2018版高中数学专题02频率分布直方图及其应用分项汇编(含解析).pdf
高中数学总结归纳 帮你理解频率分布直方图
帮你理解频率分布直方图通过频率分布表,我们可以确切地知道数据分布在各个不同区间的频率,而通过频率分布直方图我们可以直观地看出数据分布的总体态势,两者相互补充,可以使我们对数据的频率分布情况了解的更加清楚,但在画频率分布直方图时,一定要注意其纵轴的意义.例给出如下样本数据:10,8,6,10,8,13,11,10,12,7,8,9,11,9,11,12,9,10,11,12,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中作出频率分布直方图.错解:(1)频率分布表如下:12(2)频率分布直方图如下:剖析:以上第(2)问的频率分布直方图画错了.原因在于纵轴单位是,而不是频率.例如当数据在[9.5,11.5)时,频率为0.4,而频率组距0.40.22==.故图中最高的这个矩形的高度应为0.2个单位,而不是0.4个单位,其他小矩形的高度可依此求出来. 正解:(1)同上.(2)频率分布直方图如下:[)11.513.5, 4 0.2 合计201.0点悟:频率分布直方图中,各个小长方形的面积等于相应各组的频率,因为各组频率之和为1,故所有长方形面积之和等于1.根据这一点,也可以判断你画出的频率分布直方图是否正确.练习:为了了解某校高三年级男生的身高情况,随机抽取40名高三男生的身高,所得数据如下(单位:cm):171,163,163,166,166,168,168,160,168,165,171,169,167,169,151,168,170,160,168,174,165,168,174,159,167,156,157,164,169,180,176,157,162,161,158,164,163,163,167,161.(1)列出频率分布表;(2)画出频率分布直方图.提示:确定组距和组数是解决该类问题的出发点.只有科学合理的确定组距和组数,才能准确的制表及绘图.3。
(学习指导) 频率分布直方图Word版含解析
3.2频率分布直方图学习目标核心素养1.学会用频率分布表,画频率分布直方图表示样本数据.(重点)2.能通过频率分布表或频率分布直方图对数据做出总体统计.(难点、易混点)1.通过对频率分布直方图画法的学习,培养数据分析素养.2.通过与频率分布直方图有关的计算,培养数学运算素养.频率分布直方图中每个矩形的底边长是该组的组距,矩形的高是该组的频率与组距的比,从而矩形的面积等于这个组的频率,即矩形的面积=组距×频率组距=频率.我们把这样的图叫作频率分布直方图.频率分布直方图以面积的形式反映了数据落在各个小组的频率的大小.2.频率分布直方图的应用当考虑数据落在若干个组内的频率之和时,可以用相应矩形面积之和来表示.3.画频率分布直方图的步骤(1)计算极差:即一组数据中最大值和最小值的差;(2)确定组距与组数:当数据在120个以内时,通常按照数据的多少分成5~12组,在实际操作中,一般要求各组的组距相等.(3)分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间.(4)列表:一般分四列:宽度分组、频数、频率、频率组距.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率组距组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×频率组距=频率.4.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.有时也用它来估计总体的分布情况.随着样本容量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.思考:1.为什么需要用频率分布直方图对原始数据进行整理?[提示]因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息.正因为如此我们才用频率分布直方图来整理数据.2.为什么要对样本数据进行分组?[提示]不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20B.30C.40D.50B[样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.]2.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是()A.5.5~7.5 B.7.5~9.5C.9.5~11.5 D.11.5~13.5D[由题意知,共20个数据,频率为0.2,在此范围内的数据有20×0.2=4个,只有在11.5~13.5范围内有4个数据:13,12,12,12,故选D.]3.某地为了了解该地区10 000户家庭的用电情况,采用分层随机抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图如图所示,则该地区10 000户家庭中月平均用电度数在[70,80)的家庭有________户.1 200[根据频率分布直方图得该地区10 000户家庭中月平均用电度数在[70,80)的家庭有10 000×0.012×10=1 200(户).]频率分布直方图的绘制【例1】考察某校初二年级男生的身高,随机抽取40名初二男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图和频率折线图.[解](1)最低身高151,最高身高180,它们的极差为180-151=29.确定组距为3,组数为10,列表如下:(2)频率分布直方图和频率折线图如图所示.绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率组距”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“0.1”,则若一个组的频率组距为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.[跟进训练]1.如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233区间界限[142,146)[146,150)[150,154)[154,158]人数201165(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.[解](1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.频率分布直方图的应用【例2】为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解](1)第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.频率分布直方图的性质(1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)样本容量=频数相应的频率.[跟进训练]2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140D[由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]频率分布与数字特征的综合应用[探究问题]1.什么是一组数据的众数,中位数,平均数?提示:设一组数据为x1,x2,…,x n,则其中出现次数最多的数是众数,把这n个数据按照从小到大的顺序排列,最“中间”的数就是中位数,即当n为奇数时,中间的一个数就是本组数据的中位数;当n为偶数时,中间的两个数的平均数就是本组数据的中位数.本组数据的平均数x=x1+x2+…+x nn.2.如何利用频率分布直方图估计数据的众数、中位数和平均数?提示:(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.【例3】某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:(1)高一参赛学生成绩的众数、中位数;(2)高一参赛学生的平均成绩.[思路点拨](1)根据频率分布直方图的数据,最高小矩形的底边中点就是数据的众数,数据的中位数左右两边的面积和相等,都等于0.5;(2)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.[解](1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,x=55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67分.1.利用频率分布直方图估计数字特征(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2.当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.3.绘制频率分布直方图的步骤:(1)计算极差,(2)决定组距与组数,(3)分组,(4)列频率分布表,(5)绘制频率分布直方图.1.思考辨析(正确的画“√”,错误的画“×”)(1)频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.()(2)频率分布直方图中小矩形的面积表示该组的个体数.()(3)频率分布直方图中所有小长方形面积之和为1.()[提示](1)正确.(2)错误.频率分布直方图中小矩形的面积表示该组的频率.(3)正确.[答案](1)√(2)×(3)√2.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18C[志愿者的总人数为20(0.24+0.16)×1=50,所以第三组人数为50×0.36×1=18,所以有疗效的人数为18-6=12.]3.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________.1000.15[设参赛的人数为n,第二小组的频率为0.4,依题意40n=0.4,∴n=100,优秀的频率=0.10+0.05=0.15.]4.随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图所示.(1)求频率分布直方图中x的值及身高在170 cm以上的学生人数;(2)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A,B,C三个组,用分层随机抽样的方法从这三个组中抽取6人,求这三个组分别抽取的学生人数.[解](1)由频率分布直方图可知5×(0.01+0.02+0.04+x+0.07)=1,解得x=0.06.身高在170 cm以上的学生人数为100×(0.06×5+0.04×5+0.02×5)=60(人).(2)A组人数为100×0.06×5=30(人),B组人数为100×0.04×5=20(人),C组人数为100×0.02×5=10(人),由题意可知抽样比k=660=1 10,故应从A,B,C三组中分别抽取30×110=3(人),20×110=2(人),10×110=1(人).。
高考频率分布直方图知识点
高考频率分布直方图知识点高考题频率分布直方图知识点在学生的学习生涯中,高考是一个极为重要的里程碑。
为了能在高考中取得好成绩,学生们不仅要掌握各学科的基础知识,还需要熟悉高考题型和考点。
而对于数学科目来说,直方图是高考频率分布的一个重要知识点。
下面将以直方图为主题,讨论其相关知识点。
直方图是一种用来表示数据分布情况的图形。
它由一系列高度不等的矩形组成,每个矩形代表一个数据区间,高度表示该区间内数据的频数或频率。
首先,我们先来了解一下直方图的构成。
直方图的横轴通常表示数据的取值范围,纵轴表示频数或频率。
每个矩形的宽度可以根据数据的分布情况来确定,它们可以等宽也可以不等宽。
矩形的高度则代表了数据的频数或频率。
直方图的制作需要经过以下几个步骤。
首先,根据给定的数据集,将数据按照一定的区间进行分组。
一般来说,划分区间时需要保证每个区间的宽度相等,并且包含足够多的数据点。
然后,统计每个区间内的数据个数或频率,并将其绘制成对应高度的矩形。
最后,根据实际需要,可以给直方图添加标题和坐标轴标签等。
直方图不仅能够展示数据的分布情况,还可以帮助我们观察和分析数据的特征和规律。
通过观察直方图,我们可以了解到数据的集中趋势、离散程度以及异常值等重要信息。
比如,直方图的峰度可以反映数据的分布形态是平坦还是陡峭,而直方图的偏度可以反映数据的偏斜程度。
在考试中,直方图也被广泛应用于频率分布题目中。
考生需要根据给定的数据分布情况,回答一些与直方图相关的问题。
例如,考生可以根据直方图估计数据的平均值、中位数和众数等统计指标。
同时,直方图还可以帮助考生判断数据是否满足正态分布或其他特定分布形态。
此外,在解答与直方图相关的题目时,考生还需要熟悉直方图的性质和特点。
例如,直方图的面积表示数据的频数或频率总和。
而不同的数据分布形态会对直方图的形状产生影响。
当数据分布近似正态分布时,直方图呈现出钟形曲线,对称分布的数据则呈现出对称形状的直方图。
2018版高中数学第二章统计2.2.1用样本的频率分布估计总体分布课件新人教A版必修3
知识点一
频率分布表与频率分布直方图
1.用样本估计总体的两种情况 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征 估计总体的数字特征. 2.作频率分布直方图的步骤 (1)求极差:即一组数据中最大值 和 最小值 的差; (2)决定组距与组数:将数据分组时,组数应力求合适,以使数据的分
布规律能较清楚地呈现出来.这时应注意:①一般样本容量越大,所分
度曲线,如图所示.
知识点三
茎叶图 的一列数,叶就是从茎的 生长出来
1.定义:顾名思义,茎是指
的数.一般地,对于两位数茎叶图,中间的数字表示十位数,旁边的数
字表示个位数.
2.几种表示频率分布的方法的优点与不足: 优点 不足
频率分布
表
表示数量较确切 表示数据分布情况非常直观
分析数据分布的总体趋势不
方便
大小的,
4 因此第二小组的频率为 =0.08. 2+4+17+15+9+3 第二小组的频数 因为第二小组的频率= , 样本容量
第二小组的频数 12 所以样本容量= = =150. 第二小组的频率 0.08
解析答案
(2) 若次数在 110 以上 ( 含 110次 ) 为达标,则该校全体高一年级学生的达 标率约是多少?
9+15+10+y+18+24 又乙组数据的平均数为 =16.8, 5 ∴y=8,故选C.
解析答案
易错点
频率分布直方图的应用 为了解某地居民的月收入情况,一
例4
样本的频率分布直方图 如图所示(最后一组包含两端值,其他组 包含最小值,不包含最大值).现按月收入 分层,用分层抽样的方法在这20 000 人 中抽出200 人进一步调查,则月收入在 [1 500,2 000)(单位:元)的应抽取_____人.
高三数学频率直方图知识点
高三数学频率直方图知识点频率直方图是数学中常用的统计图表之一,用于展示一组数据的频率分布情况。
它通过将数据划分为若干个互不重叠的区间,并用柱状图表示每个区间的频率来展现数据的分布特征。
本文将介绍高三数学中频率直方图的相关知识点。
一、频率直方图的构成频率直方图由两个主要部分组成:横坐标和纵坐标。
横坐标表示数据的区间范围,纵坐标表示频数或频率。
二、频数与频率的区别频数是指数据落在每个区间内的个数,用符号f表示;频率是指频数与总样本量的比值,用符号f/n表示,其中n表示总样本量。
三、绘制频率直方图的步骤1. 确定数据的范围和区间宽度:根据数据的特点和要求,确定区间的范围和宽度,确保每个区间都有数据。
2. 划分区间:将数据按照范围和宽度进行划分,每个区间包含的数据个数即为频数。
3. 绘制坐标轴:横坐标表示区间范围,纵坐标表示频数或频率。
4. 绘制矩形柱状图:根据每个区间的频数或频率,在对应的横坐标上绘制矩形柱。
5. 添加图例和标题:为了清晰表达图表信息,添加图例和标题,说明数据的意义和来源。
四、理解频率直方图频率直方图可以直观地展示数据的分布情况。
柱状图的高度代表了每个区间的频数或频率,柱状图的宽度则代表了区间的宽度。
通过观察频率直方图,可以得知数据的集中程度、变异程度以及分布的偏态情况。
五、应用频率直方图的场景频率直方图在实际应用中具有广泛的应用场景。
例如,在市场调查中,可以利用频率直方图分析某一产品的销售数量分布,从而判断其受欢迎程度;在教育领域,可以通过频率直方图了解学生的考试成绩分布情况,帮助教师制定有针对性的教学计划。
六、总结频率直方图是一种有效的统计图表,能够直观地展示数据的分布特征。
通过学习频率直方图的构成和绘制步骤,我们可以更好地理解和分析数据,为实际问题的解决提供有力的支持。
在高三数学学习中,掌握频率直方图的相关知识点对于理解和应用统计学概念具有重要的意义。
《频率分布直方图》课件
欢迎来到本节课的《频率分布直方图》PPT课件。本课件将详细介绍频率分布 直方图的概念、数据收集、构建和解读,帮助您更好地理解和运用这一重要 统计工具。
课件目标
通过本课件,您将学习以下内容:
1 掌握频率分布直方图的定义和用途
2 了解数据收集的方法和重要性
3 学会如何整理数据以构建频率分布
直方图
4 掌握如何解读直方图并获取有用的
统计信息
频率分布直方图介绍
• 频率分布直方图是一种图表,用于显示数据的分布情况和频率。 • 直方图以数据的范围为横轴,频率为纵轴,通过矩形的高度来表示频率。 • 直方图可以帮助我们更直观地了解数据的分布特征和趋势。
数据收集
在构建频率分布直方图之前,我们需要收集一定数量的数据。
1 确定需要收集的数据类型和范围 2 选择合适的数据收集方法(例如调查、观察、实验等) 3 确保数据的准确性和完整性
数据整理
在构建频率分布直方图之前,我们需要对数据进行适当的整理和分类。
1 将收集到的数据进行排序
2 确定数据的分组间隔和组数
3 计算每个数据分组的频率
构建频率分布直方图
1
绘制矩形并标出各个分组的频率
2
3
确定横轴和纵轴的范围 为直方图添加标题和标签
解读直方图
通过观察直方图,我们可以得到有关数据分布的重要信息。
1 查看直方图的对称、偏态或多
分布范围
和离群点
峰性
课件总结
通过本课件,您已经了解了频率分布直方图的概念、数据收集、构建和解读。 希望这些知识能帮助您更好地进行数据分析和统计。 谢谢观看!
[K12学习]2018版高中数学 专题02 频率分布直方图及其应用分项汇编(含解析)新人教A版必修3
专题02 频率分布直方图及其应用一、选择题1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】D故选D.2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是()A. 48 mB. 49 mC. 50 mD. 51 m【答案】C⨯=,即水文观测点平均至少一百年才遇【解析】由频率分布直方图知水位为50 m为0.00520.01到一次的洪水的最低水位是50 m.本题选择C选项.3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( )A. B. C. D.【答案】C点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率=其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为A. 10万元B. 12万元C. 15万元D. 30万元【答案】D【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D.2,18,5.【四川省成都外国语学校2017-2018学年高二上学期期末考试】容量为100的样本,其数据分布在[]将样本数据分为4组: [)2,6, [)6,10, [)10,14, []14,18,得到频率分布直方图如图所示.则下列说法不正确的是A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】DD 不正确.故选D .6.【四川省雅安市2017-2018学年高二上学期期末考试】某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( )A . 75B . 80C . 85D . 90【答案】B7.【四川省成都市2017-2018学年高二上学期期末调研考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)[)[)[]2,6,6,10,10,14,14,18,得到频率分布直方图如图所示,则下列说法不正确的是( )A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】D【解析】总体数据分布在[)10,14的概率为故选D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018学年高二上学期末期考试】2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( )A . 2013年农民工人均月收入的增长率是.B . 2011年农民工人均月收入是元.C . 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.D . 2009年到2013年这五年中2013年农民工人均月收入最高.9.【四川省遂宁市2017-2018学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,五组,整理得到如下的频率分布直方图,则下列说法错误的是A. 月份人均用电量人数最多的一组有人B. 月份人均用电量不低于度的有人C. 月份人均用电量为度D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为【答案】C点睛:统计中利用频率分布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、,标准差分别为12,s s ,则( )A 12s s >B 12s s <C 12s s <D 12s s >【答案】D【解析】根据公式得到,再将以上均值代入方差的公式得到12s s >.或者观察茎叶图,得到乙的数据更集中一些,故得到12s s >.故答案为:D .11.【陕西省黄陵中学2017-2018学年高二(重点班)上学期期末考试】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右下图所示:则中位数与众数分别为 ( )A . 3与3B . 23与23C . 3与23D . 23与3【答案】B点睛:茎叶图的问题需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则a 1、a 2的大小关系是( )A . a 1=a 2B . a 1>a 2C . a 2>a 1D . 无法确定【答案】C【解析】由茎叶图,得甲、乙两名选手得分的平均数分别为,即21a a >;故选C .填空题13.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】上方右图是一个容量为200的样本的频率分布直方图,请根据图形中的数据填空:(1)样本数据落在范围[5,9)的可能性为__________;(2)样本数据落在范围[9,13)的频数为__________.【答案】 0.32 72点睛:本题主要考查的知识点是频率分布直方图的意义以及应用图形解题的能力,属于基础题.对于()1根即可求出结果,对于()2根据频数=频率⨯样本容量即可求出结果.14.【山西省临汾第一中学等五校2017-2018学年高二上学期期末联考】目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.【答案】∵前三组的累积频率为:0.10+0.15+0.25=0.50,故这次环保知识竞赛成绩的中位数为70;成绩在[80,90)段的人数有10×0.010×40=4人,成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件,其中他们在同一分数段的基本事件有:7,故他们在同一分数段的概率为故答案为:.15.【黑龙江省大庆中学2017-2018学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.,d=__________.【答案】 30 0.2点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体2017-2018学年高二上学期期初联考】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为【答案】3人【解析】试题分析:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为人.考点:频率分布直方图.点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018学年人教A版数学必修三同步测试】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10[80,90)[90,100] 14 0.28合计1.00(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;(2)请你估算该年级学生成绩的中位数;(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.【答案】(1)答案见解析;(2)83.125;【解析】试题分析:试题解析:(1)填写频率分布表中的空格,如下表:分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10 0.2[80,90) 16 0.32[90,100] 14 0.28合计50 1.00补全频率分布直方图,如下图:(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,解得x=83.125,所以中位数约为83.125.(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{ b2,b4},{b3,b4},设“2人分数都在[80,90)”为事件A,则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6种,所以P(A点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业集团有限公司第三中学2017-2018学年高二3月月考】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.求直方图中x的值;求月平均用电量的众数和中位数;估计用电量落在中的概率是多少?【答案】(1)5;(2)众数为,中位数为224;(3).月平均用电量在中的概率是.试题解析:的频率之和为,的频率之和为,∴中位数在设中位数为y ,则解得故中位数为224.由频率分布直方图可知,月平均用电量在中的概率是.点睛:利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.19.【河南师范大学附属中学2017-2018学年高二4月月考】某重点中学100位学生在市统考中的理科综合分数,以[)160,180, [)180,200, [)200,220, [)220,240, [)240,260, [)260,280, []280,300分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求理科综合分数的众数和中位数;(3)在理科综合分数为[)220,240, [)240,260, [)260,280, []280,300的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[)220,240的学生中应抽取多少人? 【答案】(1) 0.0075 (2)230, 224(3)5人 【解析】试题分析:(1)根据直方图求出x 的值即可;(2)根据直方图求出众数,设中位数为a ,得到关于a 的方程,解出即可;(3)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.(2 ∵()0.0020.00950.011200.450.5++⨯=<,∴理科综合分数的中位数在[)220,240内,设中位数为a ,则()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=,解得224a =,即中位数为224. (3)理科综合分数在[)220,240的学生有0.01252010025⨯⨯=(位),同理可求理科综合分数为[)240,260,[)260,280,[]280,300的用户分别有15位、10位、5位,∴从理科综合分数在[)220,240的学生中应抽取点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018学年高二上学期期末考试】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:(1)试估计这组样本数据的众数和中位数(结果精确到0.1);(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.【答案】(1)65,73.3;(2)3,2,1;(3)【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.∴从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,则事件Q包含的基本事件有18种,∴成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);(3)由直方图估计男生身高的中位数.【答案】(1);(2)详见解析;(3).试题解析:(1)由直方图,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18.这所学校高三男生身高在180cm以上(含180cm)的人数为800×0.18=144人.(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为0.18×50-2-m=7-m,又m+2=2(7-m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.频率除以组距分别等于0.016,0.012,见图.(3)设中位数为,由频率为,所以,,解得=174.5 22.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.【答案】(1);(2) 第1,2,3组分别抽取1人,1人,4人;(3).【解析】试题分析:(1))由题设可知,,;(2)由第1,2,3组的比例关系为1:1:4,则分别抽取1人,1人,4人;(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,由穷举法,求得至少有1人年龄在第3组的概率为.(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.其中2人年龄都不在第3组的有:共1种可能,所以至少有1人年龄在第3组的概率为.。
2018年中考数学真题分类汇编第二期专题15频数与频率试题含解析
频数与频率一.选择题1. (2018•广西玉林•3分)某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【解答】解:A.抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B.掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.4.(2018•贵州贵阳•4分)某班50 名学生在2018 年适应性考试中,数学成绩在100~110 分这个分数段的频率为0.2,则该班在这个分数段的学生为10 人.【解】频数频率频数频率总数500.2 10人总数2.(2018湖南省邵阳市)(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞 C.刘亮 D.无法确定【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.【解答】解:李飞的成绩为5.8.9.7.8.9.10.8.9.7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7.8.8.9.7.8.8.9.7.9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.【点评】本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.二.填空题1.(2018•内蒙古包头市•3分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.2. (2018•上海•4分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25,故答案为:0.25.【点评】本题主要考查频数分布直方图,解题的关键是掌握频率=频数÷总数.3. (2018•贵州安顺•4分)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.【解析】分析:根据方差的定义,方差越小数据越稳定.详解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4. (2018•上海•4分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25,故答案为:0.25.【点评】本题主要考查频数分布直方图,解题的关键是掌握频率=频数÷总数.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·7分)在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.(1)本次共随机采访了60 名教师,m= 5 ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D.F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为【点评】本题考查了条形图、频率分布图、树形图、概率等相关知识,难度不大,综合性较强.概率=所求情况数与总情况数之比2. (2018·湖北襄阳·6分)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表(1)表中a= 12 ,m= 40 ;(2)补全频数分布直方图;(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为.【分析】(1)先由A组人数及其百分比求得总人数,总人数乘以C的百分比可得a的值,用B组人数除以总人数可得m的值;(2)根据(1)中所求结果可补全图形;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)∵被调查的总人数为8÷20%=40人,∴a=40×30%=12,m%=×100%=40%,即m=40,故答案为:12.40;(2)补全图形如下:(3)列表如下:∴抽取的2名学生恰好是一名男生和一名女生的概率为=,故答案为:.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.3.(2018•江苏宿迁•8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.【答案】(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;(2)由频数分布表可知60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出A.b的值,根据A.b的值补全图形即可;(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.【详解】(1)c=1-0.38-0.32-0.1=0.2,故答案为:0.2;(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,补全征文比赛成绩频数分布直方图如图所示:(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,∴全市获得一等奖征文的篇数为:1000×0.3=300(篇),答:全市获得一等奖征文的篇数为300篇.【点睛】本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.4. (2018•乌鲁木齐•12分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.【分析】(1)利用50≤x<60的频数和频率,根据公式:频率=先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率【解答】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.2470≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P==【点评】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.5. (2018•杭州•6分)某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾,下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值)。
频率分布直方图课件
由于频率分布直方图是基于数据的近似离 散化,因此无法准确地反映数据的分布情 况,特别是对于具有复杂分布的数据。
无法表示数据间的相关性
无法进行参数估计和假设检验
频率分布直方图只能展示单个变量的分布 情况,无法表示两个或多个变量之间的相 关性。
频率分布直方图主要用于数据的描述性分 析,无法进行参数估计和假设检验等推断 性分析。
于反映数据的中心趋势。频率பைடு நூலகம்布直方图可以直观地展示数据在不同区
间的分布情况,从而更好地理解数据的分布特征。
03
众数
众数是数据中出现次数最多的数值。频率分布直方图可以清晰地展示众
数所在区间的数据分布情况,帮助我们更好地理解众数的含义和作用。
与箱线图、折线图等其他图形的比较
要点一
箱线图
要点二
折线图
箱线图是一种用于展示一组数据分散情况的统计图,它包 括数据的最大值、最小值、中位数和异常值等统计量。频 率分布直方图和箱线图各有优缺点,箱线图可以展示数据 的分散情况和异常值,但无法展示数据的具体分布情况; 频率分布直方图可以清晰地展示数据的分布情况,但无法 很好地展示数据的分散情况和异常值。
数据中心位置与离散程度判断
确定数据的中位数和众数
频率分布直方图可以显示数据的频数分布,从而确定数据的 中位数和众数,了解数据的中心位置。
评估数据的离散程度
通过观察频率分布直方图中数据的分散程度,可以评估数据 的离散程度,进一步了解数据的稳定性。
数据异常值检测
识别异常值
频率分布直方图可以显示数据的频数分布,通过观察直方图的形状和异常的数据点,可 以识别出异常值。
纵轴
表示频数或频率,即落在每个数 据范围内的数据点的个数。
频率分布直方图-2018届高三理科数学精品复习讲义与跟踪训练含解析
频率分布直方图-2018届高三理科数学精品复习讲义与跟踪训练教师版I .题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是 ( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t )的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有 ( )A .37位B .40位C .47位D .52位 【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率 为精彩解读【试题来源】例1:人教A 版必修3P 70改编;例2:人教A 版必修3P 65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用. 【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为()0.2250.2510047+⨯=,故选C.II.考场精彩·真题回放【例1】【2017高考新课标3理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A客量波动性大,D选项正确.故选A.【例2】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例3】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例4】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写.3.总体特征数的估计: ⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法(1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.(2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息.【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y+的值为()A.3B.4C.5D.6【答案】A【解析】77 81+=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差大于A 班成绩的标准差 其中正确结论的编号为( )A .①③B .①④C .②③D .②④ 【答案】B【解析】A 班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B 班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为________.【答案】6 【解析】依题意8793909190915x +++++=,解得4x =.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x 的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【解析】由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140,故选D .【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯ 【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A .0.9B .0.75C .0.8D .0.7 【答案】B同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75 估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%, 故选:B .【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A . 4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C102a <<C . 这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数,标准差分别为σσ甲乙,,则ABCD 【答案】C中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大D【答案】则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值及方差2S 甲与2S 乙的大小关系(只需写出结论)、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)【解析】试题分析:()11026.67⨯≈;()2根据所给数据求出,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名的概率解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数1026.67⨯≈;;22S S >甲乙;350.2450.15550.0527.5+⨯+⨯+⨯=;()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有16.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:,n a b c d =+++.【答案】(1)0.0044x =,186(2【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(120.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85 ②因为2K 的观测值 1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”. 【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。
高三频率分布直方图知识点
高三频率分布直方图知识点频率分布直方图是统计学中常用的图表,用于展示数据分布的情况。
在高三数学学科中,频率分布直方图是一个重要的知识点。
本文将介绍频率分布直方图的概念、构建方法和解读技巧。
概念频率分布直方图是一种图表,用于展示数据的频率分布情况。
它通过将数据分为若干个等距的区间,并计算每个区间内数据的频数或频率,将这些统计量用矩形条表示在数轴上。
频率分布直方图的横轴表示数据的取值范围,纵轴表示频数或频率。
构建方法构建频率分布直方图的步骤如下:1. 收集数据:首先要收集一组数据,可以是一组观测结果或调查数据。
2. 分组:将数据按照一定的间隔划分为若干个区间,区间的宽度要合适,不要过大或过小。
3. 统计频数或频率:计算每个区间内数据的频数(出现的次数)或频率(占总数的比例)。
4. 根据频数或频率绘制直方图:在数轴上画出与各个区间对应的矩形条,矩形条的高度表示频数或频率。
解读技巧解读频率分布直方图可以帮助我们了解数据的分布情况和规律。
以下是几个解读技巧:1. 中心趋势:观察直方图的峰值所在的区间,可以确定数据的中心趋势。
峰值所在的区间对应的频数或频率最大,表示该区间内的数据最为集中。
2. 离散程度:观察直方图的宽度和高度,可以初步判断数据的离散程度。
如果直方图较窄且高度较高,表示数据较为集中;反之,如果直方图较宽且高度较低,表示数据相对离散。
3. 异常值:观察直方图中是否存在明显偏离其他区间的柱形,这可能是异常值的存在。
异常值可能对数据的整体分布产生较大影响,在进行统计分析时需要予以重视。
4. 相关性:若有多组数据的频率分布直方图,可以进行对比观察,判断不同组数据之间的相关性。
相似的直方图形状表明两组数据具有相似的分布特征,而不同的直方图形状则表明两组数据的分布情况存在差异。
总结频率分布直方图是一种用于展示数据分布情况的图表。
通过构建和解读频率分布直方图,我们可以更直观地了解数据的中心趋势、离散程度、异常值和相关性等信息。
最新-2018高中数学 第2章221用样本的频率分布估计总体的分布同步课件 新人教B版必修3 精品
体的数字特征.
频率
2.在频率分布直方图中,纵轴表示___组__距___,
数据落在各小组内的频率用
_各__小__长__方_形__的__面__积____表示,各小长方形的面
积总和等__于__1______.
3.连结频率分布直方图中各小长方形上端
的中点,就得到频率分布折线图,随着 __样_本__容__量_____ 的 增 加 , 作 图 时 所 分 的 __组__数______ 不 断 增 加 , 相 应 的 频 率 分 布 折
【思路点拨】 (1)根据“各小组的频率之和 等于 1”,可知第四小组的频率等于 1-(0.1 +0.3+0.4)=0.2;(2)根据频率、频数、样本 容量 n 三者之间的关系式:第 k 小组的频率 =第样k小本组容的量频n数,可知 n=第一小组的频数 ÷第一小组的频率;(3)先将各小组的频数分 别求出,再分析确定中位数.
57,61,57,57,58,57,61,54,68,51,49,64,50,48, 65,52,56,46,54,49,51,47,55,55,54,42,51,56, 55,51,54,51,60,62,43,55,56,61,52,69,64,46, 54,48 (1)将数据进行适当的分组,并画出相应的频 率分布直方图和频率折线图; (2)用自己的语言描述一下历届美国总统就任 时年龄的分布情况.列频率 画频率分 【 思 路 点 拨 】 分布表 ⇒ 布直方图 ⇒
课前自主学案
温故夯基
收集数据的常用方式:___做__试_验____、 _查__阅__资__料____、__设__计_调__查__问__卷__.________
知新益能
1.通常我们对总体作出的估计一般分成两种: 一种是用____样_本__的__频__率__分_布____估计总体的分
2017_18版高中数学第二章统计2.2.1频率分布表2.2.2频率分布直方图与折线图一学案
2.2.1 频率分布表 2.2.2 频率分布直方图与折线图(一)学习目标 1.体会分布的意义和作用;2.学会用频率分布表,画频率分布直方图表示样本数据;3.能通过频率分布表或频率分布直方图对数据做出总体统计.知识点一用样本估计总体思考还记得我们抽样的初衷吗?梳理用样本估计总体的两种情况:(1)用样本的____________估计总体的频率分布.(2)用样本的数字特征估计总体的数字特征.知识点二频率分布表思考通过抽样获得的数据有什么缺点?梳理一般地,制作频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=________;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.知识点三频率分布表与频率分布直方图思考表格与图形,哪个更直观?梳理一般地,(1)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用__________________来表示,各小长方形的面积的总和等于______.(2)将频率分布直方图中各相邻的矩形的______底边的______点顺次连结起来,就得到频率分布折线图.(3)当样本容量足够______时,组距足够______时,频率分布折线图就趋近于总体分布的密度曲线.类型一 利用原始数据绘制频率分布表例1 从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,并估计身高不小于170(cm)的同学所占的百分率.反思与感悟 分组时先找到最大值和最小值,以便于确定分组的起点和终点.组距的选择应力求“取整”.区间端点要不重不漏,以便每个数据进且只进一个组.跟踪训练1 有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人. (1)列出学生参加运动队的频率分布表; (2)画出频率直方图.类型二 根据频率分布表绘制频率分布直方图例2 下表给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.反思与感悟频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.跟踪训练2 从某校高三学生中抽取50名参加数学竞赛,成绩分组(单位:分)及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.类型三频率分布表及频率分布直方图的应用例3 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?反思与感悟在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.跟踪训练3 在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:(1)完成频率分布表,并画出频率分布直方图;(2)估计纤度落在[1.38,1.50)内的可能性及纤度小于1.42的可能性各是多少?1.有一个容量为45的样本数据,分组后各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5],4.由此估计,不大于27.5的数据约为总体的________.2.某校为了解学生的睡眠情况,随机调查了50名学生,得到他们在某一天各自的睡眠时间的数据,结果用下面的频率直方图表示,根据频率直方图可得这50名学生这一天平均每人的睡眠时间为________ h.3.下列命题正确的是________.(填序号)①频率分布直方图中每个小矩形的面积等于相应组的频数;②频率分布直方图中所有小矩形的面积之和等于1;③频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比.4.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则抽取的学生总人数是________.1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律,我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式,用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.答案精析问题导学 知识点一思考 用样本去估计总体,为决策提供依据. 梳理 (1)频率分布 知识点二思考 多而杂乱,无法从中提取信息,交流传递.因而,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布,我们把反映总体频率分布的表格称为频率分布表.其中,我们将整个取值区间的长度称为全距,分成的区间的长度称为组距. 梳理 (1)全距组数知识点三 思考 图形.梳理 (1)频率组距 小长方形的面积 1 (2)上 中 (3)大 小题型探究例1 解 (1)在全部数据中找出最大值180与最小值151,它们相差(极差)29,决定组距为3;(2)将区间[150.5,180.5]分成10组;分别是[150.5,153.5),[153.5,156.5),…,[177.5,180.5);(3)从第一组[150.5,153.5)开始分别统计各组的频数,再计算各组的频率,列频率分布表;身高不小于170(cm)的同学所占的百分率为9+7+4+3100×100%=23%.跟踪训练1 解 (1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:(2)由上表可知频率直方图如下:例2 解 (1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.跟踪训练2 解(1)频率分布表如下:(2)频率分布直方图如图所示:(3)成绩在[60,90)分的学生比例,即学生成绩在[60,90)分的频率为0.2+0.3+0.24=0.74=74%.所以估计成绩在[60,90)分的学生比例为74%.例3 解(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08;又因为频率=频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.(2)由图可估计该学校全体高一学生的达标率约为 17+15+9+32+4+17+15+9+3×100%=88%.跟踪训练3 解 (1)频率分布表如下:频率分布直方图如图所示:(2)纤度落在[1.38,1.50)的可能性即为纤度落在[1.38,1.50)的频率,即为0.3+0.29+0.10=0.69=69%.纤度小于1.42的可能性即为纤度小于1.42的频率,即为0.04+0.25+0.30=0.59=59%. 当堂训练 1.91.1%解析 不大于27.5的样本数为3+8+9+11+10=41,所以约占总体的百分比为4145×100%≈91.1%. 2.6.4解析 由题意可知这50名学生这一天平均每人的睡眠时间为(5.5+7+7.5)×0.1+6×0.3+6.5×0.4=6.4(h). 3.②③解析在频率分布直方图中,横轴表示样本数据;纵轴表示频率组距.由于小矩形的面积=组距×频率组距=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知②③正确.4.48解析因为第2小组的频数为12,且前3个小组的频率之比为1∶2∶3,所以前3个小组的频数分别为6,12,18,共6+12+18=36,第4,5两小组的频率和为5×0.037 5+5×0.012 5=5×0.05=0.25,所以前3个小组的频率和为1-0.25=0.75,所以抽取的学生总人数是360.75=48.。
2018版高中数学第二章统计2_2_1用样本的频率分布估计总体的分布一学案新人教B版必修3
- 让每一个人同等地提高自我2.用样本的频次散布预计整体的散布( 一)学习目标 1. 领会散布的意义和作用.2. 学会用频次散布表,画频次散布直方图表示样本数据.3. 能经过频次散布表或频次散布直方图对数据做出整体统计.知识点一用样本预计整体思虑还记得我们抽样的初衷吗?梳理用样本的 ____________预计整体的散布.知识点二频次散布表与频次散布直方图思虑 1要做频次散布表,需要对原始数据做哪些工作?思虑 2怎样决定组数与组距?思虑 3相同一组数据,假如组距不一样,获取的频次散布直方图也会不一样吗?梳理一般地,频数指某组中包含的个体数,各组频数和=样本容量;频次=频数,各样本容量组频次和等于 1.在频次散布直方图中,纵轴表示____________,数据落在各小组内的频次用________________ 来表示,各小长方形的面积的总和等于____.种类一频次散布直方图例 1 对于频次散布直方图,以下说法正确的选项是()A.直方图中小长方形的高表示取某数的频次B.直方图中小长方形的高表示该组上的个体在样本中出现的频次C.直方图中小长方形的高表示该组上的个体在样本中出现的频数与组距的比值D.直方图中小长方形的高表示该组上的个体在样本中出现的频次与组距的比值反省与感悟由频次的定义不难得出,各组数据的频次之和为1,由于各组数据的个数之和为样本容量.在列频次散布表时,能够利用这类方法检查能否有数据的丢掉.追踪训练 1 一个容量为 20 的样本数据,将其分组以下表:[30 [40 [50 [60分组[10 , 20) [20 , 30) ,,,,40) 50) 60) 70]频数 2 3 4 5 4 2则样本在区间 ( -∞, 50) 上的频次为 ()A.B.C.D.种类二频次散布直方图的绘制例 2 某中学从高一年级随机抽取50 名学生进行智力测试,其得分以下(单位:分 ):48 64 52 86 71 48 64 41 86 7971 68 82 84 68 64 62 68 81 5790 52 74 73 56 78 47 66 55 6456 88 69 40 73 97 68 56 67 5970 52 79 44 55 69 62 58 32 58依据上边的数据,回答以下问题:(1)此次测试成绩的最高分和最低分分别是多少?(2) 将区间 [30,100]均匀分红7 个小区间,试列出这50 名学生智力测试成绩的频次散布表,从而画出频次散布直方图;(3)剖析频次散布直方图,你能得出什么结论?反省与感悟组距和组数确实定没有固定的标准,将数据分组时,组数应力争适合,以使数据的散布规律能较清楚地体现出来.组数太多或太少,都会影响我们认识数据的散布状况.数据分组的组数与样本容量相关,一般样本容量越大,所分组数越多.当样本容量不超出100 时,依照数据的多少,常分红5至 12 组.追踪训练 2 一个农技站为了观察某种大麦穗生长的散布状况,在一块试验田里抽取了100 株麦穗,量得长度以下( 单位: cm):6. 55. 86. 26. 86. 46. 05. 35. 65. 86. 3依据上边的数据列出频次散布表、绘制出频次散布直方图,并预计在这块试验田里长度在5.75 ~6.35 cm 之间的麦穗所占的百分比.种类三频次散布表及频次散布直方图的应用例 3从某校随机抽取100 名学生,获取了他们一周课外阅读时间( 单位:小时 ) 的数据,整理获取数据分组及频数散布表和频次散布直方图:组号分组频数1[0,2) 62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14) 68[14,16) 29[16,18] 2共计100- 让每一个人同等地提高自我(1) 从该校随机选用一名学生,试预计这名学生该周课外阅读时间少于12 小时的概率;(2) 求频次散布直方图中的a,b 的值;(3) 假定同一组中的每个数据可用该组区间的中点值取代,试预计样本中的100 名学生该周课外阅读时间的均匀数在第几组( 只要写出结论 ) .反省与感悟在频次散布直方图中,各小长方形的面积等于相应各组的频次,小长方形的高与频数成正比,各组频数之和等于样本容量,频次之和等于 1.追踪训练3某学校组织学生参加数学测试,某班学生的成绩频次散布直方图如图,数据的分组挨次为 [20,40),[40,60),[60,80),[80,100],若低于60 分的人数是15,则该班的学生总人数是 ()A. 45 B. 50C. 55 D. 601.以下图是一容量为100 的样本的频次散布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20 B .30 C .40 D .502.已知样本数据: 10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11. 那么频次为0.2 的是()A. [5.5,7.5) B. [7.5,9.5)C. [9.5,11.5) D. [11.5,13.5]3.如图是将高三某班 60 名学生参加某次数学模拟考试所得的成绩( 成绩均为整数 ) 整理后画出的频次散布直方图,则此班的优异(120 分及以上为优异 ) 率为 ________.4.依据国家质量监察查验检疫总局公布的《车辆驾驶人员血液、呼气酒精含量阈值与查验》(GB19522~ 2004) 中规定车辆驾驶人员血液酒精含量:“喝酒驾车”的临界值为20 mg/100 mL;“醉酒驾车”的临界值为80 mg/100 mL. 某地域交通执法部门统计了 5 月份的执法记录数据 ( 每个分组包含最小值不包含最大值) :血液酒精含量 ( 单位: mg 20~40~60~80~/100 mL) 0~ 2060 80 10040人数1801152 2依据上述表格,可预计该地域整年“喝酒驾车”发生的频次等于________.5.暑期时期某班为了加强学生的社会实践能力,把该班学生疏成四个小组到一果园帮果农丈量果树的产量,某小组到达一片栽种苹果的山地,他们随机选用20 株作为样本丈量每一株的果实产量 ( 单位: kg) ,获取的数据依照区间[40,45),[45,50),[50,55),[55,60]进行分组,获取以下频次散布表:分组[40,45) [45,50) [50,55) [55,60] 共计频次 a b c已知样本中产量在区间 [45,50) 内的株数是产量在区间 [50,60]4内的株数的3倍.(1)分别求出 a, b,c 的值;(2)作出频次散布直方图.7- 让每一个人同等地提高自我1.频次散布是指一个样本数据在各个小范围内所占比率的大小,整体散布是指整体取值的频次散布规律,我们往常用样本的频次散布表或频次散布直方图去预计整体的散布.2.频次散布表和频次散布直方图,是对相同数据的两种不一样表达方式,用紧凑的表格改变数据的摆列方式和组成形式,可展现数据的散布状况.经过作图既能够从数据中提守信息,又能够利用图形传达信息.3.样本数据的频次散布表和频次散布直方图,是经过各小组数据在样本容量中所占比率大小来表示数据的散布规律,它能够让我们更清楚地看到整个样本数据的频次散布状况,并由此预计整体的散布状况.- 让每一个人同等地提高自我答案精析问题导学知识点一思虑用样本去预计整体,为决议供给依照.梳理频次散布知识点二思虑 1分组,频数累计,计算频数和频次.思虑 2 若极差为整数,则极差=组数.组距组距极差不为整数,则极差+ 1=组数.若组距组距注意: [ x] 表示不大于x 的最大整数.思虑 3 不一样.对于同一组数据剖析时,要选好组距和组数,不一样的组距与组数对结果有必定的影响.梳理频次/ 组距小长方形的面积1.题型研究种类一例 1 D [ 注意频次散布直方图和条形图的差别,在直方图中,纵轴( 小长方形的高 ) 表示频率与组距的比值,其相应组距上的频次等于该组距上的小长方形的面积.]追踪训练 1 D [ 样本在区间 ( -∞, 50) 上的频次为2+3+4+ 52014=20= 0.7.]种类二例 2解(1) 此次测试成绩的最低分是32 分,最高分是97 分.(2)依据题意,列出样本的频次散布表以下:分组频数频次[30,40) 1[40,50) 6[50,60) 12[60,70) 14[70,80) 9[80,90) 6共计50频次散布直方图以下图.(3) 从频次散布直方图能够看出,这50名学生的智力测试成绩大概上呈两端小、中间大,左右基本对称,说明这 50 名学生中智力特别好或特别差的占很少量,而智力一般的占多半,这是一种最常有的散布.追踪训练2解(1) 计算极差: 7.4 -4.0 = 3.4 ;(2) 决定组距与组数:若取组距为 0.3 ,由于≈11.3 ,需分为12 组,组数适合,因此取组距为0.3 ,组数为 12;(3) 决定分点:使分点比数据多一位小数,而且把第 1 小组的起点略微减小一点,那么所分的12 个小组可以是 3.95 ~~~ 4.85 ,,~ 7.55 ;(4) 列频次散布表:分组频数频次[3.95,4.25) 1[4.25,4.55) 1[4.55,4.85) 2[4.85,5.15) 5[5.15,5.45) 11[5.45,5.75) 15[5.75,6.05) 28[6.05,6.35) 13[6.35,6.65) 11[6.65,6.95) 10[6.95,7.25) 2共计100(5)绘制频次散布直方图如图.从表中看到,样本数据落在 5.75 ~ 6.35 之间的频次是0.28 + 0.13 = 0.41 ,于是能够预计,在这块试验田里长度在 5.75 ~6.35 cm 之间的麦穗约占41%.种类三例 3解(1) 依据频数散布表知,100 名学生中一周课外阅读时间许多于12 小时的学生共10 有 6+ 2+ 2=10( 名 ) ,因此样本中的学生一周课外阅读时间少于12 小时的频次是1-100=0.9.故从该校随机选用一名学生,预计其该周课外阅读时间少于12 小时的概率为0.9.频次(2) 课外阅读时间落在组[4,6)内的有17人,频次为0.17 ,因此a=组距=2=0.085.课频次外阅读时间落在组[8,10)内的有25人,频次为0.25 ,因此b=组距=2=0.125.(3) 样本中的100 名学生该周课外阅读时间的均匀数在第 4 组.追踪训练 3 B [ 联合频次散布直方图,得分低于 60 分的人数占总人数的频次为20×+0.01) = 0.30 ,因此总人数为15= 50,应选 B.]当堂训练1. B [ 样本数据落在 [15,20]内的频数为100×[1 -5×(0.04 + 0.1)]=30.]2. D[ 列出频次散布表,挨次比较就能够找到答案,频次散布表以下:分组频数频次[5.5,7.5) 2[7.5,9.5) 6[9.5,11.5) 8[11.5,13.5] 4共计20- 让每一个人同等地提高自我从表中能够看出频次为0.2 的是 [11.5,13.5] ,应选 D.] 3. 30%分析优异率为 10×(0.022 5 + 0.005 + 0.002 5) = 0.3 =30%. 4.分析 5 月份“喝酒驾车”发生的频次等于11+5+2= 0.09. 可预计整年“喝酒驾车”发生200的频次为 0.09.45.解 (1) 易得c=1.0. 由题意得a=3 0.1 +b,0.3 +a+ 0.1 +b= 1.0 ,∴a=,b=0.2.(2)依据频次散布表画出频次散布直方图,以下图.。
2018版高中数学第二章统计2.2.1用样本的频率分布估计总体的分布学业分层测评新人教B版必修320
2.2.1 用样本的频率分布估计总体的分布(建议用时:45分钟)[学业达标]一、选择题1.下列命题正确的是()A.频率分布直方图中每个小矩形的面积等于相应组的频数B.频率分布直方图的面积为对应数据的频率C.频率分布直方图中各小矩形的高(平行于纵轴的边长)表示频率与组距的比D.用茎叶图统计某运动员得分:13,51,23,8,26,38,16,33,14,28,39时,茎是指中位数26频率【解析】在频率分布直方图中,横轴表示样本数据;纵轴表示,由于小矩形的面积组距频率=组距×=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于组距1.【答案】 C2.将容量为100的样本数据,按由小到大排列分成8个小组,如下表所示:组号 1 2 3 4 5 6 7 8频数10 13 14 14 15 13 12 9第3组的频率和累积频率为()1 1A.0.14和0.37B. 和14 273 6C.0.03和0.06D. 和14 3714 10+13+14【解析】由表可知,第三小组的频率为=0.14,累积频率为=0.37.100 100 【答案】 A3.如图228所示是一容量为100的样本的频率分布直方图,则由图形中的数据可知样本落在[15,20)内的频数为()图228A.20B.30C.40D.50【解析】样本数据落在[15,20)内的频数为100×[1-5×(0.04+0.1)]=30.【答案】 B4.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图229所示),则该样本的中位数、众数、极差分别是()图229A.46,45,56B.46,45,53C.47,45,56D.45,47,53【解析】由题意知各数为12,15,20,22,23,23,31,32,34, 34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.【答案】 A5.某学校组织学生参加英语测试,成绩的频率分布直方图如图2210,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是()【导学号:00732055】图2210A.45B.50C.55D.60【解析】根据频率分布直方图的特点可知,低于60分的频率是(0.005+0.01)×20=150.3,所以该班的学生人数是=50.0.3【答案】 B二、填空题6.200辆汽车通过某一段公路时时速的频率分布直方图如图2211所示,时速在[50,60) 的汽车大约有______辆.【导学号:00732056】图2211【解析】在[50,60)的频率为0.03×10=0.3,∴汽车大约有200×0.3=60(辆).【答案】607.从甲、乙两个班中各随机选出15名同学进行随堂测验,成绩的茎叶图如图2212所示,则甲、乙两组的最高成绩分别是________,________,从图中看,________班的平均成绩较高.图2212【解析】由茎叶图可知,甲班的最高分是96,乙班的最高分是92.甲班的成绩集中在60~80之间,乙班成绩集中在70~90之间,故乙班的平均成绩较高.【答案】9692乙8.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图2213所示:图2213(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.【解析】由于(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,解得x=0.004 4;数据落在[100,250)内的频率是(0.003 6+0.006 0+0.004 4)×50=0.7,所以月用电量在[100,250)内的用户数为100×0.7=70.【答案】(1)0.004 4(2)70三、解答题9.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.41.60.5 1.80.62.1 1.1 2.5 1.2 2.70.5(1)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【导学号:00732057】图2214【解】(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得1x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.820+2.9+3.0+3.1+3.2+3.5)=2.3,1y=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.120+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制茎叶图如图:7从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎“2.”,“3.”上,而B药107疗效的试验结果有的叶集中在茎“0.”,“1.”上,由此可看出A药的疗效更好.1010.为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图2215),图中从左到右各小长方形的面积之比为图2215(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?【解】(1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大小的,因4此第二小组的频率为=0.08.2+4+17+15+9+3第二小组的频数又因为第二小组的频率=,样本容量第二小组的频数12所以样本容量===150.第二小组的频率0.08(2)由频率分布直方图可估计,该校高一年级学生的达标率为:17+15+9+3×100%=88%.2+4+17+15+9+3[能力提升]1.如图2216是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()图2216A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分【解析】由茎叶图可以看出甲运动员的成绩主要集中在30至40之间,比较稳定,而乙运动员均匀地分布在10至40之间,所以甲运动员成绩较好.故选A.【答案】 A2.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图2217所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()图2217频数【解析】借助已知茎叶图得出各小组的频数,再由频率=求出各小组的频率,样本容量频率进一步求出并得出答案.组距法一由题意知样本容量为20,组距为5.列表如下:分组频数频率频率组距[0,5) 1 1200.01[5,10) 1 1200.01[10,15) 4 150.04[15,20) 2 1100.02[20,25) 4 150.04[25,30) 3 3200.03[30,35) 3 3200.03[35,40] 2 1100.02合计20 16观察各选择项的频率分布直方图知选A.频率法二由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、也分别相等,比组距较四个选项知A正确,故选A.【答案】 A3.某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.图2218【解析】当x≤4时,89+89+92+93+90+x+92+91=91,7解之得x=1.当x>4时,易证不合题意.【答案】 14.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为m i n),下面是这次调查统计分析得到的频率分布表和频率分布直方图:(如图2219所示)分组频数频率一组0≤t<5 0 0二组5≤t<10 10 0.10三组10≤t<15 10 ②四组15≤t<20 ①0.50五组20≤t≤2530 0.30合计100 1.00图2219解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并补全频率分布直方图;(3)旅客购票用时的平均数可能落在哪一组?【解】(1)样本容量是100.(2)①50②0.10所补频率分布直方图如图中的阴影部分:(3)设旅客平均购票用时为t m i n,则有0 × 0+5 × 10+10 × 10+15 × 50+20 × 30≤t1005 × 0+10 × 10+15 × 10+20 × 50+25 × 30< ,100即15≤t<20.所以旅客购票用时的平均数可能落在第四组.。
2018高考数学真题 文科 10.3考点3 频率分布直方图及其运用
第十章算法初步、统计与统计案例第三节用样本估计总体考点3 频率分布直方图及其运用(2018·全国Ⅰ卷(文))某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)【解析】(1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天中日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=1×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.50该家庭使用了节水龙头50天日用水量的平均数为x2=1×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.50估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02 频率分布直方图及其应用
一、选择题
1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率
A. 75,0.25
B. 80,0.35
C. 77.5,0.25
D. 77.5,0.35
【答案】D
故选D.
2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是()
A. 48 m
B. 49 m
C. 50 m
D. 51 m
【答案】C
【解析】由频率分布直方图知水位为50 m的频率
组距
为0.00520.01,即水文观测点平均至少一百年才遇
到一次的洪水的最低水位是50 m. 本题选择C选项.
3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( )
A. B. C. D.
【答案】C
点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率
=其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数).
4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中,
对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为
A. 10万元
B. 12万元
C. 15万元
D. 30万元
【答案】D
【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D.
5.【四川省成都外国语学校2017-2018学年高二上学期期末考试】容量为100的样本,其数据分布在2,18,将样本数据分为4组:2,6,6,10,10,14,14,18,得到频率分布直方图如图所示.则下列说法不正确的是
A. 样本数据分布在6,10的频率为0.32
B. 样本数据分布在10,14的频数为40
C. 样本数据分布在2,10的频数为40
D. 估计总体数据大约有10%分布在10,14
【答案】D
D不正确.
故选D.
6.【四川省雅安市2017-2018学年高二上学期期末考试】某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:
据此估计允许参加面试的分数线大约是()
A. 75
B. 80
C. 85
D. 90
【答案】B
故选B
7.【四川省成都市2017-2018学年高二上学期期末调研考试】容量为100的样本,其数据分布在2,18,将样本数据分为4组:2,6,6,10,10,14,14,18,得到频率分布直方图如图所示,则下列说法不正确的是()
A. 样本数据分布在6,10的频率为0.32
B. 样本数据分布在10,14的频数为40
C. 样本数据分布在2,10的频数为40
D. 估计总体数据大约有10%分布在10,14
【答案】D
【解析】总体数据分布在10,14的概率为
0.1
40% 0.020.080.10.05
故选D
8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018学年高二上学期末期考试】2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工
人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.
根据以上统计图来判断以下说法错误的是()
A. 2013年农民工人均月收入的增长率是.
B. 2011年农民工人均月收入是元.
C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.
D. 2009年到2013年这五年中2013年农民工人均月收入最高.
【答案】C
9.【四川省遂宁市2017-2018学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,
五组,整理得到如下的频率分布直方图,则下列说法错误的是
A. 月份人均用电量人数最多的一组有人
B. 月份人均用电量不低于度的有人
C. 月份人均用电量为度
D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为
【答案】C。