数字信号处理翻译
数字信号处理第1章 数字信号处理的概念
1.1.4 数字信号处理的特点
从数字信号和计算机的角度(即二进制数和可编 写程序)观察,数字信号处理具有如下特点:
(1)处理精度高,它的字长通常在16比特以上,精 度可以达到1/216 ≈0.000015=0.0015%以上;
(2)改变功能灵活,数字信号处理器的功能由计算 机的程序决定,程序根据数学公式的系数编写;
v(0) sin(1) sin(2) 1.75076841 1633578
如果(1把.11该000离000散00时11间00信10号)2 用五位数来表示,并按四 舍五入的方式进行转换,得到的数字信号
v(0) 1.1100 (与前者相差 0.00000000 00110010)
这说明,由于位数的限制,二进制数字信号的因 变量不能精确表示离散时间信号的因变量。
图1.5
初始信号代表某种事物的运动变换,它经信号转 换单元可变为电信号。例如声波,它经过麦克风后变
为电信号。又如压力,它经压力传感器后变为电信号。 电信号可视为许多频率的正弦波的组合。
低通滤波单元滤除信号的部分高频成分,防止模 数转换时失去原信号的基本特征。
模数转换单元每隔一段时间测量一次模拟信号, 并将测量结果用二进制数表示。
若该数字信号等于1,并受到0.5的干扰,变为1.5; 按前面的规定,该数字信号就会变为2。这说明,这 种十进制抵抗的干扰小于0.5÷9≈5.6%。
又如,离散时间信号
v(n) 2sin(0.2n) sin(0.6n 1) sin(1.1n 2)
当n=0时,十进制的离散时间信号
v(0) sin(1) sin(2) 1.750768411633578
数字信号处理Digital Signal Processing(DSP)
• 经过A/D变换器后,不但时间离散化了,幅度也量化 了,这种信号称为数字信号。用x(n)表示。
例子
• 如4位码,只能表示24=16种不同的信号幅度, 这些幅度称为量化电平。
• 当离散时间信号幅度与量化电平不相同时, 就要以最接近的一个量化电平来近似它。
(7)估计理论,包括功率谱估计及相关函数 估计等。
(8)信号的压缩,包括语音信号与图象信号 的压缩
(9)信号的建模,包括AR,MA,ARMA, CAPON,PRONY等各种模型。
(10)其他特殊算法(同态处理、抽取与内 插、信号重建等)
(11)数字信号处理的实现。
(12) 数字信号处理的应用。
第一节 什么是数字信号处理 第二节 数字信号处理的实现 第三节 数字信号处理的应用领域 第四节 数字信号处理器
例:直流信号:仅用一个参量可以描述。阶跃信号:可用幅 度和时间两个参量描述。正弦波信号:可用幅度、频率和 相位三个参量来描述。
• 随机信号:若信号在任意时刻的取值不能精确确定,或 说取值是随机的,即它不能用有限的参量加以描述。也无 法对它的未来值确定性地预测。它只能通过统计学的方法 来描述(概率密度函数来描述)。
• 随着信息时代、数字世界的到来,数字信号处 理已成为一门极其重要的学科和技术领域。
(四)数字信号处理系统的基本组成
• 以下所讨论的是模拟信号的数字信号处理系统.
模拟 前置预 滤波器
xa(t)
PrF
x(n)
y(n)
A/D 变换器
数字信号 处理器
D/A 变换器
ADC
DSP
专业英语翻译之数字信号处理
Signal processingSignal processing is an area of electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time, to perform useful operations on those signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or digital electrical representations of time-varying or spatial-varying physical quantities. In the context of signal processing, arbitrary binary data streams and on-off signalling are not considered as signals, but only analog and digital signals that are representations of analog physical quantities.HistoryAccording to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the "digitalization" or digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s.[2]Categories of signal processingAnalog signal processingAnalog signal processing is for signals that have not been digitized, as in classical radio, telephone, radar, and television systems. This involves linear electronic circuits such as passive filters, active filters, additive mixers, integrators and delay lines. It also involves non-linear circuits such ascompandors, multiplicators (frequency mixers and voltage-controlled amplifiers), voltage-controlled filters, voltage-controlled oscillators andphase-locked loops.Discrete time signal processingDiscrete time signal processing is for sampled signals that are considered as defined only at discrete points in time, and as such are quantized in time, but not in magnitude.Analog discrete-time signal processing is a technology based on electronic devices such as sample and hold circuits, analog time-division multiplexers, analog delay lines and analog feedback shift registers. This technology was a predecessor of digital signal processing (see below), and is still used in advanced processing of gigahertz signals.The concept of discrete-time signal processing also refers to a theoretical discipline that establishes a mathematical basis for digital signal processing, without taking quantization error into consideration.Digital signal processingDigital signal processing is for signals that have been digitized. Processing is done by general-purpose computers or by digital circuits such as ASICs, field-programmable gate arrays or specialized digital signal processors (DSP chips). Typical arithmetical operations include fixed-point and floating-point, real-valued and complex-valued, multiplication and addition. Other typical operations supported by the hardware are circular buffers and look-up tables. Examples of algorithms are the Fast Fourier transform (FFT), finite impulseresponse (FIR) filter, Infinite impulse response (IIR) filter, and adaptive filters such as the Wiener and Kalman filters1.Digital signal processingDigital signal processing (DSP) is concerned with the representation of signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like: audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, control of systems, biomedical signal processing, seismic data processing, etc.The goal of DSP is usually to measure, filter and/or compress continuousreal-world analog signals. The first step is usually to convert the signal from an analog to a digital form, by sampling it using an analog-to-digital converter (ADC), which turns the analog signal into a stream of numbers. However, often, the required output signal is another analog output signal, which requires a digital-to-analog converter (DAC). Even if this process is more complex than analog processing and has a discrete value range, the application of computational power to digital signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[1]DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSPs), or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today thereare additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial apps such as motor control), and stream processors, among others.[2]2. DSP domainsIn DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information, that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.3. Signal samplingMain article: Sampling (signal processing)With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog-to-digital converter. Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replacing the signal with representative signal of the corresponding equivalence class. In the quantization stage the representative signal values are approximated by values from a finite set.The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency of the signal; but requires an infinite number of samples . In practice, the sampling frequency is often significantly more than twice that required by the signal's limited bandwidth.A digital-to-analog converter is used to convert the digital signal back to analog. The use of a digital computer is a key ingredient in digital control systems. 4. Time and space domainsMain article: Time domainThe most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters; for example:∙ A "linear" filter is a linear transformation of input samples; other filters are "non-linear". Linear filters satisfy the superposition condition, i.e. if an input is a weighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.∙ A "causal" filter uses only previous samples of the input or output signals; while a "non-causal" filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.∙ A "time-invariant" filter has constant properties over time; other filters such as adaptive filters change in time.∙Some filters are "stable", others are "unstable". A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.∙ A "finite impulse response" (FIR) filter uses only the input signals, while an "infinite impulse response" filter (IIR) uses both the input signal and previous samples ofthe output signal. FIR filters are always stable, while IIR filters may be unstable.Filters can be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response.The output of a digital filter to any given input may be calculated by convolving the input signal with the impulse response.5. Frequency domainMain article: Frequency domainSignals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum todetermine which frequencies are present in the input signal and which are missing.In addition to frequency information, phase information is often needed. This can be obtained from the Fourier transform. With some applications, how the phase varies with frequency can be a significant consideration.Filtering, particularly in non-realtime work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O(n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the frequency components with smaller magnitude while retaining the order of magnitudes of frequency components.Frequency domain analysis is also called spectrum- or spectral analysis. 6. Z-domain analysisWhereas analog filters are usually analysed on the s-plane; digital filters are analysed on the z-plane or z-domain in terms of z-transforms.Most filters can be described in Z-domain (a complex number superset of the frequency domain) by their transfer functions. A filter may be analysed in the z-domain by its characteristic collection of zeroes and poles.7. ApplicationsThe main applications of DSP are audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communications, RADAR, SONAR, seismology, and biomedicine. Specific examples are speech compression and transmission in digital mobile phones, room matching equalization of sound in Hifi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data processing, analysis and control of industrial processes, computer-generated animations in movies, medical imaging such as CAT scans and MRI, MP3 compression, image manipulation, high fidelity loudspeaker crossovers and equalization, and audio effects for use with electric guitar amplifiers8. ImplementationDigital signal processing is often implemented using specialised microprocessors such as the DSP56000, the TMS320, or the SHARC. These often process data using fixed-point arithmetic, although some versions are available which use floating point arithmetic and are more powerful. For faster applications FPGAs[3] might be used. Beginning in 2007, multicore implementations of DSPs have started to emerge from companies including Freescale and Stream Processors, Inc. For faster applications with vast usage, ASICs might be designed specifically. For slow applications, a traditional slower processor such as a microcontroller may be adequate. Also a growing number of DSP applications are now being implemented on Embedded Systems using powerful PCs with a Multi-core processor.(翻译)信号处理信号处理是电气工程与应用数学领域,在离散的或连续时间域处理和分析信号,以对这些信号进行所需的有用的处理。
数字信号处理应用领域详细
数字信号处理应用领域详细数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对信号进行数字化处理的学科,它广泛应用于通信、音频、图像、雷达和生物医学等领域。
下面将详细介绍数字信号处理的应用领域。
1.通信领域:在无线通信系统中,数字信号处理被广泛应用于信号的调制、解调、编解码、信道均衡、自适应滤波等方面。
它可以提高通信系统的抗干扰能力、提高信号传输的稳定性和可靠性,并扩大通信系统的容量。
2.音频信号处理:数字音频信号处理是将模拟音频信号转换为数字化音频并对其进行处理的过程。
在音乐产业、音频处理系统和语音识别等领域中,数字信号处理可以实现音频信号的增强、降噪、压缩和编码等功能,提高音频信号的质量和传输效率。
3.图像处理:数字图像处理是将模拟图像转换为数字化图像,并对其进行处理的过程。
数字信号处理可以应用于图像的增强、去噪、压缩、分割和识别等方面。
在电视、电影、摄影和医学图像等领域中,数字图像处理可以提高图像的质量、准确性和可视化效果。
4.雷达信号处理:雷达信号处理是将雷达接收到的模拟信号转换为数字信号并对其进行处理的过程。
数字信号处理可以应用于雷达信号的预处理、目标检测、跟踪和成像等方面。
它可以提高雷达系统的灵敏度、分辨率和目标识别的准确性。
5.生物医学信号处理:在生物医学领域中,数字信号处理可以应用于生物体信号的收集、分析和处理,如脑电图(EEG)、心电图(ECG)、肌电图(EMG)和医学图像等。
它可以帮助医生诊断疾病、监测疗效和研究生理机制。
6.航天与卫星通信:数字信号处理在航天和卫星通信中起着至关重要的作用。
它可以处理航天器和卫星传输的信号,实现数据的压缩、解调、解码和去除噪声等功能,确保信息的可靠传输。
7.视频编码:在视频通信、视频监控和视频广播等领域中,数字信号处理可以应用于视频的编码和解码,实现视频信号的压缩和传输。
它可以提高视频传输的效率和质量,降低网络带宽的需求。
数字信号处理
数字信号处理数字信号处理(Digital Signal Processing)数字信号处理是指将连续时间的信号转换为离散时间信号,并对这些离散时间信号进行处理和分析的过程。
随着计算机技术的飞速发展,数字信号处理在各个领域得到了广泛应用,如通信、医学影像、声音处理等。
本文将介绍数字信号处理的基本概念和原理,以及其在不同领域的应用。
一、数字信号处理的基本概念数字信号处理是建立在模拟信号处理基础之上的一种新型信号处理技术。
在数字信号处理中,信号是用数字形式来表示和处理的,因此需要进行模数转换和数模转换。
数字信号处理的基本原理包括采样、量化和编码这三个步骤。
1. 采样:采样是将连续时间信号在时间上进行离散化的过程,通过一定的时间间隔对信号进行取样。
采样的频率称为采样频率,一般以赫兹(Hz)为单位表示。
采样频率越高,采样率越高,可以更准确地表示原始信号。
2. 量化:量化是指将连续的幅度值转换为离散的数字值的过程。
在量化过程中,需要确定一个量化间隔,将信号分成若干个离散的级别。
量化的级别越多,表示信号的精度越高。
3. 编码:编码是将量化后的数字信号转换为二进制形式的过程。
在数字信号处理中,常用的编码方式有PCM(脉冲编码调制)和DPCM (差分脉冲编码调制)等。
二、数字信号处理的应用1. 通信领域:数字信号处理在通信领域中具有重要的应用价值。
在数字通信系统中,信号需要经过调制、解调、滤波等处理,数字信号处理技术可以提高信号传输的质量和稳定性。
2. 医学影像:医学影像是数字信号处理的典型应用之一。
医学影像技术如CT、MRI等需要对采集到的信号进行处理和重建,以获取患者的影像信息,帮助医生进行诊断和治疗。
3. 声音处理:数字信号处理在音频处理和语音识别领域也有广泛的应用。
通过数字滤波、噪声消除、语音识别等技术,可以对声音信号进行有效处理和分析。
总结:数字信号处理作为一种新兴的信号处理技术,已经深入到各个领域中,并取得了显著的进展。
数字信号处理 pdf
数字信号处理什么是数字信号处理?数字信号处理(Digital Signal Processing,简称DSP)是一种利用数字计算机进行信号处理的技术。
它将输入信号采样并转换成数字形式,在数字域上进行各种运算和处理,最后将处理后的数字信号转换回模拟信号输出。
数字信号处理在通信、音频、视频等领域都有广泛的应用。
数字信号处理的基本原理数字信号处理涉及许多基本原理和算法,其中包括信号采样、量化、离散化、频谱分析、滤波等。
信号采样信号采样是指将连续的模拟信号转换为离散的数字信号。
采样定理指出,为了能够准确地还原原始信号,采样频率必须大于信号中最高频率的两倍。
常用的采样方法有均匀采样和非均匀采样。
量化量化是将连续的模拟信号离散化为一组有限的量化值。
量化过程中,需要将连续信号的振幅映射为离散级别。
常见的量化方法有均匀量化和非均匀量化,其中均匀量化是最为常用的一种方法。
离散化在数字信号处理中,信号通常被表示为离散序列。
离散化是将连续的模拟信号转换为离散的数字信号的过程。
频谱分析频谱分析是一种用于研究信号频域特性的方法。
通过对信号的频谱进行分析,可以提取出其中的频率成分,了解信号的频率分布情况。
滤波滤波是数字信号处理中常用的一种方法,用于去除信号中的噪声或不需要的频率成分。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
数字信号处理的应用数字信号处理在许多领域都有广泛应用,下面列举了其中几个重要的应用领域:通信在通信领域,数字信号处理主要用于调制解调、信道编码、信号分析和滤波等方面。
数字信号处理的应用使得通信系统更加稳定和可靠,提高了通信质量和传输效率。
音频处理在音频处理领域,数字信号处理广泛应用于音频信号的录制、编码、解码、增强以及音频效果的处理等方面。
数字音乐、语音识别和语音合成等技术的发展离不开数字信号处理的支持。
视频处理数字信号处理在视频处理领域也发挥着重要作用。
视频压缩、图像增强、视频编码和解码等技术都离不开数字信号处理的支持。
数字信号处理中的英文缩写
数字信号处理中的英文缩写在数字信号处理领域中,有许多常用的英文缩写,以下是一些常见的缩写及其含义:1. DSP:数字信号处理(Digital Signal Processing)2. FFT:快速傅里叶变换(Fast Fourier Transform)3. FIR:有限脉冲响应(Finite Impulse Response)4. IIR:无限脉冲响应(Infinite Impulse Response)5. DFT:离散傅里叶变换(Discrete Fourier Transform)6. IDFT:离散傅里叶逆变换(Inverse Discrete Fourier Transform)7. ADC:模数转换器(Analog-to-Digital Converter)8. DAC:数模转换器(Digital-to-Analog Converter)9. LTI:线性时不变(Linear Time-Invariant)10. SNR:信噪比(Signal-to-Noise Ratio)11. MSE:均方误差(Mean Squared Error)12. PDF:概率密度函数(Probability Density Function)13. CDF:累积分布函数(Cumulative Distribution Function)14. PSD:功率谱密度(Power Spectral Density)15. FIR filter:有限脉冲响应滤波器16. IIR filter:无限脉冲响应滤波器17. AWGN:加性白噪声(Additive White Gaussian Noise)18. QAM:正交振幅调制(Quadrature Amplitude Modulation)19. BPSK:二进制相移键控(Binary Phase-Shift Keying)20. FSK:频移键控(Frequency-Shift Keying)这些缩写在数字信号处理的理论、算法、实现中都有广泛应用,了解这些缩写有助于更好地理解和掌握数字信号处理相关知识。
数字信号处理
数字信号处理数字信号处理(Digital Signal Processing,简称DSP)是一门研究数字信号的获取、处理和分析的学科。
数字信号处理在各个领域都有着广泛的应用,例如通信、音频和视频处理、图像处理等。
本文将从数字信号的获取、数字信号处理的基本原理以及数字信号处理的应用等几个方面进行论述。
一、数字信号的获取在数字信号处理中,数字信号的获取是非常重要的一步。
通常,我们通过模拟信号转换成数字信号进行处理。
这个过程包括了模拟信号的采样和量化两个步骤。
1. 采样采样是指将连续的模拟信号转换成离散的数字信号。
在采样过程中,我们将连续的信号在时间上进行等间隔地取样,得到一系列离散的采样值。
采样定理告诉我们,采样频率必须大于信号最高频率的两倍,这样才能保证信号在采样后的恢复。
2. 量化量化是指将连续的采样值转换成离散的数字量。
在量化过程中,我们对每个采样值进行近似处理,将其量化为离散的取值,通常使用有限个取值来表示连续的信号强度。
二、数字信号处理的基本原理数字信号处理的基本原理包括离散信号的表示和离散信号的处理。
1. 离散信号的表示离散信号是指在时间上是离散的,并且在幅值上也是离散的。
常用的离散信号表示方法包括时间序列和频率谱。
- 时间序列是离散信号在时间上的表示,通常由一系列采样值组成,可以看作是一个序列。
- 频率谱是离散信号在频率上的表示,可以将离散信号分解成一系列不同频率的正弦波成分。
2. 离散信号处理离散信号处理是指对离散信号进行一系列运算和变换,常见的包括滤波、频谱分析和信号重建等。
- 滤波是指对信号进行滤波器的作用,通常用于去除信号中的噪声或者增强希望的信号成分。
- 频谱分析是指对信号的频谱进行分析,常用的方法包括傅里叶变换和快速傅里叶变换等。
- 信号重建是指将经过处理的离散信号恢复成连续信号,常用的方法包括插值和重采样等。
三、数字信号处理的应用数字信号处理在多个领域都有着广泛的应用,下面以通信领域和音频处理领域为例进行介绍。
Digital-Signal-Processing数字信号处理大学毕业论文英文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:数字信号处理文献、资料英文题目:Digital Signal Processing 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14数字信号处理一、导论数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。
数字信号处理与模拟信号处理属于信号处理领域。
DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。
由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。
通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。
即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。
DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。
目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。
在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。
他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。
从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。
自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。
二、信号采样随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。
数字信号处理
数字信号处理数字信号处理(Digital Signal Processing,DSP)是一种利用数字计算机对连续或离散信号进行处理的技术。
它在现代通信、音频、图像、视频以及其他领域中得到广泛应用。
本文将介绍数字信号处理的基本概念、应用领域以及发展趋势。
一、基本概念数字信号处理是将连续信号转换为离散信号,并利用数字计算机对其进行处理和分析的过程。
它的基本原理是将连续信号进行采样、量化和编码,得到离散信号后通过算法进行处理。
数字信号处理可以实现信号的滤波、锐化、压缩等功能,从而提高信号的质量和传输效率。
二、应用领域1. 通信系统:数字信号处理在通信系统中发挥着重要作用。
通过数字信号处理技术,可以实现信号的编码、调制、解调、信道均衡等功能,提高通信质量和系统性能。
2. 音频处理:数字音频处理是将模拟音频信号转换为数字形式,并对其进行处理的过程。
数字音频处理可以实现音频的录制、混音、均衡、降噪等功能,广泛应用于音乐制作、电影制作、语音识别等领域。
3. 图像处理:数字图像处理是将模拟图像信号转换为数字形式,并对其进行处理的过程。
通过数字图像处理技术,可以实现图像的增强、去噪、压缩、分割等功能,广泛应用于医学影像、遥感图像、安全监控等领域。
4. 视频处理:数字视频处理是将模拟视频信号转换为数字形式,并对其进行处理的过程。
数字视频处理可以实现视频的压缩、解码、编辑、特效处理等功能,广泛应用于视频会议、视频监控、数字电视等领域。
5. 生物医学信号处理:数字信号处理在医学领域有着重要的应用价值。
通过对生物医学信号进行处理,可以实现心电图分析、脑电图分析、血压信号处理等功能,对疾病的诊断和治疗具有重要意义。
三、发展趋势随着计算机技术的不断进步,数字信号处理领域也在不断发展。
未来的发展趋势主要包括以下几个方面:1. 实时性能提升:随着计算机处理能力的提高,数字信号处理系统的实时性能将得到显著提升。
这将为实时语音、视频通信等领域带来更好的用户体验。
数字信号处理
数字信号处理数字信号处理(Digital Signal Processing,简称DSP)是指通过数学运算和算法实现对数字信号的分析、处理和改变的技术。
它广泛应用于通信、音频、视频、雷达、医学图像等领域,并且在现代科技发展中发挥着重要作用。
本文将介绍数字信号处理的基本原理和应用,以及相关的算法和技术。
一、数字信号处理的基本原理数字信号处理的基本原理是将连续的模拟信号转换为离散的数字信号,再通过算法对数字信号进行处理。
这个过程主要包括信号采样、量化和编码三个步骤。
1. 信号采样:信号采样是指以一定的时间间隔对连续的模拟信号进行离散化处理,得到一系列的采样点。
通过采样,将连续的信号转换为离散的信号,方便进行后续的处理和分析。
2. 量化:量化是指对采样得到的信号进行幅度的离散化处理,将连续的幅度变为离散的幅度级别。
量化可以采用线性量化或非线性量化的方式,通过确定幅度级别的个数来表示信号的幅度。
3. 编码:编码是指对量化后的信号进行编码处理,将其转换为数字形式的信号。
常用的编码方式包括二进制编码、格雷码等,在信息传输和存储过程中起到重要作用。
二、数字信号处理的应用领域数字信号处理被广泛应用于各个领域,以下介绍几个主要的应用领域:1. 通信领域:在通信领域中,数字信号处理用于信号的调制、解调、编码、解码等处理过程。
通过数字信号处理,可以提高通信系统的性能和可靠性,实现高速、高质量的数据传输。
2. 音频和视频处理:在音频和视频处理领域,数字信号处理可以用于音频和视频的压缩、解压、滤波、增强等处理过程。
通过数字信号处理,可以实现音频和视频信号的高保真传输和高质量处理。
3. 医学图像处理:在医学图像处理领域,数字信号处理可以用于医学图像的增强、分割、识别等处理过程。
通过数字信号处理,可以提高医学图像的质量和准确性,帮助医生进行疾病的诊断和治疗。
4. 雷达信号处理:在雷达领域,数字信号处理可以用于雷达信号的滤波、目标检测、跟踪等处理过程。
数字信号处理英文翻译
英文原文The simulation and the realization of the digital filterWith the information age and the advent of the digital world, digital signal processing has become one of today's most important disciplines and door technology. Digital signal processing in communications, voice, images, automatic control, radar, military, aerospace, medical and household appliances, and many other fields widely applied. In the digital signal processing applications, the digital filter is important and has been widely applied.1、figures Unit on :Analog and digital filtersIn signal processing, the function of a filter is to remove unwanted parts of the signal, such as random noise, or to extract useful parts of the signal, such as the components lying within a certain frequency range.The following block diagram illustrates the basic idea.There are two main kinds of filter, analog and digital. They are quite different in their physical makeup and in how they work. An analog filter uses analog electronic circuits made up from components such as resistors, capacitors and op amps to produce the required filtering effect. Such filter circuits are widely used in such applications as noise reduction, video signal enhancement, graphic equalisers in hi-fi systems, and many other areas. There are well-established standard techniques for designing an analog filter circuit for a given requirement. At all stages, the signal being filtered is an electrical voltage or current which is the direct analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved. A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal. The processor may be a general-purpose computer such as a PC, or a specialised DSP (Digital Signal Processor) chip. The analog input signal must first be sampled and digitised using an ADC (analog to digital converter). The resulting binary numbers, representing successive sampled values of the input signal, are transferred to the processor,which carries out numerical calculations on them. These calculations typically involve multiplying the input values by constants and adding the products together. If necessary, the results of these calculations, which now represent sampled values of the filtered signal, are output through a DAC (digital to analog converter) to convert the signal back to analog form.Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a voltage or current.The following diagram shows the basic setup of such a system.Unit refers to the input signals used to filter hardware or software. If the filter input, output signals are separated, they are bound to respond to the impact of the Unit is separated, such as digital filters filter definition. Digital filter function, which was to import sequences X transformation into export operations through a series Y.According to figures filter function 24-hour live response characteristics, digital filters can be divided into two, namely, unlimited long live long live the corresponding IIR filter and the limited response to FIR filters. IIR filters have the advantage of the digital filter design can use simulation results, and simulation filter design of a large number of tables may facilitate simple. It is the shortcomings of the nonlinear phase; Linear phase if required, will use the entire network phase-correction. Image processing and transmission of data collection is required with linear phase filters identity. And FIR linear phase digital filter to achieve, but an arbitrary margin characteristics. Impact from the digital filter response of the units can be divided into two broad categories : the impact of the limited response (FIR) filters, and unlimited number of shocks to (IIR) digital filters.FIR filters can be strictly linear phase, but because the system FIR filter function extremity fixed at the original point, it can only use the higher number of bands to achieve their high selectivity for the same filter design indicators FIR filter called band than a few high-IIR 5-10 times, the cost is higher, Signal delay is also larger. But if the same linear phase, IIR filters must be network-wide calibration phase, the same section also increase the number of filters and network complexity. FIR filters can be used to achieve non-Digui way, not in a limited precision of a shock, and into the homes and quantitative factors of uncertainty arising from the impact of errors than IIR filter small number, and FIR filter can be used FFT algorithms, the computational speed. But unlike IIR filter can filter through the simulation results, there is no ready-made formula FIR filter must use computer-aided design software (such as MATLAB) to calculate. So, a broader application of FIR filters, and IIR filters are not very strict requirements on occasions.Unit from sub-functions can be divided into the following four categories :(1) Low-filter (LPF);(2) high-filter (HPF);(3) belt-filter (BPF);(4) to prevent filter (BSF).The following chart dotted line for the ideals of the filter frequency characteristics :A1(f) A2(f)10 f2cf 0 f2cf(a) (b)A3(f) A4(f)0 f1c f2cf 0 f1cf2cf(c) (d)(a)LPF (b)HPF (c)BPF (d)BSF2、MATLAB introducedMATLAB is a matrix laboratory (Matrix Laboratory) is intended. In addition to an excellent value calculation capability, it also provides professional symbols terms, word processing, visualization modeling, simulation and real-time control functions. MATLAB as the world's top mathematical software applications, with a strong engineering computing, algorithms research, engineering drawings, applications development, data analysis and dynamic simulation, and other functions, in aerospace, mechanical manufacturing and construction fields playing an increasingly important role. And the C language function rich, the use of flexibility, high-efficiency goals procedures. High language both advantages as well as low level language features. Therefore, C language is the most widely used programming language. Although MATLAB is a complete, fully functional programming environment, but in some cases, data and procedures with the external environment of the world is very necessary and useful. Filter design using Matlab, could be adjusted with the design requirements and filter characteristics of the parameters, visual simple, greatly reducing the workload for the filter design optimization.In the electricity system protection and secondary computer control, many signal processing and analysis are based on are certain types Yeroskipou and the second harmonics of the system voltage and current signals (especially at D process), are mixed with a variety of complex components, the filter has been installed power system during the critical components. Current computer protection and the introduction of two digital signal processing software main filter. Digital filter design using traditional cumbersome formula, the need to change the parameters after recalculation, especially in high filters, filter design workload. Uses MATLAB signal processing boxes can achieve rapid and effective digital filter design and simulation.MATLAB is the basic unit of data matrix, with its directives Biaodashi mathematics, engineering, commonly used form is very similar, it is used to solve a problem than in MATLAB C, Fortran and other languages End precision much the same thing. The popular MATLAB 5.3/Simulink3.0 including hundreds of internal function with the main pack and 30types of tool kits (Toolbox). kits can be divided into functional tool kits and disciplines toolkit. MATLAB tool kit used to expand the functional symbols terms, visualization simulation modelling, word processing and real-time control functions. professional disciplines toolkit is a stronger tool kits, tool kits control, signal processing tool kit, tool kits, etc. belonging to such communicationsMATLAB users to open widely welcomed. In addition to the internal function, all the packages MATLAB tool kits are readable document and the document could be amended, modified or users through Yuanchengxu the construction of new procedures to prepare themselves for kits.3、Digital filter designDigital filter design of the basic requirementsDigital filter design must go through three steps :(1) Identification of indicators : In the design of a filter, there must be some indicators. These indicators should be determined on the basis of the application. In many practical applications, digital filters are often used to achieve the frequency operation. Therefore, indicators in the form of general jurisdiction given frequency range and phase response. Margins key indicators given in two ways. The first is absolute indicators. It provides a function to respond to the demands of the general application of FIR filter design. The second indicator is the relative indicators. Its value in the form of answers to decibels. In engineering practice, the most popular of such indicators. For phase response indicators forms, usually in the hope that the system with a linear phase frequency bands human. Using linear phase filter design with the following response to the indicators strengths:①it only contains a few algorithms, no plural operations;②there is delay distortion, only a fixed amount of delay; ③the filter length N (number of bands for N-1), the volume calculation for N/2 magnitude.(2) Model approach : Once identified indicators can use a previous study of the basic principles and relationships, a filter model to be closer to the target system.(3) Achieved : the results of the above two filters, usually by differential equations, system function or pulse response to describe. According to this description of hardware or software used to achieve it.4、Introduced FPGAProgrammable logic device is a generic logic can use a variety of chips, which is to achieve ASIC ASIC (Application Specific Integrated Circuit) semi-customized device, Its emergence and development of electronic systems designers use CAD tools to design their own laboratory in the ASIC device. Especially FPGA (Field Programmable Gate Array) generated and development, as a microprocessor, memory, the figures for electronic system design and set a new industry standard (that is based on standard product sales catalogue in the market to buy). Is a digital system for microprocessors, memories, FPGA or three standard building blocks constitute their integration direction.Digital circuit design using FPGA devices, can not only simplify the design process and can reduce the size and cost of the entire system, increasing system reliability. They do not need to spend the traditional sense a lot of time and effort required to create integrated circuits, to avoid the investment risk and become the fastest-growing industries of electronic devices group. Digital circuit design system FPGA devices using the following main advantages(1)Design flexibleUse FPGA devices may not in the standard series device logic functional limitations. And changes in system design and the use of logic in any one stage of the process, and only through the use of re-programming the FPGA device can be completed, the system design provides for great flexibility.(2) Increased functional densityFunctional density in a given space refers to the number of functional integration logic. Programmable logic chip components doors several high, a FPGA can replace several films, film scores or even hundreds of small-scale digital IC chip illustrated in the film. FPGA devices using the chip to use digital systems in small numbers, thus reducing the number of chips used to reduce the number of printed size and printed, and will ultimately lead to a reduction in the overall size of the system.(3) Improve reliabilityPrinting plates and reduce the number of chips, not only can reduce system size, but it greatly enhanced system reliability. A higher degree of integration than systems in many low-standard integration components for the design of the same system, with much higher reliability. FPGA device used to reduce the number of chips required to achieve the system in the number printed on the cord and joints are reduced, the reliability of the system can beimproved.(4) Shortening the design cycleAs FPGA devices and the programmable flexibility, use it to design a system for longer than traditional methods greatly shortened. FPGA device master degrees high, use printed circuit layout wiring simple. At the same time, success in the prototype design, the development of advanced tools, a high degree of automation, their logic is very simple changes quickly. Therefore, the use of FPGA devices can significantly shorten the design cycle system, and speed up the pace of product into the market, improving product competitiveness.(5) Work fastFPGA/CPLD devices work fast, generally can reach several original Hertz, far larger than the DSP device. At the same time, the use of FPGA devices, the system needed to achieve circuitclasses and small, and thus the pace of work of the entire system will be improved.(6) Increased system performance confidentialityMany FPGA devices have encryption functions in the system widely used FPGA devices can effectively prevent illegal copying products were others(7) To reduce costsFPGA device used to achieve digital system design, if only device itself into the price, sometimes you would not know it advantages, but there are many factors affecting the cost of the system, taken together, the cost advantages of using FPGA is obvious. First, the use of FPGA devices designed to facilitate change, shorten design cycles, reduce development costs for system development; Secondly, the size and FPGA devices allow automation needs plug-ins, reducing the manufacturing system to lower costs; Again, the use of FPGA devices can enhance system reliability, reduced maintenance workload, thereby lowering the cost of maintenance services for the system. In short, the use of FPGA devices for system design to save costs.FPGA design principles :FPGA design an important guiding principles : the balance and size and speed of exchange, the principles behind the design of the filter expression of a large number of certification.Here, "area" means a design exertion FPGA/CPLD logic resources of the FPGA can be used to the typical consumption (FF) and the search table (IUT) to measure more general measure can be used to design logic equivalence occupied by the door is measured. "pace"means stability operations in the chip design can achieve the highest frequency, the frequency of the time series design situation, and design to meet the clock cycle -- PADto pad, Clock Setup Time, Clock Hold Beijing, Clock-to-Output Delay, and other characteristics of many time series closely related. Area (area) and speed (speed) runs through the two targets FPGA design always is the ultimate design quality evaluation criteria. On the size and speed of the two basic concepts : balance of size and speed and size and speed of swap.One pair of size and speed is the unity of opposites contradictions body. Requirements for the design of a design while the smallest, highest frequency of operation is unrealistic. More scientific goal should be to meet the design requirements of the design time series (includes requirements for the design frequency) premise, the smallest chip area occupied. Or in the specified area, the design time series cushion greater frequency run higher. This fully embodies the goals of both size and speed balanced thinking. On the size and speed requirements should not be simply interpreted as raising the level and design engineers perfect sexual pursuit, and should recognize that they are products and the quality and cost of direct relevance. If time series cushion larger design, running relatively high frequency, that the design Jianzhuangxing stronger, more quality assurance system as a whole; On the other hand, the smaller size of consumption design is meant to achieve in chip unit more functional modules, the chip needs fewer, the entire system has been significantly reduced cost. As a contradiction of the two components, the size and speed is not the same status. In contrast, meet the timetables and work is more important for some frequency when both conflicts, the use of priority guidelines.Area and the exchange rate is an important FPGA design ideas. Theoretically, if a design time series cushion larger, can run much higher than the frequency design requirements, then we can through the use of functional modules to reduce the consumption of the entire chip design area, which is used for space savings advantages of speed; Conversely, if the design of a time series demanding, less than ordinary methods of design frequency then generally flow through the string and data conversion, parallel reproduction of operational module, designed to take on the whole "string and conversion" and operate in the export module to chip in the data "and string conversion" from the macro point of view the whole chip meets the requirements of processing speed, which is equivalent to the area of reproduction - rate increase.For example. Assuming that the digital signal processing system is 350Mb/s input data flow rate, and in FPGA design, data processing modules for maximum processing speed of150Mb/s, because the data throughput processing module failed to meet requirements, it is impossible to achieve directly in the FPGA. Such circumstances, they should use "area-velocity" thinking, at least three processing modules from the first data sets will be imported and converted, and then use these three modules parallel processing of data distribution, then the results "and string conversion," we have complete data rate requirements. We look at both ends of the processing modules, data rate is 350Mb/s, and in view of the internal FPGA, each sub-module handles the data rate is 150Mb/s, in fact, all the data throughput is dependent on three security modules parallel processing subsidiary completed, that is used by more chip area achieve high-speed processing through "the area of reproduction for processing speed enhancement" and achieved design.FPGA is the English abbreviation Field of Programmable Gate Array for the site programmable gate array, which is in Pal, Gal, Epld, programmable device basis to further develop the product. It is as ASIC (ASIC) in the field of a semi-customized circuit and the emergence of both a customized solution to the shortage circuit, but overcome the original programmable devices doors circuit few limited shortcomings.FPGA logic module array adopted home (Logic Cell Array), a new concept of internal logic modules may include CLB (Configurable Logic Block), export import module IOB (Input Output Block) and internal links (Interconnect) 3. FPGA basic features are :(1) Using FPGA ASIC design ASIC using FPGA circuits, the chip can be used,while users do not need to vote films production.(2) FPGA do other customized or semi-customized ASIC circuits throughout the Chinese specimen films.3) FPGA internal capability and rich I/O Yinjue.4) FPGA is the ASIC design cycle, the shortest circuit, the lowest development costs, risks among the smallest device5) FPGA using high-speed Chmos crafts, low consumption, with CMOS, TTL low-power compatibleIt can be said that the FPGA chip is for small-scale systems to improve system integration, reliability one of the bestCurrently FPGA many varieties, the Revenue software series, TI companies TPC series, the fiex ALTERA company seriesFPGA is stored in films from the internal RAM procedures for the establishment of the state of its work, therefore, need to programmed the internal Ram. Depending on the different configuration, users can use a different programming methodsPlus electricity, FPGA, EPROM chips will be read into the film, programming RAM中data, configuration is completed, FPGA into working order. Diaodian, FPGA resume into white films, the internal logic of relations disappear, FPGA to repeated use. FPGA's programming is dedicated FPGA programming tool, using generic EPROM, prom programming device can. When the need to modify functional FPGA, EPROM can only change is. Thus, with a FPGA, different programming data to produce different circuit functions. Therefore, the use of FPGA very flexible.There are a variety of FPGA model : the main model for a parallel FPGA plus a EPROM manner; From the model can support a number of films FPGA; serial prom programming model could be used serial prom FPGA programming FPGA; The external model can be engineered as microprocessors from its programming microprocessors.Verilog HDL is a hardware description language for the algorithm level, doors at the level of abstract level to switch-level digital system design modelling. Modelling of the target figure by the complexity of the system can be something simple doors and integrity of electronic digital systems. Digital system to the levels described, and in the same manner described in Hin-time series modelling.Verilog HDL language with the following description of capacity : design behaviour characteristics, design data flow characteristics, composition and structure designed to control and contain the transmission and waveform design a certification mechanism. All this with the use of a modelling language. In addition, Verilog HDL language programming language interface provided by the interface in simulation, design certification from the external design of the visit, including specific simulation control and operation.Verilog HDL language grammar is not only a definition, but the definition of each grammar structure are clear simulation, simulation exercises. Therefore, the use of such language to use Verilog simulation models prepared by a certification. From the C programming language, the language inherited multiple operating sites and structures. Verilog HDL provides modelling capacity expansion, many of the initial expansion would be difficult to understand. However, the core subsets of Verilog HDL language very easy to learn and use, which is sufficient formost modelling applications. Of course, the integrity of the hardware description language is the most complex chips from the integrity of the electronic systems described.historyVerilog HDL language initially in 1983 by Gateway Design Automation companies for product development simulator hardware modelling language. Then it is only a dedicated language. Since their simulation, simulation devices widely used products, Verilog HDL as a user-friendly and practical language for many designers gradually accepted. In an effort to increase the popularity of the language activities, Verilog HDL language in 1990 was a public area. Open Verilog International (OVI) is to promote the development of Verilog international organizations. 1992, decided to promote OVI OVI standards as IEEE Verilog standards. The effort will ultimately succeed, a IEEE1995 Verilog language standard, known as IEEE Std 1364-1995. Integrity standards in Verilog hardware description language reference manual contains a detailed description.Main capacity:Listed below are the main Verilog hardware description language ability*Basic logic gate, and, for example, or have embedded in the language and nand* Users of the original definition of the term (UDP), the flexibility. Users can be defined in the original language combinations logic original language, the original language of logic could also be time series* Switches class infrastructure models, such as the nmos and pmos also be embedded in the language* Hin-language structure designated for the cost of printing the design and trails Shi Shi and design time series checks.* Available three different ways to design or mixed mode modelling. These methods include : acts described ways - use process of structural modelling; Data flow approach - use of a modelling approach Fuzhi expression; Structured way - using examples of words to describe modular doors and modelling.* Verilog HDL has two types of data : data types and sequence data line network types. Line network types that the physical links between components and sequence types that abstract data storage components.* To describe the level design, the structure can be used to describe any level module example* Design size can be arbitrary; Language is design size (size) impose any restrictions* Verilog HDL is no longer the exclusive language of certain companies but IEEE standards.* And the machine can read Verilog language, it may as EDA tools and languages of the world between the designers* Verilog HDL language to describe capacity through the use of programming language interface (PLI) mechanism further expansion. PLI is to allow external functions of the visit Verilog module information, allowing designers and simulator world Licheng assembly* Design to be described at a number of levels, from the switch level, doors level, register transfer level (RTL) to the algorithm level, including the level of process and content* To use embedded switching level of the original language in class switch design integrity modelling* Same language can be used to generate simulated incentive and certification by the designated testing conditions, such as the value of imports of the designated*Verilog HDL simulation to monitor the implementation of certification, the certification process of implementing the simulation can be designed to monitor and demonstrate value. These values can be used to compare with the expectations that are not matched in the case of print news reports.* Acts described in the class, not only in the RTL level Verilog HDL design description, and to describe their level architecture design algorithm level behavioural description* Examples can use doors and modular structure of language in a class structure described* Verilog HDL mixed mode modelling capabilities in the design of a different design in each module can level modelling* Verilog HDL has built-in logic function, such as*Structure of high-level programming languages, such as conditions of expression, and the cycle of expression language, language can be used* To it and can display regular modelling* Provide a powerful document literacy* Language in the specific circumstances of non-certainty that in the simulator, different models can produce different results; For example, describing events in the standard sequence of events is not defined.5、In troduction of DSPToday, DSP is w idely used in the modern techno logy and it has been the key part of many p roducts and p layed more and mo re impo rtant ro le in our daily life.Recent ly, Northw estern Po lytechnica lUniversity Aviation Microelect ronic Center has comp leted the design of digital signal signal p rocesso r co re NDSP25, w h ich is aim ing at TM S320C25 digital signal p rocesso r of Texas Inst rument TM S320 series. By using top 2dow n design flow , NDSP25 is compat ible w ith inst ruct ion and interface t im ing of TM S320C25.Digital signal processors (DSP) is a fit for real-time digital signal processing for high-speed dedicated processors, the main variety used for real-time digital signal processing to achieve rapid algorithms. In today's digital age background, the DSP has become the communications, computer, and consumer electronics products, and other fields based device.Digital signal processors and digital signal processing is inseparably, we usually say "DSP" can also mean the digital signal processing (Digital Signal Processing), is that in this digital signal processors Lane. Digital signal processing is a cover many disciplines applied to many areas and disciplines, refers to the use of computers or specialized processing equipment, the signals in digital form for the collection, conversion, recovery, valuation, enhancement, compression, identification, processing, the signals are compliant form. Digital signal processors for digital signal processing devices, it is accompanied by a digital signal processing to produce. DSP development process is broadly divided into three phases : the 20th century to the 1970s theory that the 1980s and 1990s for the development of products. Before the emergence of the digital signal processing in the DSP can only rely on microprocessors (MPU) to complete. However, the advantage of lower high-speed real-time processing can not meet the requirements. Therefore, until the 1970s, a talent made based DSP theory and algorithms. With LSI technology development in 1982 was the first recipient of the world gave birth to the DSP chip. Years later, the second generation based on CMOS工艺DSP chips have emerged. The late 1980s, the advent of the third generation of DSP chips. DSP is the fastest-growing 1990s, there have been four successive five-generation and the generation DSP devices. After 20 years of development, the application of DSP products has been extended to people's learning, work and all aspects of life and gradually become electronics products determinants.。
数字信号处理英语词汇
AAbsolutely integrable绝对可积Absolutely integrable impulse response绝对可积冲激响应Absolutely summable绝对可和Absolutely summable impulse response绝对可和冲激响应Accumulator累加器Acoustic 声学Adder加法器Additivity property可加性Aliasing混叠现象All-pass systems全通系统AM (Amplitude modulation )幅度调制Amplifier放大器Amplitude modulation (AM)幅度调制Amplitude-scaling factor幅度放大因子Analog-to-digital (A-to-D) converter模数转换器Analysis equation分析公式(方程)Angel (phase) of complex number复数的角度(相位)Angle criterion角判据Angle modulation角度调制Anticausality反因果Aperiodic非周期Aperiodic convolution非周期卷积Aperiodic signal非周期信号Asynchronous异步的Audio systems音频(声音)系统Autocorrelation functions自相关函数Automobile suspension system汽车减震系统Averaging system平滑系统BBand-limited带(宽)限的Band-limited input signals带限输入信号Band-limited interpolation带限内插Bandpass filters带通滤波器Bandpass signal带通信号Bandpass-sampling techniques带通采样技术Bandwidth带宽Bartlett (triangular) window巴特利特(三角形)窗Bilateral Laplace transform双边拉普拉斯变换Bilinear双线性的Bilinear transformation双线性变换Bit(二进制)位,比特Block diagrams方框图Bode plots波特图Bounded有界限的Break frequency折转频率Butterworth filters巴特沃斯滤波器C“Chirp” transform algorithm“鸟声”变换算法Capacitor电容器Carrier载波Carrier frequency载波频率Carrier signal载波信号Cartesian (rectangular) form 直角坐标形式Cascade (series) interconnection串联,级联Cascade-form串联形式Causal LTI system因果的线性时不变系统Channel信道,频道Channel equalization信道均衡Chopper amplifier斩波器放大器Closed-loop闭环Closed-loop poles闭环极点Closed-loop system闭环系统Closed-loop system function闭环系统函数Coefficient multiplier系数乘法器Coefficients系数Communications systems通信系统Commutative property交换性(交换律)Compensation for nonideal elements非理想元件的补偿Complex conjugate复数共轭Complex exponential carrier复指数载波Complex exponential signals复指数信号Complex exponential(s)复指数Complex numbers 复数Conditionally stable systems条件稳定系统Conjugate symmetry共轭对称Conjugation property共轭性质Continuous-time delay连续时间延迟Continuous-time filter连续时间滤波器Continuous-time Fourier series连续时间傅立叶级数Continuous-time Fourier transform连续时间傅立叶变换Continuous-time signals连续时间信号Continuous-time systems连续时间系统Continuous-to-discrete-time conversion连续时间到离散时间转换Convergence 收敛Convolution卷积Convolution integral卷积积分Convolution property卷积性质Convolution sum卷积和Correlation function相关函数Critically damped systems临界阻尼系统Crosss-correlation functions互相关函数Cutoff frequencies截至频率DDamped sinusoids阻尼正弦振荡Damping ratio阻尼系数Dc offset直流偏移Dc sequence直流序列Deadbeat feedback systems临界阻尼反馈系统Decibels (dB) 分贝Decimation抽取Decimation and interpolation抽取和内插Degenerative (negative) feedback负反馈Delay延迟Delay time延迟时间Demodulation解调Difference equations差分方程Differencing property差分性质Differential equations微分方程Differentiating filters微分滤波器Differentiation property微分性质Differentiator微分器Digital-to-analog (D-to-A) converter数模转换器Direct Form I realization直接I型实现Direct form II realization直接II型实现Direct-form直接型Dirichlet conditions狄里赫利条件Dirichlet, P.L.狄里赫利Discontinuities间断点,不连续Discrete-time filters 离散时间滤波器Discrete-time Fourier series离散时间傅立叶级数Discrete-time Fourier series pair离散时间傅立叶级数对Discrete-time Fourier transform (DFT)离散时间傅立叶变换Discrete-time LTI filters离散时间线性时不变滤波器Discrete-time modulation离散时间调制Discrete-time nonrecursive filters离散时间非递归滤波器Discrete-time signals离散时间信号Discrete-time systems离散时间系统Discrete-time to continuous-time conversion离散时间到连续时间转换Dispersion弥撒(现象)Distortion扭曲,失真Distribution theory(property)分配律Dominant time constant主时间常数Double-sideband modulation (DSB)双边带调制Downsampling减采样Duality对偶性EEcho回波Eigenfunctions特征函数Eigenvalue特征值Elliptic filters椭圆滤波器Encirclement property围线性质End points终点Energy of signals信号的能量Energy-density spectrum能量密度谱Envelope detector包络检波器Envelope function包络函数Equalization均衡化Equalizer circuits均衡器电路Equation for closed-loop poles闭环极点方程Euler, L.欧拉Euler’s relation欧拉关系(公式)Even signals偶信号Exponential signals指数信号Exponentials指数FFast Fourier transform (FFT)快速傅立叶变换Feedback反馈Feedback interconnection反馈联结Feedback path反馈路径Filter(s)滤波器Final-value theorem终值定理Finite impulse response (FIR)有限长脉冲响应Finite impulse response (FIR) filters有限长脉冲响应滤波器Finite sum formula有限项和公式Finite-duration signals有限长信号First difference一阶差分First harmonic components基波分量(一次谐波分量)First-order continuous-time systems一阶连续时间系统First-order discrete-time systems一阶离散时间系统First-order recursive discrete-time filters一阶递归离散时间滤波器First-order systems一阶系统Forced response受迫响应Forward path正向通路Fourier series傅立叶级数Fourier transform傅立叶变换Fourier transform pairs傅立叶变换对Fourier, Jean Baptiste Joseph傅立叶(法国数学家,物理学家)Frequency response频率响应Frequency response of LTI systems线性时不变系统的频率响应Frequency scaling of continuous-time Fourier transform 连续时间傅立叶变化的频率尺度(变换性质)Frequency shift keying (FSK)频移键控Frequency shifting property频移性质Frequency-division multiplexing (FDM)频分多路复用Frequency-domain characterization频域特征Frequency-selective filter频率选择滤波器Frequency-shaping filters频率成型滤波器Fundamental components基波分量Fundamental frequency基波频率Fundamental period基波周期GGain增益Gain and phase margin增益和相位裕度General complex exponentials一般复指数信号Generalized functions广义函数Gibbs phenomenon吉伯斯现象Group delay群延迟HHalf-sample delay半采样间隔时延Hanning window汉宁窗Harmonic analyzer谐波分析议Harmonic components谐波分量Harmonically related谐波关系Heat propagation and diffusion热传播和扩散现象Higher order holds高阶保持Highpass filter高通滤波器Highpass-to-lowpass transformations高通到低通变换Hilbert transform希尔波特滤波器Homogeneity (scaling) property齐次性(比例性)IIdeal理想的Ideal bandstop characteristic理想带阻特征Ideal frequency-selective filter理想频率选择滤波器Idealization理想化Identity system恒等系统Imaginary part虚部Impulse response 冲激响应Impulse train冲激串Incrementally linear systems增量线性系统Independent variable独立变量Infinite impulse response (IIR)无限长脉冲响应Infinite impulse response (IIR) filters无限长脉冲响应滤波器Infinite sum formula无限项和公式Infinite taylor series无限项泰勒级数Initial-value theorem初值定理Inpulse-train sampling冲激串采样Instantaneous瞬时的Instantaneous frequency瞬时频率Integration in time-domain时域积分Integration property积分性质Integrator积分器Interconnection互联Intermediate-frequency (IF) stage中频级Intersymbol interference (ISI)码间干扰Inverse Fourier transform傅立叶反变换Inverse Laplace transform拉普拉斯反变换Inverse LTI system逆线性时不变系统Inverse system design逆系统设计Inverse z-transform z反变换Inverted pendulum倒立摆Invertibility of LTI systems线性时不变系统的可逆性Invertible systems逆系统LLag network滞后网络Lagrange, J.L.拉格朗日(法国数学家,力学家)Laplace transform拉普拉斯变换Laplace, P.S. de拉普拉斯(法国天文学家,数学家)lead network超前网络left-half plane左半平面left-sided signal左边信号Linear线性Linear constant-coefficient difference线性常系数差分方程equationsLinear constant-coefficient differential线性常系数微分方程equationsLinear feedback systems线性反馈系统Linear interpolation线性插值Linearity线性性Log magnitude-phase diagram对数幅-相图Log-magnitude plots对数模图Lossless coding无损失码Lowpass filters低通滤波器Lowpass-to-highpass transformation低通到高通的转换LTI system response线性时不变系统响应LTI systems analysis线性时不变系统分析MMagnitude and phase幅度和相位Matched filter匹配滤波器Measuring devices测量仪器Memory记忆Memoryless systems无记忆系统Modulating signal调制信号Modulation调制Modulation index调制指数Modulation property调制性质Moving-average filters移动平均滤波器Multiplexing多路技术Multiplication property相乘性质Multiplicities多样性NNarrowband窄带Narrowband frequency modulation窄带频率调制Natural frequency自然响应频率Natural response自然响应Negative (degenerative) feedback负反馈Nonanticipatibe system不超前系统Noncausal averaging system非因果平滑系统Nonideal非理想的Nonideal filters非理想滤波器Nonmalized functions归一化函数Nonrecursive非递归Nonrecursive filters非递归滤波器Nonrecursive linear constant-coefficient非递归线性常系数差分方程difference equationsNyquist frequency奈奎斯特频率Nyquist rate奈奎斯特率Nyquist stability criterion奈奎斯特稳定性判据OOdd harmonic 奇次谐波Odd signal奇信号Open-loop开环Open-loop frequency response开环频率响应Open-loop system开环系统Operational amplifier运算放大器Orthogonal functions正交函数Orthogonal signals正交信号Oscilloscope示波器Overdamped system过阻尼系统Oversampling过采样Overshoot超量PParallel interconnection并联Parallel-form block diagrams并联型框图Parity check奇偶校验检查Parseval’s relation帕斯伐尔关系(定理)Partial-fraction expansion部分分式展开Particular and homogeneous solution特解和齐次解Passband通频带Passband edge通带边缘Passband frequency通带频率Passband ripple通带起伏(或波纹)Pendulum钟摆Percent modulation调制百分数Periodic周期的Periodic complex exponentials周期复指数Periodic convolution周期卷积Periodic signals周期信号Periodic square wave周期方波Periodic square-wave modulating signal周期方波调制信号Periodic train of impulses周期冲激串Phase (angle) of complex number复数相位(角度)Phase lag相位滞后Phase lead相位超前Phase margin相位裕度Phase shift相移Phase-reversal相位倒置Phase modulation相位调制Plant工厂Polar form极坐标形式Poles极点Pole-zero plot(s)零极点图Polynomials 多项式Positive (regenerative) feedback正(再生)反馈Power of signals信号功率Power-series expansion method幂级数展开的方法Principal-phase function主值相位函数Proportional (P) control比例控制Proportional feedback system比例反馈系统Proportional-plus-derivative比例加积分Proportional-plus-derivative feedback比例加积分反馈Proportional-plus-integral-plus-different比例-积分-微分控制ial (PID) controlPulse-amplitude modulation脉冲幅度调制Pulse-code modulation脉冲编码调制Pulse-train carrier冲激串载波QQuadrature distortion正交失真Quadrature multiplexing正交多路复用Quality of circuit电路品质(因数)RRaised consine frequency response升余弦频率响应Rational frequency responses有理型频率响应Rational transform有理变换RC highpass filter RC 高阶滤波器RC lowpass filter RC 低阶滤波器Real实数Real exponential signals实指数信号Real part实部Rectangular (Cartesian) form 直角(卡笛儿)坐标形式Rectangular pulse矩形脉冲Rectangular pulse signal矩形脉冲信号Rectangular window矩形窗口Recursive (infinite impulse response)递归(无时限脉冲响应)滤波器filtersRecursive linear constant-coefficient 递归的线性常系数差分方程difference equationsRegenerative (positive) feedback再生(正)反馈Region of comvergence收敛域right-sided signal右边信号Rise time上升时间Root-locus analysis根轨迹分析(方法)Running sum动求和SS domain S域Sampled-data feedback systems采样数据反馈系统Sampled-data systems采样数据系统Sampling采样Sampling frequency采样频率Sampling function采样函数Sampling oscilloscope采样示波器Sampling period采样周期Sampling theorem采样定理Scaling (homogeneity) property比例性(齐次性)性质Scaling in z domain z域尺度变换Scrambler扰频器Second harmonic components二次谐波分量Second-order二阶Second-order continuous-time system二阶连续时间系统Second-order discrete-time system二阶离散时间系统Second-order systems二阶系统sequence序列Series (cascade) interconnection级联(串联)Sifting property筛选性质Sinc functions sinc函数Single-sideband单边带Single-sideband sinusoidal amplitude单边带正弦幅度调制modulationSingularity functions奇异函数Sinusoidal正弦(信号)Sinusoidal amplitude modulation正弦幅度调制Sinusoidal carrier正弦载波Sinusoidal frequency modulation正弦频率调制Sliding滑动Spectral coefficient频谱系数Spectrum频谱Speech scrambler语音加密器S-plane S平面Square wave方波Stability稳定性Stabilization of unstable systems不稳定系统的稳定性(度)Step response阶跃响应Step-invariant transformation阶跃响应不定的变换Stopband阻带Stopband edge阻带边缘Stopband frequency阻带频率Stopband ripple 阻带起伏(或波纹)Stroboscopic effect频闪响应Summer加法器Superposition integral叠加积分Superposition property叠加性质Superposition sum叠加和Suspension system减震系统Symmetric periodic 周期对称Symmetry对称性Synchronous同步的Synthesis equation综合方程System function(s)系统方程TTable of properties 性质列表Taylor series泰勒级数Time时间,时域Time advance property of unilateral单边z变换的时间超前性质z-transformTime constants时间常数Time delay property of unilateral单边z变换的时间延迟性质z-transformTime expansion property时间扩展性质Time invariance时间变量Time reversal property时间反转(反褶)性Time scaling property时间尺度变换性Time shifting property时移性质Time window时间窗口Time-division multiplexing (TDM)时分复用Time-domain时域Time-domain properties时域性质Tracking system (s)跟踪系统Transfer function转移函数transform pairs变换对Transformation变换(变形)Transition band过渡带Transmodulation (transmultiplexing) 交叉调制Triangular (Barlett) window三角型(巴特利特)窗口Trigonometric series三角级数Two-sided signal双边信号Type l feedback system l 型反馈系统UUint impulse response单位冲激响应Uint ramp function单位斜坡函数Undamped natural frequency无阻尼自然相应Undamped system无阻尼系统Underdamped systems欠阻尼系统Undersampling欠采样Unilateral单边的Unilateral Laplace transform单边拉普拉斯变换Unilateral z-transform单边z变换Unit circle单位圆Unit delay单位延迟Unit doublets单位冲激偶Unit impulse单位冲激Unit step functions单位阶跃函数Unit step response 单位阶跃响应Unstable systems不稳定系统Unwrapped phase展开的相位特性Upsampling增采样VVariable变量WWalsh functions沃尔什函数Wave波形Wavelengths波长Weighted average加权平均Wideband宽带Wideband frequency modulation宽带频率调制Windowing加窗zZ domain z域Zero force equalizer置零均衡器Zero-Input response零输入响应Zero-Order hold零阶保持Zeros of Laplace transform拉普拉斯变换的零点Zero-state response零状态响应z-transform z变换z-transform pairs z变换对。
数字信号处理词汇英文翻译
DFT (discrete Fourier transform)离散傅立叶变换
196
N-point DFT of a length L signal对L长信号做N点DFT
197
zero padding补零
198
biasing error偏移误差
199
rounding error舍入误差
200
matrix form矩阵形式
integrator积分器
88
DCgain直流增益
89
overlap-add-block convolution method重叠相加器
90
temporary临时的
91
adder加法器
92
multiplier相乘器
93
delay延迟器
94
tapped delay line抽头延迟器
95
differentiator微分器
78
difference equation差分卷积
79
recursive递归
80
even偶数
81
odd奇数
82
filter coefficient滤波器系数
83
diverge发散
84
antidiagonal反对角线
85
flip-and-slide翻转平移
86
input-off-state输出暂态
87
218
window method窗口法
219
linear phase线性相位
220
guaranteesability保证稳定性
221
lowpass低通
222
highpass高通
数字信号处理词汇
数字信号处理词汇集1 章系统:system 信号:signal 模拟信号: analog signal 数字信号: digital signal 频谱: spectrum模/数转换: analog-to-digital conversion数字滤波: digital filtering 滤波器: filter采样: sample 保持: hold数字代码: digital code 量化电平: quantization level 时域: time domain 频域: frequency domain 低频: low frequency 高频: high frequency低通滤波器: low pass filter 高通滤波器: high pass filter 带通滤波器: band pass filter 带阻滤波器: band stop filter 零阶保持信号:zero order hold signal 平滑: smooth采样周期: sampling period 频率分量:frequency elements 图像处理: image processing 传感器: sensor 电压: voltage 电流: current 2 章anti-imaging filter 抗镜像滤波器 sampling interval 采样间隔anti-aliasing filter 抗混叠滤波器=sampling period 采样周期sampling frequency 采样频率=sampling rate 采样速率sampling theorem 采样定理 N yquistsam pling rate 奈奎斯特采样率 Nyquist frequency 奈奎斯特频率Nyquist range 奈奎斯特范围 oversampling 过采样undersampling 欠采样 quantization step 量化步长quantization noise 量化噪声 bit rate 比特率3 章数字函数: digital function 合成函数: composite function 二维数字信号: two-dimensional digital signal语音信号: speech signal 量化方案: quantization scheme 脉冲函数: impulse function 单位脉冲函数: unit impulse function 阶跃函数: step function 幂函数:power function 指数函数: exponential function 正弦函数: sine function 余弦函数: cosine function 复平面: complex plain 欧拉恒等式: Euler’s identity 模拟频率: analog frequency 数字频率:digital frequency 采样间隔: sampling interval 相移: phase shift 像素: pixel 灰度级: gray scale 4 章 roll-off 滚降 gain 增益 pass band 通带stop band 阻带 bandwidth 带宽linear system 线性系统 superposition 叠加原理time-invariant 时不变 causal system 因果系统difference equation 差分方程 filter coefficient 滤波器系数recursive filter 递归滤波器 nonrecursive filter 非递归滤波器finite word length effect 有限字长效应impulse response 脉冲响应infinite impulse response ( IIR)无限脉冲响应finite impulse response (FIR)有限脉冲响应m oving average filter 滑动平均滤波器 step response 阶跃响应5 章卷积: convolution 差分方程: difference equation 滑动平均滤波器: moving average filter脉冲响应: impulse response 镜像: mirror image边界效应: boundary effect输入序列: input sequence暂态效应: transient effect 稳态: steady state锐变: shape transition低通特征:low pass characteristic卷积表: convolution table6 章 z transform z 变换 region of convergence 收敛域inverse z transform 逆 z 变换 transfer function 传输函数partial fraction expansion 部分分式展开cover-up method 覆盖法 zero 零点 pole 极点marginally stable 临界稳定 unstable 不稳定7 章傅立叶变换: Fourier Transform 滤波器形状: filter shape 频率响应:frequency response频率特性: frequency characteristics离散时间傅立叶变换: Discrete Time Fourier Transform幅度响应: magnitude response 相位响应: phase response 传输函数: transfer function 相位差: phase difference 采样频率: sampling frequency8章 white noise 白噪声 magnitude spectrum 幅度频谱phase spectrum 相位频谱discrete Fourier series ( DFS)离散傅里叶级数9 章有限脉冲响应滤波器: finite impulse response filter无限脉冲响应滤波器: infinite impulse response filter相位失真: phase distortion 理想低通滤波器: idle low pass filter 窗函数: window function 稳定性: stability通带波纹: pass band ripple 阻带波纹: stop band ripple 通带边缘频率:pass band edge frequency过渡带宽度: transition width 矩形窗: Rectangular Window 汉宁窗: Hanning Window 哈明窗:Hamming Window布莱克曼窗:Blackman Window 凯塞窗:Kaiser Window项数:number of terms 衰减:attenuation 增益:gain采样频率:sampling frequency 10 章infinite impulse response filter(IIR) 无限脉冲响应滤波器bilinear transformation 双线性变换prewarping equation Butterworth filter 预扭曲方程巴特沃斯滤波器Chebyshev Type I filter 切比雪夫 I 型滤波器Chebyshev Type II filter 切比雪夫 II 型滤波器elliptic filter 椭圆滤波器Impulse invariance method 脉冲响应不变法。
数字信号处理技术
数字信号处理技术数字信号处理技术(Digital Signal Processing,简称DSP)是一种将模拟信号经过采样、量化和编码等处理后,转换成数字信号进行分析、处理和传输的技术。
它广泛应用于通信、音视频、生物医学、雷达、图像处理等领域,对信号的处理和分析提供了一种有效的手段。
一、数字信号处理的基本原理数字信号处理的基本原理是将连续时间下连续信号转化为离散时间下的数字信号,然后利用现代计算机进行数字信号的处理。
具体原理如下:1. 采样(Sampling):将连续时间下的信号按照一定的时间间隔进行采样,得到一系列离散时间点上的采样值。
2. 量化(Quantization):将采样得到的连续幅值进行离散化,将其量化为有限个离散数值,这样可以用有限的位数来表示信号的幅值,从而减小了存储和处理的复杂度。
3. 编码(Encoding):对量化后的信号进行编码处理,将其转换为二进制码以便于存储和传输。
4. 数字信号处理(Digital Signal Processing):利用计算机和相应的算法对信号进行数字化处理,如滤波、变换、调制解调等。
二、数字信号处理的应用数字信号处理技术在各个领域都有重要的应用和意义。
1. 通信领域:在通信领域中,数字信号处理技术被广泛应用于调制解调、信号编码、信道估计、自适应滤波等,提高了通信系统的可靠性和性能。
2. 音视频领域:数字信号处理技术在音视频领域中的应用极为广泛,如音频信号的压缩编码、音频效果的增强、视频信号的编解码等。
3. 生物医学领域:数字信号处理技术在生物医学领域中的应用主要体现在医学图像处理、心电信号分析、脑电信号处理等方面,大大提高了医学诊断和治疗的准确性和效率。
4. 图像处理领域:数字信号处理技术在图像处理领域中被广泛应用,如图像增强、图像滤波、图像压缩编码等,提高了图像的清晰度、准确度和储存效率。
5. 雷达领域:数字信号处理技术在雷达领域中的应用主要包括雷达信号处理、目标检测与跟踪、信号压缩与恢复等,提高了雷达系统的性能和检测能力。
数字信号处理
数字信号处理什么是数字信号处理?数字信号处理(Digital Signal Processing,DSP)是一种广泛应用于信息处理的技术领域。
它涉及对以离散时间表示的信号进行获取、分析、变换和合成。
数字信号处理技术可以应用于音频、视频、图像、通信和控制等领域,从而提高信号质量、提取有用信息、实现实时控制等多种功能。
数字信号处理的基本原理数字信号处理的基本原理可以总结为以下几个步骤:1.信号获取:通过传感器、麦克风、摄像头等设备获取模拟信号或数字信号。
2.采样:将连续的模拟信号转换为离散时间信号,即将模拟信号在时间上进行等间隔采样。
3.量化:将采样后的信号的幅度值转换为有限数量的离散值。
4.编码:对量化后的信号进行编码,将其表示为二进制形式,方便在计算机中处理和存储。
5.数字信号处理算法:对编码后的数字信号进行一系列算法处理,包括滤波、频谱分析、变换等。
6.逆变换和解码:将处理后的数字信号转换回模拟信号,以便输出和使用。
数字信号处理的算法和技术在数字信号处理领域,有许多常用的算法和技术。
下面介绍几种常见的算法和技术:1. 滤波器滤波器是数字信号处理中常用的一种算法。
它用于改变信号的频率响应,滤除不需要的频率分量或增强需要的频率分量。
低通滤波器用于滤除高频成分,高通滤波器用于滤除低频成分,带通滤波器用于保留某一频率范围的信号成分。
2. 快速傅里叶变换(FFT)快速傅里叶变换是一种高效的频谱分析算法,它可以将信号从时域转换为频域。
通过傅里叶变换,可以对信号的频率分量进行分析,从而实现频谱分析、频域滤波等操作。
3. 信号压缩信号压缩是一种将信号表示为更紧凑形式的技术。
通过去除冗余信息和利用信号的统计特性,可以实现对信号的压缩和恢复。
4. 语音处理语音处理是数字信号处理中的一个重要应用领域。
它涉及到语音信号的获取、分析、合成和识别等方面。
语音处理技术可以用于语音识别、语音合成、语音增强等场景。
数字信号处理的应用数字信号处理技术在许多领域得到了广泛的应用,下面介绍几个典型的应用领域:1. 通信数字信号处理在通信领域中发挥了重要作用。
DSP的发展、现况及其应用中英文翻译
DSP的发展、现况及其应用数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
DSP有两种含义:digital Signal Processing(数字信号处理)、Digital Signal Processor(数字信号处理器)。
我们常说的DSP指的是数字信号处理器。
数字信号处理器是一种适合完成数字信号处理运算的处理器。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。
例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。
近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。
DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快,这就决定了DSP的特点和关键技术。
适合数字信号处理的关键技术:DSP包含乘法器、累加器、特殊地址发生器、领开销循环等;提高处理速度的关键技术:流水线技术、并行处理技术、超常指令(VLIW)、超标量技术、DMA等。
从广义上讲,DSP、微处理器和微控制器(单片机)等都属于处理器,可以说DSP是一种CPU。
DSP和一般的CPU又不同,最大的区别在于:CPU是冯.诺伊曼结构的;DSP是数据和地址空间分开的哈佛结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴楠电子与通信工程2014309013 Signal processingSignal processing is an area of electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time, to perform useful operations on those signals. Signals of interest can include sound, images, time-varying measurement values and sensor data, for example biological data such as electrocardiograms, control system signals, telecommunication transmission signals such as radio signals, and many others. Signals are analog or digital electrical representations of time-varying or spatial-varying physical quantities. In the context of signal processing, arbitrary binary data streams and on-off signalling are not considered as signals, but only analog and digital signals that are representations of analog physical quantities.HistoryAccording to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the "digitalization" or digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s.[2]Categories of signal processingAnalog signal processingAnalog signal processing is for signals that have not been digitized, as in classical radio, telephone, radar, and television systems. This involves linear electronic circuits such as passive filters, active filters, additive mixers, integrators and delay lines. It also involves non-linear circuits such as compandors, multiplicators (frequency mixers and voltage-controlled amplifiers), voltage-controlled filters, voltage-controlled oscillators andphase-locked loops.Discrete time signal processingDiscrete time signal processing is for sampled signals that are considered as defined only at discrete points in time, and as such are quantized in time, but not in magnitude.Analog discrete-time signal processing is a technology based on electronic devices such as sample and hold circuits, analog time-division multiplexers, analog delay lines and analog feedback shift registers. This technology was a predecessor of digital signal processing (see below), and is still used in advanced processing of gigahertz signals.The concept of discrete-time signal processing also refers to a theoretical discipline that establishes a mathematical basis for digital signal processing, without taking quantization error into consideration.Digital signal processingDigital signal processing is for signals that have been digitized. Processing is done by general-purpose computers or by digital circuits such as ASICs,field-programmable gate arrays or specialized digital signal processors (DSP chips). Typical arithmetical operations include fixed-point and floating-point, real-valued and complex-valued, multiplication and addition. Other typical operations supported by the hardware are circular buffers and look-up tables. Examples of algorithms are the Fast Fourier transform (FFT), finite impulse response (FIR) filter, Infinite impulse response (IIR) filter, and adaptive filters such as the Wiener and Kalman filters1.Digital signal processingDigital signal processing (DSP) is concerned with the representation of signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like: audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, control of systems, biomedical signal processing, seismic data processing, etc.The goal of DSP is usually to measure, filter and/or compress continuousreal-world analog signals. The first step is usually to convert the signal from an analog to a digital form, by sampling it using an analog-to-digital converter (ADC), which turns the analog signal into a stream of numbers. However, often, the required output signal is another analog output signal, which requires adigital-to-analog converter (DAC). Even if this process is more complex than analog processing and has a discrete value range, the application of computational power to digital signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[1]DSP algorithms have long been run on standard computers, on specialized processors called digital signal processors (DSPs), or on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial apps such as motor control), and stream processors, among others.[2]2. DSP domainsIn DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information, that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.3. Signal samplingMain article: Sampling (signal processing)With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog-to-digital converter. Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replacing the signal with representative signal of the corresponding equivalence class. In the quantization stage the representative signal values are approximated by values from a finite set.The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency of the signal; but requires an infinite number of samples . In practice, the sampling frequency is often significantly more than twice that required by the signal's limited bandwidth.A digital-to-analog converter is used to convert the digital signal back to analog. The use of a digital computer is a key ingredient in digital control systems. 4. Time and space domainsMain article: Time domainThe most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters; for example:• A "linear" filter is a linear transformation of input samples; other filters are "non-linear". Linear filters satisfy the superposition condition, i.e. if an input is aweighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.• A "causal" filter uses only previous samples of the input or output signals; while a "non-causal" filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.• A "time-invariant" filter has constant properties over time; other filters such as adaptive filters change in time.•Some filters are "stable", others are "unstable". A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.• A "finite impulse response" (FIR) filter uses only the input signals, while an "infinite impulse response" filter (IIR) uses both the input signal and previous samples ofthe output signal. FIR filters are always stable, while IIR filters may be unstable.Filters can be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response.The output of a digital filter to any given input may be calculated by convolving the input signal with the impulse response.5. Frequency domainMain article: Frequency domainSignals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing.In addition to frequency information, phase information is often needed. This can be obtained from the Fourier transform. With some applications, how the phase varies with frequency can be a significant consideration.Filtering, particularly in non-realtime work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O(n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the frequency components with smaller magnitude while retaining the order of magnitudes of frequency components.Frequency domain analysis is also called spectrum- or spectral analysis.6. Z-domain analysisWhereas analog filters are usually analysed on the s-plane; digital filters are analysed on the z-plane or z-domain in terms of z-transforms.Most filters can be described in Z-domain (a complex number superset of the frequency domain) by their transfer functions. A filter may be analysed in the z-domain by its characteristic collection of zeroes and poles.7. ApplicationsThe main applications of DSP are audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communications, RADAR, SONAR, seismology, and biomedicine. Specific examples are speech compression and transmission in digital mobile phones, room matching equalization of sound in Hifi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data processing, analysis and control of industrial processes, computer-generated animations in movies, medical imaging such as CAT scans and MRI, MP3 compression, image manipulation, high fidelity loudspeaker crossovers and equalization, and audio effects for use with electric guitar amplifiers8. ImplementationDigital signal processing is often implemented using specialised microprocessors such as the DSP56000, the TMS320, or the SHARC. These often process data using fixed-point arithmetic, although some versions are available which use floating point arithmetic and are more powerful. For faster applications FPGAs[3] might be used. Beginning in 2007, multicoreimplementations of DSPs have started to emerge from companies including Freescale and Stream Processors, Inc. For faster applications with vast usage, ASICs might be designed specifically. For slow applications, a traditional slower processor such as a microcontroller may be adequate. Also a growing number of DSP applications are now being implemented on Embedded Systems using powerful PCs with a Multi-core processor.(翻译)信号处理信号处理是电子工程与应用数学领域,在离散时间或者连续时间域处理和分析信号,来对这些信号进行所需的必要的处理。