《分式》课件ppt(1)

合集下载

《分式》PPT课件(上课用)

《分式》PPT课件(上课用)

同学们再见
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好 的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持 下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。 12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。 13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。 14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。 15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋! 16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。 17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。 18、在人生的舞台上,当有人愿意在台下陪你度过无数个没有未来的夜时,你就更想展现精彩绝伦的自己。但愿每个被努力支撑的灵魂能吸引更多的人同行。 19、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会中看到了某种忧患。莫找借口失败,只找理由成功。 20、每一个成就和长进,都蕴含着曾经受过的寂寞、洒过的汗水、流过的眼泪。许多时候不是看到希望才去坚持,而是坚持了才能看到希望。 1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。 2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。 3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。 4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。 5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。 6、没什么可怕的,大家都一样,在试探中不断前行。 7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。 8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。 9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。 10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。 11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。 12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。 13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。 14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。

人教版八年级上册数学《分式的基本性质》分式PPT教学课件(第1课时)

人教版八年级上册数学《分式的基本性质》分式PPT教学课件(第1课时)

同类题检测:平板推题
1.下列分式中,是最简分式的是
(填序号).
x3 (1)
3x
;(2)x+y 2x
;(3) c
c 2+7c
;(4)xx2++yy2
;(5)xx2++yy2 .
2.下列约分正确的是( ) A. 2(b c) 2 a 3(b c) a 3
B.
(a b)2 (b a)2
1
C.
的分子分母中各项的系数都化为整数,
4
结果为

自学释疑、拓展提升
知识点二:分式的约分 自学问题:分式约分的关键是约去公因式,对于分子分母是多项式的需
要先进行因式分解后再约去公分母;约分进行式子变形时,易忽略分子 与分母的符号变化。 学生典型问题展示: 展示《15.1.2分式的基本性质(1)课前自测》中第5、6题的正确率 ,以及做错的学生的错题选项;学案上知识点二学生中存在问题图片展 示。 问题解决: 问题1:观察教材129页例2(1)中的两个分式,在变形前后的分子、分 母有什么变化?类比分数的相应变形,你联想到什么? 归纳总结: 根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分
A.x<0 B.x>0 C.x≠0 D.x≠0且x≠-2
2.下列等式:①
(a b) a b
c
c
x y ;② x
x y x
a b a b
;③ c
c
;④
m n m n
m
m
中,成立的是( )
A.①②
B.③④
C.①③a
D.②④
0.4b
3.不改变分式的值,将分式
2 0.6a 3 b
课前检测和学案整体完成情况较好的学生:图片展示(课前自主学习整体完成优秀展示)

12.1 分式 - 第1课时课件(共18张PPT)

12.1 分式 - 第1课时课件(共18张PPT)
谈一谈
由上面的问题,我们分别得到下面一些代数式:,;;,
将这些代数式按“分母”含与不含字母来分类,可分成怎样的两类?
分母不含字母
分母含字母
知识点1 分式的概念
定义
一般地,我们把形如 的代数式叫做分式,其中,A,B都是整式,分母必须含有字母.分式也可以看做两个整式相除(除式中含有字母)的商.
12.1 分式第1课时
第十二章 分式和分式方程
学习目标
1.知道分式的概念,发展符号感.2.经历由类比、猜想获得分式基本性质的过程,发展学生的合情推理能力.
学习重难点
掌握分式的概念.
理解并掌握分式的基本性质.
难点
重点
问题导入
1.一项工程,甲施工队5天可以完成。甲施工队每天完成的工程量是多少?3天完成的工程量又是多少?如果乙施工队a天可以完成这项工程,那么乙施工队每天完成的工程量是多少?b(b<a)天完成的工程量又是多少?2.已知甲、乙两地之间的路程为m km。如果A车的速度为n km/h,B车比A车每小时多行20 km,那么从甲地到乙地,A车和B车所用的时间各为多少?
分式的基本性质
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 分式的基本性质
分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变.
做一做
分式
随堂练习
1.下列式子中,哪些是整式?哪些是分式?
(1)
2.当x取何值时,下列分式有意义?
3.
(3)(4)(5)
拓展提升
B
归纳小结
分式
分式的概念
例题解析
例1 指出下列各式中,哪些是整式,哪些是分式.
归纳:

分式(第一课时)PPT课件(沪科版)

分式(第一课时)PPT课件(沪科版)
x+30
自主探究,领略新知 ——探讨分式的概念
b+c+d
1s2400a Nhomakorabeam
a-b
x+30
(1)这些式子情势上有什么特点?
(2)它们与整式有什么区分?
(3)这些式子与我们以前学过的
的是

(4)什么是分式?
类似,所不同
分式的概念:整式A除以整式B,可以表示成
如果除式B中含有字母,那么
A B
称为分式。
A B
的情势,
整式
整式和分式统称为有理式。即有理式
分式
自主探究,领略新知 ——探讨分式的概念
根据分式的概念,写出一个具有实际背景意义的分式。
1、小明的生日宴会上有m人共分一块蛋糕,平均每
人分得这块蛋糕的
1 m

2、桃坡与贵池相距s千米,客车的速度为v千米/小时, 则乘坐客车从桃坡到贵池需要 s 小时。
v
_(_a_-_b)__千米/时,从甲码头到乙码头逆流而上的时间为___s____小时。
a-b
(4)面对日益严重的土地沙漠化问题,我县决定分期固沙造林,一
期工程计划在一定限期内固沙造林2400公顷,每月固沙造林x公顷,
实际每月固沙造林的面积比原计划多30公顷,则实际完成一期工程 用了_2_40_0_个月。
(1)上海世博会的中国馆门票分三个阶段共售出了a张,其中第一阶
段收入b元,第二阶段收入c元,第三阶段收入d元,平均每张中国馆
门票 b+c+d 元。
a
(2)我校将选送1名学生参加区级演讲比赛,现有m名候选人,小明
也是候选人其中之一,小明被选中的机会是 1 。
m

15.1分式 教学课件PPT 八年级数学上册 (5)

15.1分式 教学课件PPT 八年级数学上册 (5)
多项式
(一)问题情景
我们学过的代数式中有单项式、多项式 整式,请你判定下列说法是否正确
(1)12x是单项式,也是整式
()
(2)2和0都是单项式,也都是整式 ( )
(3)2x-1是多项式,也是整式 ( )
(4) 3x y是多项式,也是整式 ( )
2
(5) 3 是单项式,也是整式 ( )
y
(6) 3 是多项式,也是整式 ( )
解:∵X2-1≠0
.
X2 ≠1
X ≠±1
∴当 X ≠±1时,此分式有意义
(4)当x 、 y满足关系 时,分式 X+y
解:∵X-y≠0
X-y
.
X ≠y
有意义
∴当 X ≠y时,此分式有意义
练习
• 课本128页1-3题
X为何值时,下列各式有意义(求X当取值范围)
1、 x 1
解:∵X-1≥0 X≥1
∴当 X ≥ 1时,
2.当
Hale Waihona Puke A B=0时分子和分母应满足什么条件?
当A=0且 B≠0时,分式 B A的值为零.
x2 4 例1. 已知分式 x 2,
(1) 当x为何值时,分式无意义? (2) 当x为何值时,分式有意义?
解:(1)当分母等于零时,分式无意义.
即 x+2=0
∴ x = -2
∴当x = -2时分式
x2 4 x2
x 有1 意义
X为何值时,下列各式有意义(求X当取值范围)
3、
4 x 1
解: ∵
X+1≥0 X+1≠0
X+1≥0 x ≥-1
X+1≠0 x ≠-1
解得:x >-1

分式-完整版课件

分式-完整版课件
分式方程(复习)
一、分式方程的概念
二、解分式方程
三、分式方程解的情况
复习回顾一:
一、什么是分式方程?
方程中只含有分式和整式,且分母中 含有未知数的方程。
复习回顾(1)下x 2列2方程3x中,分式4x 方 程3y有(7 5
)个
一(2) 1 3
x2 x
(4) x(x1) 1 x
(3) 3 x x (6)2xx110
1应.若是方X=程-2 2x.34xa21 有增根,则增根
2 ax 3
2.解关于x的方程
x2x2
4 x2
产生增根,则常数a= -4或6 。
3.当m为何值时,方程
x 2 x3
m x3

为非负数?
一、分式方程的概念 二、解分式方程
解分式方程必须检验有无增根。
三、分式方程解的情况
a
x2 1产生增根,
则增根可能是X=1或x=-1 ;a的值
是 2或0 .
变式 3
已知关于x的方程
a 1 2x x1 x2 1

去分母,得 a(x1)(x21)2x

当方程②的根不是方程①的根时,a为多少?
分析:∵方程②的根不是方程①的根 ∴分式方程①有增根,增根可能为x=1,-1。 而增根x=1,-1是整式方程的解
把x=1代入方程② 即2a=2,解得a=1 把x=-1代入方程②即a·0=0+(-2)∴此方程无解
综上所述,a的值是1
问题:若方程①有增根,则增根必为 X=1 。
变式4、当a为何值时,方程
x 1 a x1 x2 1
的解是正数?
若解是负数呢?
变式5、当a为何值时,方程
x 1 x1

《分式》PPT教学课件(第1课时)

《分式》PPT教学课件(第1课时)
第十二章 分式和分式方程
分式
第1课时
-.
学习目标
1.理解分式的概念,能正确区分整式和分式. 2.掌握分式有意义、无意义及分式值为零的条件.(难点) 3.掌握分式的基本性质,并能够运用分式的基本性质对分 式进行变形.(重点)
导入新课
问题引入
材料 “中国沙化土地达174万平方公里,占国土面积的 18.2%,沙化面积每年仍以3436平方公里的速度扩展.”
2a
2
mn
m
的值相等吗?
类比分数的基本性质,你能得到分式的基本性质吗?说说看.
知识要点
分式的基本性质 类比分数的基本性质,得到:
分式的分子与分母同时乘以(或除以)同一个不等于零 的整式 ,分式的值不变.
用公式表示为: A AM , A AM . B BM B BM (其中M 是不等于零的整式)
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3
0
无 -1 意 …

x-1 4x+1 …
32 73
-1
x -1 …
-1
无 意
-1
x+1

1… 09
0
1 3
一 分式的概念
问题 请将刚才得到的几个代数式按照你认为的共同特征进 行分类,并将同一类移入一个圈内(圈的个数自己选定,若不 够可再画),并说明理由.
2.6 , 5 , 5 , x , y , 2004 , 2004 5 13 a x y x y x x 30

分式 教学课件(一)

分式 教学课件(一)

有意义?
∴4x-1≠0 4x ≠1 x ≠1/4 答:当x ≠1/4时,分式
x+1 有意义。 4x - 1
思考: 当x取什么值时,下列分式有意义?
1 (1) x-a
1 (2) |x|-5
1 1 (3) 2 (4) 2 (x - 1) x - 4x + 3
(x-1)² ≠0 |x|-5≠0 (x-1) x² ≠5 -4x+3≠0 ≠0 |x| x-a≠0 x 4) (x-x3)(x-≠1 ≠0 ≠±5
讨论:
解:
① |x|-3 = 0
|x| = 3
∴x =±3
②把x= - 3 代入,分母为0,分式没有意义
把x=3代入,分母等于12
∴当x = 3时,此分式值为0。
小结
分式的定义
分式的意义 分式的值为0
整式A、B相除可 A 写为 B 的形式, 若分母中含有字 母,那么 A 叫做 B 分式。
分母≠0
x ≠a
x ≠3且x ≠ 4
2y + 1 • 当y取什么值时,分式 的值是零? 4y - 1
解:①使得分式的值为0,则2y+1=0 ∴y = - 1/2 ②使得分式有意义,则4y-1≠0 ∴把y = - 1/2代入4y-1= - 3≠0 ∴当y = - 1/2时,此分式的值是零。
例3 :
| x | -3 • 若分式 2 的值为0,则x的值是多少? x + 2x - 3
①分子=0 ②代入分母≠0 ③最后答案
1.分数的基本性质是什么? 2.这一性质对分式成立吗?
3.分式的基本性质?
思考 1 4 与 是否相等?依据是什么? 2 8 b 1 你认为分式 与 相等吗? 3 3b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.从原代数式的形式上进行判定,不能对化
简结果判定。例如:x2 是分式。
3.注意 是一个常2数x ,不是字母。
A 1.分式 B 的分母有什么条件限制?
当B=0时,分式 BA无意义.
当B≠0时,分式 BA有意义.
2.当 A 0时分子和分母应满足什么条件? B
当A=0而 B≠0时,分式 A 0 B
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/ 数学课件:/kejian/shuxue/ 美术课件:/kejian/meishu/ 物理课件:/kejian/wuli/ 生物课件:/kejian/shengwu/ 历史课件:/kejian/lishi/
2、分式有/无意义的条件(分母的限制条件)(对议) 3、分式 A 0 的条件(组议)
B
4、订正提纲答案,解决疑难问题。(组议)
要求:组长负责,全员参与!
1、下列各式是分式的有哪些?(C层)
5x 1 3
2
x
2x y
5x3 2x y 2
x 1
3x y 3
5x 3 (m n) (m n)
2x2
2、在什么情况下,下列各分式无意义?(C层)
2 x3
ab
x 3x 2 x y

4、当x取何值时,分式 x 有意义? x 1
当x取何值时,分式 x 值为0?(B层)
x 1
1.若分式 x2 1 的值为0,则x的值等于
x 1
(A/B层)
2、已知
x
2
时,分式
x x
b a
无意义;
x
4
时,
分式值为0,求a,b (A层)
x2 3x 2
训练3
阅读下面一题的解答过程,试判断是否正确, 如果不正确,请加以改正。
当x是什么数时,分式 x -4 的值是零?
x+4
解:由分子 x -4=0,得x=±4
所以当x=±4时,分式 x -4
的值是零。
x+4
(2)由(1)得 当x ≠-2时,分式有意义 ∴x = 2
当x是什么数时,分式 x 1 的值为零?
x 1
解:当分子等于零而分母不为零时,分式值为零.
即 x 1 0x 1
又 x 1 0 x -1 x 1
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
分式定义
如果A、B都表示整式,且B中含有字母,那么
称 A为分式.其中A叫做分式的分子,B为分式的 分母B.
判断一个代数式是不是分式需要注意以下几点:
1.分式的分子分母都是整式,分式可以表示 成两个整式相除的商。例如:m n 可以表示成
mn
(m n) (m n)
2.分式的分母一定含有字母,分子可以有, 也可以没有。
学好数学的秘诀
• 1.准备一个错题本;

2.每天上完数学课第一件事? PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/ 科学课件:/kejian/kexue/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
a
a
2.甲乙两地相距mkm,A车速度为20km/h,B车比A车每小
时多行nkm,则从甲地到乙地A车用__m___h, B车用
m
20
_n___20_h.
学习目标: • 分式的定义 • 分式有/无意义的条件 • 分式值为0的条件
学习方法指导:
类比分数,区别整式
A 1、若B 是分式,应满足什么条件(对议)
已知分式 x2 4 x2
(1)当x为何值时,分式无意义?
(2)当x为何值时,分式有意义?
(3) 当x为何值时,分式的值为零?
解解::(3(1))当当分分子母等等于于零零而时分,分母式不无为意零义时. ,分式值为零. 则即x2 - x4+=20=0 ∴x∴= ±x 2= -2 又x+2≠0 即 x ≠ -2
抓紧时间整
理笔记和易错点;
• 3.上课认真听讲,课下独立完成作业。 • 4.晚上睡觉前回顾今天所学知识。
1.一项工程,甲队5天完成,甲队每天完成的工程量是
___1__,3天完成的工程量是__3___。若乙队a天完成, 乙队5 每天完成的工程量是__1___5,b(b<a)天完成的工程
量是__b___。
已知,当x=5时,分式 2x k 的值等于零,求k 3x 2
(1)当x ___0__时,分式 2 有意义.
3x
(2)当b ___5__时,分式 1 有意义.
3
5 3b
(3)当x、y满足关系 _x____y_时,分式 x y 有意义.
x y
(4)当x __1___时,分式 | x | 1 的值为0.
相关文档
最新文档