EMC传导和耦合应用(DOC)
高频开关电源的EMC
高频开关电源的EMC开关电源相对以往传统的线性工频电源,体积小,重量轻,效率高,目前已得到普遍推广应用,但是,由于开关电源的工作频率高,高频电压或电流脉冲波含有丰富的谐波分量,所以电磁干扰(EMI )问题日益严重。
特别是随着电源技术的发展,开关频率越来越高,电源和所供电的负载系统越来越靠近,EMI 的影响就日益突出。
电磁兼容(EMC )的设计和优化必须贯穿于电源设计的每个环节,EMC 指标也成为衡量电源质量的一个重要方面。
下面会涉及开关电源EMC 的基本概念和原则,并提供抑制开关电源EMI 的常规需注意的设计方法。
首先,需要明确EMI (电磁干扰)和EMC (电磁兼容)这两个术语的含义是对立的。
EMI 一般定义为:通过电磁能量传递方式,一台电子设备对另一台正在运行的电子设备造成的干扰。
而EMC 则是没有EMI ,运行的电子设备之间不形成相互干扰。
从EMI 的定义来看,我们可以得出产生EMI 的三要素:电磁能量发生线路(干扰源);不同线路之间干扰的传递途径(耦合方式);接收干扰的电子线路(敏感源)。
上述三要素必须全部存在的情况下,EMI 才会产生。
也就是说,只要消除其中任意一个要素,就能避免EMI ,达到不同线路(或设备)之间的EMC 。
在抑制电磁干扰的措施中,尽管屏蔽或隔离等措施能有效地切断干扰的耦合途径或使敏感源避免受到干扰信号的影响,不失为一种有效的EMC 策略和手段。
但是,一般推荐的EMC 策略还是消除或抑制干扰源,相对消除干扰三要素中的其他两要素而言,消除干扰源最为直接,也最为经济,所以对干扰源的研究和抑制是EMC 的重要内容。
一. EMI 的物理概念在一般的线路介绍的教科书中,EMI 的相关论述相对较少,在线路实践过程中,遇到的EMI 问题给人的感觉是比较复杂,不易解释。
但是,实际情况是EMI 的产生和抑制的基本原理还是相对简单的。
在开关电源中,快速变化的电压或电流脉冲波,能产生一种所谓的场,脉冲波和场之间的量化关系可以由Maxwell 方程式来描述。
EMC原理传导辐射详解
EMC原理传导辐射详解共模传导是指电磁干扰信号以共同的模态传导,并引入到其他电路或系统中。
共模传导主要发生在电源线、信号线、地线等电缆或导线上,当电磁波经过导线时,会产生电压或电流,进而引起干扰。
共模传导的原因主要包括线路长度、布线方式、支路接口、驱动源负载、接地系统等。
为了减少共模传导的干扰,可以采取一定的屏蔽措施,如使用屏蔽电缆、布线时距离间隔、增加线路的地面反射性等。
差模传导是指电磁干扰信号通过差模模态传导,并引入到其他电路或系统中。
差模传导主要发生在差模信号线中,差模信号是指两个信号线之间的差值。
差模传导的主要原因包括信号线的电流不平衡、信号线之间的电压差异、信号线的电阻差异等。
为了减少差模传导的干扰,可以采取一些方法,如使用双绞线、增加信号线电阻匹配、增加差模电流等。
辐射是指电磁干扰信号通过空间电磁波辐射的方式传播,并引起其他电路或系统的干扰。
辐射主要分为近场辐射和远场辐射。
近场辐射是指电磁波离开辐射源后,在辐射场中的一个区域内进行辐射传播。
在这个区域中,电磁波的电场和磁场分量具有非常复杂的时空变化规律。
近场辐射主要发生在高频电路、天线等设备中,会导致与之相邻的设备产生干扰。
为了减少近场辐射的干扰,可以采取一些方法,如合理布局电路、选择合适的天线、增加辐射吸收材料等。
远场辐射则是指电磁波在空间中传播到远离辐射源的一个区域。
在远场区域内,电场和磁场具有从辐射源向远离源的方向逐渐减弱的特点,同时它们的比例关系以及传播速度都有规律可循。
远场辐射主要发生在无线通信设备、雷达等设备中,并对周围的设备和系统产生干扰。
为了减少远场辐射的干扰,可以采取一些方法,如增加辐射源的耦合电容、选择合适的频率和天线、增加辐射源的屏蔽等。
综上所述,EMC原理中的传导和辐射是电磁兼容性问题中两个重要的方面。
共模传导和差模传导是电磁干扰信号通过导线传导到其他电路中的两种方式,而近场辐射和远场辐射则是电磁干扰信号通过电磁波辐射方式传播到其他设备和系统中的两种方式。
电动机EMC
基于电动汽车的特点和应用要求,对车用电机驱动系统电磁骚扰特性及传播机制进行了分析,采用骚扰源抑制、系统接地、电磁屏蔽、系统合理布局等措施实现了系统电磁兼容性能的有效提升。
文中给出的整改方案已应用于某款纯电动汽车,满足了国标要求,证明文中给出的电磁兼容方案是行之有效的。
电动汽车上的电力电子变换装置无论数量还是功率都远远超过传统汽车,电磁兼容问题的严重性和复杂性也远高于传统汽车。
电机驱动系统是电动汽车的三大关键系统之一,也是最重要的功率变换装置,其电磁兼容性能(electromagne TI ccompa TI bility,简称为EMC)不仅关系到自身的工作可靠性,而且会影响整车的安全运行能力和工作可靠性。
从目前已有的电动汽车整车产品的检测过程来看,大部分车型都是经过多次整改才能够达到国标的相关规定。
鉴于电磁兼容问题的重要性,基于电磁骚扰耦合和传播的一般机制,本文给出了电动汽车用电机驱动系统的电磁兼容分析及解决方案,并给出了电磁兼容的测试结果。
1 车用电机驱动系统电磁骚扰分析车用电机驱动系统的电机控制器由主回路、控制电路、机箱、散热器、电缆等几部分组成。
其中主回路的主要部件为功率模块,如IPM或IGBT等,是控制器的主要骚扰源,而平行双线组成环路的电感。
(1)式中:s为平行双线的间隔;r为导线半径。
在高频的开关频率(几十kHz)下,产生很高的du/dt和di/dt,与直流母线的杂散电感相作用将产生很高的电流尖峰;而车用电机控制器的母线电压一般为上百伏,故在产生PWM波的同时伴有很高的电压峰值,这必然将带来严重的电磁骚扰噪声,通过近场和远场耦合形成传导和辐射骚扰。
控制电路产生的PWM 信号以及输出的高频时钟脉冲波也会产生差模和共模辐射,但其辐射水平较低,产生的电磁骚扰一般较小。
机箱的屏蔽性差也会带来电磁泄漏产生电磁骚扰。
散热器会产生电磁振荡,散热片通常具有复杂的几何形状,具有多频带的RF辐射特性,很可能对开关频率谐波起到辐射天线作用。
EMC知识总结
EMC知识总结电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。
传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。
为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。
电磁兼容性EMC 标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。
EMC标准及测试国际标准1、国际电工委员为IEC2、国际标准华组织ISO3、电气电子工程师学会IEEE4、欧盟电信标准委员会ETSI5、国际无线电通信咨询委员CCIR6、国际通讯联盟ITU6、国际电工委员会IEC有以下分会进行EMC标准研究-CISPR:国际无线电干扰特别委员会-TC77:电气设备(包括电网)内电磁兼容技术委员会-TC65:工业过程测量和控制国际标准化组织1、FCC联邦通2、VDE德国电气工程师协会3、VCCI日本民间干扰4、BS英国标准5、ABSI美国国家标准6、GOSTR俄罗斯政府标准7、GB、GB/T中国国家标准EMI测试1、辐射骚扰电磁场(RE)2、骚扰功率(DP)3、传导骚扰(CE)4、谐波电路(Harmonic)5、电压波动及闪烁(Flicker)6、瞬态骚扰电源(TDV)EMS测试1、辐射敏感度试验(RS)2、工频次次辐射敏感度试验(PMS)3、静电放电抗扰度(ESD)4、射频场感应的传导骚扰抗扰度测试(CS)5、电压暂降,短时中断和电压变化抗扰度测试(DIP)6、浪涌(冲击)抗扰度测试(SURGE)7、电快速瞬变脉冲群抗扰度测试(EFT/B)8、电力线感应/接触(Power induction/contact)EMC测试结果的评价A级:实验中技术性能指标正常B级:试验中性能暂时降低,功能不丧失,实验后能自行恢复C级:功能允许丧失,但能自恢复,或操作者干预后能恢复R级:除保护元件外,不允许出现因设备(元件)或软件损坏数据丢失而造成不能恢复的功能丧失或性能降低。
【EMC系列课程】01-电磁兼容三要素及耦合途径
2. 电磁干扰源及其特征
Q:干扰源为何会产生电磁干扰?
电
磁
电磁 场
安培:电
法拉第:磁
麦克斯韦:电磁场
变化的电压电流产生交变的磁场,可以产生EMI问题; 交变的电磁场,又容易在闭合回路由于磁通量的变化,产生感应电压与电流,又带来EMS抗扰度问题;
电磁干扰举例1:
从场的角度进行分析,假如回路1变化的电流I,产生一个变化的电磁场,它会对外辐射,产生辐射干扰,如果这个变化的 电磁场,又恰好穿过了回路1周边的其他闭合回路,那么,根据法拉第电磁感应定律:变化的磁场穿过回路2,在回路2产 生感应电动势,则回路1就对回路2产生了干扰。
如果,电路1的电压是不变的,那么,电容隔直,也起不到耦合的作用,此时,也不存在电路1对电路2的电磁干扰。(注: 此时虽然不存在电磁干扰,但若电路1电压很高,则有可能会产生电场的干扰影响);
二、电磁干扰耦合途径
1. 耦合途径分类
总结: ① 电磁干扰耦合途径,分为两类:传导耦合、辐射耦合。从上图可以看出,任何产品,任何干扰,耦合途径都
电磁干扰举例2:
从电路的角度分析,比如上面的图,电路1和电路2,两个电路之间有分布电容,在这里,我们假设电路1是强干扰的电路, 电路2是敏感的电路,电路1在工作的时候,它的导线上面会有一个电压,这个电压如果是交变的,那么,根据电容隔直 通交的特性,电路1的干扰就会通过分布电容,传递到电路2上,那么,电路1就对电路2产生了干扰;
电磁兼容( EMC--Electro Magnetic Compatibility)是一门新兴的综合性学科,主要研究电磁干扰和抗干扰 的问题。其定义为“设备和系统在其电磁环境中能正常工作且不对环境中任何事物构成不能承受的电磁骚扰的 能力”。
电磁抗干扰来源及电路与软件抗干扰(EMC)措施
电磁抗干扰来源及电路与软件抗干扰(EMC)措施概述可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。
它包括两方面的含义:故障时不拒动和正常时不误动。
之所以会存在这两个方面的隐患是因为电磁干扰的存在。
因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。
电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。
(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。
电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。
造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。
控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。
所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。
因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。
电磁干扰的来源所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。
电源干扰电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自电源,电源的干扰具有频带宽难以定量化、干扰原因复杂、干扰方式多变等特点。
干扰信号会沿着电源线进入单元内部,通过辐射或传导藕合的方式干扰其它信号或元件的正常工作。
EMC测试方法介绍
EMC测试方法介绍1. 射频辐射测试(Radiated Emission Test):该测试方法旨在评估产品在正常条件下辐射的电磁能量水平。
测试人员将产品放置在一个电磁吸收室(Anechoic Chamber)中,通过控制射频天线的位置和功率来测量产品在各个频段上的辐射电磁能量。
测试结果应与相关的国际、国家和地区标准进行比较,确保产品在可接受范围内。
2. 射频传导测试(Conducted Emission Test):该测试方法旨在评估产品在电源线上传导的电磁能量水平。
测试人员使用特定的测试设备将产品的电源线连接到射频信号源上,并测量产品在各个频段上的传导电磁干扰水平。
测试结果应与相关标准进行比较,以确保产品在可接受范围内。
3. 射频灵敏度测试(Radiated Susceptibility Test):该测试方法旨在评估产品在电磁环境中受到的干扰程度。
测试人员将产品放置在一个模拟真实工作环境的电磁辐射场中,并逐步增加电磁辐射水平,以确定产品受到影响的电磁辐射水平。
测试结果应与相关标准进行比较,以确保产品的性能不会受到干扰。
4. 电压传导测试(Conducted Susceptibility Test):该测试方法旨在评估产品在电磁环境中受到的传导干扰水平。
测试人员使用特定的测试设备将产品的电源线连接到模拟干扰源上,并逐步增加干扰水平,以确定产品受到影响的干扰水平。
测试结果应与相关标准进行比较,以确保产品的性能不会受到干扰。
5. 静电放电测试(Electrostatic Discharge Test):该测试方法旨在评估产品对静电放电的耐受能力。
测试人员使用一个带有特定电极的放电枪对产品进行静电放电,以确定产品在正常使用条件下的耐受能力。
测试结果应与相关标准进行比较,以确保产品在可接受范围内。
6. 增强耐受测试(Enhanced Immunity Test):该测试方法旨在评估产品在电磁环境中受到各种干扰源的干扰程度。
EMC测试指导书.docx
EMC测试指导书编写人员:杨继明工号:0807252M修订记录目录(报告完成后请更新)1概述 (5)1」试件名称、型号、版本及工作电压和电流 (5)1.2测试性质 (5)1.3采用标准、采用依据及测试项冃列表 (5)1.4辅助设备歹U表 (6)1.5测试人员、参试人员 (6)1.6测试部门、地点、时间 (6)2受试设备配置 (6)2」实物配置框图 (6)2.2工作状态 (7)2.3测试组网 (7)2.4结构描述 (7)2.5单板配置 (7)2.6接口及接口电缆配置 (7)2.7抗扰度说明 (8)2.7」监控信息 (8)2.7.2抗扰度判据 (8)3总结和评价 (8)3.1测试充分性评价 (8)3.2测试差异说明 (8)3.3测试项目通过清单 (9)3.4问题及相关对策 (9)341问题描述 (9)3.4.2对策描述 (10)4测试内容........................................................................ 1() 4.1电磁骚扰测试. (10)4丄1测试任务1——辐射骚扰测试(RE) (10)4.1.2测试任务2—传导骚扰测试(CE) (13)4.1.3测试任务3 ------ 谐波电流骚扰测试(Harmonic) (16)4.1.4测试任务4 -------- 电压波动与闪烁测试(Fluctuations and flicker) (17)4.2电磁抗扰度测试 (18)4.2.1测试任务1——射频电磁场辐射抗扰度测试(RS) (18)4.2.2测试任务2——传导骚扰抗扰度测试(CS) (19)4.2.3测试任务3——电快速瞬变脉冲群抗扰度测试(EFT/B) (21)424测试任务4——静电放电抗扰度测试(ESD) (22)4.2.5测试任务5 ------ 电压跌落、短时中断与电压缓变抗扰度测试(DlP/interruption ) (24)4.2.6测试任务6——浪涌抗扰度测试(SURGE) (25)4.2.7测试任务7——工频磁场抗扰度测试(PMS) (29)附录一:相关测试仪器信息 (32)附录二:测试仪器不确定度: (34)附录三:骚扰测试Illi线和数据: (35)附录四:测试布置照片: .......................................... 错误!未定义书签。
车辆零部件EMC瞬态传导试验(某公司培训资料)
随着汽车车载电子产品种类越来越多,加之许多重要的监视、控制系统功能为电子装置所代替,车辆安全行驶的性能也就与其工作的电磁环境密切联系了起来。
也就或其零部件的EMS 能力若太低,一旦受到内部或外部的电磁骚扰,轻者可能影响产品性能,重者则可能直接影响行车安全,致使人员损伤。
由于车辆及其零部件对安全性能要求非常高的特殊性,车辆的EMC标准的严酷程度往往高于一般电子产品数倍以上。
EMS 试验法是以外加骚扰能量到被测设备上的方式,来判定被测设备的抗扰度能力。
不同的干扰能量,须通过各种不同的试验方法,选择适合的耦合方式,才能将能量顺利的耦合到被测设备上。
外加干扰能量的传递路径主要分为辐射性与传导性两种,辐射性干扰是指骚扰能量不经由任何传输介质作为媒介,由空中传递到DUT (Device Under Test)或是DUT 的线路(电源及信号线路),而传导性干扰则是经由电源线或信号线等线路,直接将干扰能量耦合或注入到DUT 或线路上。
外加骚扰能量的型态包含连续波与瞬态波两种,再依辐射性与传导性这两种耦合方式。
可将抗扰度试验方法细分为连续波(Continue Wave)传导、连续波辐射、瞬态传导(Transiet)及静电放电(ESD)四大类.本文主要介绍瞬态传导抗扰度试验的标准、试验方法和在大量的对具体车辆电子零部件进行的试验过程中发现的问题。
(一)特性说明瞬态现象发生的原因是一稳定的系统突然发生变化(稳态的改变:由一稳定状态突然改变至另一稳定状态)所引起的现象,在变化的过程中会产生瞬间、短暂的电流或电压脉冲现象,其瞬间脉冲的延续时间极短,从毫秒至微秒不等。
一般而言,瞬态现象会发生于车辆的线束上,大致可区分为感性负载变化、交流电源供应延迟、抛负载脉冲、切换过程所产生的瞬态波及供电电压下降等。
若以传输线理论来分析瞬态现象,可得知瞬间脉冲的发生与供应电压大小无关,供应电压大小仅与瞬间脉冲的振幅大小有关,并不是造成瞬间脉冲原因,瞬间脉冲发生的原因与稳态的改变、线束的电感及其分布电容、感性负载所造成的干扰信号有关,甚至线束的长度也会影响脉冲的宽度,一般常见之电抗性负载代表性产品如表2所示。
EMC保护电路简介及电路应用
EMC保护电路简介及电路应用电磁兼容性EMC(Electro MagneTIc CompaTIbility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
一、EMC保护电路隔离因为信号电路无法承受千伏级电压,这种干扰必须排除在输入电路之前,可以将其转变成电流信号、然后转化成热量消耗掉。
地回路电流可以进入接口并流过整个电路,一般需要电流隔离。
在连接线较长或地回路电流较大的工业系统中,隔离是一种行之有效的办法。
一个峰值为30A的ESD脉冲在地线上会产生几十豪伏的电阻压降,但是它陡峭的上升时间(30A/ns)可以在同样的线路上产生高达几百伏的感应电压,足以导致错误数据的产生,如此高的频率将产生集肤效应,使线电阻显着增加。
为了抵消这种效应,需要采用大面积接地以获得低阻特性。
快速上升脉冲将产生FTB和ESD干扰,通过电容耦合到低噪声区域。
在解决这个问题时,经常有人错误地在主电源变压器上增加额外的绕组来提供一个隔离的电源,这种方法只能导致干扰进一步扩散,使整个电路受到影响。
气体放电管一种充满氖气的蝶形电容器。
电压超过100V时产生一个等离子区能够限制最高电压,它可以承受较大的电流,具有较小的漏电流,气体放电管可吸收高压瞬态脉冲。
压敏电阻器一种由金属氧化物(主要为锌)制成的保护器件。
它的功能近似于齐纳二极管,响应速度比气体放电管快,但漏电流比较高,尤其是在信号接近于钳位电压时。
Transzorb二极管用于限制低压信号的快速瞬变,其功率耗散能力受其尺寸的制约。
同压敏电阻类似,在接。
电动机EMC
电动机EMC基于电动汽车的特点和应用要求,对车用电机驱动系统电磁骚扰特性及传播机制进行了分析,采用骚扰源抑制、系统接地、电磁屏蔽、系统合理布局等措施实现了系统电磁兼容性能的有效提升。
文中给出的整改方案已应用于某款纯电动汽车,满足了国标要求,证明文中给出的电磁兼容方案是行之有效的。
电动汽车上的电力电子变换装置无论数量还是功率都远远超过传统汽车,电磁兼容问题的严重性和复杂性也远高于传统汽车。
电机驱动系统是电动汽车的三大关键系统之一,也是最重要的功率变换装置,其电磁兼容性能(electromagneTIcpaTIbility,简称为EMC)不仅关系到自身的工作可靠性,而且会影响整车的安全运行能力和工作可靠性。
从目前已有的电动汽车整车产品的检测过程来看,大部分车型都是经过多次整改才能够达到国标的相关规定。
鉴于电磁兼容问题的重要性,基于电磁骚扰耦合和传播的一般机制,本文给出了电动汽车用电机驱动系统的电磁兼容分析及解决方案,并给出了电磁兼容的测试结果。
1 车用电机驱动系统电磁骚扰分析车用电机驱动系统的电机控制器由主回路、控制电路、机箱、散热器、电缆等几部分组成。
其中主回路的主要部件为功率模块,如IPM或IGBT等,是控制器的主要骚扰源,而平行双线组成环路的电感。
(1)式中:s为平行双线的间隔;r为导线半径。
在高频的开关频率(几十kHz)下,产生很高的du和di,与直流母线的杂散电感相作用将产生很高的电流尖峰;而车用电机控制器的母线电压一般为上百伏,故在产生PWM波的同时伴有很高的电压峰值,这必然将带来严重的电磁骚扰噪声,通过近场和远场耦合形成传导和辐射骚扰。
控制电路产生的PWM 信号以及输出的高频时钟脉冲波也会产生差模和共模辐射,但其辐射水平较低,产生的电磁骚扰一般较小。
机箱的屏蔽性差也会带来电磁泄漏产生电磁骚扰。
散热器会产生电磁振荡,散热片通常具有复杂的几何形状,具有多频带的RF辐射特性,很可能对开关频率谐波起到辐射天线作用。
电磁兼容(EMC)基础知识全面详解
电磁兼容(EMC)基础知识全⾯详解⼀、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility) 对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为⼀门学科来说,应该译为“电磁兼容”。
国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常⼯作且不对该环境中任何事物构成不能承受的电磁骚扰的能⼒。
” 简单的说,就是抗⼲扰的能⼒和对外骚扰的程度。
电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种⽤电设备(分系统、系统;⼴义的还包括⽣物体)可以共存并不致引起降级的⼀门科学。
⼆、基本概念Electromagnetic compatibility(EMC)电磁相容—电⼦产品能够在⼀电磁环境中⼯作⽽不会降低功能或损害之能⼒;Electromagnetic interference(EMI)电磁⼲扰—电⼦产品之电磁能量经由传导或辐射之⽅式传播出去的过程;由⼲扰源、耦合通道及被⼲扰接收机三要素组成。
Radio frequency(RF)⽆线电频率,射頻—通訊所⽤的频率范围,⼤约是10kHz 到100GHz。
这些能量可以是有意产⽣的,如⽆限电传发射器,或者是被电⼦产品⽆意产⽣的;RF能量经由两种模式传播: Radiated emissions(RE)—此种RF 能量的电磁场经由媒介⽽传输;RF 能量⼀般在⾃由空间(free space)內传播,然⽽,其他种类也有可能发⽣。
Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介⽽传播,⼀般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。
Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。
Immunity 免疫⼒—⼀相对的测量产品承受EMI的能⼒;Electrical overstress(EOS)电⼦过度⾼压—当遇到⾼压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。
emc中的线注入法的高低压耦合
emc中的线注入法的高低压耦合EMC(Electromagnetic Compatibility,电磁兼容性)是指电子设备在特定的工作环境中,能够在不产生或接受过多干扰的情况下正常工作的能力。
而线注入法则是EMC测试中的一种方法,用于评估设备在高低压耦合条件下的抗干扰能力。
高低压耦合是指设备在工作过程中会受到来自电源线路的干扰。
这种干扰可能来自于电源线路上的瞬态电压、电流干扰等。
为了保证设备在实际使用中能够正常工作,需要对设备进行高低压耦合测试,以评估设备的抗干扰能力。
线注入法是一种常用的高低压耦合测试方法,其原理是通过在设备的电源线上注入干扰信号,模拟实际工作环境中可能出现的电源线干扰情况。
通过对设备在不同注入干扰信号情况下的工作状态进行观察和记录,可以评估设备的抗干扰能力。
线注入法的测试步骤如下:需要确定测试所需的注入信号参数,包括注入信号的频率、幅度、波形等。
这些参数应根据设备的实际使用环境和相关标准的要求来确定。
然后,需要选择合适的注入设备和测试设备。
注入设备用于产生干扰信号,而测试设备用于观察和记录设备在干扰信号注入时的工作状态。
接下来,将注入设备与测试设备连接起来。
通常情况下,注入设备会通过一个耦合网络与测试设备的电源线相连。
耦合网络可以起到过滤和调整注入信号的作用,以确保注入信号能够准确地传输到测试设备中。
然后,进行干扰信号注入测试。
通过调节注入设备的参数,使其产生符合要求的干扰信号,并将其注入到测试设备的电源线中。
同时,观察和记录测试设备在不同干扰信号注入情况下的工作状态,包括设备的输出信号质量、工作稳定性等。
根据测试结果进行评估和分析。
根据设备在不同干扰信号注入情况下的工作状态,可以评估设备的抗干扰能力,并对设备进行改进和优化,以提高其电磁兼容性。
线注入法是一种简便有效的高低压耦合测试方法,可以帮助设备制造商评估设备的抗干扰能力,并根据测试结果进行相应的改进和优化。
通过进行线注入法测试,可以确保设备在实际工作环境中能够正常工作,减少电磁干扰对设备性能的影响,提高设备的可靠性和稳定性。
(完整word)EMC整改秘籍(有实例)
EMC整改步骤之一前言电磁干扰的观念与防制﹐在国内已逐渐受到重视。
虽然目前国内并无严格管制电子产品的电磁干扰(EMI)﹐但由于欧美各国多已实施电磁干扰的要求﹐加上数字产品的普遍使用﹐对电磁干扰的要求已是刻不容缓的事情。
笔者由于工作的关系﹐经常遇到许多产品已完成成品设计﹐因无法通过EMI测试﹐而使设计工程师花费许多时间和精力投入EMI的修改﹐由于属于事后的补救﹐往往投入许多时间与金钱﹐甚而影响了产品上市的时机2.正确的诊断要解决产品上的EMI问题﹐若能在产品设计之初便加以考虑﹐则可以节省事后再投入许多时间与金钱。
由于目前EMI Design—in的观念并不是十分普遍﹐而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在﹐所以如何正确的诊断EMI问题﹐对于设计工程师及EMI工程师是非常重要的。
事实上﹐我们如果把EMI当做一种疾病﹐当然平时的预防保养是很重要的﹐而一旦有疾病则正确的诊断﹐才能得到快速的痊愈﹐没有正确的诊断﹐找不到病症的源头﹐往往事倍功半而拖延费时.故在EMI的问题上﹐常常看到一个EMI有问题的产品﹐由于未能找到造成EMI问题的关键﹐花了许多时间﹐下了许多对策﹐却始终无法解决﹐其中亦不乏专业的EMI工程师。
以往谈到EMI往往强调对策方法﹐甚而视许多对策秘决或绝招﹐然而没有正确的诊断﹐而在产品上加了一大堆EMI抑制组件﹐其结果往往只会使EMI情况更糟。
笔者起初接触产品EMI对策修改时﹐会听到资深EMI工程师说把所有EMI对策拿掉﹐就可以通过测试。
初听以为是句玩笑话﹐如今回想这是很宝贵的经验谈.而后亦听到许多EMI工程师谈到类似的经验。
本文中将举出实际的例子﹐让读者更加了解EMI的对策观念。
一般提到如何解决EMI问题﹐大多说是case by case,当然从对策上而言﹐每一个产品的特性及电路板布线(layout)情况不同﹐故无法用几套方法而解决所有EMI的问题﹐但是长久以来﹐我们一直想要把处理EMI 问题并做适当的对策﹐另外也提供专业的EMI工程师一种参考方法.在此我们把电磁干扰与对策的一些心得经验整理﹐希望能对读者有些帮助。
2023年emc传导要求
2023年emc传导要求
EMC传导测试是评估电子设备在电磁环境中的性能和符合性的重要手段。
对于2023年的EMC传导要求,具体标准可能会有所不同,但一般来说,传导测试主要关注的是设备在正常工作状态下,通过电源线和信号线等传导干扰的发射和抗扰度能力。
在进行传导测试时,通常会涉及到以下几个方面的要求:
1. 频段覆盖:测试的频段范围应该覆盖设备可能产生和接收的电磁波频率,例如常见的频段包括:低频、中频、高频等。
2. 干扰源:测试时需要模拟不同类型和不同强度的干扰源,例如电源线上的共模和差模干扰、信号线上的串扰干扰等。
3. 测试等级:根据设备的使用环境和性能要求,测试等级会有所不同。
一般来说,传导测试的等级越高,要求的测试精度和抗扰度能力就越强。
4. 测试方法:根据具体的标准要求,传导测试可以采用不同的测试方法,例如:注入测试、场强测试、功率辐射测试等。
5. 限值要求:对于传导干扰的发射和抗扰度能力,通
常会有一定的限值要求。
测试结果需要与限值进行比较,以评估设备的符合性。
在进行EMC传导测试时,建议遵循相关的国际标准和规范,同时结合具体的产品要求和标准,选择合适的测试方法和要求。
EMI,EMS,EMC
EMI电磁干扰(EMI) 英文:(Electro Magnetic Interference)是干扰电缆信号并降低信号完好性的电子噪音,EMI通常由电磁辐射发生源如马达和机器产生的。
种类电磁干扰EMI(Electromagnetic Interference),有传导干扰和辐射干扰两种。
传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。
辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。
在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。
所谓“干扰”,电磁兼容指设备受到干扰后性能降低以及对设备产生干扰的干扰源这二层意思。
第一层意思如雷电使收音机产生杂音,摩托车在附近行驶后电视画面出现雪花,拿起电话后听到无线电声音等,这些可以简称其为与“BC I” “TV I” “Tel I”,这些缩写中都有相同的“I”(干扰)(BC:广播)那么EMI标准和EMI检测是EMI的哪部分呢?理所当然是第二层含义,即干扰源,也包括受到干扰之前的电磁能量。
其次是“电磁”。
电荷如果静止,称为静电。
当不同的电位向一致移动时,便发生了静电放电,产生电流,电流周围产生磁场。
如果电流的方向和大小持续不断变化就产生了电磁波。
电以各种状态存在,我们把这些所有状态统称为电磁。
所以EMI标准和EMI检测是确定所处理的电的状态,决定如何检测,如何评价。
电磁干扰三要素1.电磁干扰源电磁干扰源包括微处理器、微控制器、传送器、静电放电和瞬时功率执行元件,如机电式继电器、开关电源、雷电等。
在微控制器系统中,时钟电路是最大的宽带噪声发生器,而这个噪声被扩散到了整个频谱。
随着大量的高速半导体器件的发展,其边沿跳变速率很快,这种电路将产生高达300 MHz的谐波干扰。
2.耦合路径噪声被耦合到电路中最容易被通过的导体传递,如图所示为分析电磁干扰机制。
EMI EMC EMS分析讲解
EMI EMC EMS分析讲解电磁干扰(EMI)和电磁兼容性(EMC)是全球电子设备产品开发和监管测试的重要术语。
电子产品是封闭系统是一种常见的误解。
然而,任何电子设备都会产生一定量的电磁辐射,并且从未完全包含在电路和电线中流过这些系统的电流。
这些设备发出的能量,称为电磁辐射,可以通过空气循环甚至通过电缆传导,这通常被称为“干扰电压”。
在向市场推出产品时,产品必须经受各种行业级测试,其中分析EMI和EMC水平以确保产品符合要求。
EMC 包括EMI(interference)和EMS(susceptibility),也就是电磁干扰和电磁抗干扰。
1.EMI,电磁干扰度,描述电子、电气产品在正常工作状态下对外界的干扰;EMI又包括传导干扰CE(conduction emission)和辐射干扰RE(radiation emission)以及谐波harmonic。
2.EMS,电磁抗干扰度,描述一电子或电气产品是否会受其周围环境或同一电气环境内其它电子或电气产品的干扰而影响其自身的正常工作。
EMS又包括静电抗干扰ESD,传导抗干扰CS,辐射抗干扰RS,电快速瞬变脉冲群抗扰度EFT,浪涌抗扰度Surge,电压暂降抗扰度Voltage DIP and Interrupt,等等相关项目。
3.EMC=EMI+EMS电磁干扰(Electromagnetic Interference 简称EMI),直译是电磁干扰。
这是合成词,我们应该分别考虑"电磁"和"干扰"。
是指电磁波与电子元件作用后而产生的干扰现象,有传导干扰和辐射干扰两种。
所谓“干扰”,指设备受到干扰后性能降低以及对设备产生干扰的干扰源这二层意思。
第一层意思如雷电使收音机产生杂音,摩托车在附近行驶后电视画面出现雪花,拿起电话后听到无线电声音等,这些可以简称其为与“BC I”“TV I”“Tel I”,这些缩写中都有相同的“I”(干扰)(BC:广播)1.EMI被定义为干扰和影响电子设备功能的电磁能量。
emc磁环的工作原理及应用
EMC磁环的工作原理及应用1. 简介在电子设备以及电磁环境中,电磁兼容(Electromagnetic Compatibility,缩写为EMC)是指电子设备在特定电磁环境下能够共存并正常工作的能力。
EMC磁环是一种常用于电磁屏蔽的器件,用于控制和减小电磁干扰的产生和传播。
本文将介绍EMC磁环的工作原理及其应用。
2. 工作原理EMC磁环利用电磁感应的原理来实现电磁屏蔽。
其工作原理可以概括为以下几个方面:2.1 领域取消EMC磁环利用自身特殊的结构设计,在特定的频率范围内产生与干扰磁场大小和方向相反的磁场,从而相互抵消,达到减小或消除电磁干扰的效果。
2.2 回路的磁屏蔽EMC磁环通过围绕干扰源或对电子设备进行环绕,形成一个磁屏蔽回路,将外部磁场的影响降至最低。
其工作原理为:当外部磁场作用在磁环上时,磁环内部产生的磁场与外部磁场相互作用,从而减小或消除外部磁场对电子设备的影响。
2.3 材料选择EMC磁环的材料选择十分关键,常见的材料有镍锌铁氧体、铁氧体、薄膜磁体等。
不同的材料具有不同的磁导率特性,可以选择适合具体应用场景的材料,提高EMC磁环的工作效果。
3. 应用EMC磁环广泛应用于各种电子设备、通信系统以及电磁屏蔽场合。
以下是EMC磁环的几个主要应用领域:3.1 电子设备在各种电子设备中,为了保证设备的正常工作,降低设备之间的电磁干扰,常常使用EMC磁环进行电磁屏蔽。
例如,在计算机主板、手机通讯模块等设备中,通过在敏感电路周围放置磁环,可以有效地减少干扰源对敏感电路的影响,提高设备的抗干扰能力。
3.2 通信系统在通信基站、无线电设备等通信系统中,EMC磁环常常被用于屏蔽设备之间的电磁干扰,保证信号的良好传输质量。
通过在信号传输线路上放置EMC磁环,可以有效地减小信号线路之间的串扰与交叉耦合,提高通信系统的稳定性和可靠性。
3.3 电磁屏蔽场合在一些对电磁屏蔽要求较高的场合,EMC磁环被广泛应用于电磁屏蔽结构的构建中。
EMC问题三要素
EMC问题三要素EMC问题三要素开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会产生很强的辐射。
电磁干扰包括辐射型(高频) EMI、传导型(低频)EMI,即产生EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合途径、敏感设备。
辐射干扰主要通过壳体和连接线以电磁波形式污染空间电磁环境;传导干扰是通过电源线骚扰公共电网或通过其他端子(如:射频端子,输入端子)影响相连接的设备。
传导、辐射骚扰源-----------------------------(途径)------------------------------ 敏感受体电感导线绕在磁环上是啥意思啊这种磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈电感线圈),它是电子电路中常用的抗干扰元件,高频噪声有很好的屏蔽作用,故被称为吸收磁环,通常使用铁氧体材料制成,又称铁氧体磁环(简称磁环)。
上面为一体式磁环,为带安装夹的磁环。
磁环在不同的频率下有不同的阻抗特牲。
在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。
大家都知道,信号频率越高,越辐射出去,而的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在传输的信号上,甚至会改变传输的有用信号,严重干扰电子设备的正常工作,降低电子设备的电磁干扰(EM)已经是考虑的问题。
在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。
串激电机的电磁兼容串激电机是含有整流子和电刷的电机,当电刷将相邻的整流片短接的时候,与整流子相连的绕组中有短路电流流过,紧接着电刷很快转入断开状态,在此瞬间将产生火花放电骚扰,这个过程是个重复转换过程,产生的骚扰具有很宽的频带,辐射能量最强的频率通常在10~15KHz范围内。
其高频部分可达300MHz以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容传导耦合理论及其应用学生张**年级2010级班级0210** 班学号021012**专业电子信息工程学院电子工程学院西安电子科技大学2013年5月电磁兼容传导耦合原理及其应用张**摘要:本文就现实中普遍存在的电子,电气设备电磁骚扰现象引发的电磁干扰出发,先介绍了电磁兼容这个学科的发展及意义,然后重点介绍了电磁干扰耦合传输理论。
最后从传导耦合和辐射耦合两个方面并结合相关案例分析如何在这两个耦合途径上减少电磁干扰的发生。
关键词:电磁兼容传输耦合传导耦合辐射耦合目录引言 (1)第一章电磁兼容发展及意义 (1)1.1电磁兼容技术的发展 (1)1.2 电磁兼容的地位和意义 (1)第二章电磁干扰耦合传输理论 (1)2.1传导耦合 (2)2.2 辐射耦合 (2)第三章传导耦合理论应用实例及分析 (2)3.1电力线载波 (3)3.2 变频器 (3)3.2抑制传导干扰的有效办法 (4)第四章辐射耦合理论应用实例及分析 (5)3.1雷电电磁辐射对微电子设备的影响 (5)3.2感性负载的瞬态噪声抑制及其触点的保护 (5)3.2抑制辐射干扰的有效办法 (5)第五章结束语 (6)参考文献 (7)引言随着现代科学技术的发展,各种电子,电气设备不仅数量及种类不断增加,而且向小型化,数字化,高速化和网络化的方向高速发展,然而电子,电气设备在正常工作时还会产生一些有用无用的电磁能量,影响其他设备,系统或者生物,使得电磁环境日益复杂,造成了电磁污染,形成电磁骚扰。
电磁骚扰有可能使电气,电子设备和系统的工作性偏离预期,产生误差。
严重时还会摧毁电气电子设备,危害人体。
正是在这种背景下,电磁兼容性设计成为了现代工程设计中的重要组成部分。
第一章电磁兼容发展及意义1.电磁兼容技术的发展电磁兼容是指“设备在共同的电磁环境中能一起执行各自功能的共存状态,即该设备不会由于受到处于同一电磁环境中的其他设备的电磁发射导致或遭受不允许的降级,它也不会使同一电磁环境中其它设备因受其电磁发射而导致或遭受不允许的降级。
1881年英国科学家希维赛德发表了“论干扰”的文章,标志着电磁兼容性研究的开端,1889年英国邮电部门研究了通信中的干扰问题,使电磁兼容性研究开始走向工程化,1944年德国电气工程师协会制订了世界上第一个电磁兼容性规范VDE0878,1945年美国颁布了第一个电磁兼容性军用规范JAN-I-225。
世界多数发达国家早已开始以法令、法规形式进行管理控制,在我国电磁兼容理论和技术的研究起步较晚,从1983年开始陆续颁布了一系列有关电磁兼容性标准和规范。
自此以后,电磁兼容技术迅速发展成为非常活跃的学科领域之一。
2.电磁兼容的地位及意义经验证明,如果记在产品开发阶段解决电磁干扰问题的费用为1个单位,那么等到产品设计定型后再解决其问题,费用将增加10倍;而到产品批量生产后再解决时,费用将增加100倍;到用户发现问题后才解决时,费用可能高达1000倍。
而在产品开发阶段同时进行电磁兼容性设计,就可望把80%~90%的电磁兼容性问题解决在产品定型之前。
只按常规进行产品功能设计,不仅在技术上带来一系列的难题,而且还会造成人力、财力的极大浪费。
就产品本身功能和市场占有而言,电磁兼容性设计的意义也是不可估量的。
其一,电子设备工作的可靠性依赖于其电磁抗干扰性。
电磁兼容性表征电子设备在电磁环境中正常工作的能力。
其二,电子设备国内外市场的开拓需要其具有良好的电磁兼容性。
电磁兼容性达标认证已由一个国家范围向全球地区发展,成为一个国际标准。
其三,安全因素,存在电磁辐射的电子产品可能会引起如设备误操作、通讯设施电磁泄密、电爆装置误爆、误燃等危险。
第二章电磁干扰耦合传输理论产生电磁干扰三要素:电磁干扰源,干扰传播途径,敏感设备。
由此可知,任何电磁干扰的产生必然存在电磁骚扰(或者骚扰电磁能量)的耦合与传输途径。
这里,耦合的概念指的是电路、设备、系统与其它电路、设备、系统之间的电磁量联系,耦合起着把电磁能量从一个电路、设备、系统“传输”到另一个电路、设备、系统的作用。
耦合途径是从各种电磁骚扰源传输电磁骚扰至敏感设备的通路或媒介。
耦合途径主要有两种方式,传导耦合和辐射耦合。
1. 传导耦合传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。
传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。
传导耦合的连接电路包括互连导线、电源线、信号线、接地导体、设备的导电构件、公共阻抗、电路元器件等。
传导耦合按其耦合方式划分三种基本方式:① 电路性耦合是最常见、最简单的传导耦合方式。
当电路1有电压U 1作用时,该电压经Z 1加到公共阻抗Z 12上。
当电路2开路时,电路1耦合到电路2的电压为1221112Z U =U Z +Z 若公共阻抗Z 12中不含电抗元件时为共电阻耦合,简称为电阻性耦合。
② 电容性耦合也称为电耦合,它是由两电路间的电场相互作用所引起。
③ 电感性耦合也称为磁耦合,它是由两电路间的磁场相互作用所引起。
当电流I在闭合电路中流动时,该电流就会产生与此电流成正比的磁通量。
该磁通量 与电流I 的比值称为电感。
电感的取决于电路的几何形状和包含场的媒质的磁特性。
2. 辐射耦合辐射耦合是电磁骚扰通过其周围的媒介以电磁波的形式向外传播,骚扰电磁能量按电磁场的规律向周围空间发射。
辐射耦合的途径主要有天线、电缆、导线、机壳的发射对组合。
通常将辐射耦合划分为三种:① 天线与天线的耦合,指的是天线 A 发射的电磁波被另一天线B 无意接收,从而导致天线A 对天线B 产生功能性电磁干扰;② 场与线的耦合,指的是空间电磁场对存在于其中的导线实施感应耦合,从而在导线上形成分布电磁骚扰源;③ 与线的感应耦合,指的是导线之间以及某些部件之间的高频感应耦合。
第三章 传导耦合理论应用实例及分析根据上文对传导耦合传输理论的研究,现结合案例分析传导电磁干扰及其解决办法。
1. 电力线载波(以下简称PLC)1) 案例一:某岗位用了某公司的PLC 模块采集信号,在同一通讯线上放了5个模块,使用过程中模块通讯会中断,重上电后会正常,但很快通讯又中断。
分析如下:1) 从现场看,模块24VDC 供电从电源模块接出,性能稳定,排除电源引起干扰的情况。
2) PLC 数采模块大部分接Pt100, K 型、I 型热电偶信号,观察控制柜内进线排,电缆统一采用了屏蔽双绞线,且屏蔽端编辫接到接地排上,由现场接地网统一接地。
现场干扰应能屏蔽。
为确保起见,将模块接线端子拔除,观察模块通讯状况未变,排除干扰由信号端引起的可能。
3)将控制柜内线槽盖板打开,发现模块间通讯线采用二根单线,无接地,线槽布线较乱,有可能产生干扰.从以上分析后发现问题可能出在模块间通讯线上,解决办法是将通讯线换成屏蔽双绞线,屏蔽端接地,经实际更换后,通讯正常。
2)案例二:华鲁恒升化工股份有限公司一水处理岗位采用西门子公司的S7-300系统的模拟量模块采集变频器信号,正常连接后不能正常显示。
经检测发现信号端对地有很高的交流电压,所以判断信号线路受干扰,产生10V以上的杂波而干扰模拟量模块工作。
处理如下:1)信号电缆采用质量可靠的屏蔽电缆,且在PLC侧单端接地。
2)电流变送器侧增加隔离式安全栅。
经以上处理后,PLC工作正常,数值显示稳定可靠。
PLC主要通过电源和信号线引入,通常为传导干扰。
这种干扰在我国工业现场较严重。
1)来自电源的干扰PLC系统的正常供电电源均由电网供电。
由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。
尤其是电网内部的变化,例如:开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。
PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。
实际上,由于分布参数特别是分布电容的存在,绝对隔离是不可能的。
2)来自信号线引入的干扰与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。
此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。
由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。
对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。
PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。
3)来自接地系统混乱时的干扰接地是提高电子设备电磁兼容性(EMC)的有效手段之一。
正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。
2.变频器变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。
在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。
在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM 的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。
同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。
另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。
解决措施:1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。
2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。
抑制传导干扰的有效办法:1.传导干扰源的处理1)如果传导干扰源是产生强电磁场元件,如线圈、变压器等,在布置时应远离接收器加以屏蔽。
2)如果传导干扰源是频率相同的电路,如接收机的高频放大、输入及振荡电路,它们之间的交链容易引起自激振荡,因此布置应相隔远些。
3)移去对系统工作无用的、有潜在的干扰设备的电源。
4)应尽可能使设备工作在设计曲线线性最好的部分,以便输出所含谐波分量最小。
5)如果干扰源的工作波形是脉冲形状,因为当脉冲上升沿较慢且持续时间较长时,产生的电磁干扰最小,随着脉冲宽度的减小且上升时间缩短,脉冲中的高频成分的幅度将增加。
所以一个控制装置或其他脉冲的上升时间只需快到能在指定的时间内保证可靠工作即可。
不要使振荡器和开关器件的工作速度高于性能所需要的速度。