常规封装失效分析流程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常规封装失效分析流程

封装常规失效分析流程

1,接受上级或客户不良品信息反馈及分析请求,并了解客户相关信息。(指失效模式,参数值,客户抱怨内容,型号,批号,失效率,所占比例等,与正常品相比不同之处)

2,记录各项信息内容,以在长期记录中形成信息库,为今后的分析工作提供经验值。

3,收信工艺信息,包括与此产品有关的生产过程中的人,机,料,法,环变动的情况(老员工,新员工,班次,人员当时的工作状态,机台状况,工夹具,所采用的原材料,工艺参数的变动,环境温湿度的变动等)

通常有:装片机号,球焊机号,包封机号,后固化烘箱号,去飞边机号,软化线号,是否二次软化,测试机台,测试参数,料饼品种型号,引线条供应者及批号,金丝品种及型号,供应者等。

4,失效确认,可用自已的测试机检测功能、开短路,以确认客户反映情况是否属实。

5,对于非开短路情况,如对于漏电流大的产品要彻底清洗(用冷热纯水或有机溶剂如丙酮)后再进行下述烘烤试验:125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试问题,对封装工艺要严查。

6,对于开短路情况,观察开短路测试值是开路还是短路,还是芯片不良,如是开路或短路,则要注意是第几脚开路或短路,待开帽后用万用表测量该脚所连的金丝的压区与脚之间的电阻,以判断该脚球焊是否虚焊。

7,对于大芯片薄形封装产品要注意所用材料(如料饼,导电胶)是否确当,产品失效是否与应力和湿气有关(125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后,门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试的问题,对封装工艺要严查,如检查去飞边方式,浸酸时间等。)

8,80倍以上显微镜观察产品外形特征,特别是树脂休是否有破裂,裂缝,鼓泡膨胀。(注胶口,脚与脚之间树脂体和导电物)

9,对所有失效样品进行X-RAY检查,观察金丝情况,并和布线图相比较,以判断布线是否错误。如发现错误要加抽产品确认失效总数并及时反映相关信息给责任人。

10,C-SAM即SA T,观察产品芯片分层情况。判断规范另见。样品数量为10只以内/批。

11,开帽:对于漏电流大的产品采用机械方式即干开帽形式,其它情况用强酸即湿开帽形式。切开剖面观察金丝情况,及金球情况,表面铝线是否受伤,芯片是否有裂缝,光刻是否不良,是否中测,芯片名是否与布线图芯片名相符。样品数量为5只/批。对于开短路和用不导电胶装片的产品要用万用表检测芯片地线和基岛之间电阻检查装片是否有问题。对于密间距产品要测量铝线宽度,确认所用材料(料饼,导电胶,金丝)是否确当开帽后应该再测试,根据结果进一步分析。

12,腐球:观察压区硅层是否破裂,严重氧化(用王水或氢氧化钠或氢氧化钾),腐球时注意要腐透(金丝彻底脱离芯片或溶化掉),不能用细针去硬拨金丝以免造成人为压区损坏。

13,开帽时勿碰坏金丝及芯片,对于同一客户,同型号,同扩散批,同样类型的失效产品涉及3个组装批的,任抽一批最后对开帽产品进行测试看是否会变好。以确认是否是封装问题。

14,对开帽后漏电流偏大的可以使用微光显微镜检查。

15,对开帽后的芯片最好用SEM仔细检查有无如微小缺陷、氧化层穿孔等缺点。

16,失效分析主要依照:EOS、ESD、封装缺陷、芯片缺陷、CMOS闩锁、设计缺陷、可靠性(如水汽进入、沾污等)展开。

塑封IC常见失效及对策

在现代激烈的市场竞争中,质量是企业的生命。当一种产品的性能不合格时,我们通常称产品失效。电子器件的失效可分为早期失效和使用期失效,前者多是由设计或工艺失误造成的质量缺陷所致,可以通过常规电参数检验和筛选进行检测,后者则是由器件中的潜在缺陷引起的,潜在缺陷的行为与时间和应力有关,经验表明,潮汽吸附、腐蚀和热机械应力、电过应力、静电放电等产生的失效占主导地位。

2 塑封IC常见失效

塑封IC是指以塑料等树脂类聚合物材料封装的集成电路。由于树脂类材料具有吸附水汽的特性,故限制了其在航天、航空等领域的应用。其常见的失效有:

(1)芯片破裂;

(2)管芯钝化层损伤;

(3)管芯金属化腐蚀;

(4)金属化变形;

(5)键合金丝弯曲;

(6)金丝键合焊盘凹陷;

(7)键合线损伤;

(8)键合线断裂和脱落;

(9)键合引线和焊盘腐蚀;

(10)引线框架腐蚀;

(11)引线框架的低粘附性及脱层

12)包封料破裂;

(13)包封材料疲劳裂缝;

(14)封装爆裂(“爆米花”)

(15)电学过载和静电放电;

(16)焊接点疲劳。

3 塑封IC失效分析中的理化分析方法

理化分析是搞清失效机理的最先进的分析方法,以下简要介绍一些理化分析方法的基本原理及其在失效分析中的应用。

3.1 扫描电子显微镜

扫描电子显微镜是运用电子束在样品上逐点扫描,引起二次电子发射,再将这些二次电子等信息转换成随试样表面形貌、材料等因素而变化的放大了的信息图像。它与光学显微镜等相比,具有聚焦景深长、视野大、不破坏样品,并富有立体感,分辨率高,能观察lOnm以下的细节,放大倍数可以方便地在20-10万倍连续变化等优点,是目前最有效的一种失效分析工具。

3.2 电子微探针

电子微探针是利用细电子束作为X射线的激发源,打在要分析的样品表面(穿透深度一般约1-3μm),激发产生出与被打击的微小区域内所包含元素的特征X射线谱,通过对特征X射线波长和强度的分析,来判断样品的成分和数量情况,对硅中缺陷、pn结区重金属杂质沉淀,半导体材料微区域杂质及扩散层剖面杂质等进行分析,以确定潜在的失效模式。

3.3 离子微探针

离子微探针是用一次电子束轰击试样,产生二次离子,然后按荷质比进行分离,从而分析出试样的成分,其取样的深度一般只有5-20原子层,可用来测定表面污染、表面吸附以及对氧化、扩散薄层、涂层等表面的分析。

3.4 俄歇电子能谱仪

俄歇电子能谱仪的基本原理,是用低能电子束(1000eV 以下)轰击被分析的靶材料,使其释放出具有不同能量的二次电子,通过能量分析器对其进行能量分析,测出其能量分布,得到一系列的能谱,其中有些峰就是俄歇电子峰,与光谱分析相似,根据俄歇电子峰可以决定出某些元素的存在,由峰的强度可以测出该元素

相关文档
最新文档