常规封装失效分析流程

合集下载

失效分析步骤

失效分析步骤

失效分析步骤
研发和生产过程当中,会出现不可避免的一些错误,当错误出现时,需要及时找到问题的原因去解决。

随着产品质量和可靠性的要求不断提高,失效分析的工作显得尤为重要,发现并解决问题是必要的,防止频繁地出现同一个问题。

失效分析的步骤原则上是先进行非破坏性分析,后进行破坏性分析;先外部分析,后内部(解剖)分析;先调查和了解与失效相关的情况(线路、应力条件、失效现象等),然后分析失效元器件。

而失效分析的流程也可以根据工作开展的顺序分为以下几个步骤:样品信息调查、失效样品保护、失效分析方案设计、外观检查、电测试、应力试验分析、故障模拟分析、失效定位分析(非破坏性分析、半破坏性分析、破坏性分析)、综合分析、失效分析结论和改进建议,结果验证。

鉴于失效分析的重要作用,应将该项工作贯穿于整个电子元器件设计、研发、生产、试验和使用的全过程当中,这些技术的过程需要进行失效分析才能得以完善。

华南检测失效分析,专业的团队人员,主要分析对象:半导体分立器件,各种规模、各种封装形式的集成电路,射频、微波器件,电源模块、光电模块等各种元器件和模块。

失效分析的流程

失效分析的流程

失效分析的流程
失效分析的流程主要包括以下步骤:
1. 故障现象记录:详细记录失效产品的故障表现、使用环境和条件,初步判断失效模式。

2. 样品收集与预处理:获取失效产品或部件样本,进行必要的保护和清洗,确保后续分析不受干扰。

3. 外观检查与非破坏性测试:通过肉眼观察、光学显微镜检查、X射线透视等手段,寻找外部可见的缺陷及内部结构异常。

4. 破坏性分析:采用金相分析、化学成分分析、断口分析等方法,深入探究失效机理。

5. 功能测试与模拟实验:对样品进行电气性能测试、力学性能测试,并根据需要设计加速老化、应力测试等模拟实验,重现失效过程。

6. 数据分析与结论得出:综合所有测试结果,分析失效原因,确定责任方,并提出改进措施或预防对策。

7. 报告编写与反馈:整理失效分析报告,将结论反馈给相关部门,指导产品质量改进和工艺优化。

封装失效分析1

封装失效分析1

第二单元 集成电路芯片封装可靠性知识—郭小伟(60学时)第一章、可靠性试验1.可靠性试验常用术语试验名称 英文简称 常用试验条件备注温度循环 TCT (T/C ) -65℃~150℃, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮 PCT 121℃,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave热冲击 TST (T/S )-65℃~150℃, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环更严酷。

稳态湿热 THT85℃,85%RH.,168hrs 此试验有时是需要加偏置电压的,一般为Vcb=0.7~0.8BVcbo,此时试验为THBT 。

易焊性 solderability 235℃,2±0.5s此试验为槽焊法,试验后为10~40倍的显微镜下看管脚的上锡面积。

耐焊接热 SHT260℃,10±1s 模拟焊接过程对产品的影响。

电耐久 Burn inVce=0.7Bvceo,Ic=P/Vce,168hrs模拟产品的使用。

(条件主要针对三极管)高温反偏 HTRB 125℃,Vcb=0.7~0.8BVcbo,168hrs主要对产品的PN 结进行考核。

回流焊 IR reflowPeak temp.240℃(225℃)只针对SMD 产品进行考核,且最多只能做三次。

高温贮存 HTSL 150℃,168hrs产品的高温寿命考核。

超声波检测 SAT CSCAN,BSCAN,TSCAN检测产品的内部离层、气泡、裂缝。

但产品表面一定要平整。

2.可靠性试验条件和判断试验流程:F/T SAT1-4 1-5 F/T 1-6 1-72:T/S 3: T/C 4:PCT 5: THT 6:HSTL以客户为代表为例子:客户1:precondition TCT –55/125℃,5cycles for L1,l2,L3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –55/125℃,10min,200cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,96hr sample size: 45 Ac:Re=(0,1)THT: 85℃/85%,168/500/1000hrs sample size: 45 Ac:Re=(0,1)客户2:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –65/150℃,10min,500cycles sample size: 77Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 77 Ac:Re=(0,1)THT: 85℃/85%,1000hrs sample size: 77 Ac:Re=(0,1)HTSL: 150℃,1000hrs sample size:77 Ac:Re=(0,1)HAST: 130℃/85%rh,168hr sample size: 77 Ac:Re=(0,1)客户3:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,50cycles sample size: 24 Ac:Re=(0,1)T/C: –65/150℃,15min,50cycles sample size: 24 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 24 Ac:Re=(0,1)HTSL: 150℃,168hrs sample size:24 Ac:Re=(0,1)客户4:precondition T/C N/A ,L1 Ac:Re=(0,1)T/C: –65/150℃,15min,100/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168/336hr sample size: 45 Ac:Re=(0,1)SOLDER DUNK: 245℃10SEC sample size: 45 Ac:Re=(0,1)客户5:QFP 做 precondition,DIP不做preconditionprecondition T/C N/A,L3 sample size:184 Ac:Re=(5,6)T/C: –65/150℃,15min,200/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 45 Ac:Re=(0,1)HTSL: 150℃,168/500/1000hrs sample size:45 Ac:Re=(0,1)SOLDER DUNK: 245℃5SEC sample size: 15 Ac:Re=(0,1)塑料密封等级塑料密封等级:在装配现场拆包后地面存放期标准试验条件LEVEL 1 在小于30C/85%相对湿度无期限 85C/85% 168小时LEVEL 2 在30C/60%条件下1年85C/60% 168小时LEVEL 3 在小于30C/60%条件下1周 30C/60% 192小时加速=60C/60% 40小时SAMPLE:50塑料密封等级试验步骤:1. DC和功能测试2.外观检查(在80倍以上显微镜下检查)3. SAT扫描4. BAKE 125C/24小时5.做LEVEL 相应条件的试验6.在15分钟后和4小时内做3次回流焊—注意温度曲线必须提供和符合JEDEC标准。

失效分析处理流程失效分析处理流程

失效分析处理流程失效分析处理流程

Take the market need as the guidance,Take the technical innovation as the motive.内容:✓失效分析处理流程✓生产伙伴的失效分析设备✓昊宏失效分析设备情况✓仓库条件生产控制分析(24小时)芯片设计失效分析(24小时)QA 部门成立问题分析小组(12小时)接收客户投诉信息(24小时)要求流片、封装、测试公司做失效分析试验(由供应商控制)客户市场部补货发出(12小时)初步失效分析(48小时)FAE 提供解决方案(72小时)输出失效分析报告(12小时)方案一方案二方案三记录失效分析过程,给出明确的失效分析结论和改进措施SOP5SOP2SOP3SOP4SOP1SOP6解决芯片设计失效(根据设计周期确定)SOP7}SOP8接收客户投诉信息SOP11.QA部收到客户正式的产品投诉后,应填写《产品失效信息表》1.1投诉反馈内容必须完整,至少应包括以下内容1.1.1填写投诉表序号、顾客名称/代号、产品的编号;1.1.2投诉何种缺陷或问题;1.1.3对应的出货日期及出货数量;1.1.4不良率有多少(或提供批量及不良数);1.1.5顾客方在什么环节发现该问题。

1.2必要时,须包括以下内容1.2.1顾客是否对产品进行了试验或特殊处理;1.2.2如果顾客有进行试验或特殊处理,须了解客户的试验条件及处理过程;1.2.3顾客的组装工艺。

1.3如有附件/样品,须在反馈表上注明1.3.1“有附件/样品”字样;1.3.2在附件/样品上标识相应的投诉序号;1.3.3如分析后需要把样品返还顾客,请注明“需返还顾客”字样,并注明返还流程。

SOP1接收客户投诉信息2.QA负责组织客户投诉的处理收到《产品失效信息表》后,QA须对投诉的问题进行确认24小时之内用标准email格式正式回复客户。

格式如下:XX,您好,很感谢您的来信。

我们会尽快审核您发来的《产品失效信息表》,并反馈给有关部门进行分析,并及时给您通告分析结果。

芯片封装中的失效机理与故障分析研究

芯片封装中的失效机理与故障分析研究

芯片封装中的失效机理与故障分析研究芯片封装是集成电路制造过程中至关重要的一步,它将芯片保护起来,并与外部环境进行连接。

然而,封装过程中可能会出现各种失效和故障,这对芯片的性能和可靠性产生了负面影响。

为了提高芯片的可靠性和稳定性,科学家和工程师们一直在研究芯片封装中的失效机理和故障分析方法。

芯片封装失效机理主要包括三个方面:热失效、机械失效和化学失效。

其中,热失效是最常见的问题之一。

当芯片工作时,产生的热量会使芯片封装材料膨胀和收缩,这可能导致封装材料与芯片之间的粘合层剪切、脱离或者开裂。

此外,温度变化也会导致封装材料的劣化,使其电绝缘性能下降,从而引发故障。

机械失效主要是由于外部力导致封装材料的物理损坏。

芯片封装材料通常是脆性材料,如塑料、陶瓷等,容易在受力下发生裂纹和断裂。

例如,当芯片受到机械冲击或振动时,封装材料可能会剪切、断裂或者产生疲劳裂纹,从而导致芯片失效。

化学失效是由于封装材料与外部环境中的化学物质发生反应而导致的。

化学物质可以是氧气、湿气、有机物等。

当芯片封装材料与这些化学物质接触时,可能会发生氧化、腐蚀、电化学反应等,进而引发芯片故障。

为了解决封装失效问题,故障分析是至关重要的环节。

故障分析旨在确定芯片失效的原因,从而采取相应措施进行修复或预防。

故障分析通常包括以下几个步骤:首先,需要收集失效芯片的相关信息。

这包括失效芯片的型号、使用条件、失效模式等。

通过分析这些信息,可以初步确定芯片失效的可能原因。

其次,进行物理分析。

物理分析是指通过观察芯片失效的外观、形态和结构,来确定失效的机理。

例如,通过显微镜观察失效芯片的微观形貌,可以确定是否存在裂纹、剥离等现象。

此外,还可以使用X射线、电子束等技术进行进一步的材料分析,以确定材料的性质和存在的异常问题。

接下来,进行电学分析。

电学分析是指通过测量失效芯片的电性能参数,来判断芯片的电路结构是否正常。

例如,使用万用表、示波器等设备对芯片进行电流、电压、功率等参数的测量,以了解失效芯片的电路状态。

失效分析基本常识以及操作流程

失效分析基本常识以及操作流程

30
9.0 FA工程师因该具备的能力
1. 要懂基础的物理科学,对物理对电路都要有 一定的基础,否则无法解释一些本质现象, 思路也不宽。
2. 要熟悉产品封装工艺,这个是失效分析的基 础,不然没法给结论。
9/24/2019
31
9.0 FA工程师因该具备的能力
3. 要懂电路和机械装配图。 4. 熟悉材料科学,会分析各种材料的相关问题。 5. 要对业界的所有失效分析设备,材料分析设
分解器件观察 对比
案例
9/24/2019
19
5.0 主要程序
失效情况调查
器件相关信息 使用信息 环境信息
失效现象
失效过程
鉴别失效模式
光电特性测试 结构特征鉴定
失效特征描述
形状 颜色
大小 机械结构
位置 物理特性
9/24/2019
20
5.0 主要程序
失效机理分析
参考相关标准 综合分析 还原现象 观测失效样品 实验对比
表面劣化体内劣化零部件损坏材料缺陷设计缺陷使用不当插芯端面磨损芯片透镜脏污filter破裂芯片偏心量超标镜架漏光使用环境温度11014结合我们的产品例举常见的失效模式和失效机理失效模式失效机理无光功率liv曲线拐点sens超标串扰超标芯片烧坏光功率不稳定尾柄脱胶插芯端面磨损filter表面有胶粘接部位有气泡陶瓷环插拔力超标芯片不满足产品规格尾纤烫伤10基本概念21需要做失效分析的对象现场使用的失效样品客诉样品可靠性试验失效样品生产筛选失效样品特大异常样品20研究对象和要求22失效分析层次要求任一产品或系统的构成都是有层次的失效原因也具有层次性如系统单机部件组件零件元件材料
机械应力的过程。
常见的失效机理有:
表面劣化

芯片封装基本流程及失效分析处理方法

芯片封装基本流程及失效分析处理方法

芯片封装基本流程及失效分析处理方法一、芯片封装芯片封装的目的在于对芯片进行保护与支撑作用、形成良好的散热与隔绝层、保证芯片的可靠性,使其在应用过程中高效稳定地发挥功效。

二、工艺流程流程一:硅片减薄分为两种操作手段。

一是物理手段,如磨削、研磨等;二是化学手段,如电化学腐蚀、湿法腐蚀等,使芯片的厚度达到要求。

薄的芯片更有利于散热,减小芯片封装体积,提高机械性能等。

其次是对硅片进行切割,用多线切割机或其它手段如激光,将整个大圆片分割成单个芯片。

流程二:将晶粒黏着在导线架上,也叫作晶粒座,预设有延伸IC晶粒电路的延伸脚,用银胶对晶粒进行黏着固定,这一步骤为芯片贴装。

流程三:芯片互联,将芯片焊区与基板上的金属布线焊区相连接,使用球焊的方式,把金线压焊在适当位置。

芯片互联常见的方法有,打线键合,载在自动键合(TAB)和倒装芯片键合。

流程四:用树脂体将装在引线框上的芯片封起来,对芯片起保护作用和支撑作用。

包封固化后,在引线条上所有部位镀上一层锡,保证产品管脚的易焊性,增加外引脚的导电性及抗氧化性。

流程五:在树脂上印制标记,包含产品的型号、生产厂家等信息。

将导线架上已封装完成的晶粒,剪切分离并将不需要的连接用材料切除,提高芯片的美观度,便于使用及存储。

流程六:通过测试筛选出符合功能要求的产品,保证芯片的质量可靠性;最后包装入库,将产品按要求包装好后进入成品库,编带投入市场。

三、芯片失效芯片失效分析是判断芯片失效性质、分析芯片失效原因、研究芯片失效的预防措施的技术工作。

对芯片进行失效分析的意义在于提高芯片品质,改善生产方案,保障产品品质。

四、测试方法1、外部目检对芯片进行外观检测,判断芯片外观是否有发现裂纹、破损等异常现象。

2、X-RAY对芯片进行X-Ray检测,通过无损的手段,利用X射线透视芯片内部,检测其封装情况,判断IC封装内部是否出现各种缺陷,如分层剥离、爆裂以及键合线错位断裂等。

3、声学扫描芯片声学扫描是利用超声波反射与传输的特性,判断器件内部材料的晶格结构,有无杂质颗粒以及发现器件中空洞、裂纹、晶元或填胶中的裂缝、IC封装材料内部的气孔、分层剥离等异常情况。

失效分析技术分享

失效分析技术分享

分析技術分享張鑫2010/07样品制备主要步骤:1、打开封装2、去钝化层3、去除金属化层4、剖切面5、染色打开封装机械开封(磨,撬,加热等方法)主要针对金属封装的器件。

化学开封(磨,钻,发烟硝酸、发烟硫酸腐蚀法等)主要针对塑料封装的器件。

去除塑料封装机器(decapsulator)去钝化层技术1为什么要去除钝化层?2去除钝化层的方法:化学腐蚀(各向同性)等离子腐蚀PIE (各向同性)反应离子刻蚀RIE(各向异性)各向同性腐蚀和各向异性腐蚀金属介质去除金属化层技术用途:观察CMOS电路的氧化层针孔和Al-Si互溶引起的PN结穿钉现象,以及确定存储器的字线和位线对地短路或开路的失效定位配方:30%的硫酸或盐酸溶液,30~50℃,该配方不腐蚀氧化层和硅。

机械剖切面技术一般步骤:固定器件(石蜡、松香和环氧树脂Epoxy) 研磨(毛玻璃、粗砂纸)粗抛光(金相砂纸)细抛光(抛光垫加抛光膏)染色金相观察测量结深的抛光染色图片显微形貌像技术仪仪仪仪真真真真样样样样理理真理分分分最最最最大大景景光光光光镜无开开360nm1200小扫扫扫扫光光镜高真真开开、去钝钝钝5nm50万最光学显微镜和扫描电子显微镜的比较光学照片与SEM照片对比基于测量电压效应的失效定位技术扫描电子显微镜的电压衬度像工作原理:电子束在处于工作状态下的被测芯片表面扫描,仪器的二次电子探头接收到的电子数量与芯片表面的电位分布有关。

从而得到包含器件中电极的电势信息的SEM图象(IFA Image-based Failure Analysis)。

判定内容:芯片的金属化层开路或短路失效。

•1、某芯片的电压衬度像•2、应用电压衬度像做失效分析实例现象描述:4096位MOS存储器在电测试时发现,从一条字线可以存取的64个存储单元出现故障,现只能存储“0”信号。

初步推断:译码电路失效,译码器与字线之间开路,0V或12V的电源线短路。

电压衬度像分析:照片中发现一处异常暗线,说明其电压为12V,而有关的译码器没有异常,说明字线与12V电源之间存在短路。

失效分析操作指南

失效分析操作指南

失效分析操作指南1. 失效分析的目的失效分析是为了识别和解决产品、设备或系统在设计、制造、使用或维护过程中出现的问题。

通过失效分析,我们可以找出问题的根本原因,并提出相应的改进措施,以提高产品或设备的可靠性和性能。

2. 失效分析流程失效分析的流程一般包括以下步骤:1.收集信息:收集失效现象的相关信息,包括失效模式、失效部位、失效原因等。

2.初步分析:根据收集到的信息,进行初步分析,确定失效的可能原因。

3.详细分析:针对初步分析的结果,进行详细分析,找出失效的根本原因。

4.改进措施:根据详细分析的结果,提出改进措施,以防止失效的再次发生。

5.跟踪验证:对改进措施的实施效果进行跟踪验证,确保问题得到解决。

3. 失效分析方法失效分析可采用多种方法,包括:1.问询法:通过与相关人员进行沟通,了解失效现象的具体情况。

2.检查法:对失效产品或设备进行检查,观察失效部位的实际情况。

3.测试法:通过测试失效产品或设备的性能、参数等,找出失效原因。

4.数据分析法:对失效产品或设备的相关数据进行分析,找出失效规律。

5.失效模式及影响分析(FMEA):通过对可能出现的失效模式及影响进行系统分析,确定优先改进的领域。

4. 失效分析案例以下是一个失效分析案例的示例:4.1 失效现象某公司生产的一款手机在使用过程中出现了电池续航时间短的问题。

4.2 初步分析初步分析认为,电池续航时间短可能是由以下原因导致的:1.电池本身质量问题2.软件优化不足3.硬件设计不合理4.3 详细分析针对初步分析的结果,进行详细分析:1.电池质量问题:对电池进行检测,发现电池的容量低于标准值,确认电池质量问题。

2.软件优化不足:对手机软件进行监测,发现存在后台应用耗电量较高的问题,优化软件后台耗电策略。

3.硬件设计不合理:对手机硬件进行拆解,发现电池与手机壳之间的间隙过大,导致电池散热不良,优化电池与手机壳之间的结构设计。

4.4 改进措施根据详细分析的结果,提出以下改进措施:1.更换质量合格的电池2.优化软件后台耗电策略3.优化电池与手机壳之间的结构设计,提高散热效果4.5 跟踪验证对改进措施的实施效果进行跟踪验证,确认问题已得到解决。

LED封装技术与失效分析

LED封装技术与失效分析

LED封装技术与失效分析LED(Light Emitting Diode,发光二极管)封装技术及其失效分析是一个非常重要的领域,对于提高LED灯的可靠性和性能具有关键影响。

本文将对LED封装技术和失效分析进行详细介绍,以期增进读者对该领域的了解。

一、LED封装技术1. 芯片分离:将大面积的芯片切割成小芯片,通常为1mm x 1mm或大于1mm x 1mm的尺寸。

切割后的芯片通常需要进行光电特性的测试来筛选出良好的品质。

2.载箱:将分离的芯片粘贴到一个或多个电极载体上,形成一个小的光电晶体芯片。

载体通常由陶瓷、铝基板、硅基板等材料制成,以提供良好的导热性能和机械强度。

3.焊接:使用金属焊料将芯片连接到载体上的电极上,实现电流和信号的传输。

4.封装:将载体和焊接的芯片套入塑料封装材料中,形成完整的LED封装体。

5.温度循环老化:通过在特定温度范围内循环加热和降温,以模拟LED在使用过程中的温度变化情况,检验封装的可靠性和耐受性。

LED封装技术的目标是提供良好的热传导、电气连接和物理保护。

适当的封装技术可以提高LED的光电效率、光照强度和颜色稳定性。

常见的LED封装技术包括DIP(插装封装)、SMD(面贴封装)、COB(晶片封装)等,每种技术都有其特定的适用场景和优势。

二、LED失效分析虽然LED具有长寿命和高可靠性的特点,但仍然存在一些常见的失效模式和原因需要进行分析和解决。

以下是几种常见的LED失效模式及其分析:1.热失效:温度是影响LED寿命和性能的重要因素之一、高温容易导致LED芯片的电子结构损坏和荧光粉材料的老化。

因此,合理的散热设计和电流控制非常重要。

2.电子损坏:LED芯片中的PN结构易受静电放电、过电流等电子性失效的影响。

一个常见的解决方法是在制造过程中引入防静电措施和电流保护电路。

3.湿度和环境腐蚀:潮湿的环境和腐蚀性气体可能导致LED元件内部金属接触部分的腐蚀,甚至引起短路。

因此,密封技术和材料在应对这类环境挑战方面发挥着重要作用。

失效分析流程

失效分析流程

失效分析流程失效分析是指对产品或系统发生故障或失效的原因进行分析和解决的过程。

失效分析流程通常包括以下几个步骤,失效观察、失效描述、失效假设、失效验证和失效原因分析。

首先,失效观察是指对产品或系统失效现象进行观察和记录。

在失效观察阶段,需要详细描述失效发生的时间、地点、环境条件、失效现象等信息。

这些信息对于后续的失效分析非常重要,能够帮助工程师更快地找到失效原因。

接下来,失效描述是指对失效现象进行详细的描述和分析。

失效描述需要包括失效的外部表现和内部表现,以及失效对产品或系统性能的影响。

通过对失效现象的描述,可以帮助工程师更好地理解失效的特点和规律。

然后,失效假设是指对失效原因进行初步的推测和假设。

在失效假设阶段,工程师需要根据失效现象和产品或系统的工作原理,提出可能的失效原因。

这些失效假设将成为后续失效验证和原因分析的依据。

随后,失效验证是指对失效假设进行验证和排除。

在失效验证阶段,工程师需要通过实验、测试或仿真等手段,验证每一个失效假设的可行性和可靠性。

通过失效验证,可以确定哪些失效假设成立,哪些失效假设需要进一步分析。

最后,失效原因分析是指对经过验证的失效假设进行深入分析,找出真正的失效原因。

在失效原因分析阶段,工程师需要综合考虑失效现象、失效描述、失效假设和失效验证的结果,找出导致产品或系统失效的根本原因。

通过失效原因分析,可以采取相应的措施,防止类似的失效再次发生。

综上所述,失效分析流程是一个系统的、有条不紊的过程,需要工程师对失效现象进行认真观察和描述,提出合理的失效假设,进行有效的失效验证,最终找出真正的失效原因。

只有在每一个步骤都认真对待,才能确保失效分析的准确性和可靠性,为产品或系统的改进和优化提供有力支持。

塑封料\环氧塑封料工艺选择和封装失效分析流程

塑封料\环氧塑封料工艺选择和封装失效分析流程

塑封料\环氧塑封料工艺选择和封装失效分析流程一环氧塑封料的工艺选择1.1 预成型料块的处理(1)预成型塑封料块一般都储存在5℃-10℃的环境中,必会有不同程度的吸潮。

因此在使用前应在干燥的地方室温醒料,一般不低于16小时。

(2)料块的密度要高。

疏松的料块会含有过多的空气和湿气,经醒料和高频预热也不易挥发干净,会造成器件包封层内水平增多。

(3)料块大小要适中,料块小,模具填充不良;料块大,启模困难,模具与注塑杆沾污严重并造成材料的浪费。

1.2 模具的温度生产过程中,模具温度控制在略高于塑封料玻璃化温度Tg时,能获得较理想的流动性,约160℃-180℃。

模具温度过高,塑封料固化过快,内应力增大,包封层与框架粘接力下降。

同时,固化过快也会使模具冲不满;模具温度过低,塑封料流动性差,同样会出现模具填充不良,包封层机械强度下降。

同时,保持模具各区域温度均匀是非常重要的,因为模具温度不均匀,会造成塑封料固化程度不均匀,导致器件机械强度不一致。

1.3 注塑压力注塑压力的选择,要根据塑封料的流动性和模具温度而定,压力过小,器件包封层密度低,与框架黏结性差,易发生吸湿腐蚀,并出现模具没有注满塑封料提前固化的情况;压力过大,对内引线冲击力增大,造成内引线被冲歪或冲断,并可能出现溢料,堵塞出气孔,产生气泡和填充不良。

1.4 注模速度注模速度的选择主要根据塑封料的凝胶化时间确定。

凝胶化时间短,注模速度要稍快,反之亦然。

注模要在凝胶化时间结束前完成,否则由于塑封料的提前固化造成内引线冲断或包封层缺陷。

1.5 塑封工艺调整对工艺调整的同时,还应注意到预成型料块的保管、模具的清洗、环境的温湿度等原因对塑封工序的影响。

2 塑封料性能对器件可靠性的影响2.1 塑封料的吸湿性和化学粘接性对塑封器件而言,湿气渗入是影响其气密性导致失效的重要原因之一。

湿气渗入器件主要有两条途径:①通过塑封料包封层本体;②通过塑封料包封层与金属框架间的间隙。

失效分析流程规范文件

失效分析流程规范文件

失效分析流程规范文件一、失效分析的重要性。

1. 失效分析就像医生给病人看病一样重要。

当一个产品或者设备出现问题,不能正常工作了,这就好比人生病了。

我们得搞清楚到底是哪里出了毛病,不然就像蒙着眼睛走路,啥也干不成。

这时候,失效分析就是那盏照亮黑暗的灯。

1.2 从企业的角度看,失效分析直接关系到成本和声誉。

如果不做失效分析,可能会一直生产有问题的产品,那可就是“赔了夫人又折兵”,既浪费钱又让客户失望。

二、失效分析的流程。

2.1 收集信息。

首先得像个侦探一样,收集各种各样的信息。

这包括产品的使用环境,是在高温、潮湿还是其他特殊环境下出的问题。

就像了解一个人犯罪时的现场环境一样重要。

还有产品的使用历史,之前有没有过类似的小毛病之类的。

这些信息就像拼图的碎片,一块都不能少。

2.2 外观检查。

外观检查是失效分析的第一步,这个环节可不能走马观花。

要仔仔细细地查看产品的表面,有没有裂痕、变形或者磨损之类的。

这就好比相亲的时候,第一眼看对方的外貌,虽然不能完全了解一个人,但能发现一些明显的问题。

有时候,从外观上就能发现很关键的线索,可能直接就指向问题的根源了。

2.3 无损检测。

无损检测可是个技术活。

就像给产品做个全身的X光检查,不用破坏产品就能看到内部的结构有没有问题。

比如说用超声波检测,看看内部有没有裂缝之类的隐藏问题。

这就像孙悟空的火眼金睛,能看穿表象看到本质。

2.4 破坏性检测。

如果无损检测还不能找到问题,那就只能进行破坏性检测了。

这就有点像破釜沉舟了,虽然会破坏产品,但是为了找到问题根源也不得不这么做。

比如说对产品进行切片,看看内部的微观结构,像金相组织是不是正常之类的。

三、结果分析与报告。

3.1 结果分析。

在做完各种检测之后,就得像个学者一样,静下心来分析结果。

把所有的检测数据、观察到的现象都放在一起,仔细琢磨。

有时候一个小细节可能就是解决问题的关键。

不能“眉毛胡子一把抓”,要分清主次,找到真正的原因。

失效分析流程

失效分析流程

失效分析流程失效分析是指对产品或系统在使用过程中出现的故障进行分析,找出故障的原因和根源,以便及时修复和改进产品或系统的设计。

失效分析流程是一个系统的、有条理的过程,它可以帮助我们更快速、更准确地找出故障的原因,并采取相应的措施来解决问题。

下面将介绍失效分析流程的具体步骤。

1. 收集信息。

失效分析的第一步是收集相关信息。

这包括对故障现象的描述、故障发生的时间和地点、故障对系统性能和安全性的影响等。

同时,还需要收集产品或系统的设计文件、生产记录、使用说明书等相关资料,以便后续的分析工作。

2. 故障确认。

在收集到足够的信息后,需要对故障进行确认。

这包括对故障现象进行验证,确定故障是否真实存在,以及对故障的范围和影响进行评估。

只有确认了故障的存在,才能进行后续的分析工作。

3. 制定分析计划。

在确认了故障后,需要制定分析计划。

这包括确定分析的范围和目标,制定分析的方法和工具,确定分析的时间和人员等。

分析计划的制定有助于提高分析的效率和准确性。

4. 故障分析。

在制定了分析计划后,可以开始对故障进行分析。

这包括对故障的可能原因进行推测和假设,利用各种分析方法和工具对故障进行深入分析,找出故障的根本原因。

在故障分析过程中,需要注重数据的准确性和完整性,确保分析结果的可靠性。

5. 制定改进措施。

在找出了故障的根本原因后,需要制定相应的改进措施。

这包括对产品或系统的设计、制造、使用等方面进行改进,以防止类似的故障再次发生。

改进措施的制定需要考虑到成本、效果、可行性等因素,确保能够有效地解决问题。

6. 实施改进措施。

在制定了改进措施后,需要及时地进行实施。

这包括对产品或系统进行相应的改进和调整,确保改进措施能够有效地落实到位。

同时,还需要对改进措施的实施效果进行监控和评估,及时调整和改进。

7. 总结经验。

在实施了改进措施后,需要对整个失效分析过程进行总结和经验归纳。

这包括对分析过程中的不足和问题进行反思和总结,提出改进建议,为今后的失效分析工作提供参考和借鉴。

功率器件失效分析流程

功率器件失效分析流程

封装常规失效分析流程:1、接受上级或客户不良品信息反馈及分析请求,并了解客户相关信息。

主要包括的内容为:失效模式,参数值,客户抱怨内容,型号,批号,失效率,所占比例等,与正常品相比不同之处等。

2、记录各项信息内容,以在长期记录中形成信息库,为今后的分析工作提供经验值。

3、收集工艺信息,包括与此产品有关的生产过程中的人,机,料,法,环变动的情况.主要包括:老员工,新员工,班次,人员当时的工作状态,机台状况,工夹具,所采用的原材料,工艺参数的变动,环境温湿度的变动等。

通常有:装片机号,球焊机号,包封机号,后固化烘箱号,去飞边机号,软化线号,是否二次软化,测试机台,测试参数,料饼品种型号,引线条供应者及批号,金丝品种及型号,供应者等。

4、失效确认,可用自已的测试机检测功能、开短路,以确认客户反映情况是否属实。

5、对于非开短路情况,如对于漏电流大的产品要彻底清洗(用冷热纯水或有机溶剂如丙酮)后再进行下述烘烤试验:125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试问题,对封装工艺要严查。

6、对于开短路情况,观察开短路测试值是开路还是短路,还是芯片不良,如是开路或短路,则要注意是第几脚开路或短路,待开帽后用万用表测量该脚所连的金丝的压区与脚之间的电阻,以判断该脚球焊是否虚焊。

7、对于大芯片薄形封装产品要注意所用材料(如料饼,导电胶)是否确当,产品失效是否与应力和湿气有关(125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后,门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试的问题,对封装工艺要严查,如检查去飞边方式,浸酸时间等。

)8、80倍以上显微镜观察产品外形特征,特别是树脂休是否有破裂,裂缝,鼓泡膨胀。

主要包括:注胶口,脚与脚之间树脂体和导电物。

9、对所有失效样品进行X-RAY检查,观察金丝情况,并和布线图相比较,以判断布线是否错误。

封装失效分析1

封装失效分析1

第二单元 集成电路芯片封装可靠性知识—郭小伟(60学时)第一章、可靠性试验1.可靠性试验常用术语试验名称 英文简称 常用试验条件备注温度循环 TCT (T/C ) -65℃~150℃, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮 PCT 121℃,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave热冲击 TST (T/S )-65℃~150℃, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环更严酷。

稳态湿热 THT85℃,85%RH.,168hrs 此试验有时是需要加偏置电压的,一般为Vcb=0.7~0.8BVcbo,此时试验为THBT 。

易焊性 solderability 235℃,2±0.5s此试验为槽焊法,试验后为10~40倍的显微镜下看管脚的上锡面积。

耐焊接热 SHT260℃,10±1s 模拟焊接过程对产品的影响。

电耐久 Burn inVce=0.7Bvceo,Ic=P/Vce,168hrs模拟产品的使用。

(条件主要针对三极管)高温反偏 HTRB 125℃,Vcb=0.7~0.8BVcbo,168hrs主要对产品的PN 结进行考核。

回流焊 IR reflowPeak temp.240℃(225℃)只针对SMD 产品进行考核,且最多只能做三次。

高温贮存 HTSL 150℃,168hrs产品的高温寿命考核。

超声波检测 SAT CSCAN,BSCAN,TSCAN检测产品的内部离层、气泡、裂缝。

但产品表面一定要平整。

2.可靠性试验条件和判断试验流程:F/T SAT1-4 1-5 F/T 1-6 1-72:T/S 3: T/C 4:PCT 5: THT 6:HSTL以客户为代表为例子:客户1:precondition TCT –55/125℃,5cycles for L1,l2,L3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –55/125℃,10min,200cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,96hr sample size: 45 Ac:Re=(0,1)THT: 85℃/85%,168/500/1000hrs sample size: 45 Ac:Re=(0,1)客户2:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –65/150℃,10min,500cycles sample size: 77Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 77 Ac:Re=(0,1)THT: 85℃/85%,1000hrs sample size: 77 Ac:Re=(0,1)HTSL: 150℃,1000hrs sample size:77 Ac:Re=(0,1)HAST: 130℃/85%rh,168hr sample size: 77 Ac:Re=(0,1)客户3:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,50cycles sample size: 24 Ac:Re=(0,1)T/C: –65/150℃,15min,50cycles sample size: 24 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 24 Ac:Re=(0,1)HTSL: 150℃,168hrs sample size:24 Ac:Re=(0,1)客户4:precondition T/C N/A ,L1 Ac:Re=(0,1)T/C: –65/150℃,15min,100/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168/336hr sample size: 45 Ac:Re=(0,1)SOLDER DUNK: 245℃10SEC sample size: 45 Ac:Re=(0,1)客户5:QFP 做 precondition,DIP不做preconditionprecondition T/C N/A,L3 sample size:184 Ac:Re=(5,6)T/C: –65/150℃,15min,200/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 45 Ac:Re=(0,1)HTSL: 150℃,168/500/1000hrs sample size:45 Ac:Re=(0,1)SOLDER DUNK: 245℃5SEC sample size: 15 Ac:Re=(0,1)塑料密封等级塑料密封等级:在装配现场拆包后地面存放期标准试验条件LEVEL 1 在小于30C/85%相对湿度无期限 85C/85% 168小时LEVEL 2 在30C/60%条件下1年85C/60% 168小时LEVEL 3 在小于30C/60%条件下1周 30C/60% 192小时加速=60C/60% 40小时SAMPLE:50塑料密封等级试验步骤:1. DC和功能测试2.外观检查(在80倍以上显微镜下检查)3. SAT扫描4. BAKE 125C/24小时5.做LEVEL 相应条件的试验6.在15分钟后和4小时内做3次回流焊—注意温度曲线必须提供和符合JEDEC标准。

塑封料\环氧塑封料工艺选择和封装失效分析流程

塑封料\环氧塑封料工艺选择和封装失效分析流程

塑封料\环氧塑封料工艺选择和封装失效分析流程一环氧塑封料的工艺选择1.1预成型料块的处理(1)预成型塑封料块一般都储存在5℃-10℃的环境中,必会有不同程度的吸潮。

因此在使用前应在干燥的地方室温醒料,一般不低于16小时。

(2)料块的密度要高。

疏松的料块会含有过多的空气和湿气,经醒料和高频预热也不易挥发干净,会造成器件包封层内水平增多。

(3)料块大小要适中,料块小,模具填充不良;料块大,启模困难,模具与注塑杆沾污严重并造成材料的浪费。

1.2模具的温度生产过程中,模具温度控制在略高于塑封料玻璃化温度Tg时,能获得较理想的流动性,约160℃-180℃。

模具温度过高,塑封料固化过快,内应力增大,包封层与框架粘接力下降。

同时,固化过快也会使模具冲不满;模具温度过低,塑封料流动性差,同样会出现模具填充不良,包封层机械强度下降。

同时,保持模具各区域温度均匀是非常重要的,因为模具温度不均匀,会造成塑封料固化程度不均匀,导致器件机械强度不一致。

1.3注塑压力注塑压力的选择,要根据塑封料的流动性和模具温度而定,压力过小,器件包封层密度低,与框架黏结性差,易发生吸湿腐蚀,并出现模具没有注满塑封料提前固化的情况;压力过大,对内引线冲击力增大,造成内引线被冲歪或冲断,并可能出现溢料,堵塞出气孔,产生气泡和填充不良。

1.4注模速度注模速度的选择主要根据塑封料的凝胶化时间确定。

凝胶化时间短,注模速度要稍快,反之亦然。

注模要在凝胶化时间结束前完成,否则由于塑封料的提前固化造成内引线冲断或包封层缺陷。

1.5塑封工艺调整对工艺调整的同时,还应注意到预成型料块的保管、模具的清洗、环境的温湿度等原因对塑封工序的影响。

2塑封料性能对器件可靠性的影响2.1塑封料的吸湿性和化学粘接性对塑封器件而言,湿气渗入是影响其气密性导致失效的重要原因之一。

湿气渗入器件主要有两条途径:①通过塑封料包封层本体;②通过塑封料包封层与金属框架间的间隙。

当湿气通过这两条途径到达芯片表面时,在其表面形成一层导电水膜,并将塑封料中的Na+、CL-离子也随之带入,在电位差的作为下,加速了对芯片表面铝布线的电化学腐蚀,最终导致电路内引线开路。

封装可靠性及失效分析

封装可靠性及失效分析

66
此课件下载可自行编辑修改,供参考! 部分内容来源于网络,如有侵权请与我联系删除!
67
完整编辑ppt
58
4.失效实际案例
完整编辑ppt
59
4.失效实际案例
完整编辑ppt
60
4.失效实际案例
完整编辑ppt
61
4.失效实际案例
完整编辑ppt
62
4.失效实际案例
完整编辑ppt
63
4.失效实际案例
完整编辑ppt
64
4.失效实际案例
完整编辑ppt
65
4.失效实际案例
完整编辑t
2.失效分析方法
• 失效分析的一般程序
完整编辑ppt
44
2.失效分析方法
• 收集现场失效数据
完整编辑ppt
45
2.失效分析方法
• 电测技术
完整编辑ppt
46
完整编辑ppt
47
2.失效分析方法
• 打开封装
完整编辑ppt
48
完整编辑ppt
49
2.失效分析方法
• 失效定位技术
完整编辑ppt
50
完整编辑ppt
30
1.2封装互连缺陷
完整编辑ppt
31
1.2封装互连缺陷
• 热膨胀系数不匹配导致的Whisker
完整编辑ppt
32
1.2封装互连缺陷
完整编辑ppt
33
1.3基板问题
完整编辑ppt
34
1.3基板问题
完整编辑ppt
35
1.3基板问题
完整编辑ppt
36
1.3基板问题
完整编辑ppt
37
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常规封装失效分析流程封装常规失效分析流程1,接受上级或客户不良品信息反馈及分析请求,并了解客户相关信息。

(指失效模式,参数值,客户抱怨内容,型号,批号,失效率,所占比例等,与正常品相比不同之处)2,记录各项信息内容,以在长期记录中形成信息库,为今后的分析工作提供经验值。

3,收信工艺信息,包括与此产品有关的生产过程中的人,机,料,法,环变动的情况(老员工,新员工,班次,人员当时的工作状态,机台状况,工夹具,所采用的原材料,工艺参数的变动,环境温湿度的变动等)通常有:装片机号,球焊机号,包封机号,后固化烘箱号,去飞边机号,软化线号,是否二次软化,测试机台,测试参数,料饼品种型号,引线条供应者及批号,金丝品种及型号,供应者等。

4,失效确认,可用自已的测试机检测功能、开短路,以确认客户反映情况是否属实。

5,对于非开短路情况,如对于漏电流大的产品要彻底清洗(用冷热纯水或有机溶剂如丙酮)后再进行下述烘烤试验:125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试问题,对封装工艺要严查。

6,对于开短路情况,观察开短路测试值是开路还是短路,还是芯片不良,如是开路或短路,则要注意是第几脚开路或短路,待开帽后用万用表测量该脚所连的金丝的压区与脚之间的电阻,以判断该脚球焊是否虚焊。

7,对于大芯片薄形封装产品要注意所用材料(如料饼,导电胶)是否确当,产品失效是否与应力和湿气有关(125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后,门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试的问题,对封装工艺要严查,如检查去飞边方式,浸酸时间等。

)8,80倍以上显微镜观察产品外形特征,特别是树脂休是否有破裂,裂缝,鼓泡膨胀。

(注胶口,脚与脚之间树脂体和导电物)9,对所有失效样品进行X-RAY检查,观察金丝情况,并和布线图相比较,以判断布线是否错误。

如发现错误要加抽产品确认失效总数并及时反映相关信息给责任人。

10,C-SAM即SA T,观察产品芯片分层情况。

判断规范另见。

样品数量为10只以内/批。

11,开帽:对于漏电流大的产品采用机械方式即干开帽形式,其它情况用强酸即湿开帽形式。

切开剖面观察金丝情况,及金球情况,表面铝线是否受伤,芯片是否有裂缝,光刻是否不良,是否中测,芯片名是否与布线图芯片名相符。

样品数量为5只/批。

对于开短路和用不导电胶装片的产品要用万用表检测芯片地线和基岛之间电阻检查装片是否有问题。

对于密间距产品要测量铝线宽度,确认所用材料(料饼,导电胶,金丝)是否确当开帽后应该再测试,根据结果进一步分析。

12,腐球:观察压区硅层是否破裂,严重氧化(用王水或氢氧化钠或氢氧化钾),腐球时注意要腐透(金丝彻底脱离芯片或溶化掉),不能用细针去硬拨金丝以免造成人为压区损坏。

13,开帽时勿碰坏金丝及芯片,对于同一客户,同型号,同扩散批,同样类型的失效产品涉及3个组装批的,任抽一批最后对开帽产品进行测试看是否会变好。

以确认是否是封装问题。

14,对开帽后漏电流偏大的可以使用微光显微镜检查。

15,对开帽后的芯片最好用SEM仔细检查有无如微小缺陷、氧化层穿孔等缺点。

16,失效分析主要依照:EOS、ESD、封装缺陷、芯片缺陷、CMOS闩锁、设计缺陷、可靠性(如水汽进入、沾污等)展开。

塑封IC常见失效及对策在现代激烈的市场竞争中,质量是企业的生命。

当一种产品的性能不合格时,我们通常称产品失效。

电子器件的失效可分为早期失效和使用期失效,前者多是由设计或工艺失误造成的质量缺陷所致,可以通过常规电参数检验和筛选进行检测,后者则是由器件中的潜在缺陷引起的,潜在缺陷的行为与时间和应力有关,经验表明,潮汽吸附、腐蚀和热机械应力、电过应力、静电放电等产生的失效占主导地位。

2 塑封IC常见失效塑封IC是指以塑料等树脂类聚合物材料封装的集成电路。

由于树脂类材料具有吸附水汽的特性,故限制了其在航天、航空等领域的应用。

其常见的失效有:(1)芯片破裂;(2)管芯钝化层损伤;(3)管芯金属化腐蚀;(4)金属化变形;(5)键合金丝弯曲;(6)金丝键合焊盘凹陷;(7)键合线损伤;(8)键合线断裂和脱落;(9)键合引线和焊盘腐蚀;(10)引线框架腐蚀;(11)引线框架的低粘附性及脱层12)包封料破裂;(13)包封材料疲劳裂缝;(14)封装爆裂(“爆米花”)(15)电学过载和静电放电;(16)焊接点疲劳。

3 塑封IC失效分析中的理化分析方法理化分析是搞清失效机理的最先进的分析方法,以下简要介绍一些理化分析方法的基本原理及其在失效分析中的应用。

3.1 扫描电子显微镜扫描电子显微镜是运用电子束在样品上逐点扫描,引起二次电子发射,再将这些二次电子等信息转换成随试样表面形貌、材料等因素而变化的放大了的信息图像。

它与光学显微镜等相比,具有聚焦景深长、视野大、不破坏样品,并富有立体感,分辨率高,能观察lOnm以下的细节,放大倍数可以方便地在20-10万倍连续变化等优点,是目前最有效的一种失效分析工具。

3.2 电子微探针电子微探针是利用细电子束作为X射线的激发源,打在要分析的样品表面(穿透深度一般约1-3μm),激发产生出与被打击的微小区域内所包含元素的特征X射线谱,通过对特征X射线波长和强度的分析,来判断样品的成分和数量情况,对硅中缺陷、pn结区重金属杂质沉淀,半导体材料微区域杂质及扩散层剖面杂质等进行分析,以确定潜在的失效模式。

3.3 离子微探针离子微探针是用一次电子束轰击试样,产生二次离子,然后按荷质比进行分离,从而分析出试样的成分,其取样的深度一般只有5-20原子层,可用来测定表面污染、表面吸附以及对氧化、扩散薄层、涂层等表面的分析。

3.4 俄歇电子能谱仪俄歇电子能谱仪的基本原理,是用低能电子束(1000eV 以下)轰击被分析的靶材料,使其释放出具有不同能量的二次电子,通过能量分析器对其进行能量分析,测出其能量分布,得到一系列的能谱,其中有些峰就是俄歇电子峰,与光谱分析相似,根据俄歇电子峰可以决定出某些元素的存在,由峰的强度可以测出该元素的含量。

俄歇电子具有表面探针的作用,它可以用来分析表面,如表面组分、表面生长过程、合金接触质量、键合质量以及其它与表面有关的现象,其深度可深至10μm左右的表面层。

3.5 红外热分析红外热分析可运用红外显微镜、红外扫描显微镜等,它的基本原理,是当器件加上电源后,芯片上将有一定温度,产生相应的红外辐射,通过相应的红外接收系统,可将芯片上的反常热点显示出来,发现不合理的设计及材料和工艺中的缺陷,如反偏pn结上的发光点、针孔、尖端扩散及铝膜台阶处的局部发热等。

4 塑封IC失效分析基本步骤4.1 保存物理证据在生产过程中,回流焊返工或替换有问题的元器件是可以接受的,但在失效分析中,让已暴露出来的问题清楚显现,最为重要。

失效分析最禁忌的是替换或修理问题点,这样会损坏物理证据。

对失效分析样品,应温、湿度受控,并避免振动及静电等外力作用,在原因未得到确认前,应避免对失效样品进行通电。

4.2 物理分析初步电参数测试,观察失效器件哪些参数与正常器件参数不符合。

外观及密封性检查。

开帽镜检,开帽时,注意不要损坏管芯和引入新的失效因素,用30-60倍显微镜检查机械缺陷、内引线、芯片位置、铝条好坏等,用400-1000倍的金相显微镜观察光刻、铝引线、氧化层缺陷、芯片裂纹等,并对结果照相。

图1为某失效样品芯片裂纹扫描声学显微图像。

进一步测试电参数,必要时可划断铝条用探针测试管芯,检查电路的有源和无源元件性能是否正常。

除去铝膜再对管芯进行测试,观察性能变化,并检查二氧化硅层的厚度与存在的针孔等。

除去Si02用探针测试管芯,分析表面是否有沟道,失效是否由表面效应引起。

4.3 根本失效原因确定塑封IC失效的原因有:设计缺陷、原材料品质不良、制程问题、运输中静电击穿或存储环境中水汽吸附、使用时的过应力等。

应征对失效分析样品,确定导致失效的根本原因。

工艺问题在塑封IC中占失效比例最大,问题主要集中在后工序上,如某塑封电路,由于器件塑封材料与金属框架和芯片间发生分层效应(俗称“爆米花”效应),而拉断键合丝,从而发生开路失效。

经分析,其主要原因是塑封料中的水分在高温下迅速膨胀使塑封料与其附着的其他材料间发生分离。

4.4 纠正措施及验证在查明失效原因的基础上,通过分析、计算和必要的试验验证,提出纠正措施,经评审通过后付诸实施,跟踪验证纠正措施的有效性,并按技术状态控制要求或图样管理制度对设计或工艺文件进行更改。

5 提高塑封IC可靠性的措施在规定时间内或整个有用寿命期内,产品在规定的条件下完成规定功能的概率,即可靠性。

其取决于固有设计、制造过程、工作条件(确定产品如何被使用、维修及修理)。

以下从三方面介绍提高塑封IC可靠性的措施:5.1 设计的可靠性产品应设计成能运用于它使用的环境,而且应当对设计有充分了解。

应当最优先考虑表示环境的特性。

它取决于用户的类型以及产品的工作周期。

可以通过试验或分析来验证是否已达到了可靠性的目标,通过试验,产品的设计可以得到证实。

试验可以暴露出未想到的设计的薄弱环节或不令人满意的性能,作为研制工具,应向工程师反馈他们所需要的信息,以便工程师们改进设计、修正分析。

在塑封IC设计时,为提高可靠性,将零件最大允许应力限制到低于其最大额定应力值的某一规定值。

并在产品中要考虑热量的产生和扩散,避免出现由温度造成的可靠性问题。

5.2 工艺及材料控制在塑封IC整个生产过程,应加大工艺控制,其主要措施有:(1)减少封装体内水汽含量,避免分层效应封装体内的实际水汽含量是由密封材料、封装体本身、密封环境释放的水和通过密封处漏人的水汽组成的。

为防止水汽侵入,良好的钝化覆盖层(使用磷玻璃或氮化硅)是必要的,减少包封料中的离子沾污物,在包封料中掺人杂质离子俘获剂或离子清除剂,提高塑封料与引线框架间的粘接强度,在塑封料中加入填充物延长水汽渗透路径,使用低吸水性包封料等,另外,从工艺上采取以下措施:①封装时的环境气氛必须很干燥。

②封装前各部件应在真空和高温下长时间烘烤,以去除水汽。

③保证器件符合Gm548A-96方法1014A中He检漏的气密性要求,来减少封装体内水汽含量。

(2)减少封装体内部气泡,避免塑封体裂纹的产生在IC后道封装的塑封过程中,环氧模塑料在熔融状态下充填成型时,包人或卷进去的空气以及饼料中原有的探发性物质在压实阶段时不能完全排出,残留在塑封体内部就形成内部气泡。

其对可靠性的影响有:①导致塑封体裂纹的产生。

②使树脂的耐温性能下降。

③影响电性能。

通过树脂预热时温差工艺,即树脂放人料筒中时,温度高的树脂放在上面,温度低的树脂放在下面,则预热时上面温度高的树脂先熔化充填料筒与树脂饼料之间的间隙,空气就从流道的方向排出,而不会进入树脂的内部。

相关文档
最新文档