等差数列的前n项和性质及应用

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1

n(12 2d ) n(n 1)d

2

d n2 (12 5d )n

2

2 5 12

∴Sn图象的对称轴为 n

由(1)知 24 7

d



3

2d
∴Sn有最大值.

由上得 6 5 12 13 即 6 n 13

2d 2

2

由于n为正整数,所以当n=6时Sn有最大值.

练习1
已知等差数列25,21,19, …的前n项和 为Sn,求使得Sn最大的序号n的值.

等差数列的前n项的最值问题

例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.

解法1 由S3=S11得

313 1 3 2 d 1113 1 1110 d

2

2

∴ d=-2
1 Sn 13n 2 n(n 1) (2)

n2 14n (n 7)2 49
S3=9,S6=36,则a7+a8+a9=( B)
A.63 B.45 C.36 D.27
例2.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90

等差数列{an}前n项和的性质的应用
例3.一个等差数列的前10项的和为100, 前100项的和为10,则它的前110项的和 为 -110 .

例4.两等差数列{an} 、{bn}的前n项和分

别是Sn和Tn,且 Sn 7n 1

求 a5 和 an

b5

bn

.

Tn 4n 27
a5 64 an 14n 6 b5 63 bn 8n 23

等差数列{an}前n项和的性质的应用
例5.一个等差数列的前12项的和为354, 其中项数为偶数的项的和与项数为奇数

1.根据等差数列前n项和,求通项公式.

an



a1



Sn



Sn1

n1 n2

2、结合二次函数图象和性质求

∴当n=7时,Sn取最大值49.

等差数列的前n项的最值问题

例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.

解法2 由S3=S11得 d=-2<0

则Sn的图象如图所示

Sn

又S3=S11

所以图象的对称轴为

3 11

n

n

7

2

3 7 11

∴当n=7时,Sn取最大值49.
的项的和之比为32:27,则公差为 5 .
例6.(09宁夏)等差数列{an}的前n项的和 为Sn,已知am-1+am+1-am2=0,S2m-1=38,则
m= 10 .
例7.设数列{an}的通项公式为an=2n-7,
则|a1|+|a2|+|a3|+……+|a15|= 153 .

等差数列{an}前n项和的性质

练习2:
求集合 M {mm 2n 1,n N,m 60}
的元素个数,并求这些元素的和.

练习3:已知在等差数列{an}中,a10=23, a25=-22 ,Sn为其前n项和.
(1)问该数列从第几项开始为负?
(2)求S10 (3)求使 Sn<0的最小的正整数n.
(4) 求|a1|+|a2|+|a3|+…+|a20|的值
复习回顾

等差数列的前n项和公式:

形式1:

Sn



n(a1 2

an )

形式2:
Sn



na1



n(n 2



1)

d

1.将等差数列前n项和公式

n(n 1)d 看作是一Sn个关n于a1n的 函数2,这个函数

有什么特点?

Sn



d 2

n2



(a1



d 2

)n



A



d 2

,

B



a1



d 2



Sn=An2+Bn

当d≠0时,Sn是常数项为零的二次函数

等差数列的前n项的最值问题

例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.

解法3 由S3=S11得 d=-2

∴ an=13+(n-1) ×(-2)=-2n+15



aann1

0

0



n n



15 2 13 2

∴当n=7时,Sn取最大值49.

等差数列的前n项的最值问题

性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p)

性质3:若Sm=Sp (m≠p),则 Sp+m= 0

性质4:(1)若项数为偶数2n,则

S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中

间两项), 此时有:S偶-S奇= nd

,源自文库

S奇 S偶

an an1

性质4:(1)若项数为奇数2n-1,则

例8.设等差数列的前n项和为Sn,已知

a3=12,S12>0,S13<0. (1)求公差d的取值范围;

(2)指出数列{Sn}中数值最大的项,并说明

理由.

a1+2d=12

解:(1)由已知得 12a1+6×11d>0

13a1+13×6d<0
24 d 3 7

(2)



Sn



na1



1 2

n(n 1)d
由an ≤0且an+1 ≥ 0求得.

练习:已知数列{an}的通项为an=26-2n, 要使此数列的前n项和最大,则n的值为
( C)
A.12 B.13 C.12或13 D.14

2.等差数列{an}前n项和的性质

在等差数列{an}中,其前n项的和为Sn,则有
性质1:Sn,S2n-Sn,S3n-S2n, …也在等差数列, 公差为 n2d

S2n-1=(2n- 1)an (an为中间项),

性此质时5:有{ S:Sn偶} -为S等奇差= a数n 列, .SS奇 偶

n
n1

n

两等差数列前n项和与通项的关系

性质6:若数列{an}与{bn}都是等差数列,且

前n项的和分别为Sn和Tn,则

an bn



S2n1 T2 n 1

3.等差数列{an}前n项和的性质的应用 例1.设等差数列{an}的前n项和为Sn,若

求等差数列前n项的最大(小)的方法

方法1:由Sn



d 2

n2



(a1



d 2

)n利用二次函

数的对称轴求得最值及取得最值时的n的值.

方法2:利用an的符号①当a1>0,d<0时,数列 前面有若干项为正,此时所有正项的和为
Sn的最大值,其n的值由an≥0且an+1≤0求得. ②当a1<0,d>0时,数列前面有若干项为负, 此时所有负项的和为Sn的最小值,其n的值
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法4 由S3=S11得
a4+a5+a6+……+a11=0 而 a4+a11=a5+a10=a6+a9=a7+a8
∴a7+a8=0 又d=-2<0,a1=13>0
∴a7>0,a8<0
∴当n=7时,Sn取最大值49.
相关文档
最新文档