选修2-1第三章 空间向量及其运算

合集下载

选修2-1第三章空间向量与立体几何归纳整合

选修2-1第三章空间向量与立体几何归纳整合

→ →
→ →
网络构建
专题归纳
高考真题
【例3】 在棱长为1的正方体ABCD-A1B1C1D1中,E为棱BC的 中点,点F是棱CD上的动点,试确定点F的位置,使得
D1E⊥平面AB1F.
解 如图建立空间直角坐标系: 则 A(1,0,0), B1(1, 1, 1), 1 D1(0, 0, 1), E( , 1, 0). 2 设 F(0,y,0),则AB1=(0, 1, 1), 1 AF= (-1,y,0),D1E= ( ,1,-1), 2



网络构建
专题归纳
高考真题
要使 D1E⊥平面 AB1F,
→ → 1- 1= 0, D1E·AB1=0, 1 只需 即 即 y= . 1 2 → → - +y=0, D1E·AF= 0, 2
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
网络构建
专题归纳




如图所示, 用 a, b, c 分别代表棱OA、

OB、OC上的三个单位向量, 则f1=a,f2=2b,f3=3c,


则f=f1+f2+f3=a+2b+3c,
∴|f|2=(a+2b+3c)(a+2b+3c)
=|a|2+4|b|2+9|c|2+4a· b+6a· c+12b· c =14+4cos 60°+6cos 60°+12cos 60° =14+2+3+6=25, ∴|f|=5,即所求合力的大小为5.
算类似,是平面向量的拓展,主要考查空间向量的共线与
共面以及数量积运算,是用向量法求解立体几何问题的基
础.
网络构建
专题归纳
高考真题
【例1】沿着正四面体 O-ABC 的三条棱OA、OB、OC的方向有大

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。

2.理解共线向量定理和共面向量定理及其意义。

3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。

三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。

5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。

选修2-1(3.1空间向量及其加减运算》说课稿

选修2-1(3.1空间向量及其加减运算》说课稿

这 节课 的教 学 目标 。 二、 教学 目标 1 . 理解 空 间 向量 的概 念 , 会 用 图 形 说 明 空 间 向量 的线
性运算及其运算律 , 初步应用空间向量的线性运算解决简 单 的立体 几何 问题 。 2 . 学生通过类 比平面向量 的学 习过程 了解 空间向量的 研究内容和方法 , 经历向量及其运算 由平面 向空间的推广 , 体验数学概念的形成过程。 3 . 培养学生的空间观念和系统学习概念的意识 。 三、 教 学重 点与 教学 难点 这节课 的教学重点是空间向量的概念及线性运算 。在 由平面 向量向空间向量 的推广过程中 , 学生对于其相 同点
( 河 北衡 水 中学 , 河北 衡水 0 5 3 0 0 0 )
摘要 : 本 节课的 内容是《 空间向量及其加减运算》 , 选 自普通高 中课程标准实验教科 书人教A版选修2 — 1 第三章 。本文 就从教 学内容和学生情况分析 , 教 学 目标设定 , 重难点设置 , 教 学方式 , 教学过程 以及教 学反 思等 方面对这节课 进行说
论 坛
ED U CA TI ON TE A CHI N G FO RU M
Ap r . 2 01 4 N O. 1 7
【 教学设计】
选修2 - 1 ( ( 3 . 1 空间向量及其加减运算》 说课稿
陈丽敏
6 . 教育 学生 正 确处 理青 春 期 问题 。让 学 生正 确 处 理好 青春期问题 , 对教师提出了更高的要求 , 要求我们的教师既 是教书者 , 又是能处理好学生青春期 问题的心理咨询师 , 同
时教师又要善于发现学生生活中的蛛丝马迹 ,发现青春期 问题 , “ 早 发现 , 早诊断, 早治疗” , 让 青 春期 问题 得 到 及 时 、

苏教版高中数学选修(2-1)课件3.1.1空间向量及其运算

苏教版高中数学选修(2-1)课件3.1.1空间向量及其运算
高中数学课件
(金戈铁骑 整理制作)
空间向量及运算
思考: 一个质量分布均匀的正三角形钢
板,重量为500N,在它的三个顶点处同时 受力,每个力与它相邻的三角形两边之间 的夹角都是60度,且大小均为200N,问钢 板将如何运动?
F1
F2
O F3
G
从建筑物上找向量的影子
在空间里既有 大小又有方向 的量叫做空间
减法 运算
减平法 行:四三边角形向形对法法量则于则,空a间,b任,(a意≠0的)两,个b
运 算
加法交换律 a与 ba共b 线a 的充加法要交换条律件a 是b b a 加法结合律 存在实数λ,加法使结合b律= λ a
律 (a b) c a (b c)
(a b) c a (b c)
做共线向量(或平行向量),记作
a // b
规定零向量与任何向量共线
探究三:空间向量的加法是否满足交换律?
C a+b B
b
O
A
a 空间向量加法交换律: a +b = b + a
空间向量的加法是否满足结合律?
(a b) c = a (b c)
O
O
a a
b +c
A
b
B
c
C
A
b
C
Bc
(空间向量)
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb

苏教版数学选修2-1:3.1 空间向量及其运算3.1.2

苏教版数学选修2-1:3.1 空间向量及其运算3.1.2

1.有4个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中正确的是________(填序号).解析:命题①正确,命题②③不正确,因命题②中若a ∥b ,则P 不能用a ,b 表示,命题③中,若M ,A ,B 三点共线,则MP →也不能用MA →、MB →表示.答案:①2.已知空间四点A 、B 、C 、D 共面,若对空间中任一点O 有xOA →+yOB →+zOC →+OD →=0,则x +y +z =__________.解析:由xOA →+yOB →+zOC →+OD →=0,得OD →=(-x )OA →+(-y )OB →+(-z )OC →, ∴(-x )+(-y )+(-z )=1. ∴x +y +z =-1. 答案:-13.已知P ,A ,B ,C 四点共面且对于空间任一点O 都有OP →=2OA →+43OB →+λOC →,则λ=________.解析:因为P ,A ,B ,C 四点共面,所以OP →=xOA →+yOB →+zOC →,且x +y +z =1,所以2+43+λ=1,得λ=-73. 答案:-73[A 级 基础达标]1.下列命题中正确的个数是__________.①如果a ,b ,c 共面,b ,c ,d 也共面,则a ,b ,c ,d 共面; ②已知直线a 的方向向量a 与平面α平行,即a ∥α,则a ∥α;③若P 、M 、A 、B 共面,则一定存在惟一实数x ,y ,使MP →=xMA →+yMB →;反之,也成立;④对空间任一点O 与不共线的A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 共面.解析:①错,如果b ,c 共线,则a ,b ,c 共面,b ,c ,d 也共面,易知a ,b ,c ,d 不一定共面;②错,若a ∥α,可能a 在平面α内;③错,MP →=xMA →+yMB →使P 、M 、A 、B 四点共面,其前提是M 、A 、B 不共线;④错,前提是O 点与A 、B 、C 不共面.答案:02.以下命题:①两个共线向量是指在同一直线上的两个向量; ②共线的两个向量互相平行;③共面的三个向量是指在同一平面内的三个向量; ④共面的三个向量是指平行于同一平面的三个向量.其中正确命题的序号是__________(把所有正确命题的序号都填上). 解析:根据共线向量、共面向量的定义易知②④正确. 答案:②④3.已知点M 在平面ABC 内,并且对空间任一点O ,OM →=x OA →+13OB →+13OC →,则x 的值为__________.解析:由题意知,x +13+13=1,∴x =13.答案:134.已知O 是空间任意一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA→=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =__________.解析:由A 、B 、C 、D 四点共面知OA →=-2x ·OB →+(-3y )·OC →+(-4z )·OD →,所以-2x -3y -4z =1,即2x +3y +4z =-1.答案:-15.对于空间任一点O 和不共线的三点A 、B 、C ,且有6OP →=OA →+2OB →+3OC →,则__________四点必共面.解析:由6 OP →=OA →+2OB →+3OC →,得OP →=16OA →+26OB →+36OC →,所以P 、A 、B 、C 四点共面.答案:P 、A 、B 、C 6.如图,已知空间四边形OABC 中,M 、N 分别是对边OA 、BC 的中点,点G 在MN 上,且MG →=2GN →,设OA →=a ,OB →=b ,OC →=c ,OG →=x a +y b +z c ,则x 、y 、z 的值分别为多少?解:由线段中点的向量表达式,得 OG →=OM →+MG →=OM →+23MN →=12OA →+23(MO →+OC →+CN →) =12a +23[-12a +c +12(b -c )] =12a -13a +23c +13b -13c =16a +13b +13c , ∵OG →=x a +y b +z c ,∴x =16,y =13,z =13.7.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C ∥平面ODC 1.证明:设C 1B 1→=a ,C 1D 1→=b ,C 1C →=c ,所以B 1C →=c -a .又因为O 是B 1D 1的中点,所以C 1O →=12(a +b ).OD 1→=C 1D 1→-C 1O →=b -12(a +b )=12(b -a ).因为D 1D C 1C ,所以D 1D →=c .所以OD →=OD 1→+D 1D →=12(b -a )+c .若存在实数x ,y ,使得B 1C →=xOD →+yOC 1→成立,则c -a =x [12(b -a )+c ]+y [-12(a +b )]=-12(x +y )a +12(x -y )b +x c .因为a ,b ,c 不共线,所以⎩⎪⎨⎪⎧12(x +y )=1,12(x -y )=0,x =1,解得⎩⎪⎨⎪⎧x =1,y =1.所以B 1C →=OD →+OC 1→,则B 1C →,OD →,OC 1→是共面向量, 又因为B 1C 不在OD ,OC 1所确定的平面ODC 1内, 所以B 1C ∥平面ODC 1.[B 级 能力提升]8.已知a ,b ,c 是不共面的三个向量,且实数x ,y ,z 使x a +y b +z c =0,则x 2+y 2+z 2=__________.解析:由共面向量基本定理可知a ,b ,c 不共面时,x a +y b +z c =0必有x =y =z =0,∴x 2+y 2+z 2=0.答案:09.已知空间四边形ABCD ,连结AC 、BD ,设M 、G 分别是BC 、CD 的中点,则AB →+12(BD→+BC →+DC →)=__________.解析:原式=AB →+(12BD →+12BC →+12DC →)=AB →+BG →+GC →=AB →+BC →=AC →.答案:AC →10.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,若OM →=2OA →-OB →-OC →,证明:点M 不在平面ABC 内.证明:假设M 在平面ABC 内,则存在实数对(x ,y ),使AM →=xAB →+yAC →(*),于是对空间任意一点O ,O 在平面ABC 外,OM →=(1-x -y )OA →+xOB →+yOC →,比较原式,得⎩⎪⎨⎪⎧1-x -y =2,x =-1,y =-1.此方程组无解,这与假设相矛盾. 所以假设不成立,所以不存在实数对(x ,y ),使(*)式成立,所以M 与A 、B 、C 不共面,即M 不在平面ABC 内.11.(创新题)已知正方体ABCD -A 1B 1C 1D 1,P ,M 为空间任意两点,若PM →=PB 1→+7BA →+6AA 1→+4A 1D 1→,试问M 点是否一定在平面BA 1D 1内?并证明你的结论.解:PM →=PB 1→+7BA →+6AA 1→+4A 1D 1→ =PB 1→-AA 1→+7(BA →+AA 1→)+4A 1D 1→ =PB 1→-BB 1→+7BA 1→+4A 1D 1→ =PB 1→+B 1B →+7BA 1→+4A 1D 1→ =PB →+7BA 1→+4A 1D 1→ =PB →+7(BP →+P A 1→)+4(A 1P →+PD 1→)=-6PB →+3P A 1→+4PD 1→,由-6+3+4=1,得M ,B ,A 1,D 1四点共面, 故M 点在平面BA 1D 1内.。

选修2-1-第三章-空间向量及其运算知识点

选修2-1-第三章-空间向量及其运算知识点

空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

人教版数学高二数学选修2-1 3.1空间向量及其运算教材解读

高中新课标数学选修(2-1)空间向量及其运算教材解读山东 尹承利一、空间向量及其运算 1.空间向量及其加减与数乘运算(1)空间向量:在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.零向量、单位向量、相反向量、相等向量、共线(平行)向量、方向向量等概念与平面向量的概念基本相同.(2)空间向量的加减与数乘运算①空间向量的加法、减法与数乘运算与平面向量的运算基本相同;②首尾相接的若干个向量之和,等于由起始向量的起始点指向末尾向量的终点的向量.如A B B C C D A D++=,A BB C C D D A +++=0等.2.共线向量的充要条件(1)共线向量的充要条件:对空间任意两个向量()≠0,,a b b a b的充要条件是存在实数λ,使abλ=.(2)空间直线的向量表过式:如果l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使O P O A t =+a. ①在l 上取A B=a,则①式可化为O PO A t A B=+. ②①和②都称为空间直线的向量表示式,由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.(3)利用向量之间的关系可以判断空间任意三点共线.其依据是:空间三点P A B ,,共线()P B t P A O P O A t A B t ⇔=⇔=+∈R .3.共面向量的充要条件(1)共面向理:平行于同一个平面的向量,叫做共面向量. 注:空间任意两个向量总是共面的.(2)共面向量的充要条件:如果两个向量,a b 不共线,那么向量p与向量a b ,共面的充要条件是存在惟一的有序实数对(),x y ,使p x =a y +b.(3)空间平面A B C 的向量表示式:空间一点P 位于平面A B C 内的充要条件是存在有序实数对x y ,,使A Px A B y A C=+;或对空间任意一点O ,有O PO A x A B y A C=++. ③③式称为平面A B C 的向量表示式.由此可知,空间中任意平面由空间一点及两个不共线向量惟一确定.(4)利用向量判断四点共面.其依据是:对于空间任一点O 和不共线的三点A B C ,,,满足向量关系式O Px O A y O B z O C=++,且当且仅当1x y z ++=时,四点P A B C ,,,共面.(即课本第95页思考2) 4.空间向量的数量积运算(1)空间两个向量的夹角:已知两个非零向量,a b 在空间任取一点O ,作O A =a,O B=b,则A O B ∠叫做向量,a b 的夹角,记作,a b.如果,a bπ2=,那么向量,a b 互相垂直,记作ab⊥.注:0πa b ,≤≤.(2)向量的数量积:两个非零向量,a b 的数量积c o s a b a b a b=,,.(3)数量积的性质:①零向量与任何向量的数量积为0,即aa =00··0=;②a aaa==22·,即a =;③c o s a b a b a b=,·;④ab a b ⊥⇔·0=.(4)数量积的运算律: ①()()a ba b λλ=··;②a bb a=··(交换律);③()a bc a b a c+=+···(分配律).注:向量的数量积不满足结合律,即对于三个均不为零向量的向量()()a b c a b c a b c ≠,,,··.(5)利用空间两个非零向量的数量积为零,可以推证空间线、面的垂直关系.如证明三垂线定理及逆定理(课本第98页例2)、直线和平面垂直的判定定理(例3)等.二、空间向量的坐标表示 1.空间向量基本定理(1)定理:如果三个向量a b c ,,不共面,那么对空间任一向量p,存在有序实数组{},,x y z ,使得p x =+a y b z +c,共中{},,a b c 叫做空间的一个基底,a b c ,,都叫做基向量.注:①空间任何三个不共面的向量都可构成空间的一个基成; ②空间任意一个向量都可以用三个不共面的向量表示出来.(2)单位正交基底:如果123e e e ,,是有公共起点O 的三个两两垂直的单位向量,则称{}123,,e e e 为空间的单位正交基底.2.空间向量运算的坐标表示设a123()=,,a a a ,b123()=,,b b b ,则(1)空间向量的直角坐标运算a b +=112233()+++,,a b a b a b ,ab -=112233()a b a b a b ---,,;λ=a 123()λλλ,,a a a ;a b=·112233++a b a b a b .(2)两个向量平行、垂直的充要条件的坐标表示 ①λ⇔=∥a b a b 112233()a b a b a b λλλλ⇔===∈R ,,;②ab ⊥1122330⇔++=a b a b a b 。

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案



∣→∣ ∣ ∣ →
∣→∣ ∣ ∣


④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )

→ →


中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2

苏教版选修(2-1)3.1《空间向量及其运算》word教案

苏教版选修(2-1)3.1《空间向量及其运算》word教案

3.1空间向量及其运算3.1.1空间向量的线性运算教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa =0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.起点与重点重合的向量叫做零向量。

人教版选修2-1第三章3.1空间向量及其运算 易海明

人教版选修2-1第三章3.1空间向量及其运算 易海明
§3.1 空间向量及其运算
授课人:易海明
制作人:易海明
※学习目标
熟练掌握空间向量的加法,减法, 向量的数乘运算,向量的数量积运 算及其坐标表示;
※学习过程 一、课前准备:(阅读课本p84) 复习: 1. 具有 和 的量叫向量, 叫向量的模; 叫零向量, 记作 ; 具有 叫单位向量. 2.相反向量与相等向量:————
例2 如图,已知空间四边形ABCD, 连接AC,BD,E,F,G分别是BC, CD,DB的中点,化简: (1)AB+BC+CD; (2)AB+EC+GD.
※ 当堂检测(时量:5分钟 满分: 10分)计分: 1.P86:练习1、2.
※小结:
空间向量的有关概念 应用
※课后作业 预习下一节
※ 动手试试 1.在下列命题中:①两个空间向量相 等,则它们的起点相同,终点也相同; ②若空间向量a、b满足|a|= |b|,则 a=b;③在正方体ABCD-A1B1C1D1, 必有AC=A1C1;④若空间向量m、n、 p满足m=n,n=p,则m=p.其中正确 命题的个数为( ) A.0 B. 1 C. 2 D. 3
3.向量的加法和减法的运算法则 有 法则和 法则. 4.实数λ与向量a的积是一个 量,记 作 ,其长度和方向规定如下: (1)|λa|= . (2)当λ>0时,λa与a ; 当λ<0时,λa与a ; 当λ=0时,λa= .
Байду номын сангаас
4. 向量加法和数乘向量运算律: 交换律:a+b= 结合律:(a+ b)+c= 数乘分配律:λ(a+b)=
2.在平行六面体ABCD-A1B1C1D1中, 向量AB=a,AD=b,AA1=c ,则D1B=( ) A.a+b-c B.a+b+c C.a-b-c D.-a+b-c 3.已知空间四边形ABCD,连接AC、 BD,则AB+BC+CD为( ) A.AD B.BD C. AC D. 0

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

于平面MAB内的充要 条件是存在有序实数

对(x,y),使 MP
= x MA+y MB ,
或对空间任意一点O
若在l上取 AB =a,则①式可化 来说,有 OP =OM

OP= OA +t AB.
+xMA+ y MB .
小结
1.λa是一个向量.当λ=0或a=0时,λa=0. 2.平面向量的数乘运算的运算律推广到空间向量的数乘运 算,结论仍然成立. 3.共线向量的充要条件及其推论是证明共线(平行)问题的重 要依据,条件b≠0不可遗漏.
4.直线的方向向量是指与直线平行或共线的向量.一条 直线的方向向量有无限多个,它们的方向相同或相反.
5.共面向量的充要条件给出了空间平面的向量表示式, 说明空间中任意一个平面都可以由一点及两个不共线的平面 向量表示出来.另外,还可以用OP =xOA+yOB+zOC ,且 x +y+z=1 判断 P,A,B,C 四点共面.
跟踪训练
5.在下列条件中,使 M 与 A,B,C 一定共面的是( ) A.OM =3OA-2OB-OC B.OM +OA+OB+OC =0 C. MA+ MB+ MC =0 D.OM =14OB-OA+12OC 解析:∵ MA+ MB+ MC =0, ∴ MA=- MB- MC , ∴M 与 A,B,C 必共面.
DF =-CF

将②代入①中,两式相加得 2 EF = AD+ BC .
所以 EF =12 AD+12BC ,即 EF 与 BC , AD共面.
[一点通] 利用向量法证明向量共面问题,关键是熟练 进行向量的表示,恰当应用向量共面的充要条件.解答本 题实质上是证明存在实数 x,y 使向量 EF =x AD+yBC 成 立,也就是用空间向量的加、减法则及运算律,结合图形, 用 AD, BC 表示 EF .

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

高二选修(2—1)第三章3.1空间向量及其运算测试题一、选择题1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( )A .(16,0,4)B .(8,-16,4)C .(8,16,4)D .(8,0,4)2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →= ( )A .a +b -cB .a -b +cC .-a +b +cD .-a +b -c3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为12的是 ( ) A. ⋅ B. BD AB ⋅ C.DA AB ⋅ D.⋅ 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A.OM →=2OA →-OB →-OC →B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=05.若向量{,,}是空间的一个基底,向量-=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( )A .aB .bC .cD .2a6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是 ( )A .①②B .②③C .③④D .①④7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是A .1B .15C .35D .-2098.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( )A .4B .15C .7D .39.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为 ( )A .平行四边形B .梯形C .长方形D .空间四边形10.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A.⎝⎛⎭⎫14,14,14B.⎝⎛⎭⎫34,34,34C.⎝⎛⎭⎫13,13,13D.⎝⎛⎭⎫23,23,23 11. 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a , AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +c 12.给出命题:①若a 与b 共线,则a 与b 所在的直线平行;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM →=13OA → +13OB →+13OC ,则点M 一定在平面ABC 上,且在△ABC 的内部.上述命题中的真命 题的个数为( )A .0B .1C .2D .3二、填空题13.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填“共面”或“不共面”).14.已知向量a =(-1,2,3),b =(1,1,1),则向量a 在b 方向上的投影为________.15.已知G 是△ABC 的重心,O 是空间与G 不重合的任一点,若OA →+OB →+OC →=λOG →,则λ=________.16.如果三点A (1,5,-2),B (2,4,1),C (a,3,b +2)共线,那么a -b =________.三、解答题17. 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E 、F 分别是AB 、AD 的中点,计算: (1)EF →·BA →; (2)EF →·BD →; (3)EF →·DC →.18.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC = 45°,∠OAB =60°,求OA 与BC 夹角的余弦值.19.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 分别与向量AB →,AC →垂直,且|a |=3,求向量a 的坐标.21. 已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.22.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.解析:建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1) C 1E →=(0,-2,-2),CF →=(3,-1,2),C 1E →·CF →=0+2-2=0, 所以CF ⊥C 1E .(2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ),由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧ m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0.可取m =(0,2,1). 设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32), 可取n =(1,3,0).设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m|·|n |=63×2=22,所以θ=45°, 即所求二面角E -CF -C 1的大小为45°.1.D 提示:4a +2b =4(3,-2,1)+2(-2,4,0)=(12,-8,4)+(-4,8,0)=(8,0,4).2. D 提示: A 1B →=A 1A →+AB →=-c +(b -a )=-a +b -c .3\ D 提示:向量的夹角是两个向量始点放在一起时所成的角,经检验只有⋅=12. 4. C 提示:MA →+MB →+MC →=0,即MA →=-(MB →+MC →),所以M 与A 、B 、C 共面.5\ 解析 C ∵a +b ,a -b 分别与a 、b 、2a 共面,∴它们分别与a +b ,a -b 均不 能构成一组基底.6. A 提示:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD →1;②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→= BD 1→;③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→,故选A.7. D 提示:∵k a -b =(k +1,-k -2,k -1),a -3b =(4,-7,-2),(k a -b )⊥(a -3b ),∴4(k +1)-7(-k -2)-2(k -1)=0,∴k =-209. 8\解析 D ∵b +c =(2,2,5),∴a ·(b +c )=(2,-3,1)·(2,2,5)=3.9解析 D 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边 形的外角和是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.10.解析 A OG 1→=OA →+AG 1→=OA →+23×12(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)] =13(OA →+OB →+OC →),由OG =3GG 1知,OG →=34OG 1→=14(OA →+OB →+OC →), ∴(x ,y ,z )=⎝⎛⎭⎫14,14,14.11 A 解析 由图形知:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=-12a +12b +c . 12. B 解析 ①中a 与b 所在的直线也有可能重合,故①是假命题;②中当a =0,b ≠0 时,找不到实数λ,使b =λa ,故②是假命题;可以证明③中A ,B ,C ,M 四点共面,因为13OA →+13OB →+13OC →=OM →,等式两边同时加上MO →,则13(MO →+OA →)+13(MO →+ OB →)+13(MO →+OC →)=0,即MA →+MB →+MC →=0,MA →=-MB →-MC →,则MA →与MB →,MC → 共面,又M 是三个有向线段的公共点,故A ,B ,C ,M 四点共面,所以M 是△ABC 的重心,所以点M 在平面ABC 上,且在△ABC 的内部,故③是真命题.13. 解析 AB →=(3,4,5),AC →=(1,2,2),AD →=(9,14,16),设AD →=xAB →+yAC →.即(9,14,16)=(3x +y,4x +2y,5x +2y ),∴⎩⎪⎨⎪⎧x =2,y =3,从而A 、B 、C 、D 四点共面. 14. 433 解析 向量a 在b 方向上的投影为:|a |·cos a ,b =14×-1+2+314×3=433. 15. 3 解析 因为OA →+AG →=OG →,OB →+BG →=OG →,OC →+CG →=OG →,且AG →+BG →+CG →=0,所以OA →+OB →+OC →=3OG →.16. 1 解析:AB →=(1,-1,3),BC →=(a -2,-1,b +1),若使A 、B 、C 三点共线,须满 足BC →=λAB →,即(a -2,-1,b +1)=λ(1,-1,3),所以⎩⎪⎨⎪⎧a -2=λ,-1=-λ,b +1=3λ,解得a =3,b =2,所以a -b =1.17. 解析 (1)EF →·BA →=12BD →·BA → =12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=14.(2)EF →·BD →=12BD →·BD →=12cos 0°=12. (3)EF →·DC →=12BD →·DC →=12|BD →||DC →|cos 〈BD →,DC →〉=12cos 120°=-14. 18. 解析 ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225. ∴OA 与BC 夹角的余弦值为3-225. 19.解析 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12, ∴∠BAC =60°∴S =|AB →||AC →|sin 60°=7 3.(2)设a =(x ,y ,z ),则a ⊥AB →⇒-2x -y +3z =0,a ⊥AC →⇒x -3y +2z =0,|a |=3⇒x 2+y 2+z 2=3,解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).21.解析∵A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →,∴a =(1,1,0),b =(-1,0,2).(1) cos θ=a·b |a||b|=-1+0+02×5=-1010, ∴a 与b 的夹角θ的余弦值为-1010. (2) ∵k a +b =k (1,1,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,则k =-52或k =2.。

人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习(共24张PPT)教育课件

人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习(共24张PPT)教育课件

为 60°.
MN = AN - AM =1( AC + AD)-1 AB=1(q+r-p),
2
22
∴ MN ·AB=1(q+r-p)·p 2
=1(q·p+r·p-p2) 2
=1(a2cos 60°+a2cos 60°-a2)=0. 2
∴ MN ⊥ AB.即 MN⊥AB.
(2)求 MN 的长; 解由(1)可知 MN =1(q+r-p),


























实 我
















我 是
















, 算

A.2,1 2
B.-1,1 32
C.-3,2
D.2,2
3、已知 P(-2,0,2),Q(-1,1,2),R(-3,0,4),设 a= PQ ,b= PR ,c= QR ,
若实数 k 使得 ka+b 与 c 垂直,则 k 的值为___2_____.









那有 就些 在人 于经 坚常 持做 。一
(1)证明 设C→A=a,C→B=b,CC→′=c,
根据题意,|a|=|b|=|c|且 a·b=b·c=c·a=0,

人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习课件(共24张PPT)

人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习课件(共24张PPT)

为 60°.
MN = AN - AM =1( AC + AD)-1 AB=1(q+r-p),
2பைடு நூலகம்
22
∴ MN ·AB=1(q+r-p)·p 2
=1(q·p+r·p-p2) 2
=1(a2cos 60°+a2cos 60°-a2)=0. 2
∴ MN ⊥ AB.即 MN⊥AB.
(2)求 MN 的长; 解由(1)可知 MN =1(q+r-p),
(2)解 AC→′=-a+c,C→E=b+1c, 2
∴|AC→′|= 2|a|,|C→E|= 5|a|. 2
AC→′·C→E=(-a+c)·(b+1c)=1c2=1|a|2, 2 22
∴cos〈A→C′,C→E〉=
1|a|2 2
= 10.
2· 5|a|2 10
2
即异面直线 CE 与 AC′所成角的余弦值为 10. 10
A.2,1 2
B.-1,1 32
C.-3,2
D.2,2
3、已知 P(-2,0,2),Q(-1,1,2),R(-3,0,4),设 a= PQ ,b= PR ,c= QR ,
若实数 k 使得 ka+b 与 c 垂直,则 k 的值为___2_____.
(1)证明 设C→A=a,C→B=b,CC→′=c,
根据题意,|a|=|b|=|c|且 a·b=b·c=c·a=0,
∴C→E=b+1c,A→′D=-c+1b-1a,
2
22
∴C→E·A→′D=-1c2+1b2=0. 22
∴C→E⊥A→′D,即 CE⊥A′D.
空间向量的数量积及其应用
【训练 3】 如图,在直三棱柱 ABCA′B′C′中,AC=BC=AA′, ∠ACB=90°,D,E 分别为 AB,BB′的中点. (1)求证:CE⊥A′D;(2)求异面直线 CE 与 AC′所成角的余弦值.

空间向量及其线性运算——教学设计

空间向量及其线性运算——教学设计

选修2-1第3章3.1 空间向量及其线性运算高中数学教学设计师:同学们不仅能够善于动脑,而且能够团结互助,非常好!老师很高兴。

在各位同学的思考下我们完善了空间向量的相关概念。

老师这有一个疑问空间中任意两个向量是共面的。

对不对?(提问)那我们在计算空间向量时不就可以把空间向量移到同一个平面上进行计算了吗?同学们能不能根据这一想法结合课本总结一下空间向量的加法、减法、数乘的定义呢?各小组再次快速的讨论下。

教师巡视各小组给出指导及建议。

老师提问学生回答并且板书。

师:同学们都非常的棒,总结的很到位,那让我实际操作下,试试看各位同学是真本事还是纸上谈兵。

例1、(课件展示)请学生板演生:对学生讨论生:空间向量的加法减法数乘的定义与平面向量一样→→→→→→→→→→=-=+=+=aOPOAOBABbaABOAOBλ满足的预算律平面向量的运算律相同→→→→→→→→→→→→→→+=+++=+++=+babacbacbaabbaλλλ)()(分配率结合律交换律其余学生在座位完成例题,板书设计教学反思。

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN空间向量及其运算课时分配:第一课空间向量及其加减运算 1个课时第二课空间向量的数乘运算 1个课时第三课空间向量的数量积运算 1个课时第四课空间向量运算的坐标表示1个课时3. 1.1 空间向量及其加减运算【教学目标】1.了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。

【教学重点】点在已知平面内的充要条件。

共线、共面定理及其应用。

【教学难点】对点在已知平面内的充要条件的理解与运用。

b a AB OA OB+=+=;b a OB OA BA-=-=;)(R a OP ∈=λλ3.平行六面体:平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。

4.平面向量共线定理方向相同或者相反的非零向量叫做平行向量。

由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量。

向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa 。

这个定理称为平面向量共线定理,要注意其中对向量a 的非零要求。

条有向线段来表示。

思考:运算律:(1)加法交换律:a b b a+=+ (2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(C BAOb bb aa a C'B'A'D'DABC数t 满足等式t OA OP +=a。

其中向量a 叫做直线l 的方向向量。

选修2-1 第三章 3.1.2 空间向量的数乘运算

选修2-1  第三章 3.1.2 空间向量的数乘运算
[解析] M、N 分别是 AC、BF 的中点,而 ABCD、ABEF 都是平行四边形, → → → → 1→ → 1→ ∴MN=MA+AF+FN=2CA+AF+2FB.
→ → → → → 又∵MN=MC+CE+EB+BN 1 → → → 1→ =-2CA+CE-AF-2FB, 1→ → 1→ 1→ → → 1→ ∴2CA+AF+2FB=-2CA+CE-AF-2FB. → → → → → → → ∴CE=CA+2AF+FB=2(MA+AF+FN). → → → → → → ∴CE=2MN,∴CE∥MN,即CE与MN共线.
新知导学
6.a∥α是指a所在的直线____________ 在平面α内 或_____________. 平行于平面α 同一个平面 的向量叫做共面向量,共面向量所在 平行于____________ 异面 . 的直线可能相交、平行或________
7.空间任意两个向量总是共面的, 但空间任 意三个向量就不一定共面了.例如,图中的长 → → → 方体,向量AB、AC、AD,无论怎样平移都不 能使它们在同一平面内.
指明两向量有公共点,同理证明二直线平行方法类似.
如右图,已知四边形 ABCD 是空间 四边形, E、 H 分别是边 AB、 AD 的中点, → F、G 分别是边 CB、CD 上的点,且CF= 2→ → 2 → 3CB,CG=3CD. 求证:四边形 EFGH 是梯形.
[证明] ∵E、H 分别是 AB、AD 的中点, → 1→ → 1 → ∴AE=2AB,AH=2AD. → 2→ → 2 → ∵CF=3CB,CG=3CD, → 3→ → 3 → ∴CB=2CF,CD=2CG,
共线向量 温故知新 回顾复习平面向量中数乘向量与共线向量的概念与定理, 运算律. 思维导航 1 .参照平面向量思考,空间向量中,数乘向量的定义, 运算律,共线向量定理还成立吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量及其运算1理解空间向量的有关概念,掌握向量的线性运算;2 掌握空间向量定理及坐标表示;3 能运用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题。

1、向量的概念:我们把既有大小又有方向的量叫向量。

2、向量与有向线段的区别:有向线段:具有方向的线段就叫做有向线段。

三个要素:起点、方向、单位长度.(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,即为相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.3、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。

0的方向是任意的.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.4、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的......起点无关.....5、共线向量与平行向量关系:(1)平行向量的定义:①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行.(2)向量a、b、c平行,记作a∥b∥c.平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段.....的起点无关).......6、实数与向量的积:实数与向量的积是一个向量,记作: (1);(2)>0时与方向相同;<0时与方向相反;=0时=;(3)运算定律1、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量,设(单位正交基底)为坐标向量,则存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作.在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标.2、空间向量的直角坐标运算律(1)若,,则,,, ,(2)若,,则.λ→a λ→a ||||||→→=a a λλλλ→a a λλ→a a λλ→a →0.)(,)(,)()(→→→→→→→→→+=++=+=b a b a a a a a a λλλμλμλλμμλa ,,i j k 123(,,)a a a 123a a i a j a k =++123(,,)a a a a O xyz -123(,,)a a a a =O xyz -A (,,)x y z OA xi yj zk =++(,,)x y z A O xyz -(,,)A x y z x y z 123(,,)a a a a =123(,,)b b b b =112233(,,)a b a b a b a b +=+++112233(,,)a b a b a b a b -=---123(,,)()a a a a R λλλλλ=∈112233//,,()a b a b a b a b R λλλλ⇔===∈111(,,)A x y z 222(,,)B x y z 212121(,,)AB x x y y z z =---一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(3)3、空间向量直角坐标的数量积1、设是空间两个非零向量,我们把数量叫作向量的数量积,记作,即= 规定:零向量与任一向量的数量积为0。

2、模长公式3、两点间的距离公式:若,, 则或4、夹角:. 注:①是两个非零向量);②。

5、 空间向量数量积的性质:①. ②. ③.6、运算律①; ②; ③4、直线的方向向量及平面的法向量1、直线的方向向量:我们把直线上的向量以及与共线的向量叫做直线的方向向量2、平面的法向量:如果表示向量的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作,如果,那么向量叫做平面α的法向量。

注:①若,则称直线为平面的法线;//a b b a λ⇔=112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩,><,cos ||||,b a ⋅b a ⋅><,cos ||||21||a a a x =⋅=+111(,,)A x y z 222(,,)B x y z 2||(AB AB x ==,A B d =cos ||||a ba b a b ⋅⋅=⋅0(,a b a b a b ⊥⇔⋅=22||a a a a =⋅=||cos ,a e a a e ⋅=<>0a b a b ⊥⇔⋅=2||a a a =⋅a b b a ⋅=⋅)()(⋅=⋅λλ⋅+⋅=+⋅)(l l α⊥α⊥l α⊥l αA BCDE②平面的法向量就是法线的方向向量。

③给定平面的法向量及平面上一点的坐标,可以确定一个平面。

3、在空间求平面的法向量的方法:(1)直接法:找一条与平面垂直的直线,求该直线的方向向量。

(2)待定系数法:建立空间直接坐标系①设平面的法向量为②在平面内找两个不共线的向量和③建立方程组:④解方程组,取其中的一组解即可。

5、证明1、证明两直线平行已知两直线和, ,则存在唯一的实数使2、证明直线和平面平行(1)已知直线且三点不共线,则∥存在有序实数对使(2)已知直线和平面的法向量,则∥ 3、证明两个平面平行已知两个不重合平面,法向量分别为,则∥ 4、证明两直线垂直已知直线。

,则 5、证明直线和平面垂直已知直线,且A 、B ,面的法向量为,则6、证明两个平面垂直已知两个平面,两个平面的法向量分别为,则(,,)n x y z =111(,,)a x y z =222(,,)b x y z =0n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b b D C a B A ∈∈,,,⇔b a //λAB CD λ=αα∈∈⊄E D C a B A a ,,,,,a ⇔αμλ,AB CD CE λμ=+,,,a B A a ∈⊄ααa n AB ⊥⇔αβα,n m ,α//⇔βb a ,b D C a B A ∈∈,,,0=•⇔⊥b a α和平面a a ∈α//a AB m α⊥⇔βα,,m n m n αβ⊥⇔⊥考点一:空间向量的线性运算例1、如图3-1-6,已知平行六面体ABCD A B C D ''''-.求证:2.AC AB AD AC '''++=例2、若向量MA 、MB 、MC 的起点与终点M 、A 、B 、C 互不重合且无三点共线,且满足下列关系(O 是空间任一点),则能使向量MA 、MB 、MC 成为空间一组基底的关系是( )A.111333OM OA OB OC=++B.MA MB MC ≠+C.OM OA OB OC =++D.2MA MB MC =-例3、如图,在底面ABCD 为平行四边形的四棱柱1111ABCD A B C D -中,M 是AC 与BD 的交点,若AB a =,11A D b =,1A A c =,则下列向量中与1BM 相等的向量是 ( ) A .1122a b c -++ B .1122a b c ++ C .1122a b c -+ D .1122a b c --+ 考点二:空间向量的坐标表示例1、如图所示,在正四棱柱1111ABCD A B C D -中,O ,1O 分别为底面ABCD 、底面1111A B C D 的中心,6AB =,14AA =,M 为1B B 的中点,N 在1C C 上,且1:1:3C N NC =. (1)以O 为原点,分别以OA ,OB ,1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,求图中各点的坐标.(2)以D 为原点,分别以DA ,DC ,1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,求图中各点的坐标.考点三:空间向量的向量积例1、已知向量()1,1,0a =,()1,0,2b =-,且ka b +与2a b -互相垂直,则k 的值为( ) A .1 B .15 C .35 D .75例2、若()()2,3,,2,6,8a m b n ==且,a b 为共线向量,则m n +的值为( )A .7B .52C .6D .8 例3、已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则与的夹角为( )A .30°B .45°C .60°D .90°考点四:空间向量在立体几何中的简单运用例1、已知正方体1111ABCD A B C D -的棱长为a ,则11A B BC ⋅=__ _____. 例2、P 是平面ABCD 外的点,四边形ABCD 是平行四边形,),0,24(),412(,,,+--=AD AB )121(--=,,AP ,求证PA 垂直平面ABCD .1、若A (1,﹣2,1),B (4,2,3),C (6,﹣9,4),则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2、点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于( )A .13B .14 C .32 D .133、若3,),,3,1(),0,2,2(π>=<==b a z b a ,则z 等于( )A.B.C.D.4、已知向量(1,,3)x =-a ,(2,4,)y =-b ,且//a b ,那么x y +等于( )A .4-B .2-C .2D .45、若点(,5,21)A x x x --,(1,2,2)B x x +-,当AB 取最小值时,x 的值等于( ).A .19B .78- C .78 D .14196、已知向量()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,且A 、B 、C 三点共线,则=k ________.8、若(2,3,1)a =-,(2,1,3)b =-,则,a b 为邻边的平行四边形的面积为 .9、已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.1、在正三棱柱111C B A ABC -中,已知2=AB ,21=CC ,则异面直线1AB 和1BC 所成角的正弦值为( )A.1B.77C.21D.232、已知点A (1,-2,0)和向量a=(-3,4,12),若向量//AB a,且a AB 2=,则B 点的坐标为( )A .(-5,6,24)B .(-5,6,24)或(7,-10,-24)C .(-5,16,-24)D .(-5,16,-24)或(7,-16,24) 3、在以下三个命题中,真命题的个数是( )①三个非零向量a 、b 、c 不能构成空间的一个基底,则a 、b 、c 共面;②若两个非零向量a 、b 与任何一个向量都不能构成空间的一个基底,则a 、b 共线; ③若a 、b 是两个不共线的向量,且(),,0λμλμλμ=+∈≠R c a b ,则{},,a b c 构成空间的一个基底.A .0B .1C .2D .3 4、下列各组向量中不平行的是( )A .(1,2,2)(2,4,4)a b =-=--,B .(1,0,0)(3,0,0)c d ==-,C .(2,3,0)(0,0,0)e f ==,D .(2,3,5)(16,24,40)g h =-=,5、已知a,b 均为单位向量,它们的夹角为60︒,那么3+a b 等于( )A.7B.10C.13 D .46、已知P 是正六边形ABCDEF 外一点,O 为正六边形ABCDEF 的中心,则PA PB PC PD PE PF +++++等于( )A.PO B .3PO C .6PO D .0 7、如图,在正方体1111ABCD A B C D -中,若11BD xAD yAB zAA =++,则x y z ++的值为( )A .3B .1C .1-D .3-8、a =(1-t ,1-t ,t ),b =(2,t ,t ),则|b -|的最小值是( )aA.5.5 C.5 D .1159、已知向量(0,1,1)a =-,(4,1,0)b =,||29a b λ+=且0λ>,则λ= .10、已知(0,0,0)O ,(2,2,2)A --,(1,4,6)B -,(,8,8)C x -,若OC AB ⊥,则x =________;若O ,A ,B ,C 四点共面,则x =__________. 11、已知.(1)若,求实数k 的值 (2)若,求实数k 的值.1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量.如位移、速度、力等 相等向量:长度相等且方向相同的向量叫做相等向量.表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移. 2.向量运算和运算率,,加法交换律:加法结合律:数乘分配律:b a +=+=b a-=-=)(R a ∈=λλ .a b b a +=+).()(c b a c b a++=++说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作∥.注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义.共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使=注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是唯一确定的实数.②判断定理:若存在唯一实数,使=(≠0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上).⑵对于确定的和,=表示空间与平行或共线,长度为 ||,当>0时与同向,当<0时与反向的所有向量⑶若直线l ∥,,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式.推论:如果 l 为经过已知点A 且平行于已知非零向量的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 ① 其中向量叫做直线l 的方向向量 在l 上取,则①式可化为 ②当时,点P 是线段AB 的中点,则 ③ ①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式.4.向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥.注意:向量∥与直线a ∥的联系与区别. 共面向量:我们把平行于同一平面的向量叫做共面向量共面向量定理 如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x 、y ,使① .)(b a b aλλλ+=+a b a ba baba a0b a b λb λaa b a b λaλλb λa a a ba b a b b aλa b λa a λa λa λaal A ∈aOP OA ta =+aa AB=.)1(t t +-=21=t ).(21OB OA OP +=a αaαa αa αaααa b pa b .b y a x p+=ABO(1)OAB(2)ABO(4)ABO(3)注:与共线向量定理一样,此定理包含性质和判定两个方面.5.空间向量基本定理:如果三个向量、、不共面,那么对空间任一向量,存在一个唯一的有序实数组,使说明:⑴由上述定理知,如果三个向量、、不共面,那么所有空间向量所组成的集合就是,这个集合可看作由向量、、生成的,所以我们把{,,}叫做空间的一个基底,,,都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于可视为与任意非零向量共线.与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是.推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组,使6.数量积(1)夹角:已知两个非零向量、,在空间任取一点O,作,,则角∠AOB叫做向量与的夹角,记作说明:⑴规定0≤≤,因而=;⑵如果=,则称与互相垂直,记作⊥;⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,图(3)中∠AOB=,图(4)中∠AOB=,从而有==.abc,,x y z.c zbyaxp++=abc{}Rzyxc zb ya xpp∈++=、、,|abcabcabczyx、、.zyx++=aba=b=ab〉〈ba,〉〈ba,π〉〈ba,〉〈ab,〉〈ba,2πabab〉〈,-π〉〈OBAO,〉〈-OBOA,〉-〈OBOA,-π〉〈OBOA,(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模.(3)向量的数量积:叫做向量、的数量积,记作.即=,向量:(4)性质与运算率⑴,⑵⊥=0,⑶(4),(5)=,(6)7.空间向量的坐标表示及运算(1)数量积的坐标运算设,,则①; ②;③. (2)共线与垂直的坐标表示设,,则,(均为非零向量).(3)模、夹角和距离公式设,,则,.设,则.〉〈b a b a,cos a b b a ⋅b a ⋅〉〈b a b a ,cos AB 方向上的正射影在eB A e a AB ea ''=〉〈=⋅,cos ||〉〈=⋅e a e a ,cos a b ⇔b a ⋅2||.a a a =⋅()()a b a b λλ⋅=⋅b a ⋅b a ⋅()a b c a b a c ⋅+=⋅+⋅()123,,a a a a =()123,,b b b b =()112233,,a b a b a b a b ±=+++()123,,a a a a λλλλ=112233a b a b a b a b ⋅=++()123,,a a a a =()123,,b b b b =112233,,a b a b a b a b a b λλλλ⇔=⇔===11223300a b a b a b a b a b ⊥⇔⋅=⇔++=,a b ()123,,a a a a =()123,,b b b b =2222123a a a a a ==++112233222222123123cos ,a b a b a ba a ab b b ⋅〈〉==⋅++++()()111222,,,,,A a b c B a b c ()()()222212121AB d AB a a b b c c ==-+-+-ABl空间向量在立体几何中的综合应用① 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;② 掌握空间向量的线性运算及其坐标表示;③ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直;④ 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系; ⑤ 能用向量方法证明有关直线和平面位置关系的一些定理;⑥ 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.(一) 知识框架(二) 空间向量空间向量:在空间,我们把具有大小和方向的量叫做向量。

相关文档
最新文档