的化学势
i
i
T
RT
ln

大学物理化学第三章化学势

大学物理化学第三章化学势

物质的量分数,又称为摩尔分数,无量纲。
2. 质量摩尔浓度mB
mB def
nB mA
溶质B的物质的量与溶剂的质量之比称为溶质B的质
量摩尔浓度,单位是 mol kg-1 。
上一内容 下一内容 回主目录
返回
2021/2/14
溶液组成的表示法
3. 物质的量浓度cB
cB def
nB V
溶质B的物质的量与溶液体积V的比值称为溶质B的物质的量
化学平衡的条件是:除系统中各组分的温度和压力相等外,还 要求产物的化学势之和等于反应物的化学势之和。
总结:在等T,p W ' 0 的条件下,传质过程朝化学势降低的方向 进行,平衡时化学势相等—化学势判据(所有判据的统一)
上一内容 下一内容 回主目录
返回
2021/2/14
五、化学势与温度和压力的关系:
上一内容 下一内容 回主目录
返回
2021/2/14
三、化学势的物理意义
定温定压下, dG SdT Vdp BdnB BdnB
若不做非体积功:
BdnB < 0 自发过程
BdnB 0 平衡
物质的化学势是决定物质传递方向和限度的强度
因素,这就是化学势的物理意义。(等T , p,W ' 0)
dU TdS pdV
U ( nB
)S ,V ,nC
dnB
令:H f (S, p, nB , nC ...)
dH TdS Vdp
H ( nB )S , p,nC dnB
令:A=f(T,V,nB , nC ...)
dA SdT pdV
A ( nB )T ,V ,nC dnB
上一内容 下一内容 回主目录

第三章化学势

第三章化学势

H2O 1mol H2O (l) + 1mol H2O (l) Vm*水= 18.09 cm3·mol–1 V*= nVm*水= 36.18 cm3
58.35 cm3
C2H5OH
58.35
cm3
=
116.70 cm3
C2H5OH
C2H5OH 1mol C2H5OH(l)+ 1mol C2H5OH(l) Vm*乙醇 = 58.35 cm3·mol-1 V*= nVm*乙醇 = 116.70 cm3
⎛ ∂X ⎛ ∂X ⎞ dX = ⎜ ⎟ dT + ⎜ ⎜ ∂p ⎝ ∂T ⎠ p ,nk ⎝ ⎛ ∂X ⎞ ⎛ ∂X ⎞ ⎞ ⎟ dp + ⎜ dn1 + ⎜ dn2 + ⋅ ⋅ ⋅ ⎟ ⎜ ∂n ⎟ ⎟ ⎜ ∂n ⎟ ⎟ ⎠T , nk ⎝ 1 ⎠T , p , n j ⎝ 2 ⎠T , p , n j
第三章化学势
p/Pa
p = kx,B xB 服从Henry定律
R
p + ρ gh
p
h
W
p+P
稀溶液
纯B
纯溶剂
* pB = pB xB
* μA
μA
半透膜
A
实际曲线 xA xB
B
引言
多组分系统 两种或两种以上的物质(或称为组分)所形 成的系统称为多组分系统。 多组分系统可以是均相的,也可以是多相的。 混合物(mixture) 各组分均可选用相同的方法处理, 有相同的标 准态, 遵守相同的经验定律, 这种系统称为混合物。 混合物有气态、液态和固态之分
′ =0 设有反应 2SO2 + O2 ⎯T , P,W⎯→ 2SO3 ⎯⎯
− 2dn − dn

Chap3-化学势

Chap3-化学势



H nB
S , p,nCB


U nB
S ,V ,nCB
14
例题:证明:B


A nB
T ,V ,nCB
证明: 由定义式:A=G-pV 微分得:
dA=dG-pdV-Vdp
将 dG SdT Vdp BdnB 代入上式

V 0
dV
nA 0
VAdnA

nB 0
VBdnB
9
由于制备过程中保持浓度不变,故偏摩尔体积不变:
V 0
dV
VA
nA 0
dnA
VB
nB 0
dnB
V = VAnA+ VBnB
X = XAnA+ XBnB ----------集合公式 若系统有多个组分,则多组分系统的集合公式为:
化学势判据:
条件: 密闭系统,( )T, p , W '=0时
(dG)T,p=BdnB
<0 正向能够进行 =0 可逆或平衡 >0 逆向能够进行
化学势是决定物质变化方向和限度的强度性质。
17
现在有一系统: I2分别溶解在水和四氯化碳中成 两相(如图)。 从CCl4中取出dn的
I2,放到水相中,则此过程:
当浓度确定后100 cm3 (20%)+100 cm3 (20%)=200 cm3
从上例可看出, 对于乙醇水溶液, 除了指定T, p外, 还须指定溶液的组成,才能确定系统的状态。
4
1. 偏摩尔量的定义
多组分(B、C、D……)系统中任一容量性质 X
X = f(T, p, nB , nC , nD , )

化学势

化学势

nB cB = V
def
V是溶液体积,一般用L为单位
溶 液 组 成 的 表 示 法
B
若溶液的密度为ρ (kg·m-3)
V=
cB =
n A M A + ∑ nB M B ρ
ρnB n A M A + ∑ nB M B
B
15
xB与cB的关系 的关系:
cB =
nB M B + ∑ nB M B
B
ρ nB
1.拉乌尔定律(Raoult's Law) 拉乌尔定律( 拉乌尔定律 ) 一定温度下,在稀溶液中,溶剂的蒸汽压等于纯溶剂的 定温度 在稀溶液中, 蒸汽压乘以溶液中溶剂的摩尔分数: 蒸汽压乘以溶液中溶剂的摩尔分数:
p A = p* x A A
若溶液中只有A、 两个组分 若溶液中只有 、B两个组分
p* A
µ sln A
µ
sln A
=
g µA
= µ A (T ) + RT ln
θ
pA pθ
a→b, 化学势的改变 化学势的改变:
pA − µ (T , p ) = RT ln * pA
dX = ( ∂X ∂X ∂X ∂X ) p ,nk dT + ( ) T ,nk dp + ( ) p ,T ,n j dn1 + ( ) p ,T , n j dn 2 + ⋅ ⋅ ⋅ ∂T ∂p ∂并令 n1 ∂n 2 定温定压下,dT=0, dp=0,并令 定温定压下,
(3.1)
Xi = (
(molality
mB nB = WA

W A 溶 质量

溶液

13
★ xB与mB的关系

第3章_化学势

第3章_化学势

slope T , p ,n j
V
ni
19
三、偏摩尔量的集合公式
一系统如图:其偏摩尔体积 分别为VA ,VB 则 ( )T,p
dV=VAdnA+VBdnB 如果由纯物质A(nA), B(nB)配置该系统: 连续 加入A和B,并保持系统组成不变, 即 dnA : dnB = nA : nB 则 V =∫dV=? nA +nB
A Ai ni
iB
k
k
A Ai n i T , p , n j ( j i )
def
S S i ni
iB
S Si n i
def
def
T , p , n j ( j i )
G Gi ni
iB
3
混合物(mixture) 多组分均匀系统中,各组分均可选用相同的方 法处理,有相同的标准态,遵守相同的经验定律, 这种系统称为混合物。 混合物有气相、液相和固相之分。 溶液(solution) 含有一种以上组分的液体相或固体相称之。溶 液有液态溶液和固态溶液之分,但没有气态溶液。 如果组成溶液的物质有不同的状态,通常将液 态物质称为溶剂,气态或固态物质称为溶质。
V V )T , p ,ncB ( )T , p ,ncB 解: VB ( nB m
以m = 0.25 molkg-1和m = 0.50 molkg-1代入,分 别得到在两种浓度时NaBr的偏摩尔体积 。
1 3 23.189 2.197m 2 2 0.178m 2
4
如果都具有相同状态,则把含量多的一种称为 溶剂,含量少的称为溶质。 溶剂和溶质要用不同方法处理,他们的标准态、 化学势的表示式不同,服从不同的经验定律。 溶质有电解质和非电解质之分,本章主要讨 论非电介质所形成的溶液。 如果在溶液中含溶质很少,这种溶液称为稀溶 液,常用符号“∞”表示。 多种气体混合在一起,因混合非常均匀,称为 气态混合物,而不作为气态溶液处理。

第三章化学势

第三章化学势
G
* m, B
这些摩尔热力学函数值都是强度性质。
3.1.1 偏摩尔量的定义 在多组分体系中,每个热力学函数的变量就不 止两个,还与组成体系各物的物质的量有关。 设X代表V,U,H,S,A,G等容量性质,则 对多组分体系 X f (T , p, n1 , n2 ,, nk ) 偏摩尔量XB的定义为:
狭义定义:
G B ( )T , p ,nj (ji ) ni
保持温度、压力和除B以外的其它组分不变,体系的 Gibbs自由能随 nB 的变化率称为化学势,所以化学势 就是偏摩尔Gibbs自由能。 化学势在判断相变和化学变化的方向和限度方面有重 要作用。
在多组分体系中,热力学函数的值不仅与其特征 变量有关,还与组成体系的各组分的物质的量有关。 例如:吉布斯自由能 G f (T , P, nA , nB , , nk ) 其全微分
指出下列各量哪些是偏摩尔量
X A H ( )T ,P ,n j ; ( )T ,P ,n j ;( )S ,P ,n j ni ni ni
X G V ( )T ,V ,n j ; ( )T ,V ,n j ;( )T ,P ,n j ni ni ni
U H G ( ) S ,V ,n j ; ( )T ,P,n j ;( )T ,P ,n j ni ni ni


2 SO3 )< 2 SO 2 )+ (O 2 )反应正向自发进行 ( (
2 SO3 )> 2 SO 2 )+ (O 2 )反应逆向自发进行 ( (
任意化学反应:


(生成物)= v (反应物)平衡状态 v
i i i i
(生成物) v < (反应物)正向自发进行 v

物理化学3 化学势

物理化学3 化学势

µB = ?
semipermeable membrane of B
pB p* * θ θ B µ B = µ B = µ B + RT ln θ = µ B + RT ln θ p p
µBθ:纯理想气体B(T,pθ)
pB pxB RT ln θ = RT ln θ : 可由混合气体的T,p和组成求出 p p
dH = TdS + Vdp + ∑ µ BdnB
dA = − SdT − pdV + ∑ µ BdnB
dG = − SdT + Vdp + ∑ µ BdnB
条件:没有非体积功的任意过程
(3)化学势决定物质变化的方向和限度 )
dG = − SdT + Vdp + ∑ µ BdnB
在定温定压条件下: dG
对于纯物质,化学势就等于该物质在纯态时的摩尔吉 布斯函数。
µ = GB = Gm
* B
一定温度下,纯组分理想气体摩尔吉布斯函数的微分 可表示为:
dGm = Vm dp
在标准压力pθ和任意压力之间积分上式,可得:
p Gm ( p) − Gm ( p ) = RT ln θ p
B的偏摩尔体积
(1) 物理意义:在T、p、nc …..不变的条件下,往 一巨大溶液系统中加入1 mol物质B所引起系统 体积的变化。 (2) 一般情况下,V B ≠ V m, B 对纯物质
V Β∗ = V m, B
VB → Vm,B
V A ≈ V m, A
当xB很大时,xB↑ ∴ 在稀溶液中
其他常用的偏摩尔量及它们之间的关系: UB, HB, SB, AB, GB
与(1)式比较得

物化——化学势

物化——化学势
i
T,PB*
pi pxi
T 是温度T时第i种物质的标准化学势。
p i T RT ln RT ln xi p
i
* i
也就是其分压等于标准压力 p 的状态
i* T , p
T , p 是第i种物质在指定T ,p时的化学势
(3)实际气体的化学势——逸度的概念
p pA p (1 xA )
1 xA xB
pA p pA p x
A
A B
(2)理想液态混合物的定义
理想液态混合物: 溶液的任一组分在整个浓度 范围内 都严格服从拉乌尔定律的溶液。
k
上式称为多组分均相系统中偏摩尔量的集 合公式。
结论:在等T、p条件下, 多组分均相系统的 广度性质的状态函数等于该系统各组分的偏 摩尔量与物质的量的乘积之和。
1.2 mol A物质和3 mol B物质在等温、等压下,混 合形成理想液态混合物,该系统中A和B的偏摩尔体 积分别为1.79×10-5 m3mol-1,2.15×10-5 m3mol-1 , 则混合物的总体积为 (A) 9.67×10-5 m3 (C) 1.003×10-4 m3 (B) 9.85×10-5 m3 (D) 8.95×10-5 m3

B ( ) B ( )
多组分系统多相平衡的条件:温度,压力,化学势
(3)化学势在化学平衡中的应用
2SO2 O2 2SO3
dG B dnB 2 (SO3 )dn 2 (SO2 )dn (O2 )dn
[2 (SO3 ) 2 (SO2 ) (O2 )]dn
§4.3 气体物质的化学势
(1)纯组分理想气体的化学势
对于纯物质,化学势就等于该物质在纯态 时的摩尔吉布斯自由能。

第三章化学势

第三章化学势

纯态时
混合态
U UB ( )T , p , nc ( c B) nB HB ( H )T , p ,nc ( c B) nB
U H A S
* B * B
* B * B * B
A AB ( )T , p , nc ( c B) nB SB ( S )T , p , nc ( c B) nB
狭义定义:
μi的物理意义:
G )T , p , nc (c B) B ( nB
等T, P,指定组分的体系中,加入微量组分B所引起 的自由能改变与dnB之比,或在大量体系中,增加1
mol B组分时引起的自由能变化值
1. 自由能
G=f (T, p, n1, n2,…nk)
dG = - S dT V dp
推广到任意化学反应:( )T, p , W’=0时
(dG)T, p = i dni (rGm)T,p = ni i <0 =0 >0 反应正向自发 反应达平衡 反应逆向自发
乙醇 H 2O
100g, 101.84mlaq
100g
103.03ml
引入新的概念代替对于纯物质所用的摩尔量的概念— —偏摩尔量
乙醇的质量 百分浓度
V乙醇 /cm3
V水 /cm3
10 20
12.67 25.34
90.36 80.32
30 40 50 60 70 80 90
38.01 50.68 63.35 76.02 88.69 101.36 114.03
当Wf 0时 发生状态变化时所能够做出的最大有效功。
B

B
μB dnB 0 自发不可逆进行
μB dnB 0

B

第三章 化学势

第三章 化学势

第三章 化学势教学目的及要求1、理解和掌握偏摩尔量,化学势的意义及功用。

2、明确化学势的表示方法,活度的意义及求算,理想溶液的特征。

3、掌握稀溶液的依数性。

教学重点1、 化学势的意义。

2、 化学势在相平衡及化学平衡中的功用。

3、 化学势的表示法及活度(逸度)概念。

4、理想溶液的特征。

5、 稀溶液的依数性。

教学难点1、偏摩尔量的物理意义。

2、 化学势的意义及功用。

3-1 偏摩尔量系统的状态函数中V ,U ,H ,S ,A ,G 等为广度性质。

单组分系统若由物质B 组成,物质的量为n B ,物质B 的:B *B,m def n V V ,摩尔体积, B *B ,m d e f n U U ,摩尔热力学能 B *B,m def n H H ,摩尔焓, B*B ,m d e f n S S ,摩尔熵 B *B,m def n G G ,摩尔吉布斯函数, B*B ,m d e f n A A ,摩尔亥姆霍茨函数*B m,V *B m,U *B m,H *B m,S *B m,G *B m,A但在液态混合物或溶液中,单位物质的量的组分B的VB、U B、H B、S B、A B、G B与在同样温度、压力下单独存在时相应的摩尔量通常并不相等。

(包括理想稀溶液中的某些单位物质量的广度量,与其纯态时的广度量也不相等)。

因此,为了表述上述差异,提出偏摩尔量的概念。

组分B的偏mol量XB:在一定温度、压力下,一定组成的混合物(或溶液)中单位物质的量B对系统X的贡献。

一、问题提出(以偏摩尔体积为例)我们知道,对纯物质来讲,系统的广度量性质具有严格的加和性。

例:20℃, 101.325kPa,V*m水=18.09cm3/mol ,5mol水加在一起:V总=5mol×V*m水=90.45cm3,V*m水可理解成每mol水在指定20℃,大气压力下对纯物质单相系统(5mol水)体积作出贡献。

对多组分系统,是否也有加和性呢?实验发现。

第3章 化学势

第3章 化学势


k
k
i =1 =1
X i ni
G =
∑Gn
i =1 i
i
偏摩尔量
化学势
(g)
溶液
(sln)
依数性
非理想溶液
习题课
7
X =
注意: 注意:

k
i =1
X i ni
G =
∑Gn
i =1 i
k
i
1.只有容量性质有偏摩尔量; .只有容量性质有偏摩尔量; 2.必须是等温等压条件; .必须是等温等压条件; 3.偏摩尔量本身是强度性质; 3.偏摩尔量本身是强度性质; 4.偏摩尔量除了与 p有关外,还与浓度有关; 有关外, .偏摩尔量除了与T, 有关外 还与浓度有关; 5. 单组分系统 i =Xm(Vi =Vm , Gi =Gm) 单组分系统X
偏摩尔量
化学势
(g)
溶液
(sln)
依数性
非理想溶液
习题课
20
实际溶液中溶质的蒸气压
H. L. pB = Kh,x xB R. L. pB = pB xB Kh,x > pB* p B
pB
当(xB →1)
当(xB →0) 0
Kh,x<pB*
xB
1
偏摩尔量
化学势
(g)
溶液
(sln)
依数性
非理想溶液
习题课
偏摩尔量
化学势
(g)
溶液
(sln)
依数性
非理想溶液
习题课
6

V
0
dV = V A ∫
nA
0
dn A + VB ∫
nB
0
dn B

物理化学3-化学势

物理化学3-化学势

dG( ) () dnB ] ()dnB [ B B
dG( ) ()dnB B
图 3.2 相间转移
dG dG( ) dG( ) [ B ( ) B ( )]dnB
22
(a)当dG > 0时,
[ B ( ) B ( )] 0
X )T , p , n dp ( nB
C , nD
dnB
(3.1)
5
X X dX ( ) P ,n ,n dT ( )T ,n T P X ( )T , p ,n ,n dnC nC
B C B D
B , nC
X )T , p , n dp ( nB
CBBiblioteka H ( ) S , p ,n nB
CB
A ( )T ,V ,n nB
CB
G ( )T , p , n nB
CB
17
所以,对于多组分均相系统,四个热力学基本公式为:
dU TdS pdV BdnB dH TdS Vdp B dnB
B B
混合前的总体积为: V
'
n甲醇 32
甲醇

n水 18

0.4 32 0.6 18 27 .01cm3 0.7911 0.9971
故混合后体积减少: .01 26.01 1.00cm3 27
12
想一想 ?
关于偏摩尔量的概念下列的说法是否恰当? (1)偏摩尔量是等温等压组成一定时体系某容量性 质随某一组分物质的量的变化率; (2)偏摩尔量是强度性质与体系的量无关; (3)偏摩尔量随体系组分的浓度不同而变化; (4)偏摩尔量是1mol某组分对体系性质的贡献, 不能为负值。

03章_化学势

03章_化学势

ZB
=
Z B ,m
=
( Z n
)T
,P
对多组分体系: Z B ≠ Z B,m
Z ( nB
)T ,P,nC B
≠( Z n
)T ,P
偏摩尔量 摩尔量
3.1偏摩尔量
五.偏摩尔量的集合公式
设一个均相体系由1、2、 、k个组分组成,则体 系任一容量性质Z应是T,p及各组分物质的量的函数,
第三章 化学势
课程内容
3.1 偏摩尔量
3.2 化学势
3.3 气体物质的化学势
3.4 理想溶液中溶质的化学式势 3.5 稀溶液中溶质的化学势
3.6 稀溶液的依数性
3.8 非理想溶液.
本本次次课课内内容容
3.1 偏摩尔量 3.2 化学势
重点与难点:
•偏摩尔量的定义 •偏摩尔量的集合公式
3.1偏摩尔量
一.几个基本概念
1.溶液(solution) 广义地说,两种或两种以上物质彼此以分子或
离子状态均匀混合所形成的体系称为溶液。
溶液以物态可分为气态溶液、固态溶液和液态 溶液。根据溶液中溶质的导电性又可分为电解质溶 液和非电解质溶液。
本章主要讨论液态的非电解质溶液。
3.1偏摩尔量
2.溶剂(solvent)和溶质(solute) 如果组成溶液的物质有不同的状态,通常将液
物质的化学势是决定物质传递方向和限度的强度
因素,这就是化学势的物理意义。(等T , p,W ' 0)
3.2 化学势
四、化学势决定传质过程的方向和限度
1. 传质过程:物质流动,扩散(混合),相变,化学反应
2. 以相变为例:
系统:α+β;等 T, P,W’=0

物理化学- 化学势

物理化学- 化学势

(3)化学势在化学平衡中的应用
以具体的化学反应 2SO2 + O2 = 2SO3 为例,若O2有dn摩尔转化,则 {O2 减少了dn摩尔。因为是微小量变化,系统中各组分的化学势均未变化。}
(dG ) ,p T
dn
B B
B
2(SO3 ) 2(SO2 ) (O2 ) dn dn dn
第三章 化学势
• 化学反应多在定温定压下进行,故吉布斯函数 能够很方便地被用作反应方向和限度的判据。 • 多组分体系(例如:溶液、混合物)往往在常 温常压下使用,因此吉布斯函数也是反映体系 状态性质的一个重要的物理量。 • 综上,吉布斯函数 应用范围广。 • 故,在多组分体系中,任一组分的1mol物质的 吉布斯函数,称为化学势。
X dnC n C T , p ,nB,nD
在定温定压条件下,dT=0,dp=0,并令
X XB n B T , p ,nC B
则,dX = XBdnB ,其中 XB 称为物质B的 “偏摩尔量”
偏摩尔量的物理意义:
• 在定温定压条件下,往无限大的系统中 (可以看作其浓度不变)加入1mol物质B 所引起的系统某个热力学量X的变化。
• 偏摩尔量除与T、P有关以外,还与系统 的浓度有关。在温度和压力不变的条件 下,系统的浓度不同,则各物质的偏摩 尔量也就不同。
注意: 1. 只有广度性质才有偏摩尔量,强度性质 不存在偏摩尔量; 2. 只有在恒温恒压下,系统的广度量随某 一组分的物质的量的变化率才能称为 (该组分的)偏摩尔量。任何其它条件 下的变化率均不称为偏摩尔量。 3. 偏摩尔量和摩尔量一样,也是强度量。 4. 对纯物质,偏摩尔量即为摩尔量。
0 0
nA

第三章 化学势

第三章  化学势
0 0 0 n1 n2 nk
n1 X1 n2 X 2 nk X k
X = nB X B
B=1
k
偏摩尔量的集合公式
4
偏摩尔量的集合公式,说明系统的总的容量性质 等于各组分偏摩尔量的加和。
例如:系统只有两个组分,其物质的量和偏摩尔 体积分别为 n1 ,V1 和 n2 ,V2 ,则系统的总体积为:
*

pg RT ln p
p


这是理想气体化学势的表达式。化学势是T,p的
$ (g) 是温度为T,压力为标准压力时理想气 函数。
体的化学势,这个状态就是气体的标准态。
20
真实气体混合物中任一组分的化学势类似可得:
B g B g RT ln pB p B g RT p V dp
23
例题
解(1)由拉乌尔定律得: * pCHCl3 pCHCl3 xCHCl3 2.654 104 Pa 0.5 1.327 104 Pa 由分压定律得:
yCHCl3 1 yCHCl3 pCHCl3 pCCl4
p pCHCl 3 pCCl 4
* pCCl4 =pCCl4 xCCl4 1.527 104Pa 0.5 7.635 103Pa
2. 享利定律
亨利定律(Henry’s Law) 1803年英国化学家Henry根据实验总结出另一条经 验定律:在一定温度和平衡状态下,气体在液体里 的溶解度(用物质的量分数xB表示)与该气体的平 衡分压pB成正比。用公式表示为:
pB k x ,B xB

xB pB / k x ,B
式中 k x 称为亨利定律常数,其数值与温度、压力、 溶剂和溶质的性质有关。若浓度的表示方法不同, 则其值亦不等,即:

第三章 化学势

第三章 化学势

p p pA p xB
* A * A
nB * m( B) M A p p pA nA M B m( A)
* A
(七) 稀溶液的依数性
3.凝固点降低
Tf kf mB
R (Tf* ) 2 kf MA * fus H m , A
Tf Tf Tf
*
MB

2. 混合理想气体中各组分的化学势
pB B B (T ) RT ln p

(T , p) RT ln xB
* B
3.非理想气体的化学势
f (T ) RT ln p

(T)是指气体在温度为T,压 力为p且具有理想气体行为的 那个状态的化学势。它是一个 假想态化学势。
(T , p) RT ln aB,c cB aB ,c c , B lim c , B 1 c 0 c
B
△ B
B
B
△ * (T , p) □(T , p) B (T , p) ,但B 显然 B 物质的化学势 B 是相同的,并不因为浓度的表示方 法不同而有所不同。
pB km mB
注:(a) 式中p为该气体的分压
pB k x xB
xB kx pB
1
pB kc cB
(b) 溶质在气相和在溶液中的分子状态必须相同 (c) 溶液浓度愈稀,对亨利定律符合得愈好。
(四) 稀溶液中的两个经验定律
在很稀的溶液中,溶质的蒸气压仅与溶质的浓 度有关,且两者成正比。但是kx可能不等于pB*(环境 与纯溶质的环境大不相同)。 kx与溶剂对溶质分子的 引力F大小有关。
(二) 偏摩尔量和化学势
2、偏摩尔数量的加和公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 化学势
§3.1 偏摩尔量
(1)偏摩尔量的定义
多组分系统的任一种容量性质X 可以看作是温度 T 、 压力 p 及各物质的量的函数,X = ƒ(T ,p , n B ,n C ,n D ,…)在定温定压条件下,dT=0,dp=0,则 dX = ΣX B dn BX B 称为物质B 的“偏摩尔量”。

偏摩尔量的物理意义是,在定温定压条件下,往无限大的系统中(可以看作其浓度不变)加入 1mol 物质 B 所引起的系统中某个热力学量 X 的变化,实际上是一偏微商的概念。

§ 3.2 化学势
化学势的定义
由于等温等压条件下吉布斯自由能的变化值课作为过程方向性的判定,也就是摩尔或偏摩尔吉布斯自由能的降低会推动过程(物质迁移或相变或化学变化)自发进行,故又称偏摩尔吉布斯自由能为化学势。

物质的化学势是决定物质传递方向和限度的强度因素,这就是化学势的物理意义。

§3.3 气体物质的化学势
(1)纯组分理想气体的化学势
对纯物质系统来说 G B = G mµ = µ θ+ RTln(p/ p θ)
此式就是理想气体化学势表达式。

理想气体压力为p θ 时的状态称为标准态, µ θ 称为标准态化学势,它仅是温度的函数。

(2) 理想气体混合物的化学势
θθμμp
p ln B RT B B += 其中p B 是理想气体混合物中气体B 的分压,μθ是分压p B = p θ 时的化学势,称为气体B 的标准态化学势,它亦仅是温度T 的函数。

§3.4 理想液态混合物中物质的化学势
(1)拉乌尔定律
一定温度时,溶液中溶剂的蒸气压 p A 与溶剂在溶液中的物质的量分数X A 成正比,其比例系数是纯溶剂在该温度时的蒸气压 pA (上标“*”表示纯物质) ,称为“拉乌尔定律”。

用数学式可表示为p A = p A *X A
此式不仅可适用于两种物质构成的溶液,亦可适用于多种物质构成的溶液。

一般说来,只有在稀溶液中的溶剂方能较准确地遵守拉乌尔定律。

(2)理想液态混合物的定义
在一定的温度和压力下,液态混合物中任意一种物质在任意浓度下均遵守拉乌尔定律的液态混合物称为理想液态混合物。

(3)理想液态混合物中物质的化学势
液态混合物中任意物质 B 的化学势亦为
理想液态混合物中任一组分的标准态均为同样温度 T , 压力为标准压力 p 下的纯液体。

可见,混合物中的任一组分均使用相同的方法规定标准态。

强调只有在稀溶液中的溶剂方能较准确地遵守拉乌尔定律这一适用条件。

理想液态混合物是溶液的理想状态, 必须明确其定义及主要性质: 当几种纯物质混合形成理想液态混合物时, 体积具有加和性和没有热效应。

§3.5 理想稀溶液中物质的化学势
(1)亨利定律
“一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比”。

这就是亨利定律的定义。

用数学式可表示为p B = k x x B
一般说来,只有在稀溶液中的溶质方能比较准确地遵守亨利定律。

亨利定律亦可表示为p B =k b b B或p B =k c c B
当然,k b≠k x≠k c应注意,亨利系数k 不仅与所用的浓度单位有关,还与p B 所用的单位有关。

应当强调指出,亨利定律只能适用于溶质在气相中和溶液相中分子状态相同的情况。

如果溶质分子在溶液中与溶剂形成了化合物,或是发生了聚合或电离,此时亨利定律就不再适用。

(2)理想稀溶液的定义
“一定的温度和压力下,在一定的浓度范围内,溶剂遵守拉乌尔定律、溶质遵守亨利定律的溶液称为理想稀溶液”。

这就是理想稀溶液的定义。

值得注意的是,不同种类的理想稀溶液,其浓度范围是不相同的。

(3)理想稀溶液中物质的化学势
其中,为溶质B标准态的化学势。

溶质B的标准态为温度T ,压力为P且符合亨利定律的假想状态。

§3.6 不挥发性溶质理想稀溶液的依数性
首先介绍不挥发性溶质理想稀溶液的依数性概念,重点是凝固点降低公式及
渗透压的推导过程和适用条件以及依数性的应用。

将一不挥发性溶质溶于某溶剂时,溶液的蒸气压比纯溶剂的蒸气压降低,溶
液的沸点比纯溶剂的沸点升高,溶液的凝固点比纯溶剂的凝固点降低,在溶液和
纯溶剂之间产生渗透压。

对理想稀溶液来说,“蒸气压降低”、“沸点升高”、“凝固点降低”、“渗透压”的数值仅仅与溶液中溶质的质点数有关,而与溶质的特
性无关,故称这些性质为“依数性”。

相关文档
最新文档