2.5等比数列的前n项和说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列的前n项和》说课稿
尊敬的各位评委,老师:
你们好,我是047号考生,今天我说课的课题是人教版普通高中课程标准实验教材《数学》必修5第二章第五节《等比数列的前n项和》。为了说清楚我对本节课的整体设计整体设计思路,下面我我将从:教学理念、教材内容分析、教学目标及学情分析、教学的重难点分析、教学方法的分析、教学过程的设计六个方面加以说明。
一、教学理念
新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质.”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值.
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展.本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变.
二、教材内容分析
在学习《等比数列前n项和公式》之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础.本节课既是本章的重点,同时也是教材的重点.
从高中数学的整体内容来看,《数列》这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着决定性的作用.首先:数列有着广泛的实际应用.例如产品的规格设计、储蓄、分期付款的有关计算等. 其次:数列有着承前启后的作用.数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础. 再次:数列也是培养提高学生思维能力的好题材.学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高.
三、教学目标及学情分析
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识.以下是我的教学目标分析和学情分析:
1、教学目标分析
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,依据《课标》我制定了如下的教学目标:
[知识与技能]
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.
[过程与方法]
通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
[情感态度与价值观]
通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点;培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神.
2、学情分析
学情分析主要通过以下两方面来展开:
[知识基础]
学生在学习本节内容之前已经学习等差数列,知道等差数列的前n项和的公式由来;熟悉等比数列的通项公式,知道等比性质.
[思维水平]
学生具备一定的数学思想方法,能够与等差数列的求和公式的推导过程联系,形成类比迁移,而且在情感上也具备了学习新知识的渴求.但是学生对等比数列的前n项和的推导方法---错位相减法比较陌生,学习思维上存在障碍.并且
学生考虑事情缺乏全面性,在推导过程中容易忽略公比1
q 的情形.
四、教学的重难点分析
结合前面的教材分析、三维目标的确定以及学情分析,我总结了总结课的重难点:
教学重点:公式的推导、公式的特点和公式的应用。
教学难点:公式的推导方法和公式的灵活运用。公式推导所使用的“错位
相减法”是高中数学的数列求和方法中最常用的方法之一,它蕴涵了重要的数学思想,所以既是重点也是难点。
五、教学方法分析
1、教法
数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我进行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生进行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受.
本节课将借助计算机多媒体辅助教学,采用“多媒体优化组合—激励—发现”式教学模式进行教学.该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围.主要包括启发式讲解、互动式讨论、研究式探索、反馈式评价.
2、学法
数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变.在课堂结构上我根据学生的认知层次,设计了(1)创设情景、(2)观察归纳、(3)讨论研究、(4)即时训练、(5)总结反思、(6)任务延续,六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目的.自主探索、观察发现、类比猜想、合作交流.
3、教学手段
利用多媒体和POWERPOINT软件进行辅助教学.
六、教学过程分析
1、复习回顾:
(1)等比数列及等比数列通项公式。
(2)回忆等差数列前n项和公式的推导过程,是用什么方法推导的。
设计意图:复习上节课的内容,巩固等比数列的相关知识,为学习等比数列
的前n项和的求法作铺垫。
2、创设情境,提出问题
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗?“请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求。假定千粒麦子的质量为40 g,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求。怎样计算?请列出算式。
设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.
老师提问:同学们,你认为国王能满足这位国际象棋发明者的要求吗?
设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做,有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处,学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.
这样引入课题有以下几个好处:
(1)利用学生求知好奇心理,以一个实际问题为切入点,便于调动学生学习本节课的趣味性和积极性.
(2)在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中.
(3)问题内容紧扣本节课教学内容的主题与重点.
(4)有利于知识的迁移,使学生明确知识的实用性.
探讨1:S=1+2+22+23+…+2 63,①
注意观察每一项的特征,有何联系?
探讨2:如果我们把每一项都乘以2,就变成了它的后一项