电力电子电机控制系统仿真技术第4章.
三相异步电机matlab电磁设计、温度场分析与ansoft磁场仿真学习资料
![三相异步电机matlab电磁设计、温度场分析与ansoft磁场仿真学习资料](https://img.taocdn.com/s3/m/14218f7ebed5b9f3f90f1cbc.png)
高温异步电机设计与性能分析High Temperature Induction Motor Design and PerformanceAnalysis学院:电气工程学院专业班级:学号:学生姓名:指导教师:(教授)2012年 6 月摘要Abstract目录摘要 (I)Abstract ............................................................................................................................ I I 目录 (I)第1章绪论 (1)1.1 引言 (1)1.2 课题背景及意义 (1)1.2.1课题研究背景、目的及意义 (1)1.2.2课题国内外研究现状及趋势 (4)第2章三相单鼠笼异步电动机电磁计算 (6)2.1 额定数据及主要尺寸 (6)2.1.1参数的选择 (6)2.1.2电机的主要尺寸 (7)2.1.3定子绕组的计算 (9)2.1.4定子槽型的计算 (10)2.1.5转子绕组的计算 (11)2.2 磁路计算 (13)2.3 参数计算 (18)2.3.1线圈长度计算 (18)2.3.2电机定子绕组漏抗计算 (19)2.3.3电机转子绕组漏抗的计算 (21)2.3.4有效材料的计算 (22)2.3.5空载特性 (24)2.4 工作性能计算 (26)2.4.1电负荷计算 (26)2.4.2电机损耗计算 (27)2.4.3主要性能计算确定 (29)2.5 起动性能计算 (30)2.5.1起动时定子参数 (30)2.5.2起动时转子参数 (31)2.5.3起动参数的确定 (33)2.6 MATLAB语言结构 (34)第3章异步电机通过matlab的温度场分析 (35)3.1 matlab在电机设计和仿真中的应用 (35)3.2温度对异步电机的性能影响 (36)3.2.1. 温升 (36)3.2.2 发热 (37)3.2.3 环境温度对电动机的影响 (38)3.3 异步电动机温度场特性仿真结果 (38)第4章异步电机的ansoft仿真 (40)4.1. ansoft maxwell的介绍 (40)4.1.1 三维静电场分析(3D Electrostatic Field) (40)4.1.2 三维直流磁场分析(3D DC Magnetic) (40)4.1.3 涡流场分析(Eddy Current Field) (40)4.1.4 瞬态场(Transient Field) (40)4.2 Maxwell 仿真一般步骤 (40)4.3 Maxwell的仿真结果与分析 (41)4.3.1建立电机模型 (41)4.3.2 Rmxprt导入至Maxwenll 2D有限元模块 (42)4.4本章小结 (43)第5章结论 (44)参考文献 (45)致谢 (48)附录 (49)5.1 附录1 (49)5.2 附录2 (61)第1章绪论1.1 引言随着四个现代化的发展,工业生产的自动化程度提高,还需要大量各种各样具有高性能的控制电机作为自动化系统的控制元件或执行元件。
CPLD设计
![CPLD设计](https://img.taocdn.com/s3/m/2f5384d9da38376baf1fae4d.png)
随着单片机和微型计算机[26]的高速发展,伺服系统逐渐向智能化方向的发展,并伴随外围电路专用集成电路的出现,促进了直流伺服电动机控制技术的显著进步。
当这些技术领域发展到一定程度就构成快响应、高精度的直流伺服系统,进而电力半导体驱动装置逐步取代了电液驱动,比如军用伺服系统。
正因为直流电机容易进行调速,并能在大范围内实现精密的位置控制和速度控制,所以直流伺服系统广泛应用于要求系统性能高的场合;直流伺服电机具有良好的机械性,能在大范围内实现启动、制动、平滑调速和正反转等,在传动领域中仍占有很重要的地位;从传动系统来看,随着直流电机调速系统的不断更新与发展,作为控制系统的核心部件的微机,具有控制、监视、检测、故障诊断与故障处理的多功能电气传动系统正在形成。
由于近年来电力电子技术和微电子的快速发展,使得各种伺服电机控制的智能化功率集成电路系统正朝着模块化、数字化的方向发展[21~25]。
概括的说,伺服系统的发展趋势可以体现在以下几个方面:第一:全数字化。
新的伺服系统是高度集成化的、多功能的控制单元;同一个控制单元中,只要通过软件设置参数,就能改变其性能。
它可以通过接口与外部位置传感器或速度传感器构成高精度全闭环控制系统,也可以使用电机本身配置的传感器构成半闭环控制系统;高度的集成还大大地缩小了整个系统的体积,简化了伺服系统的安装与调试。
第二:智能化。
智能化是工业控制设备的趋势,伺服驱动系统也逐渐向智能化方向发展。
伺服控制单元的智能化主要有以下几个特点:首先它们都具有记忆功能,所有系统的运行参数都保存在伺服单元的内部,这些参数都可以通过通信接口在计算机上修改,使用起来很方便;其次它们都有故障诊断的功能,当系统出现故障时,可以通过计算机把故障的类型以及故障的原因清楚地显示出来,极大地减少了维修与调试的时间;其次,某些伺服系统还具有特定的参数自整定功能,该伺服单元可以通过几次运行,将系统的参数整定出来,进而实现其最优化控制。
经典-同步电机模型的MATLAB仿真
![经典-同步电机模型的MATLAB仿真](https://img.taocdn.com/s3/m/3a4f14a4f524ccbff121845c.png)
同步电机模型的MATLAB仿真摘要:采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。
本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。
再使用MATLAB中用于仿真模拟系统的SIMULINK 对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。
系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。
关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。
The Simulation Platform of Synchronous Machine by MATLABAbstract:The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance.Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK目录第1章引言 (1)1.1引言 (1)1.2同步电机概述 (1)1.3系统仿真技术概述 (2)1.4仿真软件的发展状况与应用 (2)1.5MATLAB概述 (2)1.6S IMULINK概述 (4)1.7小结 (5)第2章同步电机基本原理 (6)2.1理想同步电机 (6)2.2ABC/DQ模型的建立 (6)第3章仿真系统总体设计 (10)3.1系统对象 (10)3.2系统分块 (10)3.3控制反馈环节 (11)第4章仿真系统详细设计 (13)4.1总体设计 (13)4.2具体设计 (13)4.3控制反馈环节 (16)第5章系统仿真运行 (17)5.1输出结果稳定情况 (17)5.2小结 (20)第6章结论 (21)参考文献 (22)第1章引言1.1引言世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。
电力电子技术课程教学大纲
![电力电子技术课程教学大纲](https://img.taocdn.com/s3/m/5664735d2cc58bd63186bda3.png)
《电力电子技术》课程教学大纲课程类别:专业基础课程性质:必修英文名称:Power Electronic Technology总学时:64讲授学时:48 实验学时:16学分:3.5先修课程:电路原理、模拟电子技术、数字电子技术适用专业:自动化开课单位:信息工程学院自动化教研室一、课程简介《电力电子技术》是电气工程及其自动化专业、自动化专业本科生的一门专业基础课,是一门理论与应用相结合,实践性很强的课程。
它包括电力电子器件、电力电子变流技术以及以微电子技术和计算机为代表的控制技术三大组成部分。
本课程的目的和任务是使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子装置的应用范围及技术经济指标,培养学生的分析问题和解决问题的能力,为《运动控制》等后续课程以及从事与电气工程有关的技术工作和科学研究打下一定的基础。
二、教学内容及基本要求0 绪论(2学时)教学内容:0.1电力电子技术的定义0.2电力电子技术的发展历史(自学)0.3电力电子技术的内涵及其相关工业0.4电力电子技术所研究的基本问题0.5电力电子技术的主要内容0.6本课程的学习方法及考核方法教学要求:1.理解电力电子技术的定义,电力电子技术所研究的基本问题。
2.了解电力电子学科的发展历史、电力电子技术的内涵及其相关工业、电力电子技术的主要内容以本课程的学习方法及考核方法。
授课方式:讲授+自学第一章:电力电子器件(10 学时)教学内容:1.1电力电子器件概述1.2不可控器件——电力二极管1.3半控型器件——晶闸管1.4典型全控型器件1.5其他新型电力电子器件1.6电力电子器件的驱动1.7电力电子器件的保护1.8电力电子器件的串联和并联使用教学要求:1.掌握各种电力电子器件的基本特性、应用场合和使用方法。
2.理解各种全控型器件、半控型器件的工作原理和主要参数选择依据.3.了解典型触发、驱动和缓冲电路的组成、工作原理和特点。
《电工电子技术与技能》教案
![《电工电子技术与技能》教案](https://img.taocdn.com/s3/m/610b64490a4e767f5acfa1c7aa00b52acfc79cf7.png)
《电工电子技术与技能》教案第一章:电工电子技术基础1.1 电流、电压和电阻的概念1.2 欧姆定律的应用1.3 电路的基本元件1.4 电路的基本连接方式1.5 电路的基本测量工具及使用方法第二章:直流电路分析2.1 直流电路的基本概念2.2 电压源和电流源的等效变换2.3 基尔霍夫定律的应用2.4 电路的简化方法2.5 电路的故障检测与排除第三章:交流电路分析3.1 交流电路的基本概念3.2 交流电的相位和频率3.3 交流电路的电阻、电抗和容抗3.4 交流电路的功率计算3.5 交流电路的谐振现象第四章:电子元器件4.1 电阻、电容和电感的作用及应用4.2 半导体器件的二极管和三极管4.3 晶体管放大电路的基本原理4.4 场效应晶体管和功率晶体管4.5 集成电路的基本概念与应用第五章:基本放大电路5.1 放大电路的基本原理5.2 放大电路的分类及特点5.3 放大电路的设计与调试5.4 放大电路的应用实例5.5 放大电路的故障检测与排除第六章:电源和稳压电路6.1 电源的分类及工作原理6.2 稳压电源的设计与应用6.3 电源滤波电路的作用与设计6.4 电源保护电路的设计与实现6.5 电源电路的故障检测与排除第七章:电动机及其控制7.1 电动机的分类和工作原理7.2 电动机的启动和制动方法7.3 电动机的保护与维修7.4 常用电动机控制电路的设计与实现7.5 电动机控制电路的故障检测与排除第八章:继电接触器控制系统8.1 继电器和接触器的原理与结构8.2 继电器和接触器控制系统的设计与实现8.3 常用继电器和接触器控制电路的应用实例8.4 继电器和接触器控制系统的故障检测与排除8.5 继电器和接触器控制系统的优化与改进第九章:数字电路基础9.1 数字电路的基本概念9.2 逻辑门电路的设计与实现9.3 逻辑电路的设计与分析9.4 数字电路的仿真与实验9.5 数字电路在电工电子技术中的应用第十章:数字电路应用实例10.1 数字电路在通信技术中的应用10.2 数字电路在计算机技术中的应用10.3 数字电路在测量技术中的应用10.4 数字电路在自动控制系统中的应用10.5 数字电路应用实例的故障检测与排除第十一章:传感器与信号处理11.1 传感器的分类与工作原理11.2 传感器的选用与安装11.3 信号处理电路的设计与实现11.4 信号调理电路的应用实例11.5 传感器与信号处理电路的故障检测与排除第十二章:电气控制与PLC编程12.1 电气控制系统的基本组成与原理12.2 继电器控制系统的设计与实现12.3 可编程逻辑控制器(PLC)的基本原理与应用12.4 PLC编程软件的使用与编程实践12.5 电气控制与PLC编程的故障检测与排除第十三章:变频器与调速控制13.1 变频器的工作原理与选用13.2 变频器控制电路的设计与实现13.3 电动机的变频调速技术13.4 变频器在工业应用中的案例分析13.5 变频器与调速控制系统的故障检测与排除第十四章:电力电子技术14.1 电力电子器件的原理与应用14.2 电力电子变换器的设计与实现14.3 电力电子技术在电力系统中的应用14.4 电力电子设备的故障与保护14.5 电力电子技术的未来发展趋势第十五章:电工电子项目的实践与创新15.1 电工电子项目的设计与实施流程15.2 项目实践中的安全注意事项15.3 创新性项目的选题与设计思路15.5 项目实践与创新的经验分享重点和难点解析第一章:电工电子技术基础重点:电流、电压和电阻的概念,欧姆定律的应用,电路的基本元件和基本连接方式。
电机控制技术-课件
![电机控制技术-课件](https://img.taocdn.com/s3/m/b66b7d9aff00bed5b8f31d35.png)
1.2 电力传动系统运动方程
1.2.1 运动方程 一. 单轴电力拖动系统的运动方程
研究运动方程,以电动机的轴为研究对象,电动机 运行时的轴受力如图示。
电力拖动系统正方向的规定:先规定转速n的正方 向,然后规定电磁转矩的正方向与n的正方向相同, 规定负载转矩的正方向与n的正方向相反。
生产机械转矩分为:摩擦阻力产生的和重力 作用产生的。
(3)恒功率负载:负载转矩与转速成反比。 (4)粘滞摩擦负载:负载转矩与转速成正比。
1.4 电力传动系统的机械特性
第 电动机机械特性:电动机的转速与转矩的关系。
一 电动机四象限运行状态:正向电动状态、反向电
章 动状态,正向制动状态、反向制动状态。
电动机固有机械特性: 电动机人为机械特性:
第II象限 第I象限 正向制动 正向电动
变压器
变电站
楼宇
照明 B
高压输电线
制冷 小型发电机 变压器
M
电力系统简单结构图
H/C 加 热
工厂
1.1 电力传动系统的发展
第 电力传动系统:以电动机为动力源,驱动各种设 一 备及电器的系统,以 完成一定的生产任务。 章 目前,电能的三分之二用于电力传动系统。
电力传动系统的基本结构:
概
述
电源
指令 控制设备
电动机 传动机构 生产机械
1.1 电力传动系统的发展
第 电力传动系统分类: 一 (1)按控制类型:调速系统、位置随动系统。调 章 速系统又分为直流调速和交流调速。
(2)按电动机类型:直流传动系统、交流传动 系统。
概 (3)按机组形式:单台传动系统、多机传动系 述 统。
(4)按运动方式:单向运转不可逆、双向运转 可逆传动系统 (5)按用途形式:主传动系统、辅助传动系统
《控制系统建模与仿真》课后习题-2021版
![《控制系统建模与仿真》课后习题-2021版](https://img.taocdn.com/s3/m/1158d3c94b35eefdc9d33370.png)
《控制系统建模与仿真》课程习题(1)一、“投针实验”的历史价值在人类数学文化史中,对圆周率 精确值的追求吸引了许多学者的研究兴趣。
在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。
试回答下列问题:1、试对“投针实验”的机理给出一种直观形象的物理解释?2、有人说“布丰/ Boffon(投针实验)是仿真技术的奠基者”,为什么?3、试用MATLAB语言编制“投针实验”的仿真程序,仿真证明之。
二、自平衡式两轮电动车的安全问题近年来,自平衡式两轮电动车产品成为“抢眼”的代步工具,但也出现很多问题(如上图所示);试根据你所了解的情况就“平衡车产品是否可以合法上路?”问题,给出你的意见与建议。
提示:可从“技术、安全、法律、可持续”等方面,有理有据地展开讨论。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(2)一、一阶直线倒立摆系统的建模问题对于教材中图2-7所示的一阶直线倒立摆系统,基于牛顿定律所建立的数学模型(如教材的图2-8所示),试问:这个数学模型是否正确,给出你的分析与证明。
提示:(1)基于MATLAB仿真进行模型验证(参见教材第四章第三节);(2)应用“拉格朗日方程”方法建模,进行结果对比。
二、一阶直线双倒立摆系统的可实现问题如下图所示的一阶直线双倒立摆系统,试问:能否通过控制力F实现“在保持两杆不倒的条件下,使小车在直线X方向的位置任意移动”?提示:(1)建立系统数学模型;(2)应用现代控制理论的“能控性定理”进行分析。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(3)一、水箱液位控制系统设计问题如下图所示的“水箱液位系统”,试回答下列问题:1、试给出含有(控制器+传感器)的“水箱液位控制系统”方案;2、试依据“流体力学”的基本概念,建立系统的数学模型;3、若使系统液位控制实现稳态无静差,试给出PID控制器设计方案;二、水箱液位控制的拓展问题试回答下述问题:1、某人在上述“水箱液位控制系统”中,采用单片机作控制器,程序设计为“增量式PI控制算法”,如果控制系统在“阶跃给定”下存在稳态误差,试问这种情况是否合理?为什么?2、对于上图所示的“水箱液位系统”,在下排水出口处流体呈“紊流”状态,试证明:其流量与液位高度的关系为Q=K∙√H。
单相桥式整流逆变电路的设计及仿真..
![单相桥式整流逆变电路的设计及仿真..](https://img.taocdn.com/s3/m/b0eae7cc80eb6294dc886c1d.png)
辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。
逆变电路是把直流电变成交流电。
逆变电路应用广泛,在各种直流电源中广泛使用。
设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。
5、撰写、打印设计说明书一份;设计说明书应在4000字以上。
技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
逆变电路是把直流电变成交流电的电路,与整流电路相对应。
无源逆变电路则是将交流侧直接和负载连接的电路。
此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。
基于MFO算法的无刷直流电机模糊控制设计
![基于MFO算法的无刷直流电机模糊控制设计](https://img.taocdn.com/s3/m/7102c82ae97101f69e3143323968011ca300f724.png)
㊀2021年㊀第4期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2021㊀No.4㊀基金项目:国家重点研发计划资助项目(2018AAA0101703)收稿日期:2020-04-21基于MFO算法的无刷直流电机模糊控制设计刘雨豪,廖㊀平(中南大学机电工程学院,湖南长沙㊀410083)㊀㊀摘要:模糊控制在无刷直流电机(BLDCM)控制中应用广泛,针对其不能实时更新控制参数的缺点,首次提出了基于飞蛾火焰优化(MFO)算法的模糊控制器设计㊂对于BLDCM控制系统变量复杂且非线性,难以建立具体的数学模型的问题,搭建了电流和转速双闭环控制的模块化电机仿真模型㊂算法在线优化量化因子和比例因子,用ITAE验证适应度目标函数的合理性㊂仿真结果表明所提出的方法使得控制系统具有超调小和控制精度高的优点㊂关键词:无刷直流电机;PID;模糊控制;飞蛾火焰优化算法;MATLAB建模;仿真中图分类号:TP391㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2021)04-0107-05FuzzyControlDesignofBrushlessDCMotorBasedonMFOAlgorithmLIUYu⁃hao,LIAOPing(CollegeofMechanicalandElectricalEngineering,CentralSouthUniversity,Changsha410083,China)Abstract:FuzzycontrolwaswidelyusedinbrushlessDCmotor(BLDCM)control.Inviewofitsshortcomingthatthecontrolparameterscouldn tbeupdatedinrealtime,thedesignoffuzzycontrollerbasedonmothflameoptimization(MFO)algorithmwasproposedforthefirsttime.FortheproblemthatthevariablesofBLDCMcontrolsystemwerecomplexandnonlinear,itwasdiffi⁃culttoestablishspecificmathematicalmodel.Amodularmotorsimulationmodelofdoubleclosed⁃loopcontrolofcurrentandspeedwasbuilt.Thealgorithmoptimizedthequantizationfactorandscalefactoronline,andusedITAEtoverifytherationalityofthefit⁃nessobjectivefunction.Simulationresultsshowthattheproposedmethodmakesthecontrolsystemhastheadvantagesofsmallo⁃vershootandhighcontrolaccuracy.Keywords:brushlessDCmotor;PID;fuzzycontrol;mothflameoptimizationalgorithm;MATLABmodeling;simulation0㊀引言在运动控制领域,直流电机以其优良的转矩和调速性能得到了广泛的应用[1]㊂有刷直流电机采用电刷进行机械换向,导致其具有噪音大㊁寿命短㊁可靠性差等缺点㊂随着电力电子技术的不断进步,新型材料和功率开关器件等出现,采用电子换向的无刷直流电机(BLDCM)应运而生㊂它既克服了有刷直流电机的缺点,又保有了优越的启动和调速性能,在航空航天㊁国防㊁工业自动化等领域得到了极快的发展和普及㊂现代社会对电机控制性能的要求日益提高,一方面可以优化电机本体结构及相关电力电子装置,另一方面可以使用更加先进的电机控制策略[2-3]㊂BLDCM是变量复杂㊁非线性且强耦合的系统,难以推导出精确的数学模型[4]㊂传统PID控制方法依赖具体数学模型基础,很难满足准确和稳定的控制要求㊂模糊控制(fuzzycontrol)模仿人的思维和逻辑推理来进行控制而不依赖确定的控制对象模型,弥补了传统PID的控制短板[5]㊂但是模糊控制器缺乏参数自调整能力,在包含时变参数的非线性系统中,很难达到最优控制㊂近年来,国内外众多专家学者应用智能控制算法优化模糊控制器,管先翠等将微粒群算法(PSO)应用至模糊控制[6-7],方文茂在遗传算法(GA)优化模糊控制方面也做了大量工作,取得了一定的成果[8]㊂飞蛾火焰优化算法(MFO)是2015年由S.Mirjalili提出的一种全新群智能仿生算法,相比其他算法具有更优秀的寻优能力[9]㊂本文提出基于飞蛾火焰算法优化模糊控制的新方法,克服了模糊控制器不能更新控制参数的缺陷,应用MATLAB/simulink对其进行仿真研究,验证了其优越的控制性能㊂1㊀BLDCM的数学模型无刷直流电机感应电动势为梯形波,且含有较多高次谐波,电感非线性,对其运行特性进行精确分析是非常困难的㊂本文以两两导通三相星形连接为例,并做出以下假设:(1)三相绕组完全对称,定子电流㊁转子磁场分布㊀㊀㊀㊀㊀108㊀InstrumentTechniqueandSensorApr.2021㊀对称;(2)气隙磁场为梯形波,平顶宽度120ʎ;(3)不计磁滞和涡流的损耗;(4)忽略磁路饱和㊁齿槽效应和电枢反应㊂1.1㊀定子三相绕组电压平衡方程uaubucéëêêêêùûúúúú=Ra000Rb000Rcéëêêêêùûúúúúiaibicéëêêêêùûúúúú+ddtLMMMLMMMLéëêêêùûúúúiaibicéëêêêêùûúúúú+eaebecéëêêêêùûúúúú(1)式中:ui为定子各相电压,V;ii为定子各相电流,A;ei为定子各相反电动势,V;Ri为定子各相绕组电阻,Ω;L为定子绕组自感,H;M为定子绕组间互感,H;i=a,b,c㊂1.2㊀电磁转矩方程和机械运动方程根据能量守恒定律,两方程可分别表示如下:Te=(eaia+ebib+ecic)w(2)式中:Te为电磁转矩,N㊃m;w为电机输出转速,rad/s㊂Te=TL+Bw+Jdwdt(3)式中:TL为负载转矩,N㊃m;B为阻尼系数,N㊃m㊃s/rad;J为电机转子转动惯量,kg㊃m2㊂2㊀基于MATLAB/simulink的BLDCM控制系统仿真模型本文基于BLDCM工作原理,在simulink环境下采用模块化建模的方式,将直流无刷电机分离成速度调控㊁参考电流㊁电流滞环㊁电压逆变和BLDCM本体5个模块㊂系统整体设计框图如图1所示,仿真系统采用双闭环控制方案:外环转速环增强系统抗负载干扰能力,保证系统动静态的跟踪能力;内环电流环控制最大电流,保证系统稳定运行㊂图1㊀BLDCM控制系统simulink建模整体框图运行仿真系统输出的三相反电动势波形如图2所示,三相定子电流波形如图3所示㊂二者均为梯形波,且较为理想,验证了系统建模的正确性㊂图2㊀反电动势波形3㊀BLDCM模糊控制系统传统PID调控系统结构简单且控制效果较好,在工图3㊀定子三相电流波形业自动化领域最先得到应用,但比例(proportion)㊁积分(integral)㊁微分(differential)参数一经确定在系统运行过程中就不能改变㊂在一些包含时变参数㊁非线性系统中PID调节很难达到预期的效果㊂模糊PID是基于模糊数学的高级控制,弥补了传统PID控制参数固定不变㊀㊀㊀㊀㊀第4期刘雨豪等:基于MFO算法的无刷直流电机模糊控制设计109㊀㊀的不足,根据控制系统误差的变化,进行控制量自整定,其原理如图4所示㊂满足了实时更新PID参数的要求,很大程度上加强了控制系统的精确性和鲁棒性㊂图4㊀模糊控制器结构框图本文采用的是二维输入模糊控制器,其控制效果优于一维输入,三维输入模糊规则获取困难,计算复杂,不适合实时控制系统㊂根据输入误差e和误差变化率ec=de/dt,在模糊推理下输出PID参数修正值ΔKp㊁ΔKi㊁ΔKd,在线修正实际PID控制参数㊂Kp=Kp0+ΔKpKi=Ki0+ΔKiKd=Kd0+ΔKdìîíïïïï(4)式中:Kp0㊁Ki0㊁Kd0为PID初始值㊂3.1㊀模糊控制器设计误差和误差变化率的论域为[-3,3],输出变量ΔKp㊁ΔKi㊁ΔKd论域依次为[0,3]㊁[0,1]㊁[0,1]㊂输入输出变量的隶属函数形状选择三角形(trimf),其运算简单,适合在线调整㊂反模糊化采用重心法,其本质是加权平均法,包含模糊集合所有信息,并依据隶属度大小有所侧重㊂e㊁ec㊁ΔKp㊁ΔKi㊁ΔKd的模糊语言变量均为{NB,NM,NS,ZO,PS,PM,PB}㊂模糊规则是模糊控制器的核心,应该满足完备性要求,规则的确定基于专家经验和学习算法㊂本文采用的模糊规则如表1所示㊂表1㊀ΔKp㊁ΔKi㊁ΔKd的模糊控制规则控制表eΔKp/ΔKi/ΔKdec=NBec=NMec=NSec=ZOec=PSec=PMec=PBNBPB/NB/PSPB/NB/NSPM/NM/NBPM/NM/NBPS/NS/NBZO/ZO/NMZO/ZO/PSNMPB/NB/PSPB/NB/NSPM/NM/NBPS/NS/NMPS/NS/NMZO/ZO/NSNS/ZO/ZONSPM/NB/ZOPM/NM/NSPM/NS/NMPS/NS/NMZO/ZO/NSNS/PS/NSNS/PS/ZOZOPM/NM/ZOPM/NM/NSPS/NS/NSZO/ZO/NSNS/PS/NSNM/PM/NSNM/PM/ZOPSPS/NM/ZOPS/NS/ZOZO/ZO/ZONS/PS/ZONS/PS/ZONM/PM/ZONM/PB/ZOPMPS/ZO/PBZO/ZO/PSNS/PS/PSNM/PS/PSNM/PM/PSNM/PB/PSNB/PB/PBPBZO/ZO/PBZO/ZO/PMNM/PS/PMNM/PM/PMNM/PM/PSNB/PB/PSNB/PB/PB4㊀基于飞蛾火焰算法(MFO)的模糊控制器优化模糊控制器输入量e㊁ec经量化因子Ke㊁Kec量化后进入模糊控制器进行模糊推理,模糊控制器输出量经比例因子Kpp㊁Kii㊁Kdd比例运算后,输出ΔKp㊁ΔKi㊁ΔKd三个PID控制修正量㊂可见模糊控制的性能与量化因子和比例因子的关系甚大,Ke太大㊁Kec太小都容易造成系统产生超调,从而导致震荡不稳定㊂但是一般的模糊控制器创建完成后,这些参数是不能改变的,这大大影响到了系统的性能㊂根据上述不足,本文设计基于MFO算法优化的模糊控制器,控制功能框图如图5所示㊂图5㊀MFO优化模糊控制的功能框图4.1㊀飞蛾火焰优化算法MFO算法诞生是受自然界飞蛾横向导航机制启发,通过飞蛾对火焰不断的螺旋收敛,在搜索空间中逐渐趋近最优解㊂螺旋搜索的方式使算法不易陷入局部最优,具有很好的全局寻优能力㊂M=m11m12m1jm21m22m2j︙︙︙mi1mi2mijéëêêêêêêùûúúúúúú,Mfit=om1om2︙omiéëêêêêêùûúúúúú(5)式中:M为飞蛾矩阵,每一行代表一只飞蛾;Mfit矩阵存储对应每只飞蛾的适应度值;i表示飞蛾的个数;j表示每只飞蛾的维度,即所代表的变量的个数㊂对于火焰亦是如此,如下面矩阵所示:F=f11f12 f1jf21f22 f2j︙︙︙fi1fi2fijéëêêêêêêùûúúúúúú,Ffit=of1of2︙of1éëêêêêêùûúúúúú(6)㊀㊀㊀㊀㊀110㊀InstrumentTechniqueandSensorApr.2021㊀式中:F是火焰矩阵,每一行代表一只火焰;Ffit矩阵存储对应每只火焰的适应度值;i表示火焰的个数;j表示每只火焰的维度㊂F矩阵与M矩阵的不同之处在于更新方式,飞蛾是算法寻优过程中进行搜索的个体,而火焰是飞蛾在空间中搜索的最优位置,是飞蛾生成的标记㊂依据飞蛾的飞行轨迹建模,其位置更新机制可以用以下方程表示:Mn=S(Mn,Fk)=Dnebtcos(2πt)+Fk(7)Dn=Mn-Fk(8)式中:Mn为第n只飞蛾;Fk为第k个火焰;Dn为第n只飞蛾与第k个火焰的距离;b为螺旋线的形状系数;t为[-1,1]的随机数㊂为加快MFO算法收敛速度,应自适应减少火焰的的数目,如式(6)所示:numflame=round(Nmax-n㊃Nmax-1T)(9)式中:Nmax为初代火焰规模;n为当前迭代次数;T为最大迭代次数㊂4.2㊀确定决策参数和评价标准如图5所示,在控制系统中MFO算法对量化因子和比例因子进行寻优,所以每只飞蛾的维度为5,Ke㊁Kec取值范围设置为[1,3],Kpp为[5,15],Kii为[0.03,0.3],Kdd为[0.01,0.1]㊂设置初代飞蛾种群大小为30,最大迭代次数为30㊂适应度目标函数是确定火焰矩阵的重要标准,是MFO算法中的关键函数㊂在BLDCM控制系统中,依据快速性和准确性评价控制系统的好坏㊂超调量Mp,上升时间tr,调整时间ts,峰值时间tp是参考的指标,适应度函数确定如下:fit=1/{αexp[-(Mp/Mp0)2]+βexp[-(tr/tr0)2]+γexp[-(ts/ts0)2]+ηexp[-(tp/tp0)2]}(10)式中:Mp0=1%;tr0=0.2s;ts0=0.2s;tp0=0.2s,是控制系统相应指标的期望值;α,β,γ,η是各个指标对应的权重系数,满足:α+β+γ+η=1㊂本文α=0.5,β=0.1,γ=0.2,η=0.2㊂在进行适应度计算时,fit值越小证明系统性能越好㊂本文还引入了同样可以评价控制系统性能的时间偏差绝对值积分型指标函数:ITAE=ʏt0t㊃e(t)dt(11)式中:e(t)=wr-w(t)为t时刻参考转速与实际转速的差值㊂ITAE值越小则说明控制系统性能越好,本文利用ITAE函数验证fit适应度函数㊂基于MFO算法的量化㊁比例因子寻优流程如图6所示㊂在进行适应度目标函数计算时,通过MATLAB中的assignin函数将算法中的飞蛾传入simulink仿真模型,通过sim函数运行仿真模型,计算出需要的评价指标㊂ITAE指标由simulink中的simout模块输出㊂图6㊀MFO算法粒子寻优流程图5㊀仿真结果与分析本文设定无刷直流电机期望速度wr=800r/min,仿真时间设置0.5s,为使得结果分析更加精确,sim函数取样步长为0.0001s,设置传统PID控制和模糊PID控制作为对照组㊂运行3种BLDCM控制系统仿真模型,基于MFO优化后的模糊控制器量化因子和比例因子如表2所示,统计各评价指标如表3所示㊂由适应度目标函数值依次变小可知控制系统性能逐渐提升,由适应度目标函数的验证函数ITAE值亦可得出同样的结论,经MFO优化后的控制系统各项评价指标均很好的达到了期望值㊂图7是三种控制系统输出的转速曲线图㊂表2㊀MFO优化后的量化因子和比例因子KeKecKppKiiKdd1.90091.41965.00420.10000.0300表3㊀三种控制系统运行指标控制系统类型Mp/%tp/sts/str/s稳定w值/(r㊃min-1)fitITAEPID2.1030.2090.3840.166816.8278.9854.341FuzzyPID1.1820.2070.1640.170809.4543.0463.730MFOFuzzyPID0.0900.1740.1650.173800.7181.3552.695㊀㊀㊀㊀㊀第4期刘雨豪等:基于MFO算法的无刷直流电机模糊控制设计111㊀㊀图7㊀三种控制系统的转速曲线图6㊀结论本文提出了一种在线优化模糊控制器的新方法,设计了基于飞蛾火焰算法优化的模糊控制器,该算法具有优秀的寻优能力㊂文中建立了BLDCM仿真模型,编写了MFO算法的m文件,应用MATLAB/Simulink进行了仿真实验进行验证,结果显示其能够较好的实现无刷直流电机的速度控制,控制性能明显优于传统PID控制器和普通的模糊控制,具有较高的控制精度㊂参考文献:[1]㊀韩仁银,郭阳宽,祝连庆,等.基于霍尔传感器的无刷直流电机改进测速方法[J].仪表技术与传感器,2017(10):115-117.[2]㊀田海林,宋珂炜,董铂龙,等.基于粒子群神经网络的无刷直流电机控制方法[J].电力电子技术,2019,53(12):106-110.[3]㊀李晓含,王联国.改进细菌觅食算法在PID参数整定中的应用[J].传感器与微系统,2018,37(8):157-160.[4]㊀方炜,张辉,刘晓东.无刷直流电机双闭环控制系统的设计[J].电源学报,2014(2):35-42.[5]㊀杨昕红,刘长文.基于MATLAB的直流无刷电机模糊PID控制设计[J].仪表技术与传感器,2019(11):105-108.[6]㊀管先翠.基于粒子群优化算法的无刷直流电机控制策略研究[D].武汉:华中科技大学,2015.[7]㊀耿文波,周子昂.改进粒子群算法优化的BLDCM调速系统研究[J].控制工程,2019,26(9):1636-1641.[8]㊀方文茂.利用遗传算法优化模糊控制器参数研究[D].长春:长春理工大学,2016.[9]㊀MIRJALILIS.Moth⁃flameoptimizationalgorithm:anovelna⁃ture⁃inspiredheuristicparadigm[J].Knowledge⁃BasedSys⁃tems,2015,89:228-249.作者简介:刘雨豪(1996 ),硕士研究生,主要研究方向为嵌入式软硬件㊁电机控制,E⁃mail:lyh03141001@163.com廖平(1964 ),教授㊁博士生导师,主要研究方向为机电一体化㊁智能算法与控制㊂E⁃mail:liaoping0@163.com(上接第61页)[3]㊀RAHMANNURIH,RIVAIM,SARDJONTA.Designofdigitallock⁃inamplifierforlowconcentrationgasdetection[C].InternationalSeminaronIntelligentTechnologyandITSApplications,2017:319-322.[4]㊀陈浩,闫树斌,郑永秋,等.应用于谐振式光纤陀螺的双相位锁相放大器的设计[J].仪表技术与传感器,2014(11):93-95.[5]㊀SONNAILLONMO,URTEAGER,BONETTOFJ.High⁃fre⁃quencydigitallock⁃inamplifierusingrandomsampling[J].IEEETransactionsonInstrumentationandMeasurement,2008,57(3):616-621.[6]㊀范松涛,周燕,潘教青,等.基于FPGA的数字锁相放大器在气体探测中的应用[J].计算机测量与控制,2012,20(11):3027-3028.[7]㊀赵婷婷,王先全,姜增晖,等.基于数字锁相放大的时栅传感器信号处理研究[J].工具技术,2017,51(4):87-92.[8]㊀GASPARJ,CHENSF,GORDILLOA,etal.Digitallockinamplifier:study,designanddevelopmentwithadigitalsignalprocessor[J].Microprocessors&Microsystems,2004,28(4):157-162.[9]㊀高华磊,徐德辉,刘松,等.谐振式MEMS磁传感器接口电路设计[J].传感器与微系统,2016,35(11):92-94.[10]㊀GONZALOMB,RODRIGUEZRJ,GEORGINAMV,etal.Dual⁃phaselock⁃inamplifierbasedonFPGAforlow⁃fre⁃quenciesexperiments[J].Sensors,2016,16(3):379.[11]㊀刘越,刘富,戴逸松.参考信号频率自调整的数字相敏检波器算法的研究[J].计量学报,1998,19(4):312-316.[12]㊀赵俊杰,郝育闻,郭璐璐,等.数字锁相放大器的实现研究[J].现代电子技术,2012,35(3):191-195.作者简介:梅晓东(1994 ),硕士研究生,研究方向为传感器接口电路㊂E⁃mail:meixd@mail.sim.ac.cn通信作者:熊斌(1962 ),博士,研究员,研究方向为MEMS器件及其相关技术㊂E⁃mail:bxiong@mail.sim.ac.cn。
2024版《电力电子技术》PPT课件
![2024版《电力电子技术》PPT课件](https://img.taocdn.com/s3/m/390f6fcf8662caaedd3383c4bb4cf7ec4afeb680.png)
电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。
用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。
用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。
用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。
电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。
高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。
绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。
工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。
智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。
(完整版)SVPWM仿真
![(完整版)SVPWM仿真](https://img.taocdn.com/s3/m/0190cd7754270722192e453610661ed9ad5155a4.png)
SVPWM仿真与分析电压空间矢量控制技术是把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的。
把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的。
第一章SVPWM基本原理随着微电子技术、计算机控制技术以及电力电子技术的发展,正弦脉宽调制(SPWM)策略已广泛应用于交流变频调速系统中,但是SPWM方法不能充分利用馈电给逆变器的直流电压;SPWM是基于调节脉冲宽度和间隔来实现接近于正弦波的输出电流,但是仍会产生某些高次谐波分量,引起电机发热、转矩脉动甚至系统振荡;另外,SPWM适合模拟电路,不便于数字化实现。
在交流电机调速的磁通轨迹控制思想的基础上,发展产生了电压空间矢量脉宽调制(SVPWM)方法。
SVPWM物理概念清晰、算法简单且适合数字化实现,在输出电压或电机线圈电流中产生的谐波少,提高了对电压源逆变器直流供电电源的利用率。
1.13s/2s变换交流电动机三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效。
这就是矢量坐标变换中的三相静止坐标系和两相静止坐标系的变换(简称3S/2S变换)。
如图1-1所示。
对三相电进行3S/2S变换,将u,u,u分解到u,u坐标轴上。
可有:abc a Pu=u一ucos60。
一ucos60。
a abcu-0u+ucos30。
一ucos30。
式i-iP abc整理可得:式1-2c图1-13S/2S 变换对于三相交流电u ,u ,u 有:abcu -U cos (®t )am<u -U cos (①t —120。
)b mu —U cos (®t +120。
) cm 将u ,u ,u 代入式1-2中,可得结果:abcu auPUcosmsin在进行3s/2s 变换时,希望得到等幅值变换,所以式1-2 式1-3式1-4中添加一个系数C=2/3。
电力电子设计报告 三相电压型交直交变频器设计与仿真
![电力电子设计报告 三相电压型交直交变频器设计与仿真](https://img.taocdn.com/s3/m/535870e10975f46527d3e1de.png)
电力电子课程设计报告设计题目三相电压型交直交变频器设计与仿真指导老师设计者专业班级学号摘要目前国际形势纷乱复杂、能源危机日益突出,能源瓶颈已经逐渐成为了制约国民经济持续发展的主要因素之一,迫切需要提高工农业生产中的能源利用率。
本课程设计正是基于目前我国交流电气传动系统的现状,设计了一台电压源型通用变频器。
随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流变频调速技术得到了迅速发展,其显著的节能效益,高精确的调速精度,宽泛的调速范围,完善的保护功能,以及易于实现的自动通信功能,得到了广大用户的认可,在运行的安全可靠、安装使用、维修维护等方面,也给使用者带来了极大的便利。
因此,研究交—直—交变频调速系统的基本工作原理和作用特性意义十分重大。
本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。
使用Matlab/Simulink搭建交—直—交变频调速系统的仿真模型,通过试验对该交—直—交变频器的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频器的影响有了一定的了解。
关键词:交—直—交变频,整流,逆变,simulink仿真,谐波目录摘要 .................................................................................................................... I I 第1章绪论. (5)1.1课程设计的目的 (5)1.2课程设计的任务与要求 (5)1.3课程设计的内容 (5)1.4控制方式 (6)1.5M ATLAB的原理应用及S IMULINK仿真 (7)第2章三相电压型交直交变频器的组成及基本原理 (8)2.1三相电压型交直交变频器的基本构成 (8)2.2交直交变频器的工作原理 (10)2.3使用变频器要注意的问题 (11)2.4交直交变频的基本工作特性 (11)2.5PID控制器的参数整定 (11)第3章主电路设计及仿真 (12)3.1设计方案 (12)3.2主电路结构原理图 (13)3.3电路类型选择依据 (13)3.4整流器的工作原理及设计 (14)3.4.1 整流器的基本工作原理 (14)3.4.2 整流元件的选择 (16)3.4.3 电抗器参数计算 (16)3.4.4 整流器的设计与仿真 (16)3.5逆变器的工作原理及设计 (21)3.5.1 逆变器的基本工作原理 (21)3.5.2 逆变器的设计与仿真 (24)3.5.3 PI控制电路的设计与仿真 (28)3.5.4 PWM波的产生设计与仿真 (30)第4章驱动保护电路的设计 (33)4.1过电压保护: (33)4.2过电流保护 (34)4.3IGBT驱动电路 (34)4.4触发电路选择与设计 (35)第5章综合设计与仿真 (37)5.1.1 交直交变频器模型 (37)5.1.2 检验是否满足性能指标的要求。
电力电子技术绪论
![电力电子技术绪论](https://img.taocdn.com/s3/m/656324a14128915f804d2b160b4e767f5acf80ec.png)
3. 电力电子技术的应用
• 一般工业:
交直流电机、电化学工业、冶金工业
• 交通运输:
电气化铁道、电动汽车、航空、航海
• 电力系统:
高压直流输电、柔性交流输电、无功补偿
• 电子装置电源:
为信息电子装置提供动力
• 家用电器:
“节能灯”、变频空调
• 其他:
UPS、 航天飞行器、新能源、发电装置
3. 电力电子技术的应用
与控制理论(自动化技术)的关系
• 控制理论广泛用于电力电子系统中。 • 电力电子技术是弱电控制强电的技术,是弱电和
强电的接口;
• 控制理论是这种接口的有力纽带。 • 电力电子装置是自动化技术的基础元件和重要支
撑技术。
1.4 地位和未来
一门崭新的技术,21世纪仍将以迅猛的速度发展。 电力电子技术和运动控制一起,和计算机技术共同成 为未来科学技术的两大支柱。
1904
1930
1947 1957 1970 1980 1990 2000 t(年)
电子管 问世
水银(汞 弧)整流 器时代
晶闸管时代
IGBT及功率
集成器件出现 和发展时代
电力电子技术的发展史是以电力电子器件的发展史为纲的。
2. 电力电子技术的发展史
• 出现电子管、水银整流器。各种整流电路,逆变
电路,周波变流电路的理论已经发展成熟并广为 应用。
• 美国著名的贝尔实验室发明晶体管。 • 美国通用电气公司研制出第一个晶闸管。 • 全控型器件迅速发展:以门极可关断晶(GTO)、
电力双极型晶体管(BJT)和电力场效应管 (power-MOSFET)为代表。
• 复合型器件异军突起:以绝缘栅双极型晶体管
(IGBT)为代表。
基于matlab的电力电子技术仿真设计_课程设计
![基于matlab的电力电子技术仿真设计_课程设计](https://img.taocdn.com/s3/m/a688ae26581b6bd97f19ea97.png)
基于matlab地电力电子技术仿真设计第1章绪论1.1 MA TLAB 地产生过程和影响在20 世纪七十年代后期地时候:时任美国新墨西哥大学计算机科学系主任地Cleve Moler 教授出于减轻学生编程负担地动机,为学生设计了一组调用LINPACK和EISPACK库程序地“通俗易用”地接口,此即用FORTRAN编写地萌芽状态地MATLAB.经几年地校际流传,在Little 地推动下,由Little、Moler、Steve Bangert 合作,于1984 年成立了 MathWorks 公司,并把 MATLAB 正式推向市场.从这时起,MATLAB 地内核采用C语言编写,而且除原有地数值计算能力外,还新增了数据图视功能.MA TLAB以商品形式出现后,仅短短几年,就以其良好地开放性和运行地可靠性,使原先控制领域里地封闭式软件包(如英国地UMIST,瑞典地LUND 和SIMNON,德国地KEDDC)纷纷淘汰,而改以MATLAB为平台加以重建.在时间进入20 世纪九十年代地时候,MATLAB已经成为国际控制界公认地标准计算软件.到九十年代初期,在国际上30 几个数学类科技应用软件中,MA TLAB在数值计算方面独占鳌头,而Mathematica 和Maple 则分居符号计算软件地前两名.Mathcad 因其提供计算、图形、文字处理地统一环境而深受中学生欢迎.MathWorks 公司于1993 年推出MA TLAB4.0 版本,从告别DOS 版.电力电子技术MA TLAB实践:电力电子技术中有关电能地变换与控制过程,有各种电路原理地分析与研究、大量地计算、电能变换地波形测量、绘制与分析等,都离不开MATLAB.首先,它地运算功能强大,应用于交流电地可控整流、直流电地有源逆变与无源逆变中存在地整流输出地平均值、有效值、与电路功率计算、控制角、导通角计算.其次,MA TLAB地SimpowerSystems实体图形化仿真模型系统,把代表晶闸管、触发器、电阻、电容、电源、电压表等实物地特有符号连接成一个整流装置电路或是一个系统,更简单方便,节省设计制作时间和成本等.再有,交流技术讨论地电能转换与控制,需要对各种电压与电流波形进行测量、绘制与分析,MA TLAB提供了功能强大且方便使用地图形函数,特别适合完成这项任务.MathWorks 公司瞄准应用范围最广地Word ,运用DDE 和OLE,实现了MATLAB与Word 地无缝连接,从而为专业科技工作者创造了融科学计算、图形可视、文字处理于一体地高水准环境.1997 年仲春,MA TLAB5.0 版问世,紧接着是5.1、5.2,以及和1999 年春地5.3 版.与4.0 相比,现今地 MA TLAB 拥有更丰富地数据类型和结构、更友善地面向对象、更加快速精良地图形可视、更广博地数学和数据分析资源、更多地应用开发工具.(关于MATLAB5.0 地特点下节将作更详细地介绍.)诚然,到1999 年底,Mathematica 也已经升到4.0 版,它特别加强了以前欠缺地大规模数据处理能力.Mathcad 也赶在2000 年到来之前推出了Mathcad 2000 ,它购买了Maple 内核和库地部分使用权,打通了与MA TLAB地接口,从而把其数学计算能力提高到专业层次. 但是,就影响而言,至今仍然没有一个别地计算软件可与MA TLAB匹敌. 在欧美大学里,诸如应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程地教科书都把MATLAB作为内容.这几乎成了九十年代教科书与旧版书籍地区别性标志.在那里,MA TLAB是攻读学位地大学生、硕士生、博士生必须掌握地基本工具. 在国际学术界,MATLAB已经被确认为准确、可靠地科学计算标准软件.在许多国际一流学术刊物上,(尤其是信息科学刊物),都可以看到MATLAB地应用.在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发地首选软件工具.如美国National Instruments 公司信号测量、分析软件LabVIEW,Cadence 公司信号和通信分析设计软件SPW等,或者直接建筑在MA TLAB之上,或者以MATLAB为主要支撑.又如 HP司地VXI 硬件,TM公司地DSP,Gage 公司地各种硬卡、仪器等都接受MATLAB地支持.1.2 MA TLAB 地基本组成和特点经过近20 年实践,人们已经意识到:MATLAB作为计算工具和科技资源,可以扩大科学研究地范围、提高工程生产地效率、缩短开发周期、加快探索步伐、激发创造活力.那么作为当前最新版本地MATLAB 7.0 究竟包括哪些内容?有哪些特点呢?5.0以前版本地MATLAB语言比较简单.它只有双精度数值和简单字符串两种数据类型,只能处理1 维、2 维数组.它地控制流和函数形式也都比较简单.这一方面与当时软件地整体水平有关,另方面与MA TLAB仅限于数值计算和图形可视应用地设计目标有关.从 5.0 版起,MA TLAB 对其语言进行了根本性地变革,使之成为一种高级地“阵列”式语言.1.3 MA TLAB 语言地传统优点MA TLAB自问世起,就以数值计算称雄.MA TLAB进行数值计算地基本处理单位是复数数组(或称阵列),并且数组维数是自动按照规则确定地.这一方面使MATLAB程序可以被高度“向量化”,另方面使用户易写易读.对一般地计算语言来说,必须采用两层循环才能得到结果.这不但程序复杂,而且那讨厌地循环十分费时. MA TLAB 处理这类问题则简洁快捷得多,它只需直截了当地一条指令y = exp(-2*t).*sin(5*t) ,就可获得.这就是所谓地“数组运算”.这种运算在信号处理和图形可视中,将被频繁使用.当A地列数大于行数时,x 有无数解.一般程序就必须按以上不同情况进行编程.然而对 MATLAB来说,那只需一条指令:x=A\b .指令是简单地,但其内涵却远远超出了普通教科书地范围,其计算地快速性、准确性和稳定性都是普通程序所远不及地.第2章 MATLAB软件及仿真集成环境Simulink简介MATLAB软件是美国MathWorks公司在20世纪80年代中期推出地高性能数值计算软件,经过近30年地开发和更新换代,该软件已成为合适多学科功能十分强大地软件系统,成为线性代数、数字信号处理、自动控制系统分析、动态系统仿真等方面地强大工具.MATLAB中含有一个仿真集成环境Simulink,其主要功能是实现各种动态系统建模、仿真与分析.在MA TLAB启动后地系统界面中地命令窗口输入”SIMULINK”指令就可以启动SIMULINK仿真环境.启动SIMULINK后就进入了浏览器既模版库,在图中左侧为以目录结构显示地17类模版库名称(因软件版本地不同,库地数量及其他细节可能不同),选中模版库后,即会在右侧窗口出现该模型库中地各种元件或子库.Simulink支持连续、离散系统以及连续离散混合系统、非线性系统等多种类型系统地仿真分析,本书中将主要介绍和电力电子电路仿真有关地元件模式及仿真方法.对于电力电子电路及系统地仿真,除需使用Simulink中地基本模板外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统中常用元件地图形化地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.图形地元件模型使使用者可以快速并且形象地构建所需仿真系统结构.在Simulink系统中,执行菜单“File”下“New”、“Model”命令即可产生一个新地仿真模型编辑窗口,在窗口中可以采用形象地图形编辑地方法建立仿真对象、编辑元件及系统相关参数,进而完成电路及系统地仿真系统.具体步骤为:建立一个新地仿真模型编辑窗口后,首先从Simulink模块中选择所仿真电路或系统所需要地元件或模块搭建系统,方法为在Simulink模块库中所选元件位置按住鼠标左键将元件拖拽至所建编辑窗口地合适位置,不断重复该过程直至所有元件均放置完毕.在窗口中用鼠标左键单击元件图形,元件四周将出现黑色小方块,表示元件已经选中,对该元件可以进行复制(Ctrl+V)、粘贴(Ctrl+V)、旋转(Ctrl+R)、旋转(Ctrl+I)、删除(Delete)等操作,也可以在元件处按住鼠标左键将元件拖拽移动.需要改变元件大小时可以选定该元件,将鼠标移至元件四周地黑色小方块,待鼠标指针变为箭头形状时按住鼠标左键将元件拖拽至合适尺寸.(4)需要改变元件参数,可以在该元件处双击鼠标左键,即可弹出该元件地参数设置对话窗口进行参数设置.将元件放置完毕后,可采用信号线将元件间连接构成电路或系统结构图,将鼠标放置在元件端子处,但鼠标指针变为“+”字形状时,按住鼠标左键移动至需要连线地另一元件端子处,当鼠标指针变为“+”字形状时,松开鼠标左键及建立两端子之间地连线,若为控制模块间传递信号,则在连线端部将出现箭头表示信号地流向,不断重复该过程直至系统连接完毕.仿真电路或系统模型建立完毕后,还需要使用“Simulink”菜单中地”Confihuration Parameters”命令对仿真起止时间、仿真步长、允许误差和求解算法进行设置和选择,参数地具体选择方法与所仿真电路相关.(7)仿真模型建立完毕后,可以使用“file”菜单中地”Save”命令进行保存.2.1 常用电气系统仿真库元件及仿真模型对于电力电子电路及系统地仿真除需使用Simulink中地基本模块外,用到地主要元件模型集中在电气系统仿真库SimPowerSystem中,该模型库提供了电气系统之中常用元件地图形化元件模型,包括无源元件、电力电子器件、触发器、电机和测量元件等.用鼠标单击“SimPowerSystem”,即会在右侧出现该模型库中八个模版库(子库),下面主要介绍电源模版库、电气元件模版库、电气测量模版库及电力电子器件模版库.2.2 电气元件模块库用鼠标双击“Elements”图标,在窗口中显示29种电气元件.这些可以分为三大类:负载元件、传输线和变压器.双击串联RLC支路元件将弹出该元件地参数设置对话框,在“Resistance”、“Inducatance”、“Capacitance”参数下可以分别设置三个元件地参数,如果电路中不含三者中地某个元件,则相应参数应设为0(电阻或电感)或inf(电容),在电路图形符号中这类元件也将自动消失.串联RLC负载元件则是通过设置每个元件地容量,由程序自动计算元件地参数.并联RLC支路元件和并联RLC负载元件用于描述由电阻、电容、电感并联地电路,参数设置方法类似.在不考虑变压器铁心饱和时不勾选“Saturable core”.在“Magnetition resistance Rm”和“Magnetition res istance LM”参数下分别设置变压器地励磁绕组电阻、电感地标幺值.其他类型地变压器参数设置方法类似.第3章单相半波可控整流电路仿真3.1 电阻负载3.1.1 工作原理(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流.(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零.(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零.(4)直到电源电压u2地下一周期地正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复.3.1.2 电路图及工作原理U1SW图3-1 单相半波可控整流电路如上图所示,当晶闸管VT处于断态时,电路中电流Id=0,负载上地电压为0,U2全部加在VT 两端,在触发角α处,触发VT使其导通,U2加于负载两端,当电感L地存在时,使电流id不能突变,id从0开始增加同时L地感应电动势试图阻止id增加,这时交流电源一方面供给电阻R消耗地能量,一方面供给电感L吸收地电磁能量,到U2由正变负地过零点处处id已经处于减小地过程中,但尚未降到零,因此VT仍处于导通状态,当id减小至零,VT关断并承受反向压降,电感L延迟了VT地关断时刻使U形出现负地部分.3.1.3 仿真模型图3-2 单相半波可控整流电路电阻负载电路仿真模型3图 3-3 示波器环节参数设置菜单图3-4 单相半波可控整流电路电阻负载电路波形3.2 阻感负载图3-5单相半波可控整流电路电阻电感负载电路仿真模型图3-6单相半波可控整流电路电阻电感负载电路波形3.3 接续流二极管图3-7 单相半波可控整流电路电阻电感负载接续流二极管电路波形图3-8 单相半波可控整流电路电阻电感负载接续流二极管电路波形第4章单相桥式全控整流电路仿真4.1 单相桥式全控整流电路在单相桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂.当为电阻负载时,若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4地漏电阻相等,则各承受u2地一半.若在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a端经VT1、R、VT4流回电源b端.当u2过零时,流经晶闸管地电流也降到零,VT1和VT4关断.在u2负半周,仍在触发延迟角α处触发VT2和VT3,VT2和VT3导通,电流从电源b端流出,经VT3、R、VT2流回电源a端.到u2过零时,电流又将为零,VT2和VT3关断.此后又是VT1和VT4导通,如此循环地工作下去,便构成了一个全波整流系统.SW u1图4-1 单相全控桥整流电路单相桥式全控整流电路电阻负载地电路采用四只晶闸管构成全控桥式全控整流电路,采用Trig14、Trig23两个触发脉冲环节分别产生1、4管及2、3管地驱动信号,由于两对晶闸管分别于正、负半周导通,触发延迟角相差180°,因此两个触发环节地延迟时间相差180°.电路中交流电源电压峰值为100V,频率为50Hz,初始相角为0°,负载电阻为2Ω.仿真结果如下图:图4-2单相桥式全控整流电路电阻负载仿真模型图4-3单相桥式全控整流电路电阻负载仿真波形4.2 单相桥式全控整流电路电阻电感负载单相桥式全控整流电路电阻电感负载与单相桥式全控整流电路电阻负载差别在于负载不同,将负载参数设为R=1Ω,L=0.1H,其他参数不变,仿真结果如下图:图4-4单相桥式全控整流电路电阻电感负载仿真模型图4-5单相桥式全控整流电路电阻电感负载仿真波形第5章三相桥式全控整流电路仿真5.1三相桥式全控整流电路电阻负载电路三相桥式全控整流电路电阻负载电压峰值为100V,频率为50Hz,初始相角为30°,负载为电阻负载,电阻为2Ω.由于三相桥式全控整流电路α角地起点为相电压交点,因此本模型中队因α角为60°地A、B、C三相对应地六个触发环节中地延迟时间分别为 3.33ms、6.67ms、10ms、13.33ms、16.67ms、0.仿真结果如下图:图5-1三相桥式全控整流电路电阻负载电路仿真模型图5-2 三相桥式全控整流电路仿真电阻负载仿真波形5.2三相桥式全控整流电路电阻电感负载电路图5-3三相桥式全控整流电路电阻电感负载电路仿真模型图5-4三相桥式全控整流电路电阻电感负载电路波形图总结通过这几天对课程设计所作地努力,成功完成了对电力电子技术中地单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相桥式半控整流电路地计算机仿真实验.通过实践证明了MA TLAB/SIMUINK在电力电子仿真上地广泛应用.特别在数值计算应用最广地电气信息类学科中,熟练掌握MA TLAB可以大大提高分析研究地效率.通过这个课题学习MA TLAB软件地基本知识和使用技巧,熟练应用在电力电子技术中地建模与仿真.运用MA TLAB对电力电子电路进行仿真,加深了对电力电子知识地认识.通过老师与文献地帮助,掌握MATLAB软件,会了一些简单地操作与应用.致谢课程设计不仅仅是完成一篇论文地过程,而是一个端正态度地过程,是大学生活地一个过程,是在踏入社会前地历练过程.这个过程将使我受益匪浅!在这次课程设计中,使我明白了自己原来知识还比较欠缺.自己要学习地东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低.通过这次课程设计,我才明白学习是一个长期积累地过程,在以后地工作、生活中都应该不断地学习,努力提高自己知识和综合素质.在此要感谢我地指导老师柏逢明老师地指导,感谢老师给我地帮助.在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大.在整个设计中我懂得了许多东西,也培养了我独立工作地能力,树立了对自己工作能力地信心,相信会对今后地学习工作生活有非常重要地影响.而且大大提高了动手地能力,使我充分体会到了在创造过程中探索地艰难和成功时地喜悦.虽然这个设计做地也不太好,但是在设计过程中所学到地东西是这次课程设计地最大收获和财富,使我终身受益.参考文献[1] 洪乃刚.电力电子和电力拖动控制系统地MA TLAB仿真.机械工业出版社.2006.[2] 李维波.MA TLAB在电器工程中地应用.中国电力出版社.2007.[3] 王正林.MA TLAB/Simulink与控制系统仿真.电子工业出版社.2005.[4] 陈桂明.应用MA TLAB建模与仿真.机械工业出版社.2009.[5] 张葛祥,李娜.MATLAB仿真技术与应用.清华大学出版社.2008[6] 工兆安等.电力电子技术[M].北京:机械工业出版社.2007[7] 张平.MATLAB基础与应用简明教程[M].北京:北京航空航天大学出版社.2009[8] 飞思科技产品研发中心编.MA TLAB6.5应用接口编程.电子工业出版社.2008。
永磁同步电机系统仿真
![永磁同步电机系统仿真](https://img.taocdn.com/s3/m/cb9ec424e2bd960590c67779.png)
第1章绪论1.1 课题研究的背景1.1.1 永磁同步电机的发展状况永磁同步电机出现于20 世纪50 年代。
其运行原理与普通电激磁同步电机相同,但它以永磁体替代激磁绕组,使电机结构更为简单,提高了电机运行的可靠性。
随着电力电子技术和微型计算机的发展,20 世纪70 年代,永磁同步电机开始应用于交流变频调速系统。
20 世纪80 年代,稀土永磁材料的研制取得了突破性的进展,特别是剩磁高、矫顽力大而价格低廉的第三代新型永磁材料钕铁硼(NdFeB)的出现,极大地促进了永磁同步电机调速系统的发展。
尤其值得一提的是我国是一个稀土材料的大国,稀土储量和稀土金属的提炼都居世界首位。
随着稀土材料技术的不断发展,永磁材料的磁能积已经做的很高,价格也早就满足工业应用的需要,加上矢量控制水平的不断提高,永磁同步电动机越来越显出效率高、功率密度大、调速范围宽、脉动转矩小等高性能的优势。
使我国在稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。
新型永磁材料在电机上的应用,不仅促进了电机结构、设计方法、制造工艺等方面的改革,而且使永磁同步电机的性能有了质的飞跃,稀土永磁同步电机正向大功率(超高速、大转矩)微型化、智能化、高性能化的方向发展,成为交流调速领域的一个重要分支[1][2]。
由于受到功率开关元件、永磁材料和驱动控制技术发展水平的制约,永磁同步电机最初都采用矩形波波形,在原理和控制方式上基本上与直流电机类似,但这种电机的转矩存在较大的波动。
为了克服这一缺点,人们在此基础上又研制出带有位置传感器、逆变器驱动的正弦波永磁同步电机,这就使得永磁同步电机有了更广阔的前景。
1.1.2 永磁同步电机控制系统的发展随着永磁同步电动机的控制技术的不断发展,各种控制技术的应用也在逐步成熟,比如SVPWM、DTC、SVM-DTC、MRAS等方法都在实际中得到应用。
然而,在实际应用中,各种控制策略都存在着一定的不足,如低速特性不够理想,过分依赖于电机的参数等等,因此,对控制策略中存在的问题进行研究就有着十分重大的意义。
电力电子电机控制系统仿真技术 洪乃刚 PPT
![电力电子电机控制系统仿真技术 洪乃刚 PPT](https://img.taocdn.com/s3/m/2141e6dd0975f46526d3e103.png)
转子磁链电压模型计算流程
iabc 1
abc
sin 0 cos
sin_cos
dq0
Demux
abc_to_dq0
Ua
2 uabc sin 0 cos
abc sin_cos dq0 Demux Ia Ub Ib
a
1 psir-d
abc_to_dq0 1
b
2 psir-q
´ ÅÁ´ µçѹ Ä£ÐÍ
转子磁链电压模型结构
7.1 三相坐标系/二相坐标系的变换 7.1.1 坐标系变换原理
坐标变换包括 三相静止坐标 系和两相静止 坐标系的变换 (简称3s/2s变 换)、两相静 止坐标系和两 相旋转坐标系 的变换(简称 2s/2r变换)。
f s1 2f s
三相坐标系上的三相对称绕组A,B,C通以三相对 称电流产生旋转磁动势F,F 的旋转速度 1 2f s f s 为三相电流的频率。二相旋转坐标系上的二 相绕组d,q通以二相对称电流也产生旋转磁动势, fr r 2f为电流的频 r 对dq坐标系的旋转速度为 , 率,因为dq坐标系本身是旋转的,其旋转速度 为 ,因此相对静止坐标系的旋转速度为 (r ) 如果二相坐标系上电流产生的磁动势与 三相坐标系上电流产生的磁动势F大小相等旋转 F Fr 1 (r ) ,这时二相旋转坐 速度也相同, 标系绕组可以等效于三相静止坐标系上的绕组, 即三相绕组可以用二相绕组来代替,坐标变换揭 示了三相绕组电压(电流)与二相绕组电压(电 流)之间的关系。
在二相旋转坐标系上 Us 电压幅值为 频率为 (7.2)
fr fs f
0 0
二 .二相→三相的坐标变换关系,即dq0abc transformation模块的表达式为:
电压源虚拟同步发电机并网控制及实现
![电压源虚拟同步发电机并网控制及实现](https://img.taocdn.com/s3/m/f3c7bb44a55177232f60ddccda38376bae1fe04b.png)
第55卷第4期2021年4月电力电子技术Power ElectronicsVol.55, No.4April 2021电压源虚拟同歩发电机并网控制及实现赵家敏(云南开放大学,云南昆明650223)摘要:并网逆变器的虚拟同步发电机(VSG)控制技术利用电力电子装置控制灵活的特点,通过在控制系统中对同步发电机及其调速器/调压器的基本数学模型和调节特性的模拟,使得并网逆变器具有与同步发电机类似的自主参与系统调频/调压等优良特性。
这里在VSG控制策略基础上,提出了一种新颖的电压源VSG并网实现方式,免去了传统VSG并网所需预同步(预同期)等环节,有效提高了新能源发电系统的并网友好性,简化了电压源VSG并网流程。
系统仿真及原理样机运行实验结果充分表明了所提基于VSG算法的并网逆变器系统整体控制策略及并网实现方式的有效性和正确性。
关键词:虚拟同步发电机;新能源发电;并网控制中图分类号:TM31 文献标识码:A 文章编号:1000-100X(2021)04-0083-04The Implementation and Grid-connected Control of Voltage SourceVirtual Synchronous GeneratorZHAO Jia-min(Yunnan Open Universityy Kunming650223, China)Abstract : Virtual synchronous generator (VSG) control technology for grid-connected inverter, by simulating the basic mathematical model and adjustment characteristics of synchronous generator and its governor and voltage regulator, so that the grid-connected inverter has the same characteristics as the autonomous participating system frequency modu- lation/voltage modulatiun regulator similar to the synchronous generator. Based on the VSG control strategy, a novel voltage source VSG grid-connected method is proposed, which eliminates the pre-synchronization needed by the traditional VSG grid-connected, and effectively improves the grid-connected friendliness of the new energy generation system,the process of voltage source VSG connection is simplified.The results of system simulation and field demonstration experimental results show the validity and correctness of the proposed control strategy of grid-connected inverter system based on VSG algorithm.Keywords :virtual synchronous generator ;new energy generation ;grid-connected controlFoundation Project :Supported by Scientific Research Fund of Yunnan Provincial Education Department(No.2020J0494)l引言传统新能源发电(含储能)大都通过先进电力 电子变流装置逆变并网,然而同步发电机具有对 电网天然友好的优势,若利用电力电子系统控制 灵活的特点,使得新能源发电(含储能)并网逆变 器具有同步发电机的外特性,必然能实现含有电 力电子并网装置的新能源发电系统的友好接入,提高电力系统稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 3 Saturable Transformer
单相变压器模型(饱和铁芯)
单相变压器参数
额定容量PN、频率 f N 绕组1 (原边) 绕组2 (副边1) 绕组3 (副边2) 额定电压V1 电阻R1漏感L1 额定电压V2 电阻R2漏感L2 额定电压V3 电阻R3漏感L3
单
位
VA 、HZ 有效值(rms)V 标幺值(pu) 有效值(rms)V 标幺值(pu) 有效值(rms)V 标幺值(pu)
在起动中随转速上升电流减小,在0.5秒加载后电流迅速增大, 定子电流为50HZ的正弦波。起动时随转速上升转子电流 频率下降,当电机达到理想空载转速1500r/m时,转子电 流的大小和频率都接近为0,
100
Te / N.m
50
0
-50
3. 电机转矩方程:
d J Te sgn( )TL Bm T f dt Te KT ia
当: Te -TL > 0 时,电机工作在电动机模式 Te-TL < 0 时,电机工作在发电机模式
例4.2 仿真一台直流并激电动机的 起动过程。 电动机参数为: PN = 17 KW UN = 220V ,IN = 89A nN = 3000 r/m, 励磁电压220V, 励磁电流为 1.21A, 电机转动惯量 J = 0.76 kg.m2 , 测得电枢回路电阻 Ra = 0.087 Ω。
建立直流并激电动机电路仿真模型
Step
TL
DC
DC Machine 17KW 220V3000r/m
m
F+
A+
F-
A-
dc
TL* Gain 30/pi speed ia if Te if
计算电动机参数:
励磁电阻Rf = Uf / If = 220/1.21=181.5Ω, 励磁电感Lf在恒定磁场控制时可取“0”。 电枢电阻Ra=0.087Ω 电枢电感估算,电枢绕组和励磁绕组的互感 Laf
饱和特性 磁化电流i1、磁通phi (线性变压器没有) (i1 phi1; i2 phi2;…) 磁阻和剩磁通 (线性变压器没有) Rm phi0
标幺值(pu) 标幺值(pu)
变压器磁化曲线
磁化曲线的折点是以与折点对应的磁化电 流i和磁通phi值依次输入,在电流和磁通间加空 格,在两组电流和磁通间以“;”分隔。
磁化电流和磁通标幺值与标准单位的换算关系
pu base I I pu I base
I base PN V1 2 base V1 2 f N 2
4.1.3 三相变压器
a2
A B C a b c
A B C
b2 c2 a3 b3 c3
T hree-Phase T ransformer (T wo Wi ndi ngs)
0
0.02
0.04 0.06 t/s
u2
0.08
0.1
200
u2 / V, i2 / A
副边电压 和电流
100 i2 0 -100 -200
0
0.02
0.04 t/s
0.06
0.08
0.1
4000
有功功率 P=600 W 无功功率 Q=3720 Var
P / W, Q / Var
3000 2000 1000 0 -1000 0
三 模型参数
参数名 单位 额定容量Pn、额定电 VA、V、 Hz 压Un、额定频率fn 定子绕组电阻Rs、漏 Ω 、H 感Lls 转子子绕组电阻Rrˊ、 Ω 、H 漏感Llrˊ 定转子绕组互感Lm H 转动惯量J、摩擦系 数F、极对数p Kg.m2
测量模块
M achi nes M easurem ent Dem ux
S3
IM VM AC
+ v -
IM1
+ v -
RL S1
S
1
2
VM1
Clock
S4
V
S5
PQ
I
S6 f(u) S8 Fcn
Active & Reactive Power
变压器电路模型
模型参数
设置仿真算法为ode45,仿真时间为0.1秒
400 u1
u1 / V, i1 / A
原边电压 和电流
200 0 -200 -400 i1
UN 220 R1 Ra 0.087 1 I max 200
设R1=R1′=1Ω, 启动仿真
计算R1和预选R2ˊ
U N Ce n Ra 0.482 I max 0.518 R1 R1 R2 R2
步骤3:重新设R1和R2 (R2=R2ˊ) 计算R2和R3。
二 二相坐标系上的异步电机方程
电压方程
Vqs Vds Vqr Vdr d Rs iqs qs ds dt d Rs ids ds ds dt d r dr Rqr iqr qr dt d r qr Rdr idr dr dt
qs Ls iqs Lm iqr ds Ls ids Lm iqr Lr iqr Lm iqs qr Lr idr Lm ids dr
Ls Lls Lm Llr Lm Lr
电磁转矩
Te 1.5 p( ds iqs qs ids )
U N Ce n R2 Ra 0.32 I max R2 0.162 R3 R2
步骤4:重新设定R2和R3,设step2的信号发生时间6秒
.
设step3的信号发生时间为8秒,切除R3.转速升到 3000r/m,在整个起动过程中电流都限制在规定的 范围内,起动器的电阻和切换时间设计完毕。
R 0.5
4.1.5 变压器模型应用
一台单相变压器原边电压为220V,副边电压为 110V,副边连接阻感负载,
R 0.5
L 10 mh
仿真观察变压器原边和副边电压电流波形,并 测量计算负载的有功功率,无功功率和功率因数。
p P
2
Q
2
+
i -
S2 Transformer
+
i -
If
20e-6s+1
w
ia If
2 m Mux
Te
直流电机模型的基本方程
1. 励磁回路电压方程:
2. 电枢回路电压方程:
d iF u F RF iF LF dt
ua d ia Ra ia La E dt
E KE
2 或 E K E n Ce n 60
L ቤተ መጻሕፍቲ ባይዱF K E / iF
sin i qs 3 cos sin ids 2 sin i qr 3 cos sin idr 2
Vqs 1 2 cos Vds 3 2 sin 1 2 cos Vqr 3 2 sin Vdr
第4章 变压器和电机模块及其应用
变压器和电动机是拖动控制系统的主要器件, 它们的特点是都基于电磁感应原理。 SIMULINK/SimPowerSystem模型库中有多种 单相和三相变压器的模型 本章主要介绍常用的一些变压器和电动机模型
4.1变压器模型 4.1.1单相变压器模型
2 1 3 Linear T ransformer
Step3
m 2 g 1 m 2 g 1
Step2
m 2 g 1
Step1
Ideal Switch2
Ideal Switch1
Ideal Switch
TL
TL
R3
R2
R1
DC Machine DC
F+
A+
F-
A-
dc
m
DC 1 Gain 9.55 speed
ia
SCOPE
步骤2:将step模块2和3的阶跃信号发生时间 设为“0”,即R2、R3在起动时就短接;step1 的信号发生时间设长一些(如20秒),使R1 接入电枢回路,并初选R1′
ub
C wm
Demux phisd 9.55 Gain speed phisq
uc
Asynchronous Machine SI Units
Te
Clock
t Te XY Graph Te-n phis
异步电动机特性研究模型参数表4.7
仿真波形
1500
n / rpm
1000 500 0
0
0.2
0.4 t/s
0.6
0.8
1
起动时电机转速迅速上升,在0.2秒后达到空载转速1500r/m, 在0.5秒时电机加上了负载70 N.m,电机转速下降转差变大, 稳定后转速为1300 r/m左右。
100 50
isa / A
0 -50 -100 0 0.2 0.4 t / s
100 50
0.6
0.8
1
ira / A
0 -50 -100 0 0.2 0.4 t / s 0.6 0.8 1
m
wm
仿真一台7.5KW笼型异步电动机空载起动和 加载情况下的工作过程。
TL Machines Measurement Demux1
ir_abc phir_qd is_abc m B m phis_qd
Demux
ira irb irc
Demux phird phirq
Tm
ua
A
Demux isb
isa phir isc
二相电流/三相电流的变换