变量之间相关关系
两个连续变量之间的相关关系
两个连续变量之间的相关关系两个连续变量之间的相关关系,即指两个随机变量之间的相关性。
它是衡量两个连续变量之间相互依赖程度的重要指标。
在数据分析、统计学以及机器学习等领域,相关性分析是一项基础而重要的任务。
一、计算相关性系数在统计学中,通常通过相关系数来衡量两个连续变量之间的相关关系。
相关系数通常是在-1到1之间取值,其中-1表示完全的负相关关系,即两个变量之间有完全相反的关系;1则表示完全的正相关关系,即两个变量之间具有完全相同的变化趋势;而0则表示两个变量之间没有线性关系。
计算相关系数的方法有多种,其中比较常用的是皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数适用于连续型变量,并且假设变量服从正态分布。
斯皮尔曼等级相关系数则适用于序数型数据以及不满足正态分布的变量。
在这里以皮尔逊相关系数为例进行说明。
二、使用Python计算相关性系数在Python中,统计分析库numpy和pandas都提供了计算相关性系数的函数。
numpy提供的pearsonr函数可以计算两个变量之间的皮尔逊相关系数以及相关性显著性;而pandas提供的corr函数可以计算两个DataFrame对象中所有列的相关系数矩阵。
下面通过一个例子来说明如何使用Python计算相关系数。
```pythonimport numpy as npimport pandas as pd# 构造样本数据x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# 计算皮尔逊相关系数correlation, p_value = np.corrcoef(x, y)[0][1],scipy.stats.pearsonr(x, y)[0]print(f"皮尔逊相关系数: {correlation:.4f} (p-value:{p_value:.4f})")# 构造DataFrame对象df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})# 计算相关系数矩阵corr_matrix = df.corr()print(f"相关系数矩阵: \n{corr_matrix}")```以上代码首先构造了两个变量x和y,分别表示1到5的整数和2到10的偶数。
变量间的相关关系
2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0
变量间的相关关系讲义
变量间的相关关系讲义变量间的相关关系讲义一、基础知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。
3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。
如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。
高中数学知识点:变量之间的相关关系
高中数学知识点:变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。
1.函数关系
函数关系是一种确定性关系,如y=kx+b,变量x取的每一个值,y 都有唯一确定的值和它相对应。
2.相关关系
变量间确定存在关系,但又不具备函数关系所要求的确定性
相关关系分为两种:
正相关和负相关
要点诠释:
对相关关系的理解应当注意以下几点:
(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.
(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.
(3)函数关系与相关关系之间有着密切联系,在一定的条件下
可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.
3.散点图
将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。
通过散点图可初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。
变量间的相关关系教案
变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,能够识别和描述两种变量之间的相关关系。
2. 学生能够运用相关系数来衡量两个变量之间的相关程度。
3. 学生能够运用图表和数学模型来分析变量之间的相关关系。
4. 培养学生的数据分析能力和问题解决能力。
二、教学内容:1. 相关关系的概念和类型。
2. 相关系数的计算和解读。
3. 散点图在分析相关关系中的应用。
4. 线性回归方程的构建和应用。
5. 实际案例分析,运用相关关系解决实际问题。
三、教学重点与难点:重点:相关关系的概念和类型,相关系数的计算和解读,散点图在分析相关关系中的应用。
难点:线性回归方程的构建和应用,实际案例分析。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实际案例来理解和应用相关关系。
2. 使用多媒体教学资源,如图表和数学软件,辅助学生直观地理解相关关系。
3. 组织小组讨论和合作活动,培养学生的团队合作能力和问题解决能力。
4. 提供充足的练习机会,让学生通过实践来巩固所学知识。
五、教学过程:1. 引入:通过一个简单的实际案例,引导学生思考两种变量之间的关系。
2. 讲解相关关系的概念和类型,解释相关系数的意义。
3. 演示如何通过散点图来分析两种变量之间的相关关系。
4. 讲解线性回归方程的构建过程,并演示如何应用线性回归方程来预测未知数据。
5. 提供实际案例分析,让学生运用相关关系来解决实际问题。
7. 布置作业,让学生通过练习来巩固所学知识。
六、教学评估与反馈:1. 通过课堂练习和作业,评估学生对相关关系概念的理解程度。
2. 通过小组讨论和案例分析,评估学生在实际问题中运用相关关系的能力。
3. 收集学生的疑问和困难,及时给予反馈和解答。
4. 鼓励学生提出自己的观点和思考,促进学生的主动学习。
七、拓展与深化:1. 介绍相关关系在社会科学、自然科学和工程科学中的应用。
2. 探讨非线性相关关系和多变量相关关系的研究方法。
两个变量之间的相关关系
i
12 3
4
5
xi
24 6
8
10
yi
64 134 205 285 360
xiyi
128 536 1 230 2 280 3 600
x =6, y =209.6,
5
5
x2i =220,xiyi=7 774
i=1
i=1
∴b^ =7 7742-205-×56××62209.6=1 44086=37.15. ∴a^=209.6-37.15×6=-13.3. 于是所求的回归直线的方程为y^ =37.15x-13.3.
3.假设关于某设备的使用年限 x 和所支出的维修费用 y(万 元)有如下的统计资料:
使用年限 x 2 3 4 5 6 维修费用 y 2.2 3.8 5.5 6.5 7.0 若由资料知 y 对 x 呈线性相关关系.试求: (1)线性回归方程y^ =bx+a 的回归系数 a,b; (2)估计使用年限为 10 年时,维修费用是多少?
≈1.27,
10
xi2-10 x 2
i=1
a^= y -b^ x ≈-30.95, 即所求的回归直线方程为y^ =1.27x-30.95. (3)当 x=160 时,y^ =1.27×160-30.95≈172,即大约冶炼
172 min.
方法点评:回归直线可以模拟两个变量之间的相关关系.我 们可以利用回归直线方程进行运算,如求函数值、研究增减性 等,通过这些运算结果进行合理的预测.这也正是回归分析的 意义所在.
典例剖析 题型一 相关关系 【例 1】 下列关系中,带有随机性相关关系的是_②__④_____. ①正方形的边长与面积之间的关系; ②水稻产量与施肥量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系. 思路点拨:根据线性相关的概念逐个判断.
2.3 变量间的相关关系
配人教版 数学 必修3
【示例】PM2.5是指空气中直径小于或等于2.5微米的颗粒 物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否 相关,现采集到某城市周一至周五某一时间段车流量与PM2.5 的数据如表:
时间
周一 周二 周三 周四 周五
车流量x/万辆
50 51 54 57 58
PM2.5的浓度y/ (微克·立方米-1) 69 70 74 78 79
配人教版 数学 必修3
2.3 变量间的相关关系
配人教版 数学 必修3
目标定位
重点难点
1.理解两个变量的相 重点:通过收集现实问题中两个有关联 关关系的概念. 变 量 的 数 据 直 观 认 识 变 量 间 的 相 关 关
2.会作散点图,并 系;利用散点图直观认识两个变量之间 利用散点图判断两 的线性关系;根据给出的线性回归方程
配人教版 数学 必修3
【分析】(1)利用描点法可得数据的散点图; (2)根据公式求出b^,a^,可写出线性回归方程; (3)根据(2)的线性回归方程,将 x=25 代入,求出 PM2.5 的浓度.
配人教版 数学 必修3 【解析】(1)散点图如图所示.
配人教版 数学 必修3
(2) x =50+51+554+57+58=54, -y =69+70+754+78+79=74,
A.①②
B.②③
C.③④
D.①④
配人教版 数学 必修3
【答案】D 【解析】y^=b^x+a^表示y^与 x 之间的函数关系,而不是 y 与 x 之间的函数关系.但它所反映的关系最接近 y 与 x 之间的真 实关系.故选 D.
配人教版 数学 必修3
4.如果在一次试验中,测得(x,y)的四组数值分别是 x 16 17 18 19 y 50 34 41 31
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关
2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关考点 学习目标核心素养 相关关系的概念理解两个变量的相关关系的概念 数学抽象 散点图 会作散点图,并利用散点图判断两个变量之间是否具有相关关系逻辑推理、数学建模回归直线方程会求回归直线方程数学运算问题导学(1)相关关系分为哪两种? (2)什么叫散点图?(3)什么叫回归直线?求回归直线的方法及步骤是什么?1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域; ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)最小二乘法求回归直线方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中b ^是回归方程的斜率,a ^是回归方程在y 轴上的截距. ■名师点拨 (1)散点图的作用散点图形象地反映了各对数据的密切程度.根据散点图中点的分布趋势分析两个变量之间的关系,可直观地判断并得出结论.(2)回归直线的性质由a ^=y --b ^x -可知回归直线一定经过点(x -,y -),因此点(x -,y -)通常称为样本点的中心,其中,x -,y -分别是变量x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数.(3)线性相关关系强弱的定性分析线性相关关系的强弱体现在散点图中就是样本点越集中在某条直线附近,两变量的线性相关关系越强;样本点在某条直线附近越分散,两变量的线性相关关系越弱.判断正误(对的打“√”,错的打“×”) (1)线性回归方程必经过点(x -,y -).( )(2)对于方程y ^=b ^x +a ^,x 增加一个单位时,y 平均增加b ^个单位.( ) (3)样本数据中x =0时,可能有y =a ^.( ) (4)样本数据中x =0时,一定有y =a ^.( )解析:根据回归直线方程的意义知,(1)(2)都正确,而(3)(4)中,样本数据x =0时,y 的值可能为a ^,也可能不是a ^,故(3)正确.答案:(1)√ (2)√ (3)√ (4)×下列各图中所示的两个变量具有相关关系的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3)解析:选D.(1)为函数关系;(2)(3)为相关关系;(4)中,因为点分布得比较分散,两者之间无相关关系.5位学生的数学成绩和物理成绩如下表: 学科 A B C D E 数学 80 75 70 65 60 物理7066686462A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关解析:选C.数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关. 设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少____________个单位.,解析:因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.答案:1.5相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【解】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[易错警示]在解答本题过程中,易出现如下错误:虽然五点中有四点大致分布在一条直线附近,但第二个点离这条直线太远,所以两个变量不相关,导致错误的原因是没有看主流点,而过分关注了不影响大局的个别点.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图所示.由这个散点图可以判断()A.变量x与y正相关B.变量x与y不相关C.变量x与y负相关D.变量x与y是函数关系解析:选C.由这个散点图可以判断,变量x与y负相关,故选C.线性回归方程的求法下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5 (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^. 【解】(1)散点图如图.(2)x-=3+4+5+64=4.5,y-=2.5+3+4+4.54=3.5,∑i=14x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑i=14x2i=32+42+52+62=86,所以b ^=∑4i =1x i y i -4x -y-∑4i =1x 2i -4x-2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y --b ^x -=3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.如果把例题中的y 的值2.5及4.5分别改为2和5,如何求回归直线方程? 解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线, 斜率k =3-24-3=1,所以直线方程为y -2=x -3, 即回归直线方程为y ^=x -1.求线性回归方程的步骤(1)计算平均数x -,y -.(5)用a ^=y --b ^x -,求a ^. (6)写出回归方程.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:则y 关于x 的回归直线方程是( )A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析:选A.利用题目中的已知条件可以求出x -=6.5,y -=28.5,然后利用回归直线方程的计算公式得b ^=∑8i =1x i y i -8x -y-∑8i =1x 2i -8x-2=1 849-8×6.5×28.5478-8×6.52≈2.62, a ^=y --b ^x -=11.47,因此回归直线方程为y ^=11.47+2.62x .线性回归方程的应用(2020·黑龙江省大庆铁人中学期末考试)某班主任为了对本班学生的月考成绩进行分析,从全班40名同学中随机抽取一个容量为6的样本进行分析.随机抽取6位同学的数学、物理分数对应如表:学生编号 1 2 3 4 5 6 数学分数x 60 70 80 85 90 95 物理分数y728088908595(1) (2)如果具有线性相关性,求出线性回归方程(系数精确到0.1);如果不具有线性相关性,请说明理由;(3)如果班里的某位同学数学成绩为50,请预测这位同学的物理成绩.【解】 (1)画出散点图:通过图象可以看出物理成绩y 与数学成绩x 之间具有线性相关性. (2)x -=16×(60+70+80+85+90+95)=80,y -=16×(72+80+88+90+85+95)=85,故b ^=0.6,a ^=37.故回归方程是y =0.6x +37. (3)当x =50时,解得y =67.故数学成绩为50,预测这位同学的物理成绩是67.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点:①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.(2020·江西省临川第一中学期末考试)我国西部某贫困地区2011年至2017年农村居民家庭人均年收入y (千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号x 1 2 3 4 5 6 7 人均年收入y2.93.33.64.44.85.25.9(2)利用(1)中的回归方程,预测该地区2019年农村居民家庭人均年收入将达到多少千元.解:(1)依题意x -=4,y -=4.3,从而b ^=0.5,a ^=y --b ^x -=4.3-0.5×4=2.3, 故所求线性回归方程为y ^=0.5x +2.3. (2)令x =9,得y ^=0.5×9+2.3=6.8.预测该地区在2019年农村居民家庭人均年收入为6.8千元.1.我们常说“吸烟有害健康”,吸烟与健康之间的关系是( ) A .正相关 B .负相关 C .无相关D .不确定解析:选B.烟吸得越多,则健康程度越差.2.关于回归直线方程y ^=a ^+b ^x 的叙述正确的是( ) ①反映y ^与x 之间的函数关系; ②反映y 与x 之间的函数关系; ③表示y ^与x 之间的不确定关系;④表示最接近y 与x 之间真实关系的一条直线. A .①② B .②③ C .③④ D .①④解析:选D.y ^=a ^+b ^x 表示y ^与x 之间的函数关系,而不是y 与x 之间的函数关系,它反映的关系最接近y 与x 之间的真实关系.故①④正确.3.在最小二乘法中,用来刻画各个样本点到直线y =a ^+b ^x 的“距离”的量是( ) A .|y i -y -| B .(y i -y -)2 C .|y i -(a ^+b ^x i )|D .[y i -(a ^+b ^x i )]2解析:选D.最小二乘法的定义明确给出,用[y i -(a ^+b ^x i )]2来刻画各个样本点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和表示所有样本点与这条直线的接近程度.4.已知工厂加工零件的个数x 与花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工200个零件大约需要________小时.解析:将200代入线性回归方程y ^=0.01x +0.5, 得y ^=2.5. 答案:2.5[A 基础达标]1.如图所示是具有相关关系的两个变量的一组数据的散点图,去掉哪个点后,两个变量的相关关系更明显( )A .DB .EC .FD .A解析:选C.A 、B 、C 、D 、E 五点分布在一条直线附近且贴近该直线,而F 点离得远,故去掉点F .2.(2020·江西省上饶市期末统考)某车间为了规定工时定额,需要确定加工零件所花费用的时间,为此进行了5次实验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程为y ^=7.8x +40.2.零件数x (个) 1 23 4 5 加工时间y (min)50677179A .55B .55.8C .59D .51解析:选 D.设表中模糊的数据为m .由表中的数据可得x -=1+2+3+4+55=3,y -=50+m +67+71+795=267+m5,又由回归直线的方程为y ^=7.8x +40.2,所以267+m 5=7.8×3+40.2,解得m =51.即表中模糊的数据为51.故选D.3.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关解析:选C.因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:选C.由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,从而b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x -·y-∑6i =1x 2i -6x-2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′. 5.(2020·广西钦州市期末考试)若回归直线y ^=b ^x +a ^的斜率估值为1.23,样本中心点为(4,5),当x =2时,估计y 的值为____________.解析:因为回归直线y ^=b ^x +a ^的斜率估值为1.23,所以b ^=1.23,y ^=1.23x +a ^. 因为样本中心点为(4,5),所以5=1.23×4+a ^,a ^=0.08,y ^=1.23x +0.08, 代入x =2,y =1.23×2+0.08=2.54. 答案:2.546.(2020·湖北省宜昌市葛洲坝中学期末考试)某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与利润额y (单位:百万元)进行了初步统计,得到下列表格中的数据:x 2 4 5 6 8 y304060p70经计算,月微信推广费用x 与月利润额y 满足线性回归方程y ^=6.5x +17.5,则p 的值为____________.解析:由题中数据可得x -=2+4+5+6+85=5,y -=30+40+60+p +705=200+p5.由线性回归方程y ^=6.5x +17.5经过样本中心(x -,y -), 有200+p 5=6.5×5+17.5,解得p =50.答案:507.对某台机器购置后的运营年限x (x =1,2,3,…)与当年利润y 的统计分析知具备线性相关关系,线性回归方程为y ^=10.47-1.3x ,估计该台机器使用________年最合算.解析:只要预计利润不为负数,使用该机器就算合算,即y ^≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算.答案:88.(2020·湖南省张家界市期末联考)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y86542(1)求x -,y -;(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)若年产量为4.5吨,试预测该农产品的价格.解:(1)计算可得x -=1+2+3+4+55=3,y -=8+6+5+4+25=5.(2)b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5x-2=61-5×3×555-5×32=-1.4, 因为线性回归直线过(x -,y -),则a ^=y --b ^x -=5-(-1.4×3)=9.2, 故y 关于x 的线性回归方程是y ^=-1.4x +9.2. (3)当x =4.5时,y ^=-1.4×4.5+9.2=2.9(千元/吨).9.(2020·河北省石家庄市期末考试)在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (吨)之间的一组数据为(1)根据上表数据,求出回归直线方程y =b x +a ;(2)试根据(1)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n (x )-2,a ^=y --b ^x -)解:(1)因为x -=15×9=1.8,y -=15×37=7.4,∑i =15 x i y i =62,∑i =15x 2i =16.6,所以 b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5(x )-2=62-5×1.8×7.416.6-5×1.82=-11.5, a ^=y --b ^x -=7.4+11.5×1.8=28.1, 故y 对x 的线性回归方程为y ^=28.1-11.5x . (2)y =28.1-11.5×1.9=6.25(吨).所以如果价格为1.9万元,则需求量大约是6.25吨.[B 能力提升]10.对两个变量的四组数据进行统计,获得以下散点图,关于两个变量相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义以及散点图的含义,可知r 2<r 4<0<r 3<r 1.11.期中考试后,某校高三(9)班班主任对全班65名学生的成绩(单位:分)进行分析,得到数学成绩y 关于总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若2名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:设两名同学的总成绩分别为x 1,x 2,则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20.答案:2012.(2020·湖北省宜昌县域高中协同发展共同体期末考试)为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号 1 2 3 4 5 温差x (℃) 10 11 13 12 8 发芽数y (颗)2325302616组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a ^=y --b ^x -)解:(1)由题意:x -=11+13+123=12,y -=25+30+263=27,b ^=∑3i =1 (x i -x -)(y i -y -)∑3i =1 (x i -x -)2=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)+(x 3-x -)(y 3-y -)(x 1-x -)2+(x 2-x -)2+(x 3-x -)2=(11-12)×(25-27)+(13-12)×(30-27)+(12-12)×(26-27)(11-12)2+(13-12)2+(12-12)2=52, a ^=y --b ^x -=27-52×12=-3,故回归直线方程为y ^=52x -3.(2)当x =10时,y =52×10-3=22,|22-23|=1<2,当x =8时,y =52×8-3=17,|17-16|=1<2,所以(1)中所得的回归直线方程是可靠的.13.(选做题)(2019·黑龙江省牡丹江市第一高级中学期末考试)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=xi,w-=18i=18w i.(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为解:(1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于d=108.81.6=68,c^=y--d^w-=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)(ⅰ)由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.(ⅱ)根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。
变量之间的相关关系
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
变量之间的相关关系
一、知识概述1、相关关系的概念当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系.相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.2、回归分析对具有相关关系的两个变量进行统计分析的方法叫做回归分析.通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性.3、散点图表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度.粗略地看,散点分布具有一定的规律.4、正相关、负相关从散点图可以看到点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中的点的散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.5、回归直线设所求的直线方程为其中a、b是待定系数.则.于是得到各个偏差.显见,偏差的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和.表示n个点与相应直线在整体上的接近程度.上述式子展开后,是一个关于a、b的二次多项式,应用配方法,可求出使Q为最小值时的a、b的值.即相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析.特别指出:1、对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2、求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3、求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4、回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.二、例题讲解例1、对变量x, y 有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.图1 图2A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关解析:由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.例2、已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为()A.=1.23x+4 B.=1.23x+5C.=1.23x+0.08 D.=0.08x+1.23解析:回归直线必过点(4,5),故其方程为-5=1.23(x-4),即=1.23x+0.08.答案:C例3、已知10只狗的血球体积及红血球的测量值如下x(血球体积,mm),y(血红球数,百万).(1)画出上表的散点图;(2)求出回归直线并且画出图形.解:(1)见视频(2)..设回归直线为=bx+a,计算得所以所求回归直线的方程为.例4、已知x、y之间的一组数据如下表:对于表中数据,甲、乙两同学给出的拟合直线分别为与,试利用最小二乘法判断哪条直线拟合程度更好?解:用作为拟合直线时,所得y值与y的实际值的差的平方和为用作为拟合直线时,所得y值与y的实际值的差的平方和为∵Q2<Q1,故用直线拟合程度更好.。
变量间的相关关系
1221ni iiniix y nxybx nxa y bx==⎧-⎪⎪=⎨-⎪⎪=-⎩∑∑其中1111,n ni ii ix x y yn n====∑∑以上方法称为最小二乘法。
典例精讲题型1相关关系的判断例1.(★)观察两相关变量得如下数据:x -1 -2 -3 -4 -5 5 4 3 2 1y -9 -7 -5 -3 -1 1 5 3 7 9画出散点图,判断它们是否有线性相关关系.【思路点拨】建系→描点→观察→结论.【解】由数据可得相应的散点图(如图所示):由散点图可知,两者之间不具有线性相关关系.点评:以x为自变量,考查因变量y的变化趋势,从而作出判断变式训练:(★★)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方y Λ=bx +a ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【思路点拨】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画出散点图; (2)应用计算公式求得线性相关系数b 、a 的值;(3)实际上就是求当x =100时,对应的yΛ的值. 【解】(1)散点图如图所示:(2)由题意,得41i ii x y=∑i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+6=4.54 y =2.5+3+4+4.5=3.54421ii x=∑=32+42+52+62=86.266.5-4 4.5 3.566.5-63===0.786-4 4.586-81b ⨯⨯⨯=- =3.5-0.7 4.5=0.35a y b x ⨯故线性回归方程为yΛ=0.7x +0.35.(3)根据回归方程预测现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35(吨), 故生产能耗减少了90-70.35=19.65(吨). 点评: 求线性回归直线方程的步骤如下:课堂检测(★★) 10min1 . 下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值 B.正方形边长和面积C.正n边形的边数和它的内角和 D.人的年龄和身高2.某市纺织工人的月工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,则下列说法中正确的是()A.劳动生产率为1000元时,月工资为130元B.劳动生产率提高1000元时,月工资提高约为130元C.劳动生产率提高1000元时,月工资提高约为80元D.月工资为210元时,劳动生产率为2000元3.设有一个回归方程为y=2-1.5x,则变量x每增加一个单位时,y平均()A.增加1.5单位B.增加2单位C.减少1.5单位D.减少2单位4.正常情况下,年龄在18岁到38岁的人们,体重y(kg)依身高x(cm)的回归方程为y=0.72x-58.5。
变量间的相关关系
变量间的相关关系1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。
这就是我们这节课要共同探讨的内容————变量间的相关关系。
例1、根据样本数据作出散点图,直观感知变量之间的相关关系。
在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。
下面我们就用这些方法来研究相关关系。
看这样一组数据:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系?结论:随着年龄增长,脂肪含量在增加。
用x轴表示年龄,y轴表示脂肪。
一组样本数据就对应着一个点。
2、散点图这个图跟我们所学过的函数图象有区别,它叫作散点图。
3、判断正、负相关、线性相关:请观察这4幅图,看有什么特点?图1呈上升趋势,图2呈下降趋势。
这就像函数中的增函数和减函数。
即一个变量从小到大,另一个变量也从小到大,或从大到小。
对于图1中的两个变量的相关关系,我们称它为正相关。
图2中的两个变量的相关关系,称为负相关。
后面两个图很乱,前面两个图中点的分布呈条状。
从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。
我们称图1、2中的两个变量具有线性相关关系。
这条直线叫做回归直线。
图3、4中的两个变量是非线性相关关系1、找回归直线下面我们再来看一下年龄与脂肪的散点图,图12图图3图4从整体上看,它们是线性相关的。
如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。
这条直线可以作为两个变量具有线性相关关系的代表。
能否画出这条直线?多种方法展示总结:所有的点离这条直线最近的方案最好。
从整体上看,各点与此直线的距离和最小。
变量之间的相关关系
思考6:利用计算器或计算机可求得年龄和
人体脂肪含量的样本数据的回归方程为
y 0.577x 0.448,由此我们可以根据
一个人个年龄预测其体内脂肪含量的百分 比的回归值.若某人37岁,则其体内脂肪含 量的百分比约为多少?
脂肪含量
20.9%
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
问题提出
t
p
1 2
5730
1. 两个变量之间的相关关系的含义如 何?成正相关和负相关的两个相关变量 的散点图分别有什么特点?
自变量取值一定时,因变量的取值带有 一定随机性的两个变量之间的关系.
正相关的散点图中的点散布在从左下角 到右上角的区域,负相关的散点图中的 点散布在从左上角到右下角的区域
2.3 变量间的相关关系
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关
问题提出
t
p
1 2
5730
1.我们学过函数,知道两个变量之间的 关系有函数关系,有时可以用明确关系 是表达出来,但有些变量间的关系不是 函数关系,我们称为相关关系,含义如 何?成正相关和负相关的两个相关变量 的散点图分别有什么特点?
思考3:对一组具有线性相关关系的样
本数据:(x1,y1),(x2,y2),…,(xn,
yn),设其回归方程为
y b可x 以a
用哪些数量关系来刻画各样本点与回
归直线的接近程度?
(xi,yi)
(x1, y1)
(xn,yn)
可以用 | yi
(x2,y2)
yi | 或 (yi
yi )2 ,
其中 yi bxi a .
变量之间的相互关系
变量之间的相互关系一、引言在研究数据科学、统计学、经济学以及其他众多领域时,变量间的相互关系是不可或缺的议题。
这种关系描述了不同变量如何互相影响,从而帮助我们理解和预测现象。
本文将深入探讨变量间相互关系的概念、类型和测量方法。
二、变量间的关系类型1.因果关系:如果一个变量(原因)的变化导致了另一个变量(结果)的变化,则存在因果关系。
这种关系是有方向的,原因必定在前,结果只能在后。
2.相关关系:当两个或多个变量同时发生变化,但不表示因果方向时,我们称之为相关关系。
相关关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少)。
3.函数关系:当一个变量(自变量)完全确定另一个变量(因变量)的值时,我们称之为函数关系。
这种情况下,因变量的变化完全依赖于自变量的变化。
三、测量变量间关系强度的方法1.皮尔逊相关系数:衡量两个连续变量的线性相关程度,取值范围在-1到1之间。
接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。
2.斯皮尔曼秩相关系数:与皮尔逊相关系数类似,但适用于非参数数据。
它衡量的是两个连续变量之间的秩次相关性。
3.偏相关系数:当存在多个变量影响因变量时,偏相关系数可以用来衡量特定自变量与因变量之间的线性关系。
四、应用场景理解并测量变量间的相互关系在众多实际场景中都有应用价值。
例如,在市场营销中,通过分析消费者行为、购买历史等变量与购买决策之间的相互关系,可以更有效地制定营销策略。
在医学研究中,了解疾病症状、患者生理指标等变量之间的关系,有助于疾病的诊断和治疗。
五、结论理解并测量变量间的相互关系是数据科学和统计学中的重要概念。
通过明确关系的类型和测量方法,我们可以更好地理解和预测现象,从而在各个领域中做出更有效的决策。
随着技术的发展和数据的丰富,变量间相互关系的研究将继续深化和拓展,为我们提供更多的洞见和可能。
变量之间相关关系两个变量线性相关
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3.如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的 平均值作为回归直线的斜率和截距而得回归方程. 如图:
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
(1)画出散点图; (2)从散点图中发现气温与热饮杯数之间关系的一般规律; (3)求回归方程; (4)如果某天的气温是2℃,预测这天卖出的热饮杯数.
摄 ( ℃ 氏 ) 温 度 - 5 0 4 7 1 2 1 5 1 92 32 7 3 1 3 6 热 饮 杯 数 1 5 61 5 01 3 2 1 2 8 1 3 0 1 1 61 0 48 99 3 7 6 5 4
对一组具有线性相关关系的样本数据:(x1,y1),(x2, y2),…,(xn,yn),如何求回归方程?
yˆ bˆx aˆ
yˆ bˆx aˆ
n
( xi x )( y i y )
bˆ i 1
n
(xi x )2
i 1
n
xiyi n x y
i 1 n
,
x
2 i
nx 2
i 1
aˆ y bˆ x
这些点散布在从左下角到右上角的区域,对于两个变
量的这种相关关系,我们将它称为正相关.
如果两个变量成负相关,从整体上看这两个变量的变化 趋势如何?
一个变量随另一个变量的变大而变小,散点图中的点 散布在从左上角到右下角的区域.
例1 在下列两个变量的关系中,哪些是相关关系? ①正方形边长与面积之间的关系; ②作文水平与课外阅读量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系. ②③④
变量之间的相关关系
变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?
变量间的相关关系教案
变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。
通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。
1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。
在本课程中,我们将关注两种类型的变量:定量变量和分类变量。
1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。
相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。
第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。
它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。
2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。
2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。
2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。
第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。
它适用于非正态分布的数据或有序分类变量。
3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。
3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。
3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。
第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。
两个变量的相关关系
.
知识回顾
1 相关关系
①变量之间除了函数关系之外,还有相关关系,即从总的变 化趋势来看变量之间存在着某种关系,但这种关系又不能用 函数精确表达出来.
②两个变量之间产生相关关系的原因是许多不确定的随机 因素的影响.
③需要通过样本来判断变量之间是否存在相关关系.
2 正关系、负相关、散点图
. 方案2、在图中选两点作直线,使直线两侧
的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再求出这些直线的 斜率和截距的平均值作为回归直线的斜率和截距。而得回归方 程。 如图:
从上表发现,对某个人不一定有此规律,但对很多个体放在 一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
如图:
脂肪含量 40 35
30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
x,
y,
x2, i
xi
y i
;
i 1
i 1
第三步:代入公式计算b,a的值;
第四步:写出直线方程。
练习:书P92A组1、3
作业:P94 A组 2
我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线叫回归方程。
变量间的相关关系与统计案例
变量间的相关关系与统计案例在统计学中,变量之间的相关关系是一个非常重要的概念。
通过分析变量之间的相关关系,我们可以更好地理解数据之间的联系,为进一步的分析和预测提供基础。
本文将通过一些统计案例,介绍变量间相关关系的概念,并通过实际数据进行分析,帮助读者更好地理解相关关系的含义及其在实际应用中的重要性。
首先,我们需要了解什么是变量间的相关关系。
在统计学中,变量之间的相关关系是指它们之间存在的某种关联或者依存关系。
这种关系可以是正向的,也可以是负向的。
正向的相关关系意味着两个变量的数值同时增加或减少,负向的相关关系则表示一个变量的数值增加时,另一个变量的数值减少。
通过相关系数的计算,我们可以量化这种相关关系的强度和方向。
接下来,我们通过一个实际的统计案例来说明变量间相关关系的应用。
假设我们有一组数据,包括了某个城市每月的平均气温和冰淇淋销量。
我们想要分析气温和冰淇淋销量之间是否存在相关关系。
首先,我们可以通过散点图来观察两个变量之间的关系。
如果散点图呈现出一种明显的趋势,那么说明两个变量之间可能存在相关关系。
接着,我们可以通过计算相关系数来量化这种关系的强度。
最常用的相关系数是皮尔逊相关系数,它的取值范围在-1到1之间,绝对值越接近1,表示两个变量之间的相关关系越强。
在这个案例中,我们发现气温和冰淇淋销量之间存在着正向的相关关系。
也就是说,随着气温的升高,冰淇淋销量也会增加。
这个发现对于冰淇淋生产商来说是非常有用的信息,他们可以根据气温的变化来调整生产和销售策略,以更好地满足消费者的需求。
除了正向的相关关系,我们还可以遇到负向的相关关系。
比如,一个城市的降雨量和游乐园的游客数量之间可能存在负向的相关关系。
这意味着降雨量增加时,游客数量会减少。
这对于游乐园的经营者来说也是非常重要的信息,他们可以根据天气预报来调整营销策略,以减少降雨天对游客数量的影响。
通过以上案例,我们可以看到,变量间的相关关系在实际应用中具有非常重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年龄
23
27
39
41
45
49
50
பைடு நூலகம்
脂肪
9.5
17.8
21.2
25.9
27.5
26.3
28.2
年龄 脂肪
53 29.6
54 30.2
56 31.4
57 30.8
58 33.5
60 35.2
61 34.6
思考:对某一个人来说,他的体内脂肪含量不 一定随年龄增长而增加或减少,但是如果把很 多个体放在一起,就可能表现出一定的规律性. 观察上表中的数据,大体上看,随着年龄的增 加,人体脂肪含量怎样变化?
那么,该如何判断两个变量是否 具有相关关系呢?
如何分析变量之间是否具有相关的关系
1.定性分析 分析变量之间是否具有相关的关系,我们可以借助 日常生活和工作经验对一些常规问题来进行定性分析, 如儿童的身高随着年龄的增长而增长,但它们之间又 不存在一种确定的函数关系,因此它们之间是一种非 确定性的随机关系,即相关关系。但仅凭这种定性分 析不够;
思考:如果两个变量成负相关,从整体上看这两个变量 的变化趋势如何?其散点图有什么特点? 一个变量随另一个变量的变大而变小,散点图中的点 散布在从左上角到右下角的区域.这就像函数中的增 函数和减函数。即一个变量从小到大,另一个变量也 从小到大,或从大到小。 思考:你能列举一些生活中的变量成正相关或负相 关的实例吗? 年龄与身高是正相关,网速与下载文件所需时间是负 相关。
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
思考:上图叫做散点图,你能描述一下散点图的含义 吗? 在平面直角坐标系中,表示具有相关关系的两个变量 的一组数据图形,称为散点图.
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
思考:观察散点图的大致趋势,人的年龄与人体的脂 肪含量具有什么相关关系?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
思考:在上面的散点图中,这些点散布在从左下角到 右上角的区域,对于两个变量的这种相关关系,我们 将它称为正相关.一般地,如果两个变量成正相关, 那么这两个变量的变化趋势如何?
1. 商业广告费X与销售收入Y之间 2. 施肥量X与 粮食产量Y之间 3. 年龄X与人体脂肪含量Y之间 4. 高原海拔高度X与含氧量Y的之间 5. 正方形的边长X与面积Y之间
•
实例
变量X和Y
商业广告费 X与销售收 入Y
施肥量X与 粮食产量Y 年龄X与人 体脂肪含量 Y 高原海拔高 度X与含氧 量Y
关 联 性
不确定性
1
一般广告费投入较 投入广告费一样而销 多,销售收入相应 售收入也未必相同 就会多些。
2
3
4
•
实例
变量X和Y
商业广告费 X与销售收 入Y
施肥量X与 粮食产量Y 年龄X与人 体脂肪含量 Y 高原海拔高 度X与含氧 量Y
关 联 性
不确定性
1
一般广告费投入较 投入广告费一样而销 多,销售收入相应 售收入也未必相同 就会多些。
对相关关系的理解
相关关系—当自变量取值一定,因变量的 取值带有一定的随机性( 非确定性关系) 函数关系---函数关系指的是自变量和因 变量之间的关系是相互唯一确定的.
注:相关关系和函数关系的异同点 相同点:两者均是指两个变量间的关系 不同点:函数关系是一种确定关系, 相关关系是一种非确定的关系。
思考:
一般施肥量多的粮 食产量相应会多些 施肥量一样粮食的产 量也未必相同
2
3
一般随着年龄的增 年龄一样而人体脂肪 长人体脂肪含量相 含量也未必相同 应增多 随着海拔的升高, 同一海拔高度的两个 空气的含氧量随之 地方空气中含氧量也 减少. 未必一样
4
1、两个变量之间的相关关系
两个变量间存在着某种关系,带 有不确定性(随机性),不能用函数 关系精确地表达出来,我们说这两个 变量具有相关关系.
西方流传一首民谣: 丢失一个钉子,坏了一只蹄铁; 坏了一只蹄铁,折了一匹战马; 折了一匹战马,伤了一位骑士; 伤了一位骑士,输了一场战斗; 输了一场战斗,亡了一个帝国。
马蹄铁上的一个钉子是否丢失与一个帝国 存与亡关系有多大呢?
哲学原理:世界是一个普遍联系的整 体,任何事物都与其它事物相联系。
数学地理解世界
【问题】在一次对人体脂肪含量和年龄关系的研究中, 研究人员获得了一组样本数据:
年龄 脂肪
年龄 脂肪
23 9.5
53 29.6
27 17.8
54 30.2
39 21.2
56 31.4
41 25.9
57 30.8
45 27.5
58 33.5
49 26.3
60 35.2
50 28.2
61 34.6
其中各年龄对应的脂肪数据是这个年龄人群脂肪含量 的样本平均数.
一来定性分析有时会给我们以误导; 二来定性分析无法确定变量之间相互影响的程度有多大。 因些,我们还需要进行定量分析。
2.定量分析
如何进行定量分析呢?由于变量间的相 关关系是一种随机关系,因此,我们只能借助 统计这一工具来解决问题,也就是通过收集大 量数据,在对数据进行统计分析的基础上,发 现其中的规律,并对它们之间的关系作出推断。
练习:
有关法律规定,香烟盒上必须印上“吸烟有害 健康”的警示语。吸烟是否一定会引起健康问题? 你认为“健康问题不一定是由吸烟引起的,所以可 以吸烟”的说法对吗? • 从已经掌握的知识来看,吸烟会损害身体的健康。 但是除了吸烟之外还有许多其他的随机因素影响身 体健康,人体健康是由很多因素共同作用的结果, 我们可以找到长寿的吸烟者,也更容易发现由于吸 烟而引发的患病者,吸烟与健康是一种相关关系, 所以吸烟不一定引起健康问题。 • 但吸烟引起健康问题的可能性大,因此“健康问
★数学学习与物理学习
★商业销售收入与广告
★粮食产量与施肥量 ★人体脂肪含量与年龄 ★正方形的边长与面积
关联性:指当一个变量变化时,伴随另一 个变量有一定的变化. 不确定性:指当一个变量取定值时,与之相关
的变量的取值仍具有随机性.
确定性:指当一个变量取定值时,与之相关的
变量的取值随之确定。
问题1:下面哪些题中的两个变量之间的 关系是确定的?哪些题中的两个变量之 间的关系是不确定的?在两个不确定的 变量之间关联性是什么?