中心对称与中心对称图形习题及答案
中心对称与中心对称图形中档题30道解答题附答案
9.2 中心对称与中心对称图形中档题汇编(3)相等两部分的直线.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.的长为:=23.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.中,11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.x+613.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.∴∴14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.OD=OB=DB=115.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8.cosB==,18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa=Sb=Sc=Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?Sa=Sb=Sc=Sd=S19.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.BD==OB=DE=(﹣﹣x﹣22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来▱ABA′B′,▱BCB′C′,▱CA′C′A.25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.、、。
苏科版数学八年级下册中心对称和中心对称图形
中心对称和中心对称图形-培优拔尖精练
一、相关概念1.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线;
A .1个
B .2个
C .3个
D .4个
二、中心对称的性质的坐标是.
第2题图第3题图第4题图
四、对称点的坐标推导
4.如图,将ABC 绕点()0,1C -旋转180︒得到A B C ''' .设点A '的坐标为(),a b ,则点A 的坐标为()
A .(,)
a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b ---三、对称中心的确定
5.如图,在平面直角坐标系中,RtΔABC 的三个顶点分别是A (-3,2)
、B (0,4)、C (0,2).(1)将ΔABC 以点C 为中心旋转180°,画出旋转后对应的△A 1B 1C ;
(2)平移△ABC ,若点A 的对应点A 2的坐标为(1,-4)
,画出平移后对应的△A 2B 2C 2;(3)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;
练习9.2第4题图第5题图xOy 中的位置如图所示,小正方形的边长为1个单位.
111A B C △.
(3)在x 轴上有一点P ,使1PA +______.。
9.2 中心对称与中心对称图形(解析版)
【上好课】2021-2022学年八年级数学下册同步备课系列(苏科版)9.2 中心对称与中心对称图形一、单选题1.学校举办了“送福迎新春,剪纸庆佳节”比赛.请问以下参赛作品中,是中心对称图形的是()A.B.C.D.【答案】D【解析】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.3.下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等【答案】B【解析】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.4.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是( )A.点EB.点FC.点G【答案】D【解析】解:由于四边形ABCD 与四边形EFGH 都是菱形,且关于直线BD 上某个点成中心对称,根据中心对称的定义可知,点B 的对称点是H .故选D .5.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )A .第一张B .第二张C .第三张D .第四张【答案】A【解析】解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A .6.如图,ABC V 与A B C ¢¢¢V 关于O 成中心对称,下列结论中不一定成立的是( )A .ABC A CB ¢¢¢Ð=ÐB .OA OA ¢=C .BC B C ¢¢=D .OC OC ¢=【答案】A【解析】解:∵对应点的连线被对称中心平分,∴OA OA ¢=,OC OC ¢=,即B 、D 正确,∵成中心对称图形的两个图形是全等形,∴对应线段相等,即BC B C ¢¢=,∴C 正确,故选A .7.如图,已知长方形的长为10,宽为4,则图中阴影部分的面积为( )A .20B .15C .10D .25【答案】A 【解析】解:根据题意观察图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得:图中阴影部分的面积即是长方形面积的一半,×40=20cm2.则图中阴影部分的面积=12故选:A.8.如图所示,在33´的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【答案】C【解析】如图所示:5种不同的颜色即为使整个图案构成一个轴对称图形的办法.故选:C.二、填空题9.ABO V 与11A B O V 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点(4,2)A ,则点1A 的坐标是________.【答案】(-4,-2)【解析】∵△ABO 与△A1B1O 关于点O 成中心对称,点A (4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).10.如图是一个中心对称图形,点A 为对称中心,若3AC =,5AB =,4BC =,则CC ¢的长为______.【答案】6【解析】∵图形是一个中心对称图形,A 为对称中心,∴3AC AC ¢==,∴6CC AC AC ¢¢=+=,故答案为:6.11.平面直角坐标系中,点()3,2P -关于点()1,0Q 成中心对称的点的坐标是_______.【答案】(-1,2)【解析】解:如图,设Q (1,0),连结PQ 并延长到点P ′,使P ′Q =PQ ,设P ′(x ,y ),则x <0,y >0.过P 作PM ⊥x 轴于点M ,过P ′作PN ⊥x 轴于点N .在△QP ′N 与△QPM 中,QNP QMP NQP MQP QP QP Ð=ÐìïÐ==¢Ð¢í¢ïî,∴△QP ′N ≌△QPM (AAS ),∴QN =QM ,P ′N =PM ,∴1-x =3-1,y =2,∴x =-1,y =2,∴P ′(-1,2).故答案为(-1,2).三、解答题12.在直角坐标平面内,点A1、B1、C1的坐标如图所示.(1)请写出点A1、B1、C1的坐标:点A1的坐标是 ;点B1的坐标是 ;点C1的坐标是 .(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是 .(3)若点B1与点B关于原点对称,则点B的坐标是 .(4)将C1沿x轴翻折得到点C,则点C的坐标是 .(5)分别联结AB、BC、AC,得到△ABC,则△ABC的面积是 .【答案】(1)(3,0);(﹣5,﹣3);(3,2);(2)(0,3);(3)(5,3);(4)(3,﹣2);(5)252.【解析】解:(1)在直角坐标平面内,点A1、B1、C1的坐标如图所示:点A1的坐标是(3,0);点B1的坐标是(﹣5,﹣3);点C1的坐标是(3,2),故答案为:(3,0);(﹣5,﹣3);(3,2);(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是(0,3),故答案为:(0,3);(3)若点B1与点B关于原点对称,则点B的坐标是(5,3),故答案为:(5,3);(4)将C1沿x轴翻折得到点C,则点C的坐标是(3,﹣2),故答案为:(3,﹣2);(5)分别连接AB、BC、AC,得到△ABC,则△ABC的面积是:2555122´´=,故答案为:252.13.图中的两个四边形关于某点对称,找出它们的对称中心.【答案】见解析【解析】解:如图,点O即为所求14.如图,已知AD是ABCD的中线,画出以点D为对称中心、与ABDD成中心对称的三角形.【答案】见解析【解析】解:延长AD,且使AD A D¢D的中线,所以B点关于中心D的对称点为C,连接=,因为AD是ABCD为所求作的三角形,如图所示.'A C,则'A CD15.如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,按下列要求涂上阴影(1)在(图1)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形;(2)在(图2)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【解析】(1)添加图形如下:(2)添加图形如下:16.已知△OAB在平面直角坐标系中的位置如图所示,请解答以下问题:(1)按要求作图:先将△OAB绕原点O逆时针旋转90°,得到△OA1B1,再作出△OA2B2,使它与△OA1B1关于原点成中心对称;(2)直接写出点A1的坐标;点B2的坐标.【答案】(1)见解析(2)(﹣1,3);(2,﹣2)【解析】(1)如图,△OA1B1,△OA2B2即为所求;(2)点A1的坐标(﹣1,3);点B2的坐标(2,﹣2).故答案为:(﹣1,3);(2,﹣2).17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )对称.【答案】(1)见解析(2)见解析(3)−2,0【解析】(1)点A(1,3),B(4,4),C(2,1)分别向左平移4个单位后的对应点的坐标分别为A1(−3,3),B1 (0,4),C1(−2,1),依次连接这三个点得到平移后的△A1B1C1,如图所示.(2)△ABC的三个顶点A(1,3),B(4,4),C(2,1)绕原点O旋转180゜后可得对应点A2,B2,C2的坐标分别为(−1,−3),(−4,−4),(−2,−1),依次连接这三个点得到旋转后的△A2B2C2,如图所示;(3)如(2)中图所示,连接12C C 、12A A 、12B B ,可得12,C C 关于(−2,0)对称设直线12A A 的解析式为y =kx +b ,则有:333k b k b -+=ìí-+=-î解得:36k b =-ìí=-î 即直线12A A 的解析式为36y x =--当2x =-时,y =0,则(−2,0)是12,A A 的对称中心;同理可求得直线12B B 的解析式为24y x =+当2x =-时,y =0,则(−2,0)是12,B B 的对称中心;综上所述,△A 1B 1C 1与△A 2B 2C 2关于点(−2,0)对称.18.在一次数学探究活动中,小强只用一条直线就把矩形分割成面积相等的两部分.(1)在如图所示的三个矩形中,请你大胆尝试,画出符合上述要求的直线(注:①所画直线经过的特殊点必须标注清楚,②一个矩形只画一种).(2)根据你的分割法:只用一条直线就把矩形分割成面积相等的两部分,你认为这样的直线有条?(3)由上述实验操作过程,你发现所画的这条直线的特征是;(4)经验迁移:如图④,在正方形ABCD中,AB=6,点E在边AD上,且AE=2.若直线l经过点E,并将该正方形的面积平分,与正方形的BC边交于点F,求线段EF的长.【答案】(1)见解析;(2)无数;(3)经过对角线的交点(矩形的对称中心);(4)【解析】解:(1)①直线经过矩形对角线,如图,,②直线经过一组对边中点,如图,,③直线经过矩形对称中心,如图,,此处可借助△OAE≌△OCF,证面积被平分.(2)只要经过矩形的对称中心,便可以平分矩形面积,所以有无数条,故答案为无数,(3)分析图形得到平分矩形面积的直线都经过了矩形的对称中心(对角线的交点),故答案为经过对角线的交点(矩形的对称中心).(4)根据题意,连接AC,BD交于点O,过E,O的直线交BC于点F,过点E作EG⊥BC于点G.如图,,∵四边形ABCD是正方形,∴AB=BC=6.OA=OC,∠FCO=∠OAE=45°,∵∠FOC=∠AOE,∴△FOC≌△AOE(ASA),∴AE=CF=2,∴GF=6﹣2﹣2=2,在Rt△EFG中,EG=AB=6,GF=2,∴EF=。
初中数学中心对称图形专题训练50题(含答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.在平面直角坐标系中,点(2-,6)关于原点对称的点坐标是()A.(6-,2)B.(2,6-)C.(2,6)D.(2-,6-)2.下列图标中,既是中心对称又是轴对称的图标是()A.B.C.D.3.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.(2,5)B.(-3,2)C.(3,-2)D.(3,2)4.我国已经进入5G时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中,属于中心对称图形的是()A.B.C.D.7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形8.下列图案中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.直角三角形9.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1B.2C.3D.410.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在平行四边形,矩形,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个12.在下列四个图形中,是中心对称图形的是()A.B.C.D.13.这四个汽车标志图中,既是中心对称图形又是轴对称图形的是()A.B.C.D.14.下列①平行四边形,①矩形,①菱形,①正方形四个图形中,是中心对称图形,但不是轴对称图形是()A.①B.①C.①D.①15.下列图形中,可以看作是中心对称图形的有()A.0个B.1个C.2个D.3个16.下列图案中不是中心对称图形的是()A.B.C.D.17.下列图形中,是中心对称图形,但不是轴对称图形的是()A.(A)B.(B)C.(C)D.(D)18.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.19.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A .B .C .D .二、填空题20.平面直角坐标系内一点(5,3)P -,关于原点对称的点的坐标为____________. 21.在平面直角坐标系中点M (2,﹣4)关于原点对称的点的坐标为 _____. 22.在平面直角坐标系中,点()2,3A 关于x 轴的对称点是_____;关于y 轴的对称点是_____;关于原点的对称点是_____.23.点(2,1)P -与点Q 关于原点对称,则点Q 的坐标为__________.24.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b =_____.25.将点()2,3P 绕原点O 旋转180°后P 点的对应点坐标为______.26.已知点(,1)A a 与点(3,1)B --关于原点对称,则=a __ .27.点A (-1,2)关于原点中心对称点的坐标是___________28.在平面直角坐标系中,已知点(),2A a -和点()3,B b 关于原点对称,则a b +=________.29.在平面直角坐标系中,若点(),3A a 与点()4,B b 关于原点O 对称,则ab =__________.30.在四张完全相同的卡片上,分别画有:线段、正三角形、矩形、圆,如果从中随机抽取一张,那么卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是____.31.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.32.已知点(2,)A m -与点(,3)B n 关于原点对称,则n m 的值为____________________. 33.已知实数a 、b 是方程22530x x --=的两根,a b <,则点(),P a b 关于原点的对称点Q 的坐标是___________.34.下列图形中,其中是中心对称图形有_____个.①圆;①平行四边形;①长方形;①等腰三角形.35.在直角坐标系中,点(﹣1,2)关于原点对称的点的坐标是___.36.点2(1)A -,关于x 轴对称的点的坐标是_____;点A 关于原点对称的点的坐标是_____.37.平面直角坐标系中,点(31)P a -,与点(23)Q b ,+关于原点对称,则a b +=_____. 38.如图,在平面直角坐标系中,11OA B 是边长为1的等边三角形,作122B A B 与11B AO 关于点1B 成中心对称,再作233B A B 与221B A B 关于点2B 成中心对称,继续作344B A B 与332B A B 关于点3B 成中心对称,….按此规律作下去,则202120222022B A B 的顶点2022A 的坐标是__________.39.如图,C 是线段AB 的中点,B 是线段CD 的中点,线段AB 的对称中心是点__,点C 关于点B 成中心对称的点是点__.三、解答题40.如图,已知①ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出①ABC 关于原点成中心对称的三角形①A′B′C′;(2)将①ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点B″的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.41.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △;(2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.42.利用图甲所示的地板砖各两块,在图乙(1)中铺成一个只是轴对称的图形;在图乙(2)铺成一个只是中心对称的图形,在图乙(3)中铺成既是轴对称图形,又是中心对称的图形.43.如图:在网格中按题目要求画图(1)把ABC 先向右平移5格,再向上平移3格得到111A B C △;(2)作ABC 关于原点对称的图形得到222A B C △.44.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,①ABC 的顶点都在格点上.(1)将①ABC 向右平移6个单位长度得到①A 1B 1C 1,请画出①A 1B 1C 1;(2)画出①ABC 关于点O 的中心对称图形①A 2B 2C 2;(3)若将①A 1B 1C 1绕某一点旋转可得到①A 2B 2C 2,请直接写出旋转中心的坐标:_________.45.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,①ABC 的顶点均在格点上,点C 的坐标为(0,1),请按要求画图与作答:(1)请画出①ABC关于原点成中心对称的①A1B1C1;(2)请画出①ABC绕着点C顺时针旋转90°后的①A2B2C2;(3)求①A2B2C2的面积.46.如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.47.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB 扫过的面积.48.如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1) 请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.49.在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF①x轴于点F,设EF=m,问:当m为何值时,①BFE与①DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案:1.B【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点A(-2,6)关于原点对称的点的坐标是(2,-6),故选:B.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.2.A【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.既是中心对称又是轴对称,符合题意;B.不是中心对称,是轴对称,不符合题意;C.不是中心对称,是轴对称,不符合题意;D.既不是中心对称也不是轴对称,不符合题意;故选:A.【点睛】本题考查了轴对称图形与中心对称图形的识别,牢记轴对称图形和中心对称图形的概念是解答本题的关键.3.A【详解】①P(m,m-n)与点Q(-2,3)关于原点对称,①m=2,n=5,①点P的坐标为(2,5).故选A.4.C【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项不合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不合题意;C.是中心对称图形,但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.5.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】根据中心对称图形的概念进行求解即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,解题的关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.C【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,不符合题意;B、平行四边形不是轴对称图形,是中心对称图形,不符合题意;C、矩形是轴对称图形,也是中心对称图形,符合题意;D、直角三角形不一定是轴对称图形,不是中心对称图形,不符合题意.故选C.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.A【分析】根据中心对称图形和轴对称图形的概念,即可得出正确选项.【详解】解:A.此图既是轴对称图形又是中心对称图形,故此选项符合题意;B.此图不是中心对称图形,是轴对称图形,故此选项不合题意;C.此图是中心对称图形,不是轴对称图形,故此选项不合题意;D.此图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题考查中心对称图形和轴对称图形的概念,属于基础题,熟练掌握概念是本题的关键.11.A【详解】试题分析:根据轴对称图形与中心对称图形的概念求解.解:既是轴对称图形又是中心对称图形的图形为:矩形、圆,正方形,共3个.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是轴对称图形,不是中心对称图形,故本选项错误,C、不是中心对称图形,故本选项错误,D、是中心对称图形,故本选项正确.故选D.13.C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项正确;B、矩形既是轴对称图形,又是中心对称图形,故此选项错误;C、菱形既是轴对称图形,也是中心对称图形,故此选项错误;D、正方形既是轴对称图形,也是中心对称图形,故此选项错误.故答案为:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.C【详解】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:①、旋转180°,与原图形不能够重合,不是中心对称图形,故错误;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,不是中心对称图形,故正确;①、旋转180°,能与原图形能够完全重合,是中心对称图形,故正确;综上可得有两个正确.故选C.此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.16.D【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,对四个选项分别进行判断,即可得出结论.【详解】解:A、B、C三个选项的图形都是中心对称图形,D不是中心对称图形.故选:D.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义并能运用定义对图形进行准确判断是解题的关键.17.B【详解】分析:根据轴对称图形与中心对称图形的概念进行判断即可.详解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项正确;C、是轴对称图形,也是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选B .点睛:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.D【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】A 、不是中心对称图形,故本选项不符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.20.(-5,3).【详解】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P (5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.21.()2,4-【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.【详解】解:点M (2,﹣4)关于原点对称的点的坐标为()2,4-故答案为:()2,4-【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.22. ()2,3- ()2,3- ()2,3--【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可直接写出答案.【详解】解:在平面直角坐标系中,点()2,3A 关于x 轴的对称点是()2,3-;关于y 轴的对称点是()2,3-;关于原点的对称点是()2,3--.故答案为:()2,3-;()2,3-;()2,3--.【点睛】此题主要考查了关于x 轴、y 轴、以及关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.23.(21)-,【详解】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),所以点Q 的坐标为(−2,1).,故答案为()21-, 24.1【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b .【详解】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数, ①a=4且b=-3,①a+b=1.故答案为125.()2,3--【分析】根据两点关于原点的对称的坐标特征:横纵坐标均互为相反数,即可求解.【详解】点()2,3P 绕原点O 旋转180°后,P 点的对应点与点P 关于原点对称,则其坐标为()2,3--.故答案为:()2,3--.【点睛】本题考查了平面直角坐标系中关于原点对称的两点的坐标特征,掌握这一特征是关键.26.3【分析】直接利用关于原点对称点的性质即可得出答案. 【详解】解:点(,1)A a 与点(3,1)B --关于原点对称,3a ∴=.故答案为:3【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.1,2【详解】根据关于原点成中心对称的两个点的横、纵坐标互为相反数即可得出答案. 解:点A (-1,2)关于原点中心对称点的坐标是(1,-2).故答案为(1,-2).28.-1【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】①点(),2A a -和点()3,B b 关于原点对称,①a=-3,b=2,①a+b=-3+2=-1,故答案为:-1.【点睛】此题考查原点对称点的性质,熟记性质并运用解题是关键.29.12【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:①点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,①a=-4,b=-3,则ab=12.故答案为:12.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.30.3 4【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对线段、正三角形、矩形、圆进行判断,然后求概率即可.【详解】解:由题意知,既是中心对称图形又是轴对称图形的为线段、矩形、圆,①卡片上所画的图形恰好既是中心对称图形,又是轴对称图形的概率是34,故答案为:34.【点睛】本题考查了中心对称图形,轴对称图形的定义,概率等知识.解题的关键在于熟练掌握中心对称图形,轴对称图形的定义.31.(﹣3,﹣4),(3,4),(3,﹣4)【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,①点A关于x轴对称的点的坐标是(﹣3,﹣4),①关于y轴对称时,横坐标为相反数,纵坐标不变,①点A关于y轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.32.9【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数求得,m n的值,进而求得n m 的值. 【详解】解:点(2,)A m -与点(,3)B n 关于原点对称,3,2m n ∴=-=∴n m ()239=-= 故答案为:9【点睛】本题考查了关于原点对称的点的坐标特征,有理数的乘法,掌握关于原点对称的点的坐标特征是解题的关键.33.1,32⎛⎫- ⎪⎝⎭【分析】先利用因式分解法解一元二次方程求出,a b 的值,进而利用关于原点对称点的坐标性质得出即可.【详解】①实数a 、b 是方程22530x x --=的两根,a b <,()()2130x x ∴+-=,1,32a b ∴=-=, 1,32P ⎛⎫∴- ⎪⎝⎭, ①点1,32P ⎛⎫- ⎪⎝⎭关于原点的对称点Q 的坐标是1,32⎛⎫- ⎪⎝⎭, 故答案为:1,32⎛⎫- ⎪⎝⎭. 【点睛】本题考查了关于原点对称的点的坐标和解一元二次方程-因式分解法,熟练掌握知识点是解题的关键.34.3【分析】根据中心对称图形的特点进行分析即可.【详解】解:①圆;①平行四边形;①长方形是中心对称图形,共3个,①等腰三角形不是中心对称图形.故答案为:3.【点睛】本题考查中心对称图形的识别,熟练掌握中心对称图形的特点是解题关键. 35.1,2【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可【详解】点(﹣1,2)关于原点对称的点的坐标是1,2故答案为:1,2【点睛】本题考查了关于原点对称的点的坐标的特点,掌握平面直角坐标系中对称点的坐标特点是解题的关键.36. (1,2) (﹣1,2)【详解】解:点P (m ,n )关于x 轴对称点的坐标P′(m ,﹣n ),关于原点对称点的坐标P″(﹣m ,﹣n );所以点A (1,﹣2)关于x 轴对称的点的坐标为(1,2),关于原点对称的坐标是(﹣1,2).故答案为:(1,2);(﹣1,2)37.﹣1【分析】根据原点对称的点,横坐标和纵坐标都互为相反数,即可得到答案.【详解】解:①P 与Q 关于原点对称,故3=-(b +2),1-a =-3,解得:a =4,b =-5,①a +b =-1,故答案为-1.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.38.40432⎛ ⎝⎭【分析】首先根据11OA B 是边长为1的等边三角形,可得A 1的坐标为1,2⎛ ⎝⎭,B 1的坐标为(1,0);然后根据中心对称的性质,分别求出点A 2、A 3的坐标各是多少;最后总结出An 的坐标的规律,求出A 2n +1的坐标是多少即可.【详解】解:①11OA B 是边长为1的等边三角形,①A 1的坐标为:1,2⎛ ⎝⎭,B 1的坐标为:(1,0), ①233B A B 与221B A B 关于点2B 成中心对称,①点A 2与点A 1关于点B 1成中心对称, ①132122⨯-=,①点A 2的坐标是:32⎛ ⎝⎭,①①B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,①点A 3与点A 2关于点B 2成中心对称, ①153122⨯-=①点A 3的坐标是:5,2⎛ ⎝⎭,①An 的横坐标是:n −12,当n 为奇数时,An 的纵坐标是:,当n 为偶数时,An 的纵①2022是偶数,14043202222-=①2022A 的坐标是40432⎛ ⎝⎭,故答案为:40432⎛ ⎝⎭. 【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出An 的横坐标和纵坐标是解题的关键.39. C D【详解】根据中心对称图形的对称中心的定义,点C 是线段AB 的中点,点B 是线段CD 的中点,线段AB 的对称中心是点C ;点C 关于点B 成中心对称的对称点是点D. 故答案为C ;D.40.(1)图略;(2)图略,点B″的坐标为(0,﹣6);(3)点D 坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 的对应点的坐标;(3)分AB 、BC 、AC 是平行四边形的对角线三种情况解答.。
中心对称与中心对称图形中档题30道解答题附规范标准答案
9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E 、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F ,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来_________ .25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;(3)利用(2)中规律直接判断得出即可.解答:解:(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)考点:中心对称.分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S矩形ABCD,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S a=S b=S c=S d;(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.。
专题02中心对称与中心对称图形(四大类型)(题型专练)(原卷版)
专题02 中心对称与中心对称图形(四大类型)【题型1 中心对称图形】【题型2 中心对称的性质】【题型3 点坐标的对称】【题型4 图案设计】【题型1 中心对称图形】1.(2022秋•香坊区期末)如图各图形中,是中心对称图形的是()A.B.C.D.2.(2022秋•曲周县期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022秋•十堰期末)下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组4.(2022秋•平泉市校级期末)若两个图形成中心对称,则下列说法:①对应点的连线必经过对称中心;②这两个图形的形状和大小完全相同;③这两个图形的对应线段一定相等;④将一个图形绕对称中心旋转某个角度后必与另一个图形重合.其中正确的有()A.1个B.2个C.3个D.4个5.(2022秋•栾城区期末)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【题型2 中心对称的性质】6.(2023春•砀山县校级期中)如图,BO是等腰三角形ABC的底边中线,AC =2,AB=4,△PQC与△BOC关于点C中心对称,连接AP,则AP的长是()A.4B.C.D.7.(2022春•安吉县期末)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,点A,B,C的对应点分别为A1,B1,C1,则对称中心E点的坐标是()A.(3,﹣1)B.(0,0)C.(2,﹣1)D.(﹣1,3)8.(2022•贵阳模拟)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△B′O′C,则点A与点B′之间的距离为()A.6B.8C.10D.12 9.(2022春•连山区期中)如图,平面直角坐标系中的图案是由六个边长为1的正方形组成的,B(3,3),A(a,0)是x轴上的动点,当AB将图案分成面积相等的两部分时,a等于()A.1B.C.D.10.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD 的边长是()A.3B.4C.D.11.(2022秋•天山区校级期末)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB=4,则AB'的长是()A.4B.C.2D.12.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2 13.(2022秋•沙河口区校级月考)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定14.(2022春•温州期中)如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(﹣1,0),若直线y=﹣2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是.15.(2021秋•任城区校级月考)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.16.(2022秋•南昌期中)如图,直线MN过▱ABCD的中心点O,交AD于点M,=.交BC于点N,已知S▱ABCD=4,则S阴影17.(2021秋•雷州市校级月考)如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.【题型3 点坐标的对称】18.(2022秋•仙居县期末)点A(﹣1,2)关于原点对称的点B的坐标是()A.(1,﹣2)B.(1,2)C.(﹣2,﹣1)D.(2,﹣1)19.(2023•大东区模拟)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b的值为()A.6B.5C.4D.3 20.(2023春•东港市期中)在平面直角坐标系中,点(a+5,4)关于原点的对称点为(﹣3,﹣b),则ab的值为()A.8B.﹣8C.32D.﹣32 21.(2022秋•鸡西期末)已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣C.﹣<a<1D.a>1【题型4 图案设计】22.(2022春•梅江区期末)如图,在平面直角坐标系中,已知点A(﹣5,2),B(﹣4,5),C(﹣3,3)(1)画出△ABC.(2)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标是.△A1B1C1的面积是.23.(2023春•雨花区校级期末)已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次连接点A、D、B、C,求所得图形的面积.23.(2021秋•南关区校级期中)图①、②均是5×5的正方形网格,每个小正方形边长为1,小正方形的顶点称为格点,点A、C在格点上.在给定的网格中按要求作图,所有图形的顶点均在格点上.(1)在图①中作以AC为腰的等腰△ABC,且三边长均为无理数,并写出△ABC的面积为.(2)在图②中作以AC为边的四边形ACDE,使四边形为中心对称图形,且面积为8.24.(2021春•浦东新区校级期末)如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是;(2)点B关于原点对称的点C的坐标是;点A关于y轴对称的点D 的坐标是;(3)四边形ABDC的面积是;(4)在y轴上找一点F,使S△ADF =S△ABC,那么点F的所有可能位置是.。
初中数学中心对称图形专题训练50题含答案
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列各图中为中心对称图形的是()A.B.C.D.3.下列四个图形中,是中心对称图形的是()A.B.C.D.4.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下面四个交通标志中,是中心对称图形的是()A.B.C.D.7.下列图形中,是中心对称图形的是()A.B.C.D.8.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图形属于中心对称图形的是()A.B.C.D.10.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .11.在平面直角坐标系中,点()2,4P -关于原点对称的点的坐标是( )A .()2,4-B .()2,4C .()2,4--D .()4,2- 12.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 13.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .15.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 16.已知点()31,21P a a -+关于原点的对称点在第四象限,则a 取值范围是( )A .13a >B .12a <-C .1123a -<<D .无解集17.已知点A (1x ,1y )与点B (2x ,2y )关于原点对称,若112x y +=,则22x y +的值为( )A .2B .12C .12-D .2-18.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 19.下列新能源汽车的标志中,是中心对称图形的是( )A .B .C .D .二、填空题20.将点(3,1)B -绕坐标原点O 旋转180︒,则点B 的对应点B '坐标为______.21.如图,ABCD 的对角线AC 、BD 交于点O ,则图中成中心对称的三角形共有______对.22.在平面直角坐标系内,点A (a ,﹣3)与点B (1,b )关于原点对称,则a +b 的值_________.23.在平面直角坐标系中,点 A(﹣4,1)关于原点的对称点的坐标为_____24.点(a ,2)与点(b ,﹣2)关于原点中心对称,则a +b 的值是__.25.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______.26.点A(-3,4)关于x 轴对称的点的坐标为__,关于y 轴对称的点的坐标为__,关于原点对称的坐标为__.27.在直角坐标系中,点()3,5-M 关于原点O 对称的点N 的坐标是(),x y ,则x y +=_____________;28.点P(1,-1)关于原点对称的点的坐标是_________.29.如图,所示的美丽图案中,既是轴对称图形又是中心对称图形的有_____个.30.在平面直角坐标系中,点()11P a -,与点()15Q b +,关于原点对称,ab = _______.31.已知三点A 、B 、O .如果点A'与点A 关于点O 对称,点B'与点B 关于点O 对称,那么线段AB 与A'B'的关系是_____________.32.平面直角坐标系内一点P (3,-1)关于原点对称的坐标为_____33.若点P 的坐标为()1,1x y +-,其关于原点对称的点'P 的坐标为()3,5--,则(),x y 为________.34.在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为__________.35.已知()12P a -,和()23P b ,关于原点对称,则()2021a b +的值为 ___________.36.有下列图形:①线段,①三角形,①平行四边形,①正方形,①圆,①等腰梯形.其中不是中心对称图形的是__.(填序号)37.平面直角坐标系中,点1A 是点()2,3A -关于原点对称点;点1A 的坐标是________.38.三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.39.一辆汽车车牌的最后两个数字刚好组成一个中心对称图形,并且这两个数字不相等,则这两个数字的和是_____.三、解答题40.如图,已知三角形ABC 、直线l ,点O 是线段AB 的中点.(不写画法,保留画图痕迹,并写出画图结论)(1)画出三角形ABC关于直线l的轴对称的图形;(2)画出三角形ABC关于点O的中心对称的图形.41.如图,平面直角坐标系中,①ABC三个顶点的坐标分别为A(﹣3,5),B(﹣5,3),C(﹣2,2)平移到①A1B1C1,其中点A的对应点A1的坐标为(3,3).(1)请在图中画出①A1B1C1;(2)若将①ABC到①A1B1C1的过程看成两步平移,请描述平移过程:;(3)已知①A1B1C1与①A2B2C2关于原点O中心对称,请在图中画出①A2B2C2,此时①A2B2C2与①ABC关于某点中心对称这一点的坐标为.42.①ABC在平面直角坐标系xOy中的位置如图所示,A,B,C的坐标分别是(﹣2,3),(﹣1,1),(0,2).(1)作①ABC关于原点对称的①A1B1C1,并写出点A1的坐标.(2)求①ABC的面积.43.如图,已知ABC 和直线MN ,点O 在直线MN 上.(1)画出111A B C △,使111A B C △与ABC 关于直线MN 成轴对称;(2)画出222A B C △,使222A B C △与ABC 关于点O 成中心对称.44.在下列网格图中,每个小正方形的边长均为1个单位,在,90,3,4Rt ABC C AC BC ︒∆∠===.(1)在图中画出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,点C 的坐标为()3,1-,在图中建立直接坐标系,并画出ABC ∆关于原点对称的图形222A B C .45.(1)请画出①ABC 关于直线l 的轴对称图形①A 1B 1C 1.(2)将①ABC 绕着点B 旋转180°得到①A 2B 2C 2,并画出图形.(保留作图痕迹,不写画法,注明结论)46.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为(4,2),(3,0),(1,2)A B C ---.(1)将ABC ∆先向右平移4个单位长度,再向上平移2个单位长度,得到111A B C ∆,画出111A B C ∆;(2)222A B C ∆与ABC ∆关于原点O 成中心对称,画出222A B C ∆;(3)111A B C ∆和222A B C ∆关于点M 成中心对称,请在图中画出点M 的位置.47.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出ABC 关于原点O 的对称图形111A B C △;(2)将ABC 绕点C 顺时针旋转90︒得到22A B C ,画出22A B C ,并求2AA 的长度; 48.(1)解方程:2430x x -+=(2)已知点P (a +b ,-1)与点Q (-5,a -b )关于原点对称,求a ,b 的值.49.如图,在网格图中建立平面直角坐标系,ABC 的顶点坐标为(2,3)A -、(3,2)B -、(1,1)C -.(1)若将ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C ∆;(2)画出111A B C ∆绕C 1顺时针方向旋转90°后得到的221A B C ∆;(3)A B C '''∆与ABC 是中心对称图形,请写出对称中心的坐标: ;并计算ABC 的面积: .参考答案:1.D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,也是中心对称图形,故本选项不符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选B.【点睛】考核知识点:中心对称图形的识别.3.A【分析】根据中心对称图形的定义,逐项判断即可求解.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.C【分析】根据轴对称图形和中心对称图形的概念判断即可.答案第1页,共19页【详解】A.图为轴对称图形不是中心对称图形,不满足题意;B.图为轴对称图形不是中心对称图形,不满足题意;C.图为中心对称图形不是轴对称图形,满足题意;D.图为轴对称图形不是中心对称图形,不满足题意;故选C.【点睛】本题考查轴对称图形和中心对称图形的判别,关键在于熟记基础概念.5.C【分析】根据轴对称和中心对称图形的概念可判别.【详解】A、既不是轴对称也不是中心对称,不合题意;B、是轴对称但不是中心对称,不合题意;C、是轴对称和中心对称,符合题意;D、是中心对称但不是轴对称,不合题意故选:C6.A【分析】根据中心对称图形的概念判断即可.【详解】A:图形旋转180°后能与原图形重合,故是中心对称图形;B:图形旋转180°后不能与原图形重合,故不是中心对称图形;C:图形旋转180°后不能与原图形重合,故不是中心对称图形;D:图形旋转180°后不能与原图形重合,故不是中心对称图形;故选:A.【点睛】本题考查了中心对称图形的概念,绕对称中心旋转180°后能与原图形重合是中心对称图形,熟知其概念是解题的关键.7.A【分析】根据中心对称图形的概念即可作出判断.【详解】A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意.故选:A.【点睛】本题考查了中心对称图形的概念,正确把握相关定义是解题关键.8.A【分析】根据各个选项中的图形,可以写出是否为中心对称图形或轴对称图形,然后即可判断哪个选项符合题意.【详解】解: A .是中心对称图形,又是轴对称图形,故选项A 符合题意;B .不是轴对称图形,是中心对称图形,故选项B 不符合题意;C .是轴对称图形,不是中心对称图形,故选项C 不符合题意;D .不是中心对称图形,是轴对称图形,故选项D 不符合题意;故选:A .【点睛】本题考查中心对称图形、轴对称图形,解答本题的关键是明确题意,写出各个图形是否为中心对称图形或轴对称图形.9.C【详解】解:A .是轴对称图形,不是中心对称图形,故选项错误;.B .不是中心对称图形,故选项错误;.C .是中心对称图形,故选项正确;.D .是轴对称图形,不是中心对称图形,故选项错误.故选C .10.A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .是轴对称图形,不是中心对称图形,故本选项符合题意;B .是中心对称图形但不是轴对称图形,故本选项不符合题意;C .是轴对称图形,也是中心对称图形,故本选项不符合题意;D .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点()2,4P -关于原点对称的点的坐标是()2,4-,故选:A.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.C【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.【详解】解:①点(-2,3)关于原点对称,①点(-2,3)关于原点对称的点的坐标为(2,-3).故选:C.13.C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 既是轴对称图形,又是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.14.B【分析】根据轴对称和中心对称图形的定义判断即可;【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了轴对称图形和中心对称图形的判定,准确判断是解题的关键.15.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不合题意;B 、不是轴对称图形,不是中心对称图形,不合题意;C 、是轴对称图形,不是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,符合题意.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.C【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a 的不等式组进而得出答案.【详解】解:①点()31,21P a a -+关于原点对称的点为:()'13,21P a a ---在第四象限,①130210a a ->⎧⎨--<⎩解得:1123a -<< 故选:C.【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,正确解不等式组是解题关键.17.D【分析】首先根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得2x ,2y 的值,进而得到答案.【详解】解: ①A (1x ,1y )与点B (2x ,2y )关于原点对称,①2x = -1x , 2y = -1y ,①1x +1y =2,①2x +2y = -1x -1y = -(1x +1y )=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 18.A【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、是中心对称图形,又是轴对称图形,故此选项正确;B 、是中心对称图形,不是轴对称图形,故此选项错误;C 、不是中心对称图形,是轴对称图形,故此选项错误;D 、不是中心对称图形,是轴对称图形,故此选项错误;故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.19.D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意,C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故选项符合题意.故选:D .【点睛】本题考查了中心对称图形,熟记定义是解答本题的关键.20.(3,1)-【分析】将点(3,1)B -绕坐标原点O 旋转180︒,即点B 关于原点对称,则点B 坐标与对应点B '坐标的横纵坐标互为相反数,由此即可求解.【详解】解:根据题意得,点B 坐标与对应点B '坐标的横纵坐标变为相反数, ①1()3,B '-,故答案是:(3,1)-.【点睛】本题主要考查求绕原点旋转一定角度的点的坐标,理解点关于原点对称的特点是解题的关键.21.4【分析】▱ABCD 是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.【详解】解:图中成中心对称的三角形有①AOD 和①COB ,①ABO 与①CDO ,①ACD 与①CAB ,①ABD 和①CDB 共4对.故答案为:4【点睛】本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.22.2【分析】根据点关于原点对称的坐标特点即可完成.【详解】①点A (a ,﹣3)与点B (1,b )关于原点对称①13a b ,①132a b +=-+=故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.23.(4,-1)【分析】根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可得出结论.【详解】解:点 A(﹣4,1)关于原点的对称点的坐标为(4,-1)故答案为:(4,-1).【点睛】此题考查的是求一个点关于原点对称点的坐标,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解题关键.24.0.【分析】直接利用关于原点对称点的性质得出答案.【详解】①点(a ,2)与点(b ,﹣2)关于原点中心对称,①a+b =0.故答案为:0.【点睛】本题主要考查了关于原点对称的点的坐标,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--. 25.-1【分析】根据坐标的对称性求出m,n 的值,故可求解.【详解】依题意得m=-3,n=2①2019()m n +=2019)1(1-=-故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点. 26. (﹣3,﹣4), (3,4), (3,﹣4)【分析】根据在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数,关于y 轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【详解】①在平面直角坐标系中,点关于x 轴对称时,横坐标不变,纵坐标为相反数, ①点A 关于x 轴对称的点的坐标是(﹣3,﹣4),①关于y 轴对称时,横坐标为相反数,纵坐标不变,①点A 关于y 轴对称的点的坐标是(3,4),①关于原点对称时,横纵坐标都为相反数,①点A 关于原点对称的点的坐标是(3,﹣4).故答案为(﹣3,﹣4),(3,4),(3,﹣4).【点睛】本题考查了在平面直角坐标系中,点关于x 轴,y 轴及原点对称时横纵坐标的符号,难度适中.27.2-【分析】根据关于原点对称的点的坐标特点求出x 、y ,计算即可.【详解】点()3,5-M 关于原点O 对称的点N 的坐标是()3,5M -,①3x =,5y =-,则2x y +=-,故答案为:2-.【点睛】本题考查的是关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.28.(-1,1)【详解】点P (1,-1)关于原点对称的点的坐标是(-1, 1).故答案为(-1, 1).点睛:平面直角坐标系中若两个点关于原点对称,那么这两个点的横坐标互为相反数,纵坐标也互为相反数.29.3.【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故答案为:3.【点睛】本题考查了轴对称与中心对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 30.12-【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】①点()11P a -,与点()15Q b +,关于原点对称, ①11b -=+,15a -=-,解得:6a =,2b =-,①()6212ab =⨯-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.31.平行且相等【详解】根据中心对称的性质,对应线段AB 与A'B'的关系是平行且相等,故答案为平行且相等.32.(-3,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ),进而得出答案.【详解】点P(3,−1)关于原点对称的点的坐标是:(−3,1).故答案为(−3,1)【点睛】此题考查关于原点对称的点,解题关键在于掌握关于原点对称的点的坐标. 33.()2,6【分析】根据两个点关于原点对称时,它们的坐标符号相反可得13x +=,15y -=,解可得x 、y 的值,进而可得答案.【详解】由题意得:13x +=,15y -=,解得:2x =,6y =,则(),x y 为()2,6.故答案为:()2,6.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律. 34.12【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,先判断4张卡纸中是中心对称图形的是线段、平行四边形,再由概率公式解题即可.【详解】解:在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,是中心对称图形的是线段、平行四边形, 所以抽到的图形是中心对称图形的概率为21=42, 故答案为:12.【点睛】本题考查中心对称图形、概率公式等知识,是基础考点,难度较易,掌握相关知识是解题关键.35.1-【分析】点1P 和点2P 关于原点对称,则它们的横坐标互为相反数,纵坐标互为相反数. 【详解】解:因为()12P a-,和()23P b ,关于原点对称, 所以32a b =-=,,将32a b =-=,代入()2021a b +, 原式=()2021321-+=-,故答案为:1-.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.本题主要考查了关于原点对称的点的坐标的特点,熟练掌握特点是关键.36.①①【分析】根据中心对称图形的特点即可依次判断求解.【详解】线段,平行四边形,正方形,圆是中心对称图形,三角形,等腰梯形不是中心对称图形.故答案为:①①.【点睛】此题主要考查中心对称图形的识别,解题的关键是熟知中心对称图形的特点. 37.()2,3-【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:①点1A 是点A (−2,3)关于原点对称点,①点1A 的坐标是(2,−3).故答案为(2,−3).【点睛】本题主要考查关于原点对称的点的坐标,熟悉掌握是关键.38.)3- 【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA()11209030,18012030,2MOE MBO MOB ∴∠=︒-︒=︒∠=∠=︒-︒=︒ 60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON∴三点共线,,,A O B∴关于O对称,,A BA3,3.故答案为:)3.-【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.39.15【分析】逐个对0—9这十个数字进行分析即可,同时要满足两个数字不相等.【详解】解:逐个对0—9这十个数字进行分析,由题意可知,这两个数字同时要满足组成一个中心对称图形和两个数字不相等,故只有6和9,两个数字的和为15,故答案为15【点睛】理解中心对称的定义是解题的关键.40.(1)图形见解析;(2)图形见解析【分析】(1)分别作出点A、B、C关于直线l的对称点F、H、G,再依次连接即可画出三角形ABC关于直线l的轴对称的图形;(2)延长CO至E使OE=OC,则①ABE即为三角形ABC关于点O的中心对称的图形.【详解】(1)如图所示,①ABC关于直线l的轴对称的图形为①FHG;(2)如图所示,①ABC关于点O的中心对称的图形①BAE;【点睛】本题考查的是作图-轴对称作图和作中心对称图形,熟知轴对称和中心对称的性质是解答此题的关键.41.(1)见解析;(2)点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)画图见解析,()3,1-【分析】(1)根据平移的性质得出坐标,进而画出图形即可;(2)根据平移的性质即可求解;(3)根据中心对称的性质作出对称点,连接即可.(1)解:由题意知:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置, ①①ABC 平移到①A 1B 1C 1时,点B 、C 对应的点B 1(1,1)、C 1(4,0),连接A 1B 1、B 1C 1、A 1C 1,如下图,则①A 1B 1C 1即为所求;(2)解:点A 向右平移6个单位,再向下平移2个单位到点A 1的位置;(3)解:①①A 1B 1C 1与①A 2B 2C 2关于原点O 中心对称,点A 2(-3,-3)、B 2(-1,-1)、C 2(-4,0),连接A 2B 2、B 2C 2、A 2C 2,如图,则①A 2B 2C 2即为所求;连接AA 2、BB 2、CC 2交于点(-3,1).故答案为:(-3,1).【点睛】本题主要考查中心变换和平移变换,熟练掌握中心变换和平移变换的定义是解题的关键.42.(1)图见解析,(2,﹣3);(2)32. 【分析】(1)根据网格结构找出点A 、B 、C 旋转后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据所作图形得出点A 1坐标;(2)利用割补法即可求①ABC 的面积.【详解】解:(1)如图,①A 1B 1C 1即为所求;点A 1的坐标为(2,﹣3);(2)①ABC 的面积=2×2﹣12×1×2﹣12×1×1﹣121×2=32. 【点睛】本题考查基本作图-中心对称图形、三角形的面积公式,熟练掌握中心对称图形的性质,会利用网格特点个割补法求解图形面积是解答的关键.43.(1)见解析(2)见解析【分析】(1)根据对称轴垂直平分对应点连线,可找到各点的对称点,顺次连接即可得到111A B C △;(2)根据中心对称点平分对应点连线,可得各点的对称点,顺次连接可得222A B C △.【详解】(1)解:111A B C △即为所求;;(2)解:222A B C △即为所求.【点睛】本题考查了中心对称作图及轴对称作图的知识,解答本题的关键是掌握轴对称及中心对称的性质.44.(1)见解析;(2)见解析【分析】(1)根据旋转的性质找出B 、C 的对应点B 1、C 1的位置,顺次连接即可;(2)首先根据点B 、C 的坐标建立直角坐标系,然后分别找出点A 、B 、C 关于原点对称的对应点A 2、B 2、C 2的位置,顺次连接即可.【详解】解:(1)11AB C ∆如图所示;(2)直角坐标系和222A B C ∆如图所示.【点睛】本题考查了作图—旋转变换和中心对称,准确找出对应点的位置是解题的关键. 45.(1) 答案见解析;(2)答案见解析.【分析】(1)分别作出点A ,B ,C 关于直线l 的对称点,再首尾顺次连接可得;(2)作出点A 与点C 绕着点B 旋转180°得到的对应点,再与点B 首尾顺次连接可得.。
中心对称与中心对称图形基础题30道解答题附答案
9.2 中心对称与中心对称图形基础题汇编(3)一.填空题(共20小题)1.(2012秋•黔东南州期中)下列图形中,是中心对称图形但不是轴对称图形的是_________(填序号).2.(2006秋•永川区校级期中)在英文字母A、B、C、D、E、F、G、H、I、J、K、L、M、N中是中心对称图形,而不是轴对称图形的字母是_________.3.(2011秋•乐平市校级期中)下面这几个图形中,是中心对称图形但不是轴对称图形的共有_________个.4.在①线段,②角,③平行四边形,④长方形,⑤等腰梯形,⑥圆,⑦等边三角形中,是中心对称图形的是_________,是轴对称图形的有_________,既是中心对称又是轴对称图形是_________(填序号).5.(2013秋•鼓楼区校级期中)下列四个汽车标志图案中,是中心对称图形的图案的是_________(只需填入图案代号)6.(2011秋•红山区校级月考)下列四张扑克牌图案,属于中心对称的是_________.7.(2014秋•闽侯县校级月考)将5个边长都为1cm的正方形按如图所示的样子摆放,点A.B.C.D分别是四个正方形的中心,则图中四块阴影部分的面积的和为_________cm2.8.(2013秋•潘集区校级月考)如图所示的四个图形中是轴对称的有_________;是中心对称图形的有_________(用A、B、C、D填写).9.把下列图形中符合要求的图形的编号填入圈内.10.汉字“田”成中心对称,请找出2~3个成中心对称的汉字_________,并找出一个汉字使其旋转180°后成为另一个汉字_________.11.如图所示,△A′B′C′与△ABC关于O成中心对称,那么AO=_________,BO=_________,CO=_________,点A、O与_________三点在同一直线上,_________三点在同一直线上,_________三点在同一直线上.12.如图所示,正六边形ABCDEF,它有_________个对称中心.13.如图,在平行四边形ABCD中,关于O点成中心对称的三角形有_________对.14.如图,正方形边长为a,则阴影部分面积为_________.15.如果两个图形关于某一点成中心对称,下列说法:①这两个图形一定是全等形;②对称点的连线一定经过对称中心;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合;④一定存在某直线,沿该直线折叠后的两个图形互相重合.其中,正确的是_________(填序号).16.写出符合下列要求的汉字.(1)成轴对称图形的汉字10个_________;(2)成中心对称图形的汉字5个_________(3)既成轴对称图形,又成中心对称图形汉字5个_________.17.如图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?图_________是.18.根据如图所示的图案,然后回答问题:(1)是轴对称的图形有_________;(2)是中心对称的图形有_________;(3)既是中心对称图形,又是轴对称图形的有_________.19.在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有_________,是中心对称图形的有_________,既是轴对称图形又是中心对称图形的有_________.20.(2009秋•资阳期末)观察下列图形,其中轴对称图形有_________;旋转对称图形有_________;中心对称图形有_________(只填对应序号).二.解答题(共10小题)21.如图是由两个矩形组成的组合图形,能否在图形中找到一点P,沿过点P的某一条直线折叠该图形,能将该图形分成面积相等的两部分?若能,请你在图中做出点P,并说明点P的位置;若不能,请说明理由.22.如图,已知MN⊥PQ,垂足为O,点A、A1是以MN为对称轴的对称点,而点A、A2是以PQ为对称点,则点A1A2关于点O成中心对称,你能说明其中的道理吗?23.如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.24.你还记得某个图形关于两平行直线依次作出某一图形的轴对称图形,其最后的图形可以由原图形经过一次平移而得到.假如把这两条平行直线换成相交直线,又能得到什么结论呢?如图,已知△ABC,直线a、b相交于点O,请先画出△ABC关于直线a对称的△A′B′C′,然后画出△A′B′′C关于直线b对称的△A″B″C″,你能发现ABC和A″B″C″有什么关系吗?猜想:在此图中,若再增加什么条件,能使得△ABC△A″B″C″关于点O成中心对称呢?25.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.26.如图,AB∥CD,AB=CD,点E、F在BC上,BE=CF,试说明此图是中心对称图形的理由.27.如图分别是五角星、六角星、七角星、八角星的图形(1)请问其中是中心对称图形的是_________;(2)依此类推,36角星_________(填“是”或“不是”)中心对称图形.(3)你怎样判断一个n角星是否中心对称图形呢?谈谈你的见解.28.(2012秋•桃园县校级期中)如图,五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是这四个正方形的对角线的交点,请利用上题的结论,求图中四块阴影面积的总和是多少?29.(2007春•曲阜市校级月考)轴对称图形的对称轴将图形面积二等分,中心对称图形过对称中心的直线将图形面积二等分.请用学过的知识将下图所示的图形面积分成相等的两部分.30.如图,过▱ABCD的对称中心O的直线EF,分别交AB、DC于E、F,试问:(1)四边形AEFD与四边形CFEB的形状、大小有何关系?(2)判断正误:过中心对称图形的对称中心的直线把这个图形分成的两个图形全等.9.2 中心对称与中心对称图形基础题汇编(3)参考答案与试题解析一.填空题(共20小题)1.(2012秋•黔东南州期中)下列图形中,是中心对称图形但不是轴对称图形的是乙、丁(填序号).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:甲、是轴对称图形,是中心对称图形,不符合题意;乙、不是轴对称图形,是中心对称图形,符合题意;丙、是轴对称图形,不是中心对称图形,不符合题意;丁、不是轴对称图形,是中心对称图形,符合题意.故答案为:乙、丁.点评:此题主要考查了中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.(2006秋•永川区校级期中)在英文字母A、B、C、D、E、F、G、H、I、J、K、L、M、N中是中心对称图形,而不是轴对称图形的字母是N.考点:中心对称图形;轴对称图形.分析:根据中心对称图形,轴对称图形的定义进行判断.解答:解:由中心对称图形,轴对称图形的性质可知,是中心对称图形,而不是轴对称图形的字母为:N.故答案为:N.点评:本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.3.(2011秋•乐平市校级期中)下面这几个图形中,是中心对称图形但不是轴对称图形的共有2个.考点:中心对称图形;轴对称图形.分析:结合车标图案,根据轴对称图形与中心对称图形的概念求解.解答:解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故符合题意的有2个.故答案为:2.点评:此题考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.4.在①线段,②角,③平行四边形,④长方形,⑤等腰梯形,⑥圆,⑦等边三角形中,是中心对称图形的是①③④⑥,是轴对称图形的有①②④⑤⑥⑦,既是中心对称又是轴对称图形是①④⑥(填序号).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:②角,⑤等腰梯形,⑦等边三角形,是轴对称图形,不是中心对称图形;③平行四边形不是轴对称图形,是中心对称图形;①线段,④长方形,⑥圆,是轴对称图形,也是中心对称图形.故是中心对称图形的是①③④⑥,是轴对称图形的有①②④⑤⑥⑦,既是中心对称又是轴对称图形是①④⑥.故答案为①③④⑥,①②④⑤⑥⑦,①④⑥.点评:本题考查了轴对称图形与中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,熟记常见图形的对称性有利于提高解题速度.5.(2013秋•鼓楼区校级期中)下列四个汽车标志图案中,是中心对称图形的图案的是①②(只需填入图案代号)考点:中心对称图形.分析:根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解答:解:①②是中心对称图形的图案,故答案为:①②.点评:此题主要考查了中心对称图形,关键是找出对称中心.6.(2011秋•红山区校级月考)下列四张扑克牌图案,属于中心对称的是B.考点:中心对称.分析:根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故答案为:B.点评:本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7.(2014秋•闽侯县校级月考)将5个边长都为1cm的正方形按如图所示的样子摆放,点A.B.C.D分别是四个正方形的中心,则图中四块阴影部分的面积的和为1cm2.考点:中心对称.分析:根据中心对称的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.解答:解:∵点A、B、C、D分别是四个正方形的中心,∴每一个阴影部分的面积等于正方形的,∴四块阴影部分的面积的和=12=1cm2.故答案为:1.点评:本题考查了中心对称的性质,正方形的性质,熟练掌握正方形的性质并判断出每一个阴影部分的面积等于正方形的是解题的关键.8.(2013秋•潘集区校级月考)如图所示的四个图形中是轴对称的有A、B、C、D;是中心对称图形的有A、C(用A、B、C、D填写).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:是轴对称的有A、B、C、D;是中心对称图形的有A、C;故答案为:A、B、C、D;A、C.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.把下列图形中符合要求的图形的编号填入圈内.考点:中心对称图形;轴对称图形;旋转对称图形.分析:要根据各自的定义来判断图形的种类.如果一个图形沿着一条直线折叠,直线两侧的图形能够互相完全重合,这个图形就叫做轴对称图形;把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,这两个图形叫做中心对称图形;绕着某一定的点旋转一定的角度后能与自身重合,这种图形叫做旋转对称图形.解答:解:轴对称图形:①、③、④、⑥、⑦、⑧;旋转对称图形:①、②、④、⑤、⑥、⑦、⑧;中心对称图形:①、②、④、⑤.点评:此题主要考查了对称图形的性质,要准确掌握各种图形的定义,注意中心对称图形不一定是轴对称图形,而轴对称图形不一定是中心对称图形.10.汉字“田”成中心对称,请找出2~3个成中心对称的汉字日、一,并找出一个汉字使其旋转180°后成为另一个汉字士.考点:中心对称图形.专题:开放型.分析:根据中心对称图形的定义,结合熟悉的汉字进行判断即可.解答:解:成中心对称的汉字有:申、日、一;一个汉字使其旋转180°后成为另一个汉字的有:士.故答案可为:日、一,士.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.如图所示,△A′B′C′与△ABC关于O成中心对称,那么AO=A′O,BO=B′O,CO=C′O,点A、O 与A′三点在同一直线上,B、B′、O三点在同一直线上,C、C′、O三点在同一直线上.考点:中心对称.分析:根据中心对称的性质:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分可得AO=A′O,BO=B′O,CO=C′O;根据中心对称的定义可得A、O与A′三点共线,进而得到答案.解答:解:△A′B′C′与△ABC关于O成中心对称,那么AO=A′O,BO=B′O,CO=C′O,点A、O与A′三点在同一直线上;B、B′、O三点在同一直线上;C、C′、O三点在同一直线上;故答案为:A′O;B′O;C′O;A′;B、B′、O;C、C′、O.点评:此题主要考查了中心对称图形的定义与性质,关键是掌握中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.12.如图所示,正六边形ABCDEF,它有1个对称中心.考点:中心对称.分析:根据对称中心的定义得出答案即可.解答:解;如图所示:对角线交点即为对称中心,故它有1个对称中心.故答案为:1.点评:此题主要考查了对称中心的定义,根据已知得出对称中心的位置是解题关键.13.如图,在平行四边形ABCD中,关于O点成中心对称的三角形有4对.考点:中心对称.分析:根据平行四边形ABCD是中心对称图形,再根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,即可得出答案.解答:解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB 共4对.故答案为:4.点评:此题考查了中心对称,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.14.如图,正方形边长为a,则阴影部分面积为.考点:中心对称.分析:根据题意将不规则的阴影部分的面积转化为规则的几何图形的面积计算即可.解答:解:由题意得:S阴影=S正方形=,故答案为:.点评:本题考查了的阴影部分的面积的求法,解题的关键是弄清阴影部分的面积如何转化为规则几何图形的.15.如果两个图形关于某一点成中心对称,下列说法:①这两个图形一定是全等形;②对称点的连线一定经过对称中心;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合;④一定存在某直线,沿该直线折叠后的两个图形互相重合.其中,正确的是①②③(填序号).考点:中心对称.分析:根据中心对称图形的性质分别分析得出即可.解答:解:如果两个图形关于某一点成中心对称,①这两个图形一定是全等形,此选项正确;②对称点的连线一定经过对称中心,此选项正确;③将一个图形绕对称中心旋转某个角度必定与另一个图形重合,此选项正确;④一定存在某一点,沿该点旋转后的两个图形互相重合,故此选项错误.故答案为:①②③.点评:此题主要考查了中心对称图形的性质,正确把握相关定义是解题关键.16.写出符合下列要求的汉字.(1)成轴对称图形的汉字10个中、日、土、甲、木、人、豆、八、山、口;(2)成中心对称图形的汉字5个日,一,十,田,三,中(3)既成轴对称图形,又成中心对称图形汉字5个日,一,十,田,三,中.考点:中心对称图形;轴对称图形.分析:(1)根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.(2)根据中心对称图形的概念,以及汉字的特征求解.绕对称中心旋转180°后,所得的图形与原图形完全重合,这样的图形叫做中心对称图形.(3)根据轴对称图形与中心对称图形的概念求解.解答:解:(1)成轴对称图形的汉字10个中、日、土、甲、木、人、豆、八、山、口;(2)成中心对称图形的汉字5个日,一,十,田,三,中;(3)既成轴对称图形,又成中心对称图形汉字5个日,一,十,田,三,中.故答案为:中、日、土、甲、木、人、豆、八、山、口;日,一,十,田,三,中;日,一,十,田,三,中.点评:此题考查了中心对称图形和轴对称图形的定义.轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.中心对称图形的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点.17.如图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?图②⑤是.考点:中心对称图形.分析:根据题意以及中心对称图形的概念,找出中心对称图形.解答:解:由图可得,第②⑤是中心对称图形.故答案为:②⑤.点评:本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.18.根据如图所示的图案,然后回答问题:(1)是轴对称的图形有①④;(2)是中心对称的图形有②③④;(3)既是中心对称图形,又是轴对称图形的有④.考点:中心对称图形;轴对称图形.分析:分别根据轴对称图形以及中心对称图形的性质分别判断得出即可.解答:解:(1)是轴对称的图形有①④;(2)是中心对称的图形有②③④;(3)既是中心对称图形,又是轴对称图形的有④.故答案为:①④;②③④;④.点评:本题考查轴对称图形和中心对称图形的概念,熟练区分它们是解题关键.19.在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有①②③④⑥⑦⑧⑨,是中心对称图形的有①⑤⑥⑦⑧⑨,既是轴对称图形又是中心对称图形的有①⑥⑦⑧⑨.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:在①线段、②角、③等腰三角形、④等腰梯形、⑤平行四边形、⑥矩形、⑦菱形、⑧正方形和⑨圆中,是轴对称图形的有①②③④⑥⑦⑧⑨,是中心对称图形的有①⑤⑥⑦⑧⑨,既是轴对称图形又是中心对称图形的有①⑥⑦⑧⑨.故答案为:①②③④⑥⑦⑧⑨,①⑤⑥⑦⑧⑨,①⑥⑦⑧⑨.点评:本题考查了轴对称图形与中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,熟记常见图形的对称性有利于提高解题速度.20.(2009秋•资阳期末)观察下列图形,其中轴对称图形有②③⑤⑥;旋转对称图形有①②③④⑥;中心对称图形有③④⑥(只填对应序号).考点:中心对称图形;轴对称图形;旋转对称图形.分析:根据轴对称、中心对称及旋转对称的定义,结合所给图形即可作出判断.解答:解:轴对称图形有:②③⑤⑥;旋转对称图形有:①②③④⑥;中心对称图形有:③④⑥;故答案为:②③⑤⑥、①②③④⑥、③④⑥.点评:本题考查了中心对称图形、旋转对称图形及轴对称的定义,属于基础题,解答本题的关键是掌握各图形的特点.二.解答题(共10小题)21.如图是由两个矩形组成的组合图形,能否在图形中找到一点P,沿过点P的某一条直线折叠该图形,能将该图形分成面积相等的两部分?若能,请你在图中做出点P,并说明点P的位置;若不能,请说明理由.考点:中心对称.分析:根据过对角线交点的直线把矩形分成面积相等的两部分,可得答案.解答:解:能,如图:,P点在两个矩形对角线交点的直线上.点评:本题考查了中心对称,利用了确定两个矩形的对角线是解题关键.22.如图,已知MN⊥PQ,垂足为O,点A、A1是以MN为对称轴的对称点,而点A、A2是以PQ为对称点,则点A1A2关于点O成中心对称,你能说明其中的道理吗?考点:中心对称;轴对称的性质.分析:根据轴对称的对称点被对称轴垂直平分,可得MN是AA1的垂直平分线,PQ是AA2的垂直平分线,根据垂直平分线的性质,可得OA=OA1,∠3=∠4,OA=OA2,∠1=∠2,再根据中心对称的性质,可得答案.解答:证明:如图:连结AA1,AA2,OA,OA1,OA2,∵A,A1是以MN为对称轴的对称点,∴OA=OA1,∠3=∠4,同理OA=OA2,∠1=∠2.∴OA1=OA2,且∠1+∠2+∠3+∠4=2(∠2+∠4)=2×90°=180°,∴A1,A2是以O为对称中心的对称点.点评:本题考查了中心对称,利用了轴对称的性质,中心对称的性质.23.如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.考点:中心对称.分析:(1)根据关于某点对称的两个图形的对应线段相等直接得到答案;(2)利用中心对称的性质,得到对应角相等,对应线段相等即可证得全等.解答:解:(1)∵点O是AC与BD的交点,且是对称中心,∴AO=CO,∵AO=4cm,∴CO=4cm;(2)∵点O是AC与BD的交点,且是对称中心,∴AO=CO,BO=DO,在△ABO和△CDO中,∴△ABO≌△CDO(SAS).点评:此题主要考查了中心对称图形的性质,中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.24.你还记得某个图形关于两平行直线依次作出某一图形的轴对称图形,其最后的图形可以由原图形经过一次平移而得到.假如把这两条平行直线换成相交直线,又能得到什么结论呢?如图,已知△ABC,直线a、b相交于点O,请先画出△ABC关于直线a对称的△A′B′C′,然后画出△A′B′′C关于直线b对称的△A″B″C″,你能发现ABC和A″B″C″有什么关系吗?猜想:在此图中,若再增加什么条件,能使得△ABC△A″B″C″关于点O成中心对称呢?考点:中心对称.分析:由轴对称的性质可得OA=OA′=OA″,再根据旋转的性质解答即可;根据中心对称的性质可得OA=OA″,根据轴对称的性质可得OA=OA′=OA″,然后判断出△AA′A″是直角三角形,AA′⊥A′A″,再根据轴对称的性质判断即可.解答:解:∵∵△ABC关于直线a对称的△A′B′C′,然后画出△A′B′C′关于直线b对称的△A″B″C″,∴OA=OA′=OA″,∴△ABC绕两直线的交点旋转得到△A″B″C″;猜想:添加条件为a⊥b.理由如下:∵△ABC与△A″B″C″关于点O成中心对称,∴OA=OA″,∵△ABC关于直线a对称的△A′B′C′,然后画出△A′B′C′关于直线b对称的△A″B″C″,∴OA=OA′=OA″,∴△AA′A″是直角三角形,∴AA′⊥A′A″,由轴对称的性质,AA′⊥a,A′A″⊥b,∴a⊥b.点评:本题考查了中心对称的性质,轴对称的性质,熟记各性质并判断出对应顶点构成的三角形是直角三角形是解题的关键.25.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.考点:中心对称.分析:(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积;(3)可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解答:解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴2<AD<8.点评:本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.(3)题考查了全等三角形的判定与性质,本题中求证△ABD≌△CDE是解题的关键.26.如图,AB∥CD,AB=CD,点E、F在BC上,BE=CF,试说明此图是中心对称图形的理由.。
初中数学中心对称图形专题训练50题(含参考答案)
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.下列四边形中,是中心对称但不是轴对称的图形是()A.矩形B.等腰梯形C.正方形D.平行四边形4.下列选项中的垃圾分类图标,属于中心对称图形的是()A.B.C.D.5.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等腰三角形B.矩形C.平行四边形D.正五边形6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列汽车车标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D .10.如图,将ABC ∆绕点()1,1C 旋转180︒得到''.A B C ∆设点A 的坐标为(,)a b , 则点'A 的坐标为( )A .()1,1a b -+-+B .()1,1a b ----C .()2,2a b -+-+D .2,2()a b ----11.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线相等且互相垂直D .矩形的对角线不能相等12.下列图案中,既是中心对称又是轴对称图形的个数有( )A .1个B .2个C .3个D .4个 13.对于等边三角形,下列说法正确的为( )A .既是中心对称图形,又是轴对称图形B .是轴对称图形,但不是中心对称图形C .是中心对称图形,但不是轴对称图形D .既不是中心对称图形,又不是轴对称图形14.在平面直角坐标系中,点(2,1)-关于原点对称的点的坐标是( )A .(2,1)B .(2,1)-C .(1,2)-D .(2,1)-- 15.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .16.下列图形中,是轴对称图形不是中心对称图形的有( )A .1个B .2个C .3个D .4个 17.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .18.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5-- 19.如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .//AD EF =,//AB GF =B .BO GO =C .B 、O 、G 三点在一条直线上D .DO HO =20.下列图形中既是轴对称图形又是中心对称图形的是( )A .AB .BC .CD .D二、填空题21.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.22.请写出一个是轴对称图形但不一定是中心对称图形的几何图形名称:____________________.23.已知点()4,3P -和点(),Q x y 关于原点对称,则x y +=______.24.下列图形:①平行四边形;①菱形;①等边三角形;①正方形,其中既是轴对称图形,又是中心对称图形的有_____(填序号).25.在平面直角坐标系中,点(-1,2)关于x 轴对称的点的坐标是____________,关于y 轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.26.已知点A (a ,1)与点B (﹣3,b )关于原点对称,则ab 的值为_____. 27.在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.28.数轴上A B 点表示-2,则A 点关于B 点的对称点A '表示的数为_______________.29.成中心对称的两个图形________,对应点的连线都经过________,并且被对称中心________.30.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P '的坐标是P '___.31.直线2y x =+上有一点()1,,P m 则P 点关于原点的对称点为P'________________(不含字母m ).32.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段AB ,求作线段AB 的垂直平分线.小明的作法如下:(1)分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧交于点C ; (2)再分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧交于点D ; (3)作直线CD ,直线CD 即为所求的垂直平分线.同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC ,BC ,AD ,BD由作图可知:AC BC =,AD BD =①点C ,点D 在线段的垂直平分线上(依据1:______)①直线就是线段的垂直平分线(依据2:______)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A ,B ,C ,D 恰好均在格点上,依次连接A ,C ,B ,D ,A 各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.33.若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;①()0m y m x =≠;①31y x =-;①2y x .其中是“H 函数”的为________.(填上序号即可)34.旋转对称图形______________(填“一定是”、“一定不是”或“不一定是”)中心对称图形;中心对称图形________(填“一定是”、“一定不是”或“不一定是”)旋转对称图形.35.给出下列5种图形:①平行四边形①菱形①正五边形、①正六边形、①等腰梯形中,既是轴对称又是中心对称的图形有________个.36.若点P (﹣m ,3﹣m )关于原点的对称点在第四象限,则m 满足_____. 37.在下列字型的数字中,既是轴对称图形又是中心对称图形的有______________.38.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.39.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题40.(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O . (2)如图①所示,已知①ABC 的三个顶点的坐标分别为A (4,﹣1),B (1,1),C (3,﹣2).将①ABC 绕原点O 旋转180°得到①A 1B 1C 1,请画出①A 1B 1C 1,并写出点A 1的坐标.41.如图,ABC 的三个顶点都在正方形网格的格点上,其中点A 的坐标为()1,0-.(1)在网格中作A B C ''',使A B C '''与ABC 关于原点O 成中心对称.(2)如果四边形BCDE 是以BC 为一边,且两条对角线相交于原点O 的平行四边形,请你直接写出点D 和点E 的坐标.42.如图,在85⨯的正方形网格中,每个小正方形的边长均为1,ABC 的三个顶点均在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使ABD △与ABC 全等,且点D 在直线AB 的下方(点D 不与点C 重合);(2)在图2中画ABE △(点E 在小正方形的顶点上),使ABE △与ABC 全等,且//AC BE ;(3)请直接写出ABC 的面积.43.如图,有三张背面相同的纸牌A B C 、、,其正面分别画有三个不同的图形,将这三张纸牌背面朝上洗匀后随机摸出一张,记下图案放回洗匀后再随机摸出一张.求两次摸出的纸牌正面图形都是中心对称图形的概率,(纸牌用A B C 、、表示)44.如图,在平面直角坐标系内,已知①ABC 的三个顶点坐标分别为A (1,3)、B (4,2)、C (3,4).(1)将①ABC 沿水平方向向左平移4个单位得①A 1B 1C 1,请画出①A 1B 1C 1; (2)画出①ABC 关于原点O 成中心对称的①A 2B 2C 2;(3)若①A 1B 1C 1与①A 2B 2C 2关于点P 成中心对称,则点P 的坐标是45.如图,D 是△ABC 边BC 的中点,连接AD 并延长到点E,使DE=AD ,连接BE .(1)图中哪两个图形成中心对称;(2)若△ADC 的面积为4,求△ABE 的面积.46.如图所示的正方形网格中,ABC ∆的顶点均在格点上,在所给直角坐标系中解答下列问题;(1)作出ABC ∆关于坐标原点成中心对称的111A B C ∆;(2)分别写出点11,A B 两点的坐标;47.作出下列图形的对称中心.48.如图,在ABC 中,D 为BC 上任一点,//DE AC 交AB 于点//E DF AB ,交AC 于点F ,求证:点E F ,关于AD 的中点对称.49.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.参考答案:1.D【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.3.D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合的图形,依次进行判定即可.【详解】A、既是轴对称图形,也是中心对称图形,故不符题意;B、是轴对称图形,不是中心对称图形,故不符题意;C、既是轴对称图形,也是中心对称图形,故不符题意;D、是中心对称图形,不是轴对称图形,故符合题意;故选:D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是熟练掌握轴对称和中心对称图形的概念.4.C【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是中心对称图形,故选项错误,不符合题意;B.不是中心对称图形,故选项错误,不符合题意;C.是中心对称图形,故选项正确,符合题意;D.不是中心对称图形,故选项错误,不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形对各选项进行判断即可.【详解】解:①等腰三角形,正五边形均为轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;故A,C,D不符合题意;矩形既是轴对称图形又是中心对称图形故B符合题意;故选B.【点睛】本题考查了轴对称图形与中心对称图形.解题的关键在于熟练掌握轴对称图形与中心对称图形的定义.6.B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A是轴对称图形,不是中心对称图形.不符合题意;B既是轴对称图形,又是中心对称图形,符合题意;C是轴对称图形,不是中心对称图形,不符合题意;D既不是轴对称图形,又不是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.8.A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【分析】中心对称图形定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,根据定义逐项判定即可得出结论.【详解】解:A、是轴对称图形,不是中心对称图形,故选项不符合题意;B、是轴对称图形,也是中心对称图形,故选项符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:B .【点睛】本题考查中心对称图形与轴对称图形的定义,熟练掌握中心对称图形与轴对称图形的定义是解决问题的关键.10.C【分析】根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A’的坐标是(x ,y ), 则12a x +=,12b y +=, 解得x =−a+2,y =−b+2,①点A’的坐标是()2,2a b -+-+.故选:C .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. 11.C【分析】根据菱形、平行四边形、正方形、矩形的性质逐项判断即可得出答案.【详解】解:菱形的对角线互相垂直,但不一定相等,故选项A 说法错误,不合题意; 平行四边形不是轴对称图形,是中心对称图形,故选项B 说法错误,不合题意; 正方形的对角线相等且互相垂直,故选项C 说法正确,符合题意;矩形的对角线一定相等,故选项D 说法错误,不合题意;故选C .【点睛】本题考查菱形、平行四边形、正方形、矩形的性质,以及轴对称、中心对称图形的识别,属于基础题,熟练掌握特殊平行四边形的特点是解题的关键.12.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B .【点睛】本题考查了轴对称图形,中心对称图形的识别,解题的关键是掌握轴对称图形,中心对称图形的定义.13.B【分析】根据中心对称图形与轴对称图形的概念分析即可.【详解】等边三角形是轴对称图形,不是中心对称图形.故选:B .【点睛】本题考查判断轴对称图形与中心对称图形.掌握轴对称图形和中心对称图形的概念是解答本题的关键.14.B【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(2,1)-关于原点对称的点的坐标是(2,1)-,故选:B .【点睛】本题考查了关于原点对称的点的坐标,掌握两个点关于原点对称时,它们的坐标符号相反是解题的关键.15.D【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】①不是中心称图形,①不符合题意;①不是对称图形,①不符合题意;①不是轴对称图形,①不符合题意;①是轴对称图形,也是中心对称图形,①符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.16.A【分析】利用轴对称图形和中心对称图形的定义即可求解.【详解】解:等腰三角形是轴对称图形,不是中心对称图形,符合题意;菱形既是轴对称图形,又是中心对称图形,不符合题意;圆既是轴对称图形,又是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查识别轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的定义是解题的关键.17.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.B【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可.【详解】①菱形是中心对称图形,且对称中心为原点,①A、C坐标关于原点对称,2,5-,①C的坐标为()故选C.【点睛】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.19.D【分析】根据中心对称的性质即“中心对称的两个图形全等,对称点到对称中心的距离相等”可得到结论.【详解】解:①四边形ABCD与四边形FGHE关于点O成中心对称,=,B、O、G三点在一条直线① AD与EF、AB GF与的关系是相等并且平行,BO GO=,上,DO EO①A、B、C选项正确,D选项错误.故选D.【点睛】本题考查中心对称的图形性质,得出对应顶点、对应边是解题关键.20.D【详解】根据轴对称图形又和中心对称图形的定义,易得D.21.中心对称圆心【分析】圆是一种比较特殊的几何图形,圆既是轴对称图形,又是中心对称图形,对称中心是圆心.【详解】解:圆是轴对称图形,圆也是中心对称图形,圆心是其对称中心,故答案为中心对称,圆心.【点睛】此题考查的知识点是中心对称图形,关键是结合中心对称图形和轴对称图形的概念对圆的认识.22.等腰三角形(答案不唯一)【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:是轴对称,但不是中心对称的几何图形名称:如等腰三角形或正三角形(答案不唯一).故答案为:等腰三角形(答案不唯一).【点睛】本题考查的是中心对称图形与轴对称图形的含义.掌握“轴对称图形与中心对称图形的概念”是解本题的关键.23.1-【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ),进而得出答案.【详解】解:①点()4,3P -和点(),Q x y 关于原点对称,①4,3x y =-=,则1x y +=-.故答案为:1-.【点睛】此题主要考查了关于原点对称点的性质,解题的关键是正确掌握横纵坐标的符号关系.24.①①【分析】根据中心对称图形及轴对称图形的定义即可解答.【详解】①只是中心对称图形;①、①两者都既是中心对称图形又是轴对称图形,①只是轴对称图形.故答案为①①.【点睛】本题主要考查了中心对称与轴对称的概念.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.25. (-1,-2) (1,2) (1,-2)【详解】试题分析:根据关于x 轴、y 轴、原点对称的点的坐标的特征即可得到结果. 点(-1,2)关于x 轴对称的点的坐标是(-1,-2),关于y 轴对称的点的坐标是(1,2),关于原点对称的点的坐标是(1,-2).考点:本题考查的是关于x 轴、y 轴、原点对称的点的坐标的特征点评:解答本题的关键是熟练掌握关于x 轴对称的点的横坐标不变,纵坐标变为相反数;关于y 轴对称的点的纵坐标不变,横坐标变为相反数;关于原点对称的点的横、纵坐标均变为相反数.26.-3【分析】根据关于原点对称的两个点横纵坐标互为相反数得出,a b 的值,代入计算即可.【详解】解:①点A (a ,1)与点B (﹣3,b )关于原点对称,①a =3,b =﹣1,故ab =﹣3.故答案为:﹣3.【点睛】此题主要考查了关于原点对称点的性质,正确记忆关于原点对称点的性质是解题关键.27.(-3,5)【分析】根据旋转180°后的对应点与点A 关于原点对称进行求解即可.【详解】解:①将点A 绕原点逆时针旋转180°后,点A 的对应点B 与点A 关于原点对称, ①点B 的坐标为(-3,5),故答案为:(-3,5).【点睛】本题主要考查了绕原点旋转一定角度的点的坐标特征,熟知绕原点旋转180度对应点关于原点对称是解题的关键.28.4-【分析】根据对称中心是对应点的中点,可得答案.【详解】①点A 和点A '关于点B 对称,①B 是A 与A '连线的中点,设A '表示的数是x ,则)122x =-,解得:4x =-故答案为:4-.【点睛】本题考查了实数与数轴,利用对称中心是对应点的中点得出方程是解答本题的关键.29. 全等 对称中心 平分【分析】根据中心对称的性质直接填空得出即可.【详解】成中心对称的两个图形全等,对应点的连线都经过对称中心,并且被对称中心平分.故填:全等,对称中心,平分.【点睛】此题主要考查了中心对称的定义,熟练掌握中心对称的定义是解题关键.30.(3,-1)【详解】试题分析:根据中心对称的性质,得点P(﹣3,1)关于原点对称的点的坐标是(3,﹣1).故答案为(3,-1).考点:关于原点对称的点的坐标.31.(-1,-3).【分析】根据一次函数图象上点的坐标性质得出P点坐标,再利用关于原点的对称点的性质得出答案.【详解】解:①直线y=x+2上有一点P(1,m),①x=1,y=1+2=3,①P(1,3),①P点关于原点的对称点P′的坐标为:(-1,-3).故答案为:(-1,-3).【点睛】此题主要考查了一次函数图象上点的坐标性质以及关于原点的对称点的性质,正确把握相关定义是解题关键.32.(1)到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)见解析【分析】(1)根据线段的垂直平分线的判定进行解题即可.(2)根据题意用基本图形设计中心图案即可.【详解】解:(1)连接AC,CB,AD,DB.由作图可知:AC=BC,AD=BD.①点C,点D在线段的垂直平分线上(到一条线段两个端点距离相等的点在这条线段的垂直平分线上).①直线就是线段的垂直平分线(两点确定一条直线).故答案为:到一条线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线;(2)如图所示:【点睛】本题考查利用旋转设计图案,线段的垂直平分线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.33.①①【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --, ①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;①将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ①将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;①将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①①,故答案为:①①.【点睛】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 34. 不一定是; 一定是【分析】根据中心对称的定义及旋转对称的定义:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;即可得出答案.【详解】旋转对称图形不一定是中心对称图形,中心对称图形一定是旋转对称图形. 故答案为:不一定是;一定是。
9.2 中心对称与中心对称图形
9.2 中心对称与中心对称图形【中档题】(满分100分时间:40分钟)班级姓名得分【知识点回顾】1、中心对称:一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这点对称,也称这两个图形成中心对称。
这个点叫做对称中心。
2、成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
3、中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点就是它的对称中心。
【课时练习】一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.(2021·重庆北碚区·西南大学附中九年级期末)下列图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形与轴对称图形的定义求解.【详解】解:A、是轴对称图形不是中心对称图形,不符合题意;B、既是轴对称图形也是中心对称图形,不符合题意;C、是中心对称图形不是轴对称图形,符合题意;D、是轴对称图形不是中心对称图形,不符合题意;故选C .【点睛】本题考查轴对称与中心对称的应用,熟练掌握轴对称与中心对称的意义是解题关键.2.(2020·浙江杭州市·八年级其他模拟)若4y kx =-的函数值y 随x 的增大而增大,则(,3)k 关于原点的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据函数的性质确定k >0,判断点(,3)k 在第一象限,根据中心对称的性质即可求解.【详解】解:∵4y kx =-的函数值y 随x 的增大而增大,∴k >0,∴点(,3)k 在第一象限,∴(,3)k 关于原点的对称点在第三象限.故选:C【点睛】本题考查了一次函数的增减性,中心对称的性质,根据一次函数的增减性判断k 的符号是解题关键.3.(2020·广州白云广雅实验学校九年级月考)如图,0MON 9°Ð=,ABC V 关于OM 的对称图形是111A B C V ,111A B C V 关于ON 的对称图形是222A B C V ,则ABC V 与222A B C V 的关系是( )A.平移关系B.关于O点成中心对称Ð的平分线成轴对称D.关于直线ON成轴对称C.关于MON【答案】B【分析】可设OM所在直线为y轴,ON所在直线为x轴,再根据平面直角坐标系中轴对称与中心对称的对称点的坐标关系便可求解.【详解】不妨设OM所在直线为y轴,ON所在直线为x轴,∵△ABC关于OM的对称图形是△A1B1C1,∴A与A1、B与B1、C与C1的纵坐标相同,横坐标互为相反数,∵△A1B1C1关于ON的对称图形是△A2B2C2,∴A1与A2、B1与B2、C1与C2的横坐标相同,纵坐标互为相反数,∴A与A2、B与B2、C与C2的横坐标、纵坐标都互为相反数,则由中心对称图形在平面直角坐标系中对称点的坐标关系可知:△ABC与△A2B2C2关于O点成中心对称.故答案为:B.【点睛】本题考查了轴对称图形的特征和中心对称图形的识别,正确区分两种对称变换的特征是解题的关键.4.(2020·山东淄博市·鲁村中学八年级月考)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.④B.③C.②D.①【答案】C【分析】将一个图形旋转180度后能与原图形重合的图形是中心对称图形,根据定义解答.【详解】A、涂④后构成轴对称图形,不符合题意;B、涂③后构成轴对称图形,不符合题意;C、涂②后构成中心对称图形,符合题意;D、涂①后既不是轴对称图形也不是中心对称图形,不符合题意;故选:C..【点睛】此题考查中心对称图形的定义,掌握中心对称图形与轴对称图形的特点及区别是解题的关键.5.(2020·全国九年级课时练习)如图,线段AC与BD相交于点O,且△ABO和△CDO关于点O成中心对称,则下列结论,其中正确的个数是()△≌△;④AC=BD.①OB=OD;②AB=CD;③ABO CDOA.4B.3C.2D.1【答案】B【分析】根据成中心对称的两个图形的性质解答.【详解】解:∵△ABO和△CDO关于点O成中心对称,∴△ABO≌△CDO,∴OB=OD,AB=CD,而AC=BD不一定成立,故选:B.【点睛】此题考查成中心对称的两个图形的性质:成中心对称的两个图形全等,熟记性质是解题的关键.6.(2020·上海嘉定区·七年级期末)下列说法中正确的是()A.如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B.如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C.如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D.如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;【答案】C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180°则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.二、填空题:(本题共4小题,每小题5分,共20分)-关于原点对称的点的坐标为______.7.(2021·福建莆田市·九年级期末)在平面直角坐标系中,点(2,4)-【答案】(2,4)【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】点(2,4)-关于原点对称的点的坐标为(2,4)-,故答案为:(2,4)-.【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数.8.(2021·重庆市璧山中学校九年级月考)已知点(,3)-A m 与(6,1)B n -关于原点对称,则m n +=____________.【答案】-8【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】∵点(,3)-A m 与(6,1)B n -关于原点对称,∴m=-6,1-n=3,∴n=-2,∴m+n=-6-2=-8,故答案为:-8.【点睛】此题考查关于原点对称的点的坐标特征:横纵坐标互为相反数,求代数式的值,熟记坐标特征是解题的关键.A a b+关于原点O对称的点的坐标是9.(2020·富顺县北湖实验学校九年级月考)直角坐标系里,点(,1)(4,3),则点A的坐标为____.【答案】(-4,-3)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A a b+关于原点O对称的点的坐标是(4,3),解:∵点(,1)∴a=-4,b+1=-3∴点A的坐标为(-4,-3) .故答案为:(-4,-3).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.10.(2020·孝感市孝南区教学研究室九年级期中)如图,O是正方形ABCD的中心,M是ABCD内一点,V绕O点旋转180°后得到BNACM=,则MN的长为V.若390DMCÐ=°,将DMCMD=,4______.【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD中延长BN交CM于E,由题意据中心对称的性质,得∠ABE=∠CDM,∠MDC与∠MCD互余,∠ABE与∠EBC互余∴∠EBC=∠DCM;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE为等腰直角三角形,且∠NEM是直角,ME=NE=1,由勾股定理得=.【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .三、解答题:(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.(2021·山东淄博市·八年级期末)如图,平面直角坐标系的原点在边长为1个单位长度的小正方形组成的网格的格点上,ABC V 为格点三角形(三角形的顶点在网格的格点上)(1)直接写出下列点的坐标:A (______,______),B (______,______),C (______,______).(2)直接画出经过下列变换后的图形:将ABC V 向右平移1个单位,再向下平移6个单位后,得到111A B C △(其中:点A 移动后为点1A ,点B 移动后为点1B ,点C 移动后为点1C )再将其绕点1A 顺时针旋转180°得到222A B C △.(3)通过观察分析判断ABC V 与222A B C △是否关于某点成中心对称?如果是,直接写出对称中心的坐标;如果不是,说明理由.【答案】(1)(3,2)A ,(1,1)B ,(4,0);(2)见解析;(3)ABC V 与222A B C △关于点P 成中心对称,点P 的坐标为 7,12öæ-ç÷èø.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构分别找出点A 、B 、C 平移后的对称点A 1、B 1、C 1的位置,然后顺次连接即可;分别找出点A 1、B 1、C 1绕点A 1顺时针旋转180°的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(3)根据网格结构和中心对称的性质确定出对称中心,并根据对称中心的位置写出坐标即可.【详解】解:(1)(3,2)A ,(1,1)B ,(4,0)C .(2)111A B C △如图所示,222A B C △如图所示.(3)如图所示,ABC V 与222A B C △关于点P 成中心对称,∵C(4,0),C2(3,-2),CP=C2P,点P的横坐标为:12×(4+3)=72,纵坐标为:12×(0-2)=-1,∴P7,12öæ-ç÷èø.【点睛】本题考查了利用平移、旋转变换作图及中心对称等知识,解题的关键是理解题意,熟练掌握平移、旋转及中心对称的性质并准确找出对应点的位置.12.(2020·浙江杭州市·八年级其他模拟)在66´的方格纸中,每个小正方形的边长均为1,请在图1、图2、图3中各画一个以A,B为顶点的四边形,满足以下要求:(1)在图1中画出一个面积为6,且是中心对称的四边形;(2)在图2中画出一个面积为9,且是轴对称的四边形;(3)在图3中画出一个既是轴对称又是中心对称的四边形.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)画一个底为2,高为3的平行四边形即可;(2)画一个上底为2,下底为4,高为3的梯形即可;(3)以AB为边画一个正方形即可.【详解】解:(1)如图,四边形ABCD即为所作;(2)如图,四边形ABCD即为所作;(3)如图,四边形ABCD即为所作.【点睛】本题考查了轴对称图形和中心对称图形,解题的关键是掌握相应图形的性质,以及网格的性质.V各顶点坐标为:13.(2021·朝阳县羊山实验中学九年级期末)如图,在平面直角坐标系中,ABCA-,(4,0)(2,3)B-,(1,1)C-.(1)作ABC V 关于原点O 成中心对称的111A B C △;(2)将111A B C △向上平移5个单位,作出平移后的222A B C ;(3)在x 轴上求作一点P ,使2PA PA +的值最小,并求出点P 的坐标【答案】(1)见详解;(2)见详解;(3)见详解,2,05æöç÷èø【分析】(1)根据关于原点对称的点的坐标特征分别作出点A 、B 、C 关于原点的对称点A 1、B 1、C 1,即可得到△A 1B 1C 1;(2)根据平移的性质分别作出点A 1、B 1、C 1向上平移5个单位的对称点A 2、B 2、C 2,即可得到△A 2B 2C 2;(3)由于点A′和A 关于x 轴对称,连结A′A 2交x 轴于P ,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,接着利用待定系数法求出直线A′A 2的解析式为5142y x =-,然后计算函数值为0时的自变量的值即可得到点P 的坐标.【详解】(1)如图,△A 1B 1C 1为所求;(2)如图,△A 2B 2C 2为所求;(3) 作点A 关于x 轴对称的对称点A′,连结A′A 2交x 轴于P ,则P 点为所求,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,设直线2A A ¢的解析式为y kx b =+,把(2,3)A ¢--,2(2,2)A 代入得:2322k b k b -+=-ìí+=î,解得5412k b ì=ïïíï=-ïî,∴直线2A A ¢的解析式为5142y x =-,当0y =时,51042x -=,解得25x =,P 点坐标为2,05æöç÷èø.【点睛】本题考查了作图-中心对称变换和平移变换.根据中心对称的性质可知,作对应点与中心O连线并延长,利用对应线段相等,由此可以射线上的边上截取相等的线段的方法,找到对应点,顺次连接得出成中心对称的图形.14.(2020·长沙市中雅培粹学校)阅读下列材料并完成题目:类似于平移变换是在原有横、纵坐标上加减一个数,在平面直角坐标系xOy中,点P(x,y)经过变换φ得到P′(x′,y′),把这种变换记作φ(x,y)=(x′,y′),其中''x ax byy ax by=+ìí=-î(a,b为常数),例如:当a=1,且b=1时,则φ(﹣2,3)=(1,﹣5).(1)①当a=2,且b=1时,φ(﹣2,1)= .②若φ(3,1)=(﹣3,﹣3),则a= ,b= .(2)点P(2,1)经过变换φ得到点P′(x′,y′),若点P′与点P关于原点对称,求a和b的值.(3)对任意横、纵坐标满足二元一次方程2x﹣y=0的点P(x,y),点P经过变换φ得到点P′(x′,y′),若点P与点P′重合,求a和b的值.【答案】(1)①(﹣3,﹣5);②﹣1,0;(2)31,42a b=-=-;(3)32a=,14b=-.【分析】(1)①根据变换φ的定义解答即可;②根据变换φ的定义构建方程组即可解决问题;(2)先根据关于原点对称的点的坐标特点求出点P′的坐标,再根据变换φ的定义构建方程组即可解决问题;(3)由题意可设P(x,2x),然后根据变换φ的定义构建方程组即可解决问题.【详解】解:(1)①x′=2×(﹣2)+1×1=﹣3,y′=2×(﹣2)﹣1×1=﹣5,∴φ(﹣2,1)=(﹣3,﹣5),故答案为:(﹣3,﹣5);②由题意,得3333a ba b+=-ìí-=-î,解得1ab=-ìí=î,故答案为:﹣1,0;(2)∵点P′与点P关于原点对称,P(2,1),∴P′(﹣2,﹣1),由题意,得2221a ba b+=-ìí-=-î,解得3412abì=-ïïíï=-ïî;所以31,42 a b=-=-;(3)由题意可设P(x,2x),则有222ax bx xax bx x+=ìí-=î,解得3214abì=ïïíï=-ïî.所以32a=,14b=-.【点睛】本题是新定义题目,以φ变换为载体,主要考查了二元一次方程组的解法和关于原点对称的点的坐标特点,正确理解变换法则、熟练掌握解二元一次方程组的方法是解题的关键.。
初中数学中心对称图形专题训练50题含参考答案
初中数学中心对称图形专题训练50题含参考答案一、单选题1.下列图形中,是中心对称的图形是()A.B.C.D.【答案】B【详解】某个图形绕着它的中心旋转180°能够重合的图形是中心对称图形,以上四个图形中,图B符合题意,故选B2.下列所给图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形又是中心对称图形,故本选项符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:B.称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称与中心对称图形的概念求解即可.【详解】解:A.该图形是中心对称图形,但不是轴对称图形,不符合题意;B.该图形是轴对称图形,但不是中心对称图形,不符合题意;C.该图形是轴对称图形,但不是中心对称图形,不符合题意;D.该图形既是中心对称图形又是轴对称图形,符合题意.故选:D.【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.4.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,则四幅图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【分析】利用轴对称图形和中心对称图形的定义逐一判断即可得解;【详解】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意;故选:A.【点睛】本题主要考查轴对称图形和中心对称图形,解题的关键是明确轴对称图形和中心对称图形的特征.5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.下列图形中既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等边三角形C.正方形D.正五边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.平行四边形是中心对称图形,但不是轴对称图形,故此选项错误;B.等边三角形是轴对称图形,但不是中心对称图形,故此选项错误;C.正方形是中心对称图形,又是轴对称图形,故此选项正确;D.正五边形是轴对称图形合,但不是中心对称图形,故此选项错误.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.下列图形是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.不是中心对称图形,故该选项不正确,不符合题意;B. 是中心对称图形,故该选项正确,符合题意;C. 不是中心对称图形,故该选项不正确,不符合题意;D. 不是中心对称图形,故该选项不正确,不符合题意;故选:B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.正五边形B.平行四边形C.矩形D.圆【答案】A【分析】根据轴对称图形与中心对称图形的概念结合正五边形、平行四边形、矩形、圆的性质求解.【详解】解:A、正五边形是轴对称图形,不是中心对称图形,故此选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C、矩形是轴对称图形,也是中心对称图形,故此选项错误;D、圆是轴对称图形,也是中心对称图形,故此选项错误.故选:A【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.10.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、不是轴对称图形,是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项合题意;故选C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.11.垃圾分类人人有责.下列垃圾分类标识是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】A. 不是中心对称图形,不符合题意;B.是中心对称图形,符合题意;C. 不是中心对称图形,不符合题意;D. 不是中心对称图形,不符合题意;故选B【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是解题的关键.12.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【答案】A【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意;故选:A.【点睛】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.下列命题中,真命题的个数为()①一个锐角和一条边分别相等的两个直角三角形全等;①定理的逆定理一定成立;①经过旋转,对应线段平行且相等;①等腰三角形的角平分线和中线重合;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数.A.1B.2C.3D.4【答案】A【分析】利用全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点分别判断后即可确定正确的选项.【详解】解:①一个锐角和一条边分别相等的两个直角三角形不一定全等,故错误,是假命题,不符合题意;①定理的逆定理不一定成立,故错误,是假命题,不符合题意;①经过旋转,对应线段相等,但不一定平行,故错误,是假命题,不符合题意;①等腰三角形的顶角平分线和底边中线重合,故错误,是假命题,不符合题意;①在平面直角坐标系中,关于原点成中心对称的两个图形中,对应点的横、纵坐标互为相反数,正确,是真命题,符合题意,综上分析可知,真命题有1个,故A正确.故选:A.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解全等三角形的判定方法、旋转的性质、等腰三角形的性质及关于原点成中心对称的点的坐标特点,难度不大.15.下列图形中,既是轴对称图形,又是中心对称图形的是()A.角B.平行四边形C.矩形D.等边三角形【答案】C【分析】根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.【详解】A.角是轴对称图形,不是中心对称图形,故本选项错误;B.平行四边形不轴对称图形,是中心对称图形,故本选项错误;C.矩形既是轴对称图形也是中心对称图形,故本选项正确;D.等边三角形是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形和轴对称图形的概念,属于基础题.16.下列图形中,可以看作既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故选项A不符合题意;B、不是轴对称图形,是中心对称图形,故选项B不符合题意;C、是轴对称图形,不是中心对称图形,故选项C不符合题意;D、是轴对称图形,也是中心对称图形;故选项D符合题意;故选:D.【点睛】本题考查中心对称图形以及轴对称图形的识别,掌握它们的定义是解题的关键.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形及中心对称图形定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫轴对称图形,逐项验证即可得到答案.【详解】解:A、该图形不是轴对称图形,是中心对称图形,不符合题意;B、该图形既是轴对称图形,又是中心对称图形,符合题意;C、该图形是轴对称图形,不是中心对称图形,不符合题意;D、该图形是轴对称图形,不是中心对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形及中心对称图形的定义与判断,熟练掌握轴对称图形及中心对称图形的定义是解决问题的关键.18.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】D【详解】试题解析:A、是轴对称图形,但不是中心对称图形.故错误;B、既不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,但不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.19.点 P (2,﹣3)关于原点对称的点的坐标是_________. 【答案】(-2,3)【分析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.【详解】解:已知点P (2,-3),则点P 关于原点对称的点的坐标是(-2,3),故答案为:(-2,3).【点睛】本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键. 20.将点()1,2P -绕坐标原点旋转180︒后点的坐标为________.【答案】()1,2-【分析】根据中心对称图形的性质即可解答.【详解】解:点()1,2P -绕坐标原点旋转180︒后点的坐标为()1,2-,故答案为:()1,2-.【点睛】本题主要考查了中心对称图形的性质,熟记关于原点对称横、纵坐标都变为相反数是解题的关键.21.已知(,3)M a -和(4,)N b 关于原点对称,则a b +=______.【答案】-1【分析】根据关于原点对称点的坐标特征,求出a b 、的值,相加即可;【详解】解:(,3)M a -和(4,)N b 关于原点对称,则=-4=3a b 、,-4+3=-1a b +=;故答案为:-1【点睛】本题考查了关于原点对称点的坐标变化规律,解题关键是求出a b 、的值. 22.在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.【分析】根据中心对称的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形即可解答.【详解】当涂黑4时,将图形绕O旋转180°,与原图重合,阴影部分为中心对称图形.故答案为:4.【点睛】本题考查了中心对称图形,掌握中心对称图形的定义是关键.23.点A(-6,m)与点A′(n,3)关于原点中心对称,则m+n的值是____ .【答案】3【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】①点A(−6,m)与点A′(n,3)关于原点中心对称,①n=6,m=−3,①m+n=3,故答案为3.【点睛】考查关于原点对称的点的坐标特征,横坐标和纵坐标都互为相反数.24.如图,以平行四边形ABCD对角线的交点O为原点,平行于BC边的直线为x 轴,建立如图所示的平面直角坐标系.若D点坐标为(5,3),则B点坐标为__________.【答案】(-5,-3)【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD对角线的交点O 为原点和点D的坐标,即可得到点B的坐标.【详解】解:①坐标原点O为平行四边形ABCD对角线的交点①B 、D 两点关于点O 对称①D (5,3)①B (-5,-3)故答案为:(-5,-3)【点睛】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.25.在平面直角坐标系中,已知点()4,3A -与点B 关于原点对称,则点B 的坐标是______. 【答案】(-4,3)【分析】根据关于原点对称的点横纵坐标都互为相反数即可得到答案.【详解】解:①点()4,3A -与点B 关于原点对称,①点B 的坐标是()4,3-,故答案为:()4,3-.【点睛】本题考查了点的坐标,掌握关于原点对称的点的横纵坐标都互为相反数,是解题的关键.26.若点(),2P a 与点()5,Q b 关于原点对称,则=a _____,b =_____. 【答案】 5- 2-【分析】根据平面直角坐标系中关于原点对称的点的坐标特征:相应坐标互为相反数,即可得到答案.【详解】解:①点(),2P a 与点()5,Q b 关于原点对称,①52a b =-=-,,故答案为:5,2--.【点睛】本题考查平面直角坐标系中关于原点对称的点的坐标特征,熟练掌握关于原点对称的点的坐标特征:相应坐标互为相反数是解决问题的关键.27.已知点A (a ,5)与点B (-3,b )关于原点对称,则a +b 的值是______.【答案】2-【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),根据这一结论求得a ,b 的值,再进一步计算.【详解】解:①点A (a ,5)与点B (-3,b )关于原点对称,①35a b =⎧⎨=-⎩, ①a +b=3-5=-2;故答案为:2-.【点睛】本题主要考查了关于原点对称的点的坐标,掌握关于原点对称的点的坐标特征是解题的关键.28.若点()1,5P a -与点()5,1Q b -关于原点成中心对称,则a b -=______. 【答案】10-【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】解:点()1,5P a -与点()5,1Q b -关于原点成中心对称,15,15a b ∴-=--=-,解得4,6a b =-=,则4610a b -=--=-,故答案为:10-.【点睛】本题主要考查了关于原点对称点的性质(点的横、纵坐标均互为相反数),正确得出a ,b 的值是解题关键.29.若点M (3,a ),N (b ,﹣5)关于原点对称,则a +b =____.【答案】2【分析】根据关于原点对称的点的坐标特征,得到a ,b 的值,进而求a +b 即可求解.【详解】解:①点M (3,a ),N (b ,﹣5)关于原点对称,①b =-3,a =5,①a +b =-3+5=2.故答案是: 2.【点睛】本题主要考查关于原点对称的点的坐标特征,掌握关于原点对称的两点的横纵左边分别互为相反数,是解题的关键.30.直角坐标系中,直线y =2x+3关于原点对称的解析式为_____.【答案】y =2x ﹣3【分析】若两条直线关于原点对称,则这两条直线平行,即k 值不变;与y 轴的交点关于原点对称,即b 值互为相反数.【详解】解:直线y =2x+3关于原点对称的解析式为y =2x ﹣3,故答案为:y =2x ﹣3.【点睛】本题考查一次函数,能够数形结合来分析此类型的题,根据图形,发现k 和b 值之间的关系.31.已知点()2,2A -关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,则四边形ABCD 的面积为_____. 【答案】16【分析】根据关于x 轴、y 轴、原点对称的点的坐标特征可得出B 、C 、D 点的坐标,可得四边形ABCD 是边长为4的正方形,进而可得面积.【详解】①关于x 轴的对称点为点B ,关于原点的对称点为点C ,关于y 轴的对称点为点D ,①()2,2B --,()2,2C -,()2,2D .①四边形ABCD 是边长为4的正方形,①其面积为16,故答案为16【点睛】本题考查关于原点对称的点的坐标;关于x 轴、y 轴对称的点的坐标,关于x 轴的对称点,横坐标不变,纵坐标变成相反数;关于y 轴的对称点,纵坐标不变,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.32.在等腰直角ABC 中,90C =∠,2BC cm =,如果以AC 的中点D 为旋转中心,将这个三角形旋转180°,点B 落在点B '处,则DB '的长度为______.1133.将二次函数y =x 2+2x -3的图象绕原点旋转180°,若得到的新的函数图象上总有两个点在直线y =x -m 上,则m 的取值范围是____.34.若点(,2)P a -与点(3,)Q b 关于原点对称,则b a =_____________.【答案】9【分析】根据关于原点的对称点的特征计算即可.【详解】解:①点(,2)P a -与点(3,)Q b 关于原点对称,①3a =-,2b =,①239b a ==,故答案为:9.【点睛】本题主要考查了关于原点对称的点的有关计算,解题的关键是熟知直角坐标系中两点的坐标关于原点对称,这两个点横坐标互为相反数,纵坐标互为相反数.35.如图所示,△ABC与△A'B'C'关于点O成中心对称,则下列结论成立的是__.(填序号)①点A与点A'关于点O对称;①BO=B'O;①AC①A'C';①①ABC=①C'A'B'.【答案】①①①【分析】根据中心对称的性质解答.【详解】①①ABC与△A′B′C′关于点O成中心对称,①点A与点A′是对称点,BO=B′O′,①ABC=①A′B′C′,△ABC①①A′B′C′,△BOC①①B′OC′,①①ACB=①A′C′B′,①OCB=①O′C′B′,①①ACO=①A′C′O,①AC①A'C'①结论①ACB=①C′A′B′错误.故答案为①①①【点睛】本题考查了中心对称的性质,熟记性质并准确识图是解题的关键.36.在同一直角坐标系中,点A、B分别是函数y=x−2与y=−2x−1的图象上的点,且点A、B关于原点对称,则点A的坐标是______.【答案】(1,−1)【详解】解:设点A的坐标为(m,n),则点B的坐标为(−m,−n).根据题意得:221 n mn m=-⎧⎨-=-⎩,解得:11 mn=⎧⎨=-⎩,①点A的坐标为(1,−1).故答案为(1,−1).【点睛】本题考查了一次函数图象上点的坐标特征以及关于原点对称的点的坐标,根据一次函数图象上点的坐标特征,列出关于m、n的二元一次方程组是解题的关键.37.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,−300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标可以表示为_____.【答案】(3,240°),(3,−120°),(3,600°)【分析】根据中心对称的性质解答即可.【详解】①P(3,60°)或P(3,−300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,−120°),(3,600°),故答案为(3,240°),(3,−120°),(3,600°)【点睛】此题考查中心对称的性质,解题关键在于掌握其性质.三、解答题38.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)△ABC绕点C顺时针旋转90°得到△A1B1C;(2)画△A1B1C关于点O的中心对称图形△A2B2C2.【答案】(1)见解析(2)见解析【分析】(1)分别作出A、B、的对应点A1、B1即可;(2)分别作出A1、B1、C的对应点A2、B2、C2即可;【详解】(1)解:①ABC绕点C顺时针旋转90°得到①A1B1C如图所示;(2)解:①A 1B 1C 关于点O 的中心对称图形①A 2B 2C 2如图所示;【点睛】本题考查作图﹣旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换、中心对称的性质,属于中考常考题型.39.作图题:已知①ABC 在方格纸中的位置如图所示,每个小方格的边长为1个单位长度;(1)将①ABC 向右平移4个单位长度得到①111A B C ,请你画出①111A B C ;(2)①ABC 与①222A B C 关于原点O 对称,请你画出①222A B C .【答案】(1)①111A B C 如图所示;(2)①222A B C 如图所示.【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位的对应点111A B C 、、 的位置,然后顺次连接即可;(2) 根据网格结构找出点A 、B 、C 关于原点的对称点2A 、2B 、2C 的位置,然后顺次连接即可.(1)由图可得A (-2,5),B (-4,1),C (-1,3)则右平移4个单位的对应点1A (2,5)、1B (0,1)、C 1(3,3),如图所示;(2)①ABC 与①222A B C 关于原点O 对称,则2A (2,-5),2B (4,-1),2C (1,-3),如图所示.【点睛】本题考查作图——旋转和平移:根据旋转和平移的性质作图是解题的关键. 40.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,点A 、点C 关于点O 成中心对称,点B 、点D 关于点O 成中心对称,且点B 、D 关于AC 成轴对称.求证:四边形ABCD 是菱形.【答案】见解析【分析】根据轴对称的性质可得AC 垂直平分BD ,进而得到,BO DO AC BD =⊥,再根据点A 、点C 关于点O 成中心对称,可得AO CO =,然后根据对角线互相垂直且平分的四边形是菱形可证出结论.【详解】证明:∵点B 、D 关于AC 成轴对称,∴AC 垂直平分BD ,∴,BO DO AC BD =⊥,∵点A 、点C 关于点O 成中心对称,∴AO CO =,∴四边形ABCD 是菱形.【点睛】此题主要考查了菱形的判定,轴对称和中心对称,掌握对角线互相垂直平分的四边形是菱形是解题的关键.41.如图,在5×5的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD ,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.【答案】见解析【分析】(1)以AB为边画一个平时四边形即可;BF ,然后以AB为边,BF为对角线画平行四边形即可.(2)先作对角线3【详解】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.【点睛】考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.42.如图,①ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将①ABC向右、向下分别平移1个单位长度和5个单位长度得到①A1B1C1,请画出①A1B1C1,并写出点A1,C1的坐标;(2)请画出①ABC关于原点O成中心对称的①A2B2C2.。
第03讲 中心对称与中心对称图形(知识解读+达标检测)(解析版)
第03讲中心对称与中心对称图形【题型1中心对称图形】【题型2中心对称的性质】【题型3利用中心对称的性质-找对称中心】【题型4利用中心对称的性质-求边长长度】【题型5利用中心对称的性质-求点坐标】【题型6利用中心对称的性质-求面积】【题型7利用中心对称的性质-作图】考点:中心对称(两个图形)1.概念把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;2.性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3.判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4.作图步骤:(1)连接原图形上所有的特殊点和对称中心。
(2)将以上所连线段延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等。
(3)将对称点按原图形的形状顺次连接起来,即可得出关于中心对称的图形5.中心对称图形(一个图形)把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
【题型1中心对称图形】【典例1】(2023秋•南沙区期末)剪纸是我国源远流长的传统工艺,下列剪纸中是中心对称图形的是()A.B.C.D.【答案】A【解答】解:选项B、C、D中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项A中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.【变式1-1】(2023秋•蒙城县校级期末)下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、B、D中的图形不是中心对称图形,故A、B、D不符合题意;C中的图形是中心对称图形,故C符合题意.故选:C.【变式1-2】(2023秋•清河区校级期末)四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.该图是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.该图既是轴对称图形,又是中心对称图形,故此选项合题意;故选:D.【变式1-3】(2023秋•沙坪坝区校级期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、图形不是轴对称图形,也不是中心对称图形,故A不符合题意;B、图形是中心对称图形,不是轴对称图形,故B不符合题意;C、图形是中心对称图形,不是轴对称图形,故C不符合题意;D、图形既是中心对称图形,也是轴对称图形,故D符合题意.故选:D.【题型2中心对称的性质】【典例2】(2022秋•浦北县期末)如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()A.点A与点A'是对称点B.BO=B'OC.AB=A'B'D.∠ACB=∠C'A'B'【答案】D【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴点A与点A'是对称点,BO=B'O,AB=A'B',∴A,B,C正确,故选:D.【变式2-1】(2023春•内江期末)如图,△ADE与△CDB关于点D成中心对称,连结AB,以下结论错误的是()A.AD=CD B.∠C=∠EC.AE=CB D.S△ADE=S△ADB【答案】B【解答】解:∵△ADE与△CDB关于点D成中心对称,∴AD=CD,BD=ED,AE=CB,∠E=∠CBD,∵BD=ED,=S△ADE,∴S△ABD故选:B.【变式2-2】(2023春•泉港区期末)如图,△AOD与△BOC关于点O成中心对称,连结AB、CD,以下结论错误的是()A.OA=OB B.△AOD≌△COBC.AD=BC D.S△ACD=S△BCD【答案】A【解答】解:∵△AOD与△BOC关于点O成中心对称,∴△AOD≌△COB,故选项B正确;∴AD=BC,故选项C正确;但不一定OA=OB,故选项A不正确;∵△AOD≌△COB,=S△BCO,∴S△AOD+S△COD=S△BCD+S△COD,即S△ACD=S△BCD,故选项D正确,∴S△AOD故选:A.【变式2-3】(2023秋•安新县期中)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和△EDB成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是8.【答案】(1)△EDB;(2)8.【解答】解:(1)根据中心对称图形的性质可得;△ADC和△EDB成中心对称,故答案为:△EDB;(2)由(1)得:△ADC和△EDB成中心对称,∴线段BD是△ABC的中线,=S△ACD=4,∴S△ABD∵D是△ABC边BC的中点,=2S△EDB=8,∴S△ABE故答案为:8.【题型3利用中心对称的性质-找对称中心】【典例3】(2023秋•张北县期中)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.【变式3-1】(2023春•渭南期末)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【答案】B【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【变式3-2】(2023春•高碑店市期末)如图,△ABC与△DEF关于某点成中心对称,则其对称中心是()A.点P B.点Q C.点M D.点N【答案】C【解答】解:如图,连接BE、CF,发现其交于点M,根据中心对称的性质可知点M即为其对称中心.故选C.【题型4利用中心对称的性质-求边长长度】【典例4】(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.【变式4-1】(2022秋•广宗县期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为()A.4B.C.D.【答案】A【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4.故选:A.【变式4-2】(2023秋•富县期末)如图,△ABC与△AB'C'关于点A对称,若∠C=90°,∠B=30°,AC=1,则BB'的长为4.【答案】4.【解答】解:如图,∵△ABC与△AB'C'关于点A对称,∴△ABC≌△AB′C′,∴AB=AB′,∵∠C=90°,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4,故答案为:4.【变式4-3】(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.【题型5利用中心对称的性质-求点坐标】【典例5】(2023秋•青岛月考)如图,线段AB与线段CD关于点P对称,若点A(3,3)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣3,﹣3)B.(﹣1,﹣3)C.(﹣4,﹣2)D.(﹣2,﹣4)【答案】B【解答】解:∵B(5,1)、D(﹣3,﹣1)关于点P对称,=1,=0,∴点P的坐标为(1,0).设点C(x,y),∵A(3,3),∴=1,=0,∴x=﹣1,y=﹣3.∴C(﹣1,﹣3).故选:B.【变式5-1】(2022•市南区校级二模)如图,在平面直角坐标系中,△ABC与△A'B'C'关于D (﹣1,0)成中心对称.已知点A的坐标为(﹣3,﹣2),则点A'的坐标是()A.(1,3)B.(1,2)C.(3,2)D.(2,3)【答案】B【解答】解:设点A'的坐标是(a,b),根据题意知:=﹣1,=0.解得a=1,b=2.即点A'的坐标是(1,2),故选:B.【变式5-2】(2022春•青州市期末)如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)【答案】D【解答】解:设A′(m,n),∵AC=CA′,A(﹣2,3),C(0,1),∴=0,=1,∴m=2,n=﹣1,∴A′(2,﹣1),故选:D.【题型6利用中心对称的性质-求面积】【典例6】(2022秋•乌鲁木齐县校级期中)如图,正方形边长为a,则阴影部分面积为.【答案】见试题解答内容【解答】解:由题意得:S阴影=S正方形=,故答案为:.【变式6-1】(2022春•南关区期末)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A1,AB⊥a于点B,A1D⊥b于点D,若OB=5,OD=3,则阴影部分的面积之和为15.【答案】15.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=5,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×5=15.故答案为:15.【变式6-2】(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.【变式6-3】(2023秋•东湖区期中)如图为某公园中心对称的观赏鱼池,阴影部分为观赏喂鱼台,已知OA=OB=2米.求阴影部分的面积.【答案】8π平方米.【解答】解:因为观赏鱼池是中心对称,且OA=OB=2米,所以阴影部分相当于2个以点O为圆心,OA长为半径的圆,所以阴影部分的面积为2×π×22=8π(平方米),答:阴影部分的面积为8π平方米.【题型7利用中心对称的性质-作图】【典例7】(2023秋•浦北县期末)如图,△ABC和△DEF关于点O成中心对称.(1)找出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.【答案】(1)见解析;(2)15.【解答】解:(1)如图所示,点O即为所求;(2)∵△ABC和△DEF关于点O成中心对称,∴△ABC≌△DEF,∴AB=DE=6,AC=DF=5,BC=EF=4,∴△DEF的周长=DE+DF+EF=6+5+4=15;答:△DEF的周长为15.【变式7-1】(2023春•雁塔区校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),(4,2),C(3,5).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点成中心对称,并写出点A1,B1,C1的坐标.(2)求△A1B1C1的面积?【答案】见试题解答内容【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣4),B1(﹣4,﹣2),C1(﹣3,﹣5);(2)根据中心对称的性质可得S=3×3﹣=9﹣﹣1﹣3=.【变式7-2】(2022秋•沙河市期末)如图所示,三角形ABC和三角形A′B′C′关于某一点成中心对称,一同学不小心把墨水泼在纸上,只能看到三角形ABC和线段BC的对应线段B′C′,请你帮该同学找到对称中心O,且补全三角形A′B′C′.【答案】见试题解答内容【解答】解:如图,△A′B′C′即为所求;一.选择题(共10小题)1.(2023秋•江海区期末)下列环保标志,既是轴对称图形,也是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、是轴对称图形,不是中心对称图形,则此项不符合题意;C、不是轴对称图形,也不是中心对称图形,则此项不符合题意;D、是轴对称图形,也是中心对称图形,则此项符合题意;故选:D.2.(2023秋•长海县期末)平面直角坐标系内与点P(﹣1,2)关于原点对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,﹣1)【答案】A【解答】解:与点P(﹣1,2)关于原点对称的点的坐标是(1,﹣2).故选:A.3.(2023秋•武汉期中)已知点A(a,2023)与点A′(2024,b)是关于原点O的对称点,则a﹣b的值为()A.﹣1B.1C.﹣4047D.4047【答案】A【解答】解:∵点A(a,2023)与点A'(2024,b)是关于原点O的对称点,∴a=﹣2024,b=﹣2023,∴a﹣b=﹣2024﹣(﹣2023)=﹣1.故选:A.4.(2023秋•莱州市期末)下列各图中,四边形ABCD是正方形,其中阴影部分两个三角形成中心对称的是()A.B.C.D.【答案】A【解答】解:根据中心对称的定义可知,选项A中阴影部分两个三角形成中心对称.故选:A.5.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC 绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是()A.3B.4C.D.【答案】D【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC =2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.6.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2【答案】B【解答】解:如图所示,连接O1B、O1C,∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴=,,∴两个正方形重叠阴影部分的面积是S正方形ABCD,同理,另外两个正方形重叠阴影部分的面积也是S正方形ABCD,∴阴影部分的面积和=8=S正方形ABCD=16,∴S正方形ABCD∴正方形ABCD的边长==4,故选:B.7.(2023秋•德城区期中)如图,已知△ABC与△A'B'C'关于点O成中心对称,则下列判断不正确的是()A.∠ABC=∠A'B'C'B.∠BOC=∠B'A'C'C.AB=A'B'D.OA=OA'【答案】B【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴△ABC≌△A′B′C′,∴∠ABC=∠A′B′C′,AB=A′B′,OA=OA′,故A,C,D正确,故选:B.8.(2023秋•泽州县期中)如图,在平面直角坐标系中,OA=AB=5,点B到y轴的距离为4,将△OAB关于原点对称得到△O′A′B′,再将△O′A′B′向左平移5个单位长度得到△O″A″B″,则点B″的坐标为()A.(﹣8,﹣8)B.(﹣8,﹣9)C.(﹣9,﹣9)D.(﹣9,﹣8)【答案】D【解答】解:如图,作BC⊥y轴于点C,∵点B到y轴的距离为4,∴BC=4,∴AC==3,∴OC=5+3=8,∴点B的坐标为(4,8),∴点B关于原点对称的点B′的坐标为(﹣4,﹣8),∴点B″的坐标为(﹣9,﹣8).故选:D.9.(2023秋•邯郸期末)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.10.(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.二.填空题(共6小题)11.(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.12.(2023春•青冈县期末)如图,△ABC与△DEC关于点C成中心对称,AG为△ABC的=5.高,若CE=5,AG=2,则S△DEC【答案】5.【解答】解:∵△ABC与△DEC关于点C成中心对称,AG=2,=S△ABC,∴CE=BC,S△DEC∴,=5,∴S△DEC故答案为:5.13.(2023•靖江市校级模拟)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为60(答案不唯一)度.(写出一个即可)【答案】见试题解答内容【解答】解:360°÷6=60°,则这个图案绕着它的中心旋转60°后能够与它本身重合,故答案为:60(答案不唯一).14.(2023秋•开平市期末)如图,△AB'C'是△ABC绕点A旋转180°后得到的,已知∠B =90°,AB=1,∠C=30°,则CC'的长为4.【答案】4.【解答】解:在Rt△ABC中,sin C=,则,得AC=2.又因为△AB'C'是△ABC绕点A旋转180°后得到的,所以AC′=AC,且C,A,C′三点共线,所以CC′=2AC=4.故答案为:4.15.(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.16.(2023秋•二道区校级月考)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),点B的坐标为(3,1),点M的坐标为(a,b),点N的坐标为(c,d),则a+c的值为﹣2.【答案】﹣2.【解答】解:由图形可知,点A和点N关于x轴成轴对称,点M和点B关于坐标原点O 成中心对称,因为点A的坐标为(1,3),点B的坐标为(3,1),所以a=﹣3,c=1,a+c=﹣3+1=﹣2,故答案为:﹣2.三.解答题(共3小题)17.(2023秋•新民市期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于原点对称,则点D的坐标为(﹣4,﹣3);(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)4;(2)(﹣4,﹣3);(3)(10,0)或(﹣6,0).【解答】解:(1)如图所示:△ABC的面积是:3×4﹣;故答案为:4;(2)点D与点C关于原点对称,则点D的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或2﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).18.(2023秋•荔湾区校级期中)如图,△AGB与△CGD关于点G中心对称,若点E,F分别在GA,GC上,且AE=CF,求证:BF=DE.【答案】证明见解析.【解答】证明:∵△AGB与△CGD关于点G中心对称,∴BG=DG,AG=CG,∵AE=CF,∴AG﹣AE=CG﹣CF,∴EG=FG,又∵∠DGE=∠BGF,∴△DGE≌△BGF(SAS),∴BF=DE.19.(2022春•余江区期中)(1)如图1,在等边三角形ABC中,AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,求BE的长;(2)如图2,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,求证:∠B=∠F.【答案】(1)BE的长为3;(2)见解析.【解答】(1)解:∵等边三角形ABC中,BD是AC边上的高,∴AB=BC=AC=2,∠ADB=∠CDB=90°,DB=DB,∴△ADB≌△CDB(HL),∴AD=CD=AC=AB=1,∵CE=CD,∴CE=CD=1,∴BE=BC+CE=3,∴BE的长为3;(2)证明:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴B、C、E在同一直线上,且△ABC≌△DEC,∴∠B=∠CED,∵AF//BE,∴∠F=∠CED,∴∠B=∠F.。
《中心对称图形》同步练习及答案
《中心对称图形》同步练习及答案同步练习基础题1.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(3)(4)2.下列说法:(1)平行四边形是中心对称图形,其对角线的交点为对称中心;(2)只有正方形才既是中心对称图形,又是轴对称图形;(3)关于中心对称的两个图形是全等形,两个全等图形也一定成中心对称;(4)若将一个图形绕某定点旋转和另一个图形不重合,那么这两个图形不可能关于这个定点成中心对称,其中正确说法的个数是()A.1个B.2个C.3个D.4个3.国旗上的每个五角星()A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.下列图形中不是轴对称图形而是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形5.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A.2B.3C.4D.56.如图将三角形绕直线l?旋转一周,可以得到图(E)所示的立体图形的是()A.图(A)B.图(B)C.图(C)D.图(D)综合题像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△?ABE变到△ADF的位置,答:________________________________________________.②指出图1中,线段BE与DF之间的关系答:________________________________________________.创新题两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?1创新题1.你要争取先放,并把第1枚硬币放在桌面的对称中心上,以后你应该根据对方所放硬币的位置,在它关于中心对称的位置上放下一枚同样大小硬币.这样,由于对称性,只要对方能放得下一枚硬币,你就保证能在其对称位置上放下一枚同样大小的硬币,因此,失败绝对轮不到你.。
初二数学中心对称与中心对称图形试题
初二数学中心对称与中心对称图形试题1.下列图形中既是轴对称图形又是中心对称图形的是( )【答案】B【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
A、D只是轴对称图形,C只是中心对称图形,B既是轴对称图形又是中心对称图形,故选B.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.单词NAME的四个字母中,是中心对称图形的是( )A.N B.A C.M D.E【答案】A【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
A、M、E只是轴对称图形,N是中心对称图形,故选A.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.如下所示的4组图形中,左边图形与右边图形成中心对称的有( )A.1组B.2组C.3组D.4组【答案】C【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
①②③是只是中心对称图形,④只是轴对称图形,故选C.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )【答案】C【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
初中数学中心对称图形专题训练50题-含答案
初中数学中心对称图形专题训练50题含参考答案一、单选题1.若点02A (,)与点B 关于原点对称,则点B 的坐标为( )A .20(,)B .20-(,)C .02(,)D .02-(,) 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列图形中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个 4.下列手机图标中,是中心对称图形的是( )A .B .C .D .5.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6.下列图形中,既是中心对称图形,又是轴对称图形的是( )D .7.如图,两个半圆分别以P 、Q 为圆心,它们成中心对称,点A 1,P ,B 1,B 2,Q ,A 2在同一条直线上,则对称中心为( )A .A 2P 的中点B .A 1B 2的中点C .A 1Q 的中点D .PQ 的中点 8.下列汽车标志中,既是轴对称又是中心对称图形的是( )A .B .C .D . 9.如图,ABCD 的对角线交点是直角坐标系的原点,//BC x 轴,若顶点C 坐标是(5,3),8BC =,则顶点D 的坐标是( )A .(3,3)-B .()3,3-C .(5,3)-D .(3,5)- 10.下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .11.下列图形中,既是轴对称图形,又是中心对称图形的是( )D .12.下列图形中,不是中心对称图形有( )A .B .C .D . 13.下面四个图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D . 14.若不共线两线段AB 和CD 关于点P 中心对称,则AB 和CD 的关系是( ) A .AB CD = B .AB CDC .不确定D . AB CD 15.如图所示,A ,B 是函数1y x =的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC 平行于x 轴,△ABC 的面积为S ,则( )A .S=1B .S=2C .1<S<2D .S>216.下列说法中,正确的是 ( )A .形状和大小完全相同的两个图形成中心对称B .成中心对称的两个图形必重合C .旋转后能重合的两个图形成中心对称D .成中心对称的两个图形形状和大小完全相同17.点2,b P ac a ⎛⎫ ⎪⎝⎭在第二象限,点(,)Q a b 关于原点对称的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限18.下列是中心对称但不是轴对称的图形是( )A .B .C .D . 19.现实生活中,对称现象无处不在,中国的方块字中也有些具有对称性,下列美术字既是轴对称图形又是中心对称图形的是( )A .吕B .人C .甲D .日20.已知点()1,1A a +和()2,1B b -关于原点对称,则a b +的值为( )A .1-B .0C .1D .3-二、填空题21.已知点A (-3,2)与点B (a ,b )关于原点对称,则a +b =____.22.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是_______. 23.下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.24.若点(,1)A a 与点(2,)B b -关于原点成中心对称,则 b a 的值为___________. 25.点P (-2,3)关于x 轴对称点的坐标是________________.关于原点对称点的坐标是_____________.26.若点()3,5A -与点B 关于原点对称,则点B 的坐标为______________.27.在“正三角形,平行四边形,菱形,矩形,正方形”中,是轴对称图形但不是中心对称图形的是 _______.28.在平面直角坐标系中,已知点()4,3A -与点B 关于原点对称,则点B 的坐标是______.29.已知点(,2)A a 与点()4,B b 关于原点对称,则=a ______;b =______.30.已知,点A (a ,﹣3)与点B (2,b )关于原点对称,则2a +b =_____.31.已知点p(-m ,2)与(-4,n )点关于原点对称,则m n +的值是_______.32.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点分别为A (-2,2),B (0,5),C (0,2).(1)画△A 1B 1C 1,使它与△ABC 关于点C 成中心对称,则B 1的坐标为__________;(2)平移△ABC ,使点A 的对应点A 2的坐标为(-4,-6),画出平移后对应的△A 2B 2C 2,则B 2的坐标为__________;(3)若将△A 1B 1C 1绕某一点旋转可得到△A 2B 2C 2,则旋转中心的坐标为__________;33.在下列图形:△圆,△半圆,△等边三角形,△平行四边形中,既是中心对称图形又是轴对称图形的是 _______.(填序号)34.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.35.关于中心对称的两个图形的关系是___________36.已知点()39,1P k k --在第三象限,且点P 的横纵坐标都是整数,求点P 关于y 轴对称的点的坐标和与关于原点对称的点的坐标为________.37.点P(1,- 2)关于原点对称的点P'的坐标为___________38.在线段、等边三角形、平行四边形、圆中任意抽取两个图形,抽到的既是中心对称图形又是轴对称图形的概率是_____.39.如图,点O 是▱ABCD 的对称中心,AD >AB ,点E 、F 在边AB 上,且AB =2EF ,点G 、H 在边BC 边上,且BC =3GH ,则△EOF 和△GOH 的面积比为__.三、解答题40.图△、图△均是6×5的正方形网格,每个小正方形的顶点称为格点,点A 、B 、C 均在格点上,在给定的网格中按要求画图.要求:(1)在图△中画一个BCD 使它与ABC 全等.(2)在图△中画一个ACE 使它与ABC 全等.41.如图是设计师在方格纸(每个小方格均是边长为1的正方形)中设计图案的一部分,请你帮他完成下列工作:(1)作出此图案关于直线AB 的轴对称图形;(2)将原来的图案绕 O 点旋转180度,画出旋转后的图像;42.在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上。
中心对称与中心对称图形 习题精选及答案
中心对称与中心对称图形 习题精选(一)1.判断题(1)两个全等三角形构成的图形是中心对称图形。
( )(2)具有对称中心的四边形必是平行四边形。
( )(3)轴对称与中心对称不同,所以轴对称图形一定不是中心对称图形。
( )(4)三角形一定不是中心对称图形。
( )(5)对称中心是所有对称点连线的中点。
( )(6)平行四边形是中心对称图形。
( )2.如图将ABCD Y 绕O 点旋转180°后,A 点旋转到_______点,B 点旋转到________点,旋转后的平行四边形与原位置的平行四边形互相_________。
3.中心甘情愿对称图形上的每一对对应点所连成的线段都被__________平分。
4.在下列图形:线段、射线、直线、角、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有__________________________________。
5.若四边形ABCD 和四边形A B C D ''''关于点O 成中心对称,已知A 80∠=︒,AB=7cm ,CO=9cm ,那么A '∠=________,A B ''=__________,C O '=_________。
6.下列英文大写字母中,是中心对称图形的是 ( )A.BB.HC.MD.Y7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是 ( )A.仅是轴对称图形B.仅是中心对称图形C.是轴对称图形但不是中心对称图形D.既是轴对称图形又是中心对称图形8.下面扑克牌中,是中心对称图形的是 ( )9.下列图形中,是中心对称图形的为 ( )A.①②③B.①③④C.②③④D.①②④10.下列说法中,错误的是 ( )A.一条线段是中心对称图形B.两个全等三角形一定关于某点成中心对称C.正方形既是中心对称图形也是轴对称图形D.关于中心对称的两个图形必是全等形11.如图所示的两个图形成中心对称,请找出对称中心。
中心对称和中心对称图形专项训练
中心对称和中心对称图形专项训练( A组)一. 选择题:1. (河北省2005年中考题) 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有().A.1个 B.2个 C.3个 D.4个2.(潍坊市2005年中考题)如图1,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于点O,点E、F分别为AO、BO的中点,则下列关于点O成中心对称的一组三角形是().A. B. C. D.3. (辽宁锦州市2005年中考题)如图一张正方形纸片经过两次对折,并在如图位置上剪去一个小正方形,打开后是( )4. (青岛市2004年中考题)下列图形中,是中心对称图形,但不是轴对称图形的是( )A.正方形 B.矩形 C.菱形 D.平行四边形5. (泰州市2004年中考题)下列图由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )6、(深圳市2004年中考题)下列图中:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形,是轴对称图形,但不是中心对称图形有( ) A.1个 B.2个 C.3个 D.4个7. (陕西省2004年中考题)在下列图形中,是中心..对称图形的是( )8.(江苏省扬州市2004年中考题)如图,下列黑体英文大写字母中既是轴对称图形又是中心对称图形的是A.EB.MC.ND.H9.下列4个图形中是中心对称图形的有()A.1个B.2个 C . 3 个 D.4个10.如图中,既是中心对称又是轴对称的图案是().A.凤凰卫视台徽 B.奥运五连环 C.中国结 D.太极图11. (江西省中考题)如图中,将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是().A B C D E12. (陕西省2003年中考题)香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花),这个图形().A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形二. 填空题:1.关于中心对称的两个图形,对称点的连线____________2. 如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于这一点成____________对称.3. ΔABC和ΔA’B’C’关于直线l对称,若ΔABC的周长为12cm,ΔA’B’C’的面积为6cm2,则ΔA’B’C’的周长为___________,ΔABC的面积为_________。
中心对称与中心对称图形--习题精选及答案(二)知识分享
中心对称与中心对称图形--习题精选及答案(二)中心对称与中心对称图形习题精选(二)一、基础识记题1.连结成中心对称的两个图形中的每两个对称点的线段都经过,并且被对称中心。
2.菱形是中心对称图形,对称中心是,菱形也是轴对称图形,共有条对称轴。
3.一条线段的对称中心是。
二、单项方法题4.下列结论错误的是()。
A.关于中心对称的两个图形中,对应线段平行(或在同一直线上)且相等B.关于中心对称的两个图形中,对称中心在两对称点的连线上C.关于中心对称的两个图形中,对称中心到两对称点的距离相等D.两个全等形一定关于某点成中心对称。
5.如图20-28,△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC与点E、F,下面的结论正确的个数是()。
(1)点E和F,B和D是关于中心O的对称点。
(2)直线BD必经过点O。
(3)四边形与ABCD是平行四边形状。
(4)△AOE与△COF必全等。
A.1个B.2个C.3个D.4个6.如图20-29,在平行四边形ABCD中,对角线AC、BD交于点O,E、F在AD、BC 上且AE=CF。
则图中关于O点成中心对称的全等三角形对数是()A.7对B.6对C.5对D.4对7.下列图形中是轴对称图形但不是中心对称图形的是()。
A.矩形B.平行四边形C.圆D.等边三角形8.在如图20-30所列的图形中,是中心对称图形的有()。
A.1个B.2个C.3个D.4个9.图20-31中,既是中心对称又是轴对称图案的是()。
三、综合方法题10.如图20-32,已知△ABC和△ABC外的一点O。
(1)画△A'B'C',使△A'B'C'与△ABC分别关于点A、点B、点C成中心对称;(2)画△DEF,使△DEF与△ABC关于点O成中心对称。
11.如图20-33,已知四边形ABCD,点M为BA上一点,求作四边形ABCD关于点M 的中心对称图形。
答案:1.对称中心平分2.对角线的交点两3.这条线段的中点4.D5.D6.B7.D8.C9.A10.略11.略。
中心对称与中心对称图形基础题30道填空题附答案
说明:1.试题左侧二维码为该题目对应解析;2.请同学们在独立解答无法完成题目后再扫描二维码查看解析,杜绝抄袭;3.查看解析还是无法掌握题目的,可按下方“向老师求助”按钮;4.组卷老师可在试卷下载页面查看学生扫描二维码查看解析情况统计,了解班级整体学习情况,确定讲解重点;5.公测期间二维码查看解析免扣优点,对试卷的使用方面的意见和建议,欢迎通过“意见反馈”告之。
9.2 中心对称与中心对称图形基础题汇编(2)一.填空题(共30小题)1.(2014•山西模拟)我们将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线””,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).例如圆的直径就是它的“面径”,已知一个矩形的两边分别是,,则它的“面径”长可以是_________(写出1个即可).2.(2014•崇川区一模)在平行四边形、菱形、等腰梯形、圆四个图形中,中心对称图形的个数有_________个.3.(2013•徐州)请写出一个是中心对称图形的几何图形的名称:_________.4.(2013•苏州一模)下列图形:①等腰梯形,②菱形,⑧函数y=的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的是_________.(填代号)5.(2013•定海区模拟)下面图形中:四边形、三角形、正方形、梯形、平行四边形、圆,既是轴对称图形又是中心对称图形的是_________.6.(2012•德州)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是_________.(只要填写一种情况)7.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距_________公里.8.(2012•滨湖区模拟)给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是_________.(填写序号)9.(2011•永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是_________(只填序号).10.若矩形ABCD与矩形A′B′C′D′关于点O成中心对称,AB=7,CO=9,则C′D′的值为_________.11.如图,2×2的正方形网格中,格点O是半径为1的圆的圆心,则图中两个小扇形(阴影部分)的面积之和为_________(结果保留π)12.如图所示,是轴对称图形的有_________,是中心对称图形的有_________.13.等边三角形绕一个顶点按同一方向连续旋转n次,每次转过的角度都是60°,当它旋转成中心对称图形时,n的值为_________.14.(2012•灌云县校级模拟)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是_________.15.(2014•广陵区校级模拟)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有_________个.16.(2012•乐陵市校级模拟)从下列图形中任选一个恰好既是轴对称图形又是中心对称图形的概率为_________17.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做_________图形,这个点就是它的对称中心.18.(2014•金川区校级一模)下列图形:直角三角形、菱形、平行四边形、等腰梯形中,是轴对称图形,但不是中心对称图形的是_________.19.(2010秋•庄浪县校级期末)关于某一点成中心对称的两个图形,对称点的连线都经过_________,并且被_________平分.20.(2010秋•新罗区期末)如图△ABC与△DEF关于O点成中心对称.则线段BC与EF的关系是_________.21.(2003秋•深圳校级期末)如图正方形ABCD绕着一点旋转一定角度后与正方形CDFE重合,则矩形ABEF的旋转中心共有_________个.22.(2013春•南阳期末)经过长方形对称中心的任意一条直线把长方形分成面积分别为S1和S2的两部分,那么S1和S2的大小关系为_________.23.(2013秋•盱眙县校级期末)如图,已知△ABC与△ADE是成中心对称的两个图形,点A是对称中心,点B的对称点为点_________.24.(2011秋•盱眙县校级期末)已知三点A、B、O.如果点A′与点A关于点O对称,点B′与点B关于点O对称,那么线段AB与A′B′的关系是_________.25.(2013秋•古田县校级期末)写出两个中文字,使其中一个旋转180°后与另一个中文字重合_________.26.(2010秋•梅州校级期末)写出两个既是轴对称又是中心对称图形的英文大写字母_________.27.(2012秋•滨城区期末)如果两个图形关于原点O中心对称,其中一个图形上点P的坐标是(﹣3,5),那么P点在另一个图形上关于原点O的对称点的坐标为_________;如果把英文单词中的字母看成是图形,那么,单词“HAPPY”中的中心对称图形是_________,轴对称图形是_________,既不是中心对称图形也不是轴对称图形的是_________.28.(2010秋•高新区校级期末)在你学过的图形中,为中心对称图形的是_________(写出两个即可).29.(2012秋•白云区期末)在等边三角形、平行四边形、菱形、等腰梯形中,是中心对称图形的为_________.30.(2009秋•资阳期末)观察下列图形,其中轴对称图形有_________;旋转对称图形有_________;中心对称图形有_________(只填对应序号).9.2 中心对称与中心对称图形基础题汇编(2)参考答案与试题解析一.填空题(共30小题)1.(2014•山西模拟)我们将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线””,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).例如圆的直径就是它的“面径”,已知一个矩形的两边分别是,,则它的“面径”长可以是3(写出1个即可).考点:中心对称;矩形的性质.专题:新定义;开放型.分析:确定面径的最大值和最小值后从中任意找到一个即可.解答:解:如图:由勾股定理得最长的面径AC==4,最短的面径:EF=,∴它的“面径”长可以是3,故答案为:3.点评:本题考查了中心对称,解题的关键是熟知过对称中心的所有直线都能将该四边形等分为面积相等的两部分.2.(2014•崇川区一模)在平行四边形、菱形、等腰梯形、圆四个图形中,中心对称图形的个数有3个.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知等腰梯形不是中心对称图形,平行四边形、圆、菱形是中心对称图形.共3个中心对称图形.故答案为:3.点评:此题考查了中心对称图形的概念.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.3.(2013•徐州)请写出一个是中心对称图形的几何图形的名称:平行四边形.考点:中心对称图形.专题:开放型.分析:常见的中心对称图形有:平行四边形、正方形、圆、菱形,写出一个即可.解答:解:平行四边形是中心对称图形.故答案可为:平行四边形.点评:本题考查了中心对称图形的知识,同学们需要记忆一些常见的中心对称图形.4.(2013•苏州一模)下列图形:①等腰梯形,②菱形,⑧函数y=的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的是②③④.(填代号)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:①等腰梯形是轴对称图形,不是中心对称图形,故本小题错误;②菱形,既是轴对称图形又是中心对称图形,故本小题正确;⑧函数y=的图象,既是轴对称图形又是中心对称图形,故本小题正确;④函数y=kx+b(k≠0)的图象,既是轴对称图形又是中心对称图形,故本小题正确.所以,既是轴对称图形又是中心对称图形有②③④.故答案为:②③④.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(2013•定海区模拟)下面图形中:四边形、三角形、正方形、梯形、平行四边形、圆,既是轴对称图形又是中心对称图形的是正方形、圆.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.解答:解:四边形、三角形、梯形不是轴对称图形,也不是中心对称图形;正方形、圆既是轴对称图形,也是中心对称图形.平行四边形不是轴对称图形,是中心对称图形;故既是轴对称图形又是中心对称图形的有正方形、圆.故答案为:正方形、圆.点评:本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(2012•德州)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是不唯一,可以是:AB∥CD或AD=BC,∠B+∠C=180°,∠A+∠D=180°等.(只要填写一种情况)考点:中心对称图形.专题:开放型.分析:根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形.解答:解:∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形)时,或∠B+∠C=180°或∠A+∠D=180°等时,四边形ABCD是平行四边形.故此时是中心对称图象,故答案为:AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等.点评:本题考查了中心对称图形的定义和平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.7.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距4公里.考点:中心对称.分析:根据中心对称图形的性质,得出小明、小辉两家到学校距离相等,即可得出答案.解答:解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.点评:此题主要考查了中心对称图形的性质,根据已知得出小明、小辉两家到学校距离相等是解决问题的关键.8.(2012•滨湖区模拟)给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是②④.(填写序号)考点:中心对称图形;轴对称图形.分析:根据中心对称图形的概念、轴对称的概念和各图特点作答.解答:解:圆、正方形是轴对称图形,也是中心对称图形,符合题意;等边三角形不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:正方形、圆.故答案为②④点评:本题考查了轴对称及中心对称图形的概念,掌握中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.9.(2011•永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是①(只填序号).考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质即可判断出.解答:解:∵①此图形是中心对称图形,也是轴对称图形,故此选项正确;②此图形不是中心对称图形,但是轴对称图形,故此选项错误;③此图形不是中心对称图形,但是轴对称图形,故此选项错误;④此图形不是中心对称图形,也不是轴对称图形,故此选项错误.故答案为:①.点评:此题主要考查了中心对称图形以及轴对称图形的定义,根据题意灵活区分定义是解决问题的关键.10.若矩形ABCD与矩形A′B′C′D′关于点O成中心对称,AB=7,CO=9,则C′D′的值为7.考点:中心对称.分析:利用关于O点对称点的性质,进而得出对应边求出即可.解答:解:∵矩形ABCD与矩形A′B′C′D′关于点O成中心对称,∴AB=CD=A′B′=C′D′=7.故答案为:7.点评:此题主要考查了关于原点对称的图形性质,得出对应边是解题关键.11.如图,2×2的正方形网格中,格点O是半径为1的圆的圆心,则图中两个小扇形(阴影部分)的面积之和为(结果保留π)考点:中心对称.专题:网格型.分析:根据圆的半径正方形边长的一半,可得两个扇形的半径都是圆的半径,根据直角三角形两锐角互余,可得两个扇形的圆心角的和等于90°,可得两个扇形的面积和等于圆的面积,可得答案.解答:解:由题意,得两个扇形的半径都是1,由直角三角形两锐角互余,得两个扇形的圆心角的和等于90°,两个扇形的面积的和等于圆的面积的,即小扇形的面积的和是π×12=,故答案为:.点评:本题考查了中心对称,利用了扇形的面积公式,直角三角形的性质.12.如图所示,是轴对称图形的有(1)(2)(3),是中心对称图形的有(1)(3).考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:(1)(2)(3)是轴对称图形,(1)(3)是中心对称图形.故答案为:(1)(2)(3),(1)(3).点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.等边三角形绕一个顶点按同一方向连续旋转n次,每次转过的角度都是60°,当它旋转成中心对称图形时,n的值为5.考点:中心对称图形.分析:根据图形旋转的性质及正六边形的特点进行解答.解答:解:∵当一个正三角形绕其顶点按同一方向连续旋转5次,每次转过的角度都是60°时,其中心角恰为360°,组成的图形每个角为120°,∴此多边形为正六边形,此时它旋转成中心对称图形,故n=5.故答案为:5.点评:本题考查的是图形旋转的性质及正六边形的判定,熟知图形旋转后与原图形全等是解答此题的关键.14.(2012•灌云县校级模拟)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是②④.考点:中心对称图形;轴对称图形.专题:应用题.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故答案为:②④.点评:本题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形,难度适中.15.(2014•广陵区校级模拟)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有2个.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解答:解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的有2个:矩形、菱形.故答案为:2.点评:本题考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.(2012•乐陵市校级模拟)从下列图形中任选一个恰好既是轴对称图形又是中心对称图形的概率为考点:中心对称图形;轴对称图形.分析:根据随机事件概率大小的求法,找准两点:①符合条件的图形的数目;②全部图形的总数.二者的比值就是其发生的概率的大小.解答:解:根据题意可得:共有5种图形,其中是轴对称又是中心对称图形的图形有:矩形、圆,故其概率为:.故答案为:点评:本题考查了轴对称及中心对称图形的概念,掌握中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.17.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.考点:中心对称图形.分析:根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行解答.解答:解:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.故答案为:中心对称.点评:本题考查了中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.18.(2014•金川区校级一模)下列图形:直角三角形、菱形、平行四边形、等腰梯形中,是轴对称图形,但不是中心对称图形的是等腰梯形.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:直角三角形不是轴对称图形,也不是中心对称图形;菱形是轴对称图形,也是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;等腰梯形是轴对称图形,不是中心对称图形,故答案为:等腰梯形.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.19.(2010秋•庄浪县校级期末)关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.考点:中心对称.分析:中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.解答:解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.点评:本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.20.(2010秋•新罗区期末)如图△ABC与△DEF关于O点成中心对称.则线段BC与EF的关系是平行且相等.考点:中心对称.分析:根据△ABC与△DEF关于O点成中心对称,得出对应边之间的关系即可得出答案.解答:解:∵△ABC与△DEF关于O点成中心对称.∴线段BC与EF的关系是:平行且相等.故答案为:平行且相等.点评:此题主要考查了中心对称的性质,正确记忆中心对称的对应边关系是解决问题的关键.21.(2003秋•深圳校级期末)如图正方形ABCD绕着一点旋转一定角度后与正方形CDFE重合,则矩形ABEF的旋转中心共有3个.考点:中心对称.分析:根据旋转的性质,把正方形CDFE经过旋转后能与正方形ABCD重合,分析对应点的不同情况,易得答案.解答:解:根据图形间的关系,分析可得如果把正方形ABCD经过旋转后能与正方形CDFE重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.故答案为3.点评:本题主要考查旋转的概念,难度适中.22.(2013春•南阳期末)经过长方形对称中心的任意一条直线把长方形分成面积分别为S1和S2的两部分,那么S1和S2的大小关系为S1=S2.考点:中心对称.分析:根据矩形对角线相等且平分的性质,易证△OEC≌△OFA,△DEO≌△BFO,△AOD≌△BOC,即可证明S1=S2,即可解题.解答:解:矩形ABCD中,AD=BC,AO=BO=CO=DO,在△AOD和△BOC中∴△AOD≌△BOC(SAS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,在△OEC和△OFA中∴△OEC≌△OFA(ASA),同理可证,△DEO≌△BFO,∴S1=S2.故答案为:S1=S2.点评:本题考查了矩形对角线相等且互相平分的性质,全等三角形的证明,全等三角形面积相等的性质,本题中求证△OEC≌△OFA是解题的关键.23.(2013秋•盱眙县校级期末)如图,已知△ABC与△ADE是成中心对称的两个图形,点A是对称中心,点B的对称点为点D.考点:中心对称.分析:根据中心对称的定义结合图形点B、D是对称点.解答:解:∵△ABC与△ADE是成中心对称的两个图形,∴点B的对称点为点D.故答案为:D.点评:本题考查了中心对称,是基础题,准确识图是解题的关键.24.(2011秋•盱眙县校级期末)已知三点A、B、O.如果点A′与点A关于点O对称,点B′与点B关于点O对称,那么线段AB与A′B′的关系是关于点O对称.考点:中心对称.分析:根据中心对称的概念可知线段AB、A′B′上的对应点都关于点O对称进行解答.解答:解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.故答案为:关于点O对称.点评:本题考查了中心对称,是基础题,熟记概念是解题的关键.25.(2013秋•古田县校级期末)写出两个中文字,使其中一个旋转180°后与另一个中文字重合中、中,由、甲,干、士.考点:中心对称图形.专题:开放型.分析:用旋转对称的观点寻找汉字,加强常用汉字的积累.解答:解:符合条件的中文字如:中、中,由、甲,干、士等点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.26.(2010秋•梅州校级期末)写出两个既是轴对称又是中心对称图形的英文大写字母X,O.考点:中心对称图形.专题:开放型.分析:根据轴对称图形与中心对称图形的概念,分析各字母的特征求解.解答:解:两个既是轴对称又是中心对称图形的英文大写字母:答案不唯一,如X,O.点评:掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.27.(2012秋•滨城区期末)如果两个图形关于原点O中心对称,其中一个图形上点P的坐标是(﹣3,5),那么P 点在另一个图形上关于原点O的对称点的坐标为(3,﹣5);如果把英文单词中的字母看成是图形,那么,单词“HAPPY”中的中心对称图形是H,轴对称图形是H、A、Y,既不是中心对称图形也不是轴对称图形的是P.考点:中心对称图形;轴对称图形;关于原点对称的点的坐标.分析:根据关于原点对称的点的坐标它们的坐标符号相反,中心对称及轴对称的特点即可得出答案.解答:解:(﹣3,5)关于原点对称的点的坐标为(3,﹣5),“HAPPY”中的中心对称图形是:H,轴对称图形是:H、A、Y,既不是中心对称图形也不是轴对称图形的是:P.故答案为:(3,﹣5),H,H、A、Y,P.点评:本题考查了中心对称、轴对称的特点及关于原点对称的点的坐标的知识,属于基础题,注意掌握关于原点对称的点的坐标它们的坐标符号相反.28.(2010秋•高新区校级期末)在你学过的图形中,为中心对称图形的是平行四边形、圆等(写出两个即可).考点:中心对称图形.专题:开放型.分析:根据中心对称图形的定义直接写出中心对称图形即可.解答:解:根据初中阶段学过的中心图形,直接写出即可:圆、平行四边形等.故答案为:圆、平行四边形等,点评:此题主要考查了中心对称图形的定义,正确记忆初中阶段学过的中心对称图形是解决问题的关键.29.(2012秋•白云区期末)在等边三角形、平行四边形、菱形、等腰梯形中,是中心对称图形的为平行四边形、菱形.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称与中心对称图形 习题精选(一)
1.判断题
(1)两个全等三角形构成的图形是中心对称图形。
( )
(2)具有对称中心的四边形必是平行四边形。
( )
(3)轴对称与中心对称不同,所以轴对称图形一定不是中心对称图形。
( )
(4)三角形一定不是中心对称图形。
( )
(5)对称中心是所有对称点连线的中点。
( )
(6)平行四边形是中心对称图形。
( )
2.如图将ABCD 绕O 点旋转180°后,A 点旋转到_______点,B 点旋转到________点,旋转后的平行四边形与原位置的平行四边形互相_________。
3.中心甘情愿对称图形上的每一对对应点所连成的线段都被__________平分。
4.在下列图形:线段、射线、直线、角、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有
__________________________________。
5.若四边形ABCD 和四边形A B C D ''''关于点O 成中心对称,已知A 80∠=︒,AB=7cm ,CO=9cm ,那么A '∠=________,A B ''=__________,C O '=_________。
6.下列英文大写字母中,是中心对称图形的是 ( )
A.B
B.H
C.M
D.Y
7.已知四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,那么这个四边形是 ( )
A.仅是轴对称图形
B.仅是中心对称图形
C.是轴对称图形但不是中心对称图形
D.既是轴对称图形又是中心对称图形
8.下面扑克牌中,是中心对称图形的是 ( )
9.下列图形中,是中心对称图形的为 ( )
A.①②③
B.①③④
C.②③④
D.①②④
10.下列说法中,错误的是 ( )
A.一条线段是中心对称图形
B.两个全等三角形一定关于某点成中心对称
C.正方形既是中心对称图形也是轴对称图形
D.关于中心对称的两个图形必是全等形
11.如图所示的两个图形成中心对称,请找出对称中心。
12.如图所示的图形是不是轴对称图形是不是中心对称图形
13.如图,已知ABC 和点P ,求作A B C ''',使A B C '''与ABC 关于点P 对称。
14.下列图形中既是轴对称图形又是中心对称图形的个数是 ( ) A.1个
B.2个
C.3个
D.4个
15.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的3张牌旋转180°成第二行的样子,你能判断出被旋转过的3张牌是哪3张吗
16.如图,画出半圆关于直径上一点为对称中心的叫心对称图形。
17.找出图中的旋转对称中心,说出至少旋转多少度能怀原图形重合并说出它们是否是中心对称图形。
18.如图,AD 是△ABC 中∠A 的平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,请用中心对称图形有关知识说明点E 、F 关于AD 中点O 对称。
答案
1.(1)× (2)√(3) ×(4) √(5) √(6) √
2.C D
3.对称中心
4.线段、直线、矩形、菱形、正方形
5.80° 7cm 9cm
6.B
7.D
8.B
9.B
10.B
11.找出两对应点的交点即为对称中心
12.不是轴对称图形,但是中心对称图形
13.略
14.B
15.第1张、第3张、第4张
16.略
17.(1)旋转90°(2)旋转72°(3)旋转45°(1)(3)是中心对称图形18.说明点O为EF的中点即可。