等差数列的前n项和性质及应用

合集下载

等差数列的前n项和的最值及应用

等差数列的前n项和的最值及应用
索引
法二 同法一,求出公差d=-2. 所以an=25+(n-1)×(-2)=-2n+27. 因为a1=25>0, 又由因aann为=+1n=-∈-2Nn2*+(,2n7+≥10),+27≤0得nn≤ ≥11321212, . 所以当n=13时,Sn有最大值,为S13=169.
索引
法三 因为S8=S18,所以a9+a10+…+a18=0. 由等差数列的性质得a13+a14=0. 因为a1>0,所以d<0. 所以a13>0,a14<0.所以当n=13时,Sn有最大值. 由a13+a14=0,得a1+12d+a1+13d=0,又a1=25, 解得d=-2, 所以 S13=13×25+13×2 12×(-2)=169, 所以 Sn 的最大值为 169.
TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
一、基础达标
1.已知数列{an}满足an=26-2n,则使其前n项和Sn取最大值的n的值为( D )
A.11或12
B.12
C.13
D.12或13
解析 ∵an=26-2n,∴an-an-1=-2, ∴数列{an}为等差数列. 又 a1=24,d=-2, ∴Sn=24n+n(n2-1)×(-2)=-n2+25n=-n-2252+6425. ∵n∈N*,∴当 n=12 或 13 时,Sn 最大.
索引
3.做一做 《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天 起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天 16
计)共织390尺布,则每天比前一天多织___2_9____尺布(不作近似计算). 解析 由题意知,该女每天的织布尺数构成等差数列{an},其中 a1=5,S30=390, 设其公差为 d,则 S30=30×5+30×2 29d=390,解得 d=1269.故该女子织布每天增 加1269尺.

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。

等差数列的性质及应用

等差数列的性质及应用

等差数列的性质及应用等差数列是指数列中相邻项之间的差值保持不变的数列。

它是数学中常见且重要的数列类型之一,在数学及其他领域都有着广泛的应用。

本文将探讨等差数列的性质及其在实际问题中的应用。

一、等差数列的定义与性质1. 定义:等差数列可以定义为一个数列,其中每一项与它的前一项之差等于一个常数d,称为等差数列的公差。

2. 通项公式:假设等差数列的首项为a₁,公差为d,则第n项可以表示为an = a₁ + (n-1)d。

3. 求和公式:假设等差数列的首项为a₁,末项为an,项数为n,则等差数列的和可以表示为Sn = (a₁ + an) * n / 2。

二、等差数列的应用1. 数学问题中的应用:等差数列在数学问题中经常出现。

例如,找出等差数列中的特定项、求等差数列的和等都可以通过等差数列的性质与公式进行解决。

2. 自然科学中的应用:等差数列在自然科学中也有着广泛的应用。

例如,物理学中的匀速直线运动、化学中的反应速率等都可以建立在等差数列的基础上,通过分析数值变化的规律来求解实际问题。

3. 经济学与金融学中的应用:等差数列在经济学与金融学中也有着重要的应用。

例如,研究某种商品价格的变化、计算贷款利息等都可以运用等差数列的概念。

三、实际问题中的等差数列应用举例1. 降雨量分析:假设某地区每年的降雨量以等差数列的形式增长,首年降雨量为100毫米,公差为10毫米。

求第5年的降雨量。

解答:根据等差数列的通项公式,第5年的降雨量可以表示为a₅ = a₁ + (5-1)d = 100 + 4*10 = 140毫米。

2. 平均成绩计算:某学生连续4次数学考试的成绩构成等差数列,首次考试得了80分,公差为4分。

求这4次考试的平均分。

解答:根据等差数列的求和公式,这4次考试的总分为S₄ = (80 +a₄) * 4 / 2,其中a₄为最后一次考试的成绩。

平均分可以表示为S₄ / 4,即(80 + a₄) * 2。

由此可得,平均分为(80 + a₄) * 2 / 4。

等差数列前n项和Sn的性质应用

等差数列前n项和Sn的性质应用


nn 1
2
d,
Sn n

d 2
n


a1

d 2
.


Sn n
为等差数列.

又Q12,20成,2等8 差数列,

S12 12
,
S20 20
,
S28 28
成等差数列,
2 S20 S12 S28 , 20 12 28
即2 460 84 S28 ,
(2)前20项中,奇数项和
S奇
=
1 3

75=25,
偶数项和
S偶=
2 3
75=50,
又S偶 S奇=10d,
d 50 25 2.5 10
小结
等差数列前n项和Sn的性质应用
等差数列an 中
性质1.
sm,s2m sm,s3仍m 为 s等2m差,K数列,
公差为 m2d.
性质2.
例3 项数为奇数的等差数列,奇数项之和为44,偶数
项之和为33,求这个数列的中间项及项数.
设数列共有2n 项1 ,则 S奇 a1 a3 a5 L a2n1, S偶 a2 a4 a6 L a2n ,
S奇 S偶
a1 a3 a2 a5 a4 L a2n1 a2n
a21 a22 a23 a24 a25
S5 5 1 S10 S5Байду номын сангаас S5
15 4 20 15 15
25
例2
等差数列an前 项n和为
求 s28.
,若sn
S12 84,S20 =460,

等差数列前n项和公式的几个性质和与应用 (3)

等差数列前n项和公式的几个性质和与应用 (3)

等差数列前n项和公式的几个性质和与应用性质1:设等差数列{}n a的前n项和公式和为n S,公差为d,*m∈n.N则①()dm n m S n S m N -=-21②()mnd S S S S nm n m S n m n m n m ++=--+=+性质2:设等差数列{}n a 的前n 项和公式和为n S ,*..N k n m ∈,若k n m ..成等差数列,则k S n S m S knm,,成等差数列性质3:设等差数列{}n a 的前n 项和公式和为n S ,*....N n m q p ∈,若n m q p +=+,则qp S S n m S S qp n m --=--性质4:设等差数列{}na 的前n 项和公式和为k S①当()*2N k k n ∈=时,()12++=k k k a a k S ②当()*12N k k n ∈-=时,()121212---=k k a k S例1:如果等差数列{}n a 的前4项和是2,前9项和是-6,求其前n 项和公式。

解1:由性质1得:()()⎪⎪⎩⎪⎪⎨⎧-=--=-d n S nS d S S n 4214492149449 ()()21将9,294-==S S 代入()()2,1得:nn S n 30433072+-=解2:求1a ,d.例2:设n S 是等差数列{}n a 的前n项和,已知331S 和441S 的等比中项为551S ,331S 和441S 的等差中项为1,求等差数列{}na 的通项公式n a 。

解1:由性质1和题意知,()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=+=-=-d d S S S S d d S S 2145214523421342134453434)3()2()1( 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=d S dS d S 431541144113543又3453425S S S ⋅=⎪⎭⎫⎝⎛,即⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+d d d 4114114312,∴5120-==d d 或当d=0时,33=S ,∴*,1N n a n ∈= 当512-=d 时,52435124113=⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=S又da S 223313⨯+=,即524512331=⎪⎭⎫ ⎝⎛-+a ,∴41=a故()*,512153251214N n n n a n ∈-=⎪⎭⎫ ⎝⎛--+=例3:一等差数列前4项和是24,前5项和的差是27,求这个等差数列的通项公式。

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

;

.
偶 -

(3)设 Sn,S′n 分别为等差数列{an},{bn}的前 n 项和,则 =
-

-
.

(4)数列{an}是等差数列⇔Sn=an +bn(a,b 为常数)⇔数列{ }为等差数列.
2

( + ) ( +-+ )
(5)Sn=

=

取何值时Sn有最大值?并求出最大值.
解:因为 S9=S18,a1=26,
所以 9×26+
×(-)
×(-)


d=18×26+d, Nhomakorabea解得 d=-2.
所以 Sn=26n+

2
(-)


=-(n- ) +

2
×(-2)=-n +27n

*
,所以当 n= 时,Sn 有最大值,又 n∈N ,

(3)已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,Tn,且 = + ,则 =

.
解析:(3)由等差数列的性质,知


=
+

+

+
×

+
×

=

答案:(3)

×+
= =

+
= .

方法总结
公差为d的等差数列{an}的前n项和Sn的常用性质小结
所以(a5+a6)-(a3+a4)=(a3+a4)-(a1+a2)=4d,

等差数列的前n项和公式的性质及应用 课件

等差数列的前n项和公式的性质及应用    课件

因为 S2k=2ka1+12×2k(2k-1)d=8a1+42,
所以 8a1+42=54,故 a1=32,
所以此数列的首项是32,公差是32,项数为 8.
法二:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 根据题意,得S偶=30,
a2k-a1=221,
12ka1+a2k-1=24, 即12ka2+a2k=30,
和 30,最后一项与第一项之差为221,求此数列的首项、公差以及项数. [解析] 法一:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 由已知得S偶=30,
a2k-a1=221,
S偶-S奇=6, 所以a2k-a1=221,
kd=6,
k=4,
即2k-1d=221, 解得d=32.
②若项数为 2n-1,则 S2n-1=(2n-1)an(an 为中间项)且 S 奇-S 偶= an , n-1
SS偶 奇=___n____.
(3)若 Sn 为数列{an}的前 n 项和,则{an}为等差数列等价于Snn是等差 数列. (4)若{an}、{bn}都为等差数列,Sn、Sn′为它们的前 n 项和,则abmm= SS′2m2- m1-1. (5)项数(下标)的“等和”性质: Sn=na12+an=nam+2an-m+1.
()
A.130
B.65
C.70
D.以上都不对
解析:S13=a1+2 a13×13=a5+2 a9×13=130.
答案:A
3.已知某等差数列共 20 项,其所有项和为 75,偶数项和为 25,则
公差为( )
A.5
B.-5
C.-2.5
D.2.5

等差数列前n项和的性质与应用

等差数列前n项和的性质与应用

等差数列前n 项和的性质与应用一、等差数列前n 项和性质的应用1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .42答案:C解析:S 2,S 4-S 2,S 6-S 4成等差数列,即2,8,S 6-10成等差数列,S 6=24.2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A .5 B .4 C .3 D .2答案:C解析:由题意得S 偶-S 奇=5d=15,∴d=3.或由解方程组{5a 1+20d =15,5a 1+25d =30求得d=3,故选C .3.等差数列{a n }的前n 项和为S n ,a 1=-2 015,S 2 0152 015−S 2 0132 013=2,则S 2 015=( )A.2 015B.-2 015C.0D.1答案:B解析:由等差数列前n 项和性质可知,数列{S n n}是等差数列,设公差为d ,则S 2 0152 015−S 2 0132 013=2d=2,所以d=1.所以S 2 0152 015=S 11+2 014d=-2 015+2 014=-1,所以S 2 015=-2 015.二、等差数列前n 项和中的最值问题4.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题中错误的是( )A.若d<0,则数列{S n }有最大项B.若数列{S n }有最大项,则d<0C.若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D.若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 答案:C解析:由等差数列的前n 项和公式S n =na 1+12n (n-1)d=d2n 2+(a 1-d2)n 知,S n 对应的二次函数有最大值时d<0.故若d<0,则S n 有最大值,A,B 正确.又若对任意n ∈N *,S n >0,则a 1>0,d>0,{S n }必为递增数列,D 正确. 而对于C 项,令S n =n 2-2n ,则数列{S n }递增,但S 1=-1<0.C 不正确. 5.(课时训练河南南阳高二期中,10)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为( ) A.21 B.20 C.19 D.18答案:C 解析:由a 11a 10<-1,可得a 11+a 10a 10<0,由它们的前n 项和S n 有最大值可得数列的公差d<0,∴a 10>0,a 11+a 10<0,a 11<0,∴a 1+a 19=2a 10>0,a 1+a 20=a 11+a 10<0.∴使得S n>0的n的最大值n=19.故选C.6.设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N*,都有S n≤S k成立,则k的值为()A.22B.21C.20D.19答案:C解析:对任意n∈N*,都有S n≤S k成立,即S k为S n的最大值.因为a1+a4+a7=99,a2+a5+a8=93,所以a4=33,a5=31,故公差d=-2,a n=a4+(n-4)d=41-2n,则n=1时,a1=39,所以S n=d2n2+(a1-d2)n=-n2+40n=-(n-20)2+400,即当n=20时S n取得最大值,从而满足对任意n∈N*,都有S n≤S k成立的k的值为20.7.设等差数列{a n}的前n项和为S n,且S2 014>0,S2 015<0,则当n=时,S n最大.答案:1 007解析:由等差数列的性质知,S2 015=2 015a1 008<0,所以a1 008<0.又S2 014=2014(a1+a2014)2=1 007(a1 007+a1 008)>0,所以a1 007+a1 008>0,而a1 008<0,故a1 007>0.因此当n=1 007时,S n最大.8.已知数列{a n},a n∈N*,前n项和S n=1(a n+2)2.8(1)求证:{a n}是等差数列;(2)设b n=1a n-30,求数列{b n}的前n项和的最小值.2(1)证明:由已知得8S n=(a n+2)2,则8S n-1=(a n-1+2)2(n≥2),两式相减,得8a n=(a n+2)2-(a n-1+2)2,即(a n+a n-1)(a n-a n-1-4)=0.因为a n∈N*,所以a n+a n-1>0,所以a n-a n-1=4(n≥2),故数列{a n}是以4为公差的等差数列.(a1+2)2,解得a1=2.(2)解:令n=1,得S1=a1=18由(1)知a n=2+(n-1)×4=4n-2,a n-30=2n-31.所以b n=12,由b n=2n-31<0,得n<312即数列{b n}的前15项为负值,n≥16时b n>0.设数列{b n}的前n项和为T n,×2=-225.则T15最小,其值为T15=15×(-29)+15×142三、与数列{|a n|}前n项和有关的问题9.已知数列{a n }的通项公式a n =5-n ,则当|a 1|+|a 2|+…+|a n |=16时,n= . 答案:8解析:由a n =5-n ,可得n<5时,a n >0;n=5时,a 5=0; n>5时,a n <0, 而a 1+a 2+…+a 5=10,∴|a 1|+|a 2|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+a 7+…+a n )=16. ∴20+n 2-9n 2=16,解得n=8.10.在公差为d 的等差数列{a n }中,已知a 1=10,且5a 3·a 1=(2a 2+2)2. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)因为5a 3·a 1=(2a 2+2)2,所以d 2-3d-4=0,解得d=-1或d=4.故a n =-n+11或a n =4n+6.(2)设数列{a n }的前n 项和为S n . 因为d<0,所以由(1)得d=-1,a n =-n+11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ;当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|={-12n2+212n,n≤11,12n2-212n+110,n≥12.(建议用时:30分钟)1.若等差数列{a n}的前3项和S3=9,则a2等于()A.3B.4C.5D.6答案:A解析:S3=3(a1+a3)2=9,∴a1+a3=2a2=6.∴a2=3.故选A.2.设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+a9+…+a99等于()A.-182B.-78C.-148D.-82答案:D解析:由a1+a4+a7+…+a97=50, ①令a3+a6+a9+…+a99=x, ②②-①得2d×33=x-50,而d=-2,∴x=-132+50=-82.故选D.3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15答案:C解析:a2+a4+a15=a1+d+a1+3d+a1+14d =3(a1+6d)=3a7=3×a1+a132=313×13(a1+a13)2=313S13.于是可知S13是常数.4.设{a n}为等差数列,a1>0,a6+a7>0,a6·a7<0,则使其前n项和S n>0成立的最大自然数n是()A.11B.12C.13D.14答案:B解析:∵a6+a7=a1+a12,∴S12=12(a1+a12)2=6(a6+a7)>0.由已知得a6>0,a7<0,又S13=13a7<0,∴使S n>0成立的最大自然数n为12,故选B.5.已知等差数列{a n}的前n项和为S n,若S n=1,S3n-S n=5,则S4n=()A.4B.6C.10D.15答案:C解析:由S n,S2n-S n,S3n-S2n,S4n-S3n成等差数列,设公差为d,则S2n-S n=S n+d,S3n-S2n=S n+2d.∴S3n-S n=2S n+3d=5.又∵S n=1,∴d=1.∴S4n=S n+(S2n-S n)+(S3n-S2n)+(S4n-S3n)=1+2+3+4=10.6.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k= . 答案:10解析:S 9=S 4,∴a 5+a 6+a 7+a 8+a 9=0,∴a 7=0,从而a 4+a 10=2a 7=0,∴k=10.7.等差数列前12项和为354,在前12项中的偶数项的和与奇数项的和之比为32∶27,则公差d= . 答案:5解析:由已知{S 奇+S 偶=354,S 偶S 奇=3227,解得{S 偶=192,S 奇=162.又∵此等差数列共12项,∴S 偶-S 奇=6d=30.∴d=5.8.等差数列{a n }与{b n },它们的前n 项和分别为A n ,B n ,若A nB n=2n -2n+3,则a 5b 5= .答案:43解析:a 5b 5=9a 59b 5=A 9B 9=2×9-29+3=43.9.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d ,∵a 1=20,S 10=S 15,∴10a 1+10×92d=15a 1+15×142d.解得d=-53.解法一:由以上得a n =20-53(n-1)=-53n+653.由a n ≥0得-53n+653≥0,∴n ≤13.所以数列前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d=130.解法二:由以上得S n =20n+n (n -1)2×(-53)=-56n 2+56n+20n=-56n 2+1256n=-56(n 2-25n )=-56(n -252)2+3 12524.∴当n=12或13时,S n 最大,最大值为S 12=S 13=130.10.等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和. 解:等差数列{a n }的公差d=a 17-a 117-1=-12-(-60)16=3,∴a n =a 1+(n-1)d=-60+(n-1)×3=3n-63.由a n <0,得3n-63<0,即n<21.∴数列{a n }的前20项是负数,第20项以后的项都为非负数.设S n ,S n '分别表示数列{a n },{|a n |}的前n 项和, 当n ≤20时,S n '=-S n =-[-60n +n (n -1)2×3]=-32n 2+1232n ;当n>20时,S n '=-S 20+(S n -S 20)=S n -2S 20 =-60n+n (n -1)2×3-2×(-60×20+20×192×3)=32n 2-1232n+1 260. ∴数列{|a n |}的前n 项和为S n '={-32n 2+1232n (n ≤20),32n 2-1232n +1 260(n >20).。

等差数列前n项和公式及性质

等差数列前n项和公式及性质

2.2 等差数列的前n项和第一课时等差数列前n项和公式及性质【选题明细表】题号知识点、方法易中等差数列前n项和公式应用1、3、9 7、8等差数列前n项和性质的应用2、4等差数列性质的综合应用5、6基础达标1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B )(A)40 (B)42 (C)43 (D)45解析:∵a1=2,a2+a3=13,∴3d=13-4=9,∴d=3,a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B )(A)28 (B)29 (C)30 (D)31解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1,S偶=a2+a4+…+a2n=na n+1,∴S奇-S偶=a n+1=29.故选B.3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D )(A)27 (B)36 (C)45 (D)54解析:∵2a8=a5+a11=6+a11,∴a5=6,∴S9===9a5=54.故选D.4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于( B )(A)63 (B)45 (C)36 (D)27解析:由S3,S6-S3,S9-S6成等差数列,∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B.5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A )(A)-2 (B)0 (C)1 (D)2解析:由已知得2a n-=0,又a n≠0,∴a n=2,∴S2n-1===2(2n-1),∴S2n-1-4n=-2.故选A.6.等差数列{a n}中,已知a14+a15+a17+a18=82,则S31= .解析:结合已知条件,运用性质可以得出a1+a31=a14+a18=a15+a17=41,所以S31===.答案:7.设等差数列{a n}的前n项和为S n,若a5=5a3,则= .解析:设公差为d,则a1+4d=5(a1+2d),∴a1=-d,∴==×=×=-.答案:-能力提升8.(2013海州高级中学高二第一学期期中检测)在等差数列{a n}中,S n 是其前n项和,且a1=2,-=2,则数列﹛﹜的前n项和是.解析:设{a n}的公差为d,则S n=2n+d,∴=2+d,∴(2+d)-(2+d)=2,解之,得d=2,∴S n=2n+×2=n2+n,于是===-.∴数列﹛﹜的前n项和++…+=+++…+=1-=.答案:9.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.解:(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+d,S n=242,得方程12n+×2=242,即n2+11n-242=0,解得n=11或n=-22(舍去).所以n=11.。

高中数学《等差数列前n项和的性质及应用》知识点讲解及重点练习

高中数学《等差数列前n项和的性质及应用》知识点讲解及重点练习

第2课时 等差数列前n 项和的性质及应用学习目标 1.进一步熟练掌握等差数列的通项公式和前n 项和公式,了解等差数列前n 项和的一些性质.2.掌握等差数列前n 项和的最值问题.知识点一 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n.4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1.思考 在性质3中,a n 和a n +1分别是哪两项?在性质4中,a n +1是哪一项?答案 中间两项,中间项.知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d2可化成关于n 的表达式:S n =d 2n 2+(a 1-d 2)n .当d ≠0时,S n 关于n的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+(a 1-d 2)x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组Error!确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组Error!确定.(2)S n =d 2n 2+(a 1-d 2)n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.1.在等差数列{a n }中,若a 1+a 2=2,a 3+a 4=4,则a 7+a 8等于( )A .7 B .8 C .9 D .10答案 B解析 ∵a 1+a 2=2,a 3+a 4=4,由等差数列的性质得a 5+a 6=6,a 7+a 8=8.2.已知数列{a n }为等差数列,a 2=0,a 4=-2,则其前n 项和S n 的最大值为( )A.98 B.94C .1 D .0答案 C解析 由a 4=a 2+(4-2)d ,得-2=0+2d ,故d =-1,a 1=1,故S n =n +n (n -1)2·(-1)=-n 22+3n2=-12(n -32)2+98.所以当n =1或2时,S n 的最大值为1.3.(多选)已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为( )A .22 B .23 C .24 D .25答案 BC解析 由a n ≤0即2n -48≤0得n ≤24.∴所有负项的和最小,即n =23或24.4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.答案 2 020解析 由等差数列的性质可得{S n n}也为等差数列,设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1,∴S nn =S 11+(n -1)d =n -2 019.故S 2 0202 020=2 020-2 019=1,∴S 2 020=2 020.一、等差数列前n 项和的性质例1 (1)在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.答案 2解析 由Error!得Error!所以S 偶-S 奇=5d =10,所以d =2.(2)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m .解 方法一 在等差数列中,∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m2m =S mm +S 3m3m.即S 3m =3(S 2m -S m )=3×(100-30)=210.反思感悟 利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些;(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练1 (1)已知数列{a n }是项数为偶数的等差数列,它的奇数项的和是50,偶数项的和为34,若它的末项比首项小28,则该数列的公差是________.答案 -4解析 设等差数列{a n }的项数为2m ,∵末项与首项的差为-28,∴a 2m -a 1=(2m -1)d =-28,①∵S 奇=50,S 偶=34,∴S 偶-S 奇=34-50=-16=md ,②由①②得d =-4.(2)已知一个等差数列的前10项和为100,前100项和为10,求前110项之和.解 S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列.设其公差为d ,前10项和为10S 10+10×92d =S 100=10,解得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=-120+S 100=-110.二、等差数列前n 项和的最值问题例2 在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解 方法一 因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d ,解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二 同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由Error!得Error!又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三 因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四 设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n=13时,S n取得最大值.由题意得Error!解得Error!所以S n=-n2+26n,所以S13=169,即S n的最大值为169.反思感悟 (1)等差数列前n项和S n最大(小)值的情形①若a1>0,d<0,则S n存在最大值,即所有非负项之和.②若a1<0,d>0,则S n存在最小值,即所有非正项之和.(2)求等差数列前n项和S n最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用Error!或Error!来寻找.②运用二次函数求最值.跟踪训练2 在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.解 (1)设等差数列的公差为d,因为在等差数列{a n}中,a10=18,S5=-15,所以Error!解得a1=-9,d=3,所以a n=3n-12,n∈N*.(2)因为a1=-9,d=3,a n=3n-12,所以S n=n(a1+a n)2=12(3n2-21n)=32(n-7 2)2-1478,所以当n=3或4时,前n项的和S n取得最小值S3=S4=-18.三、求数列{|a n|}的前n项和例3 数列{a n}的前n项和S n=100n-n2(n∈N*).(1)判断{a n}是不是等差数列,若是,求其首项、公差;(2)设b n=|a n|,求数列{b n}的前n项和.解 (1)当n≥2时,a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n.∵a1=S1=100×1-12=99,适合上式,∴a n =101-2n (n ∈N *).又a n +1-a n =-2为常数,∴数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,∵n ∈N *,∴n ≤50(n ∈N *).①当1≤n ≤50时,a n >0,此时b n =|a n |=a n ,∴数列{b n }的前n 项和S n ′=100n -n 2.②当n ≥51时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S n ′=S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S n ′=Error!n ∈N *.反思感悟 已知等差数列{a n },求绝对值数列{|a n |}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.跟踪训练3 在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解 (1)由Error!得Error!∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533,∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴数列{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2(-32×172+1032×17)-(-32n 2+1032n)=32n 2-1032n +884.∴S n =Error!等差数列前n 项和公式的实际应用典例 某单位用分期付款的方式为职工购买40套住房,共需1 150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解 因购房时付150万元,则欠款1 000万元,依题意分20次付款,则每次付款的数额依次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,a 4=50+(1 000-50×3)×1%=58.5,所以a n =50+[1 000-50(n -1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).[素养提升] (1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.1.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ) A.11或12 B.12C.13 D.12或13答案 D解析 ∵a n=26-2n,∴a n-a n-1=-2(n≥2,n∈N*),∴数列{a n}为等差数列.又a1=24,d=-2,∴S n=24n+n(n-1)2×(-2)=-n2+25n=-(n-252)2+6254.∵n∈N*,∴当n=12或13时,S n最大.2.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2 D.1,0.5答案 A解析 由于项数为10,故S偶-S奇=15-12.5=5d,∴d=0.5,由15+12.5=10a1+10×92×0.5,得a1=0.5.3.(多选)设{a n}是等差数列,S n为其前n项和,且S5<S6=S7>S8,则下列结论正确的是( ) A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案 ABD解析 ∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.4.已知在等差数列{a n}中,|a5|=|a9|,公差d>0,则使得其前n项和S n取得最小值的正整数n 的值是________.答案 6或7解析 ∵公差d>0,|a5|=|a9|,∴-a5=a9,即a5+a9=0.由等差数列的性质,得2a7=a5+a9=0,解得a7=0.故数列的前6项均为负数,第7项为0,从第8项开始为正.∴S n 取得最小值时的n 为6或7.5.已知等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =________.答案 5解析 由题意得Error!故S 偶=192,S 奇=162,所以6d =S 偶-S 奇=30,故d =5.1.知识清单:(1)等差数列前n 项和的一般性质.(2)等差数列前n 项和的函数性质.2.方法归纳:整体思想、函数思想、分类讨论思想.3.常见误区:求数列{|a n |}的前n 项和时不讨论,最后不用分段函数表示.1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于( )A .10B .100C .110D .120答案 B解析 ∵{a n }是等差数列,a 1=1,∴{S n n }也是等差数列且首项为S 11=1.又S 88-S 66=2,∴{S n n }的公差是1,∴S 1010=1+(10-1)×1=10,∴S 10=100.2.若等差数列{a n }的前m 项的和S m 为20,前3m 项的和S 3m 为90,则它的前2m 项的和S 2m 为( )A .30B .70C .50D .60答案 C解析 ∵等差数列{a n }中,S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.3.已知数列{2n -19},那么这个数列的前n 项和S n ( )A .有最大值且是整数 B .有最小值且是整数C .有最大值且是分数 D .无最大值和最小值答案 B解析 易知数列{2n -19}的通项a n =2n -19,∴a 1=-17,d =2.∴该数列是递增等差数列.令a n =0,得n =912.∴a 1<a 2<a 3<…<a 9<0<a 10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.(多选)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,下列判断正确的是( )A .d <0B .S 11>0C .S 12<0D .数列{S n }中的最大项为S 11答案 AB 解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,A 正确;又S 11=112(a 1+a 11)=11a 6>0,B 正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,C 不正确;数列{S n }中最大项为S 6,D 不正确.故正确的选项是AB.5.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 018,S k =S 2 009,则正整数k 为( )A .2 017 B .2 018 C .2 019 D .2 020答案 D解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S2 011=S2 018,S k=S2 009,可得2 011+2 0182=2 009+k2,解得k=2 020.6.已知在等差数列{a n}中,公差d=1,且前100项和为148,则前100项中的所有偶数项的和为________.答案 99解析 由题意,得S奇+S偶=148,S偶-S奇=50d=50,解得S偶=99.7.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案 5解析 ∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.8.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为________.答案 6解析 由7a5+5a9=0,得a1d=-173.又a9>a5,所以d>0,a1<0.因为函数y=d2x2+(a1-d2)x的图象的对称轴为x=12-a1d=12+173=376,取最接近的整数6,故S n取得最小值时n的值为6.9.已知在等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值?解 (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴a n=a1+(n-1)·d=11-2n.(2)方法一 a1=9,d=-2,S n=9n+n(n-1)2·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,S n取得最大值.方法二 由(1)知a1=9,d=-2<0,∴{a n}是递减数列.令a n≥0,则11-2n≥0,解得n≤11 2 .∵n∈N*,∴当n≤5时,a n>0;当n≥6时,a n<0.∴当n=5时,S n取得最大值.10.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.解 (1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴{a n}是等差数列,又∵a1=8,a4=2,∴d=-2,a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则S n=8n+n(n-1)2×(-2)=9n-n2.∵a n=10-2n,令a n=0,得n=5.当n>5时,a n<0;当n=5时,a n=0;当n<5时,a n>0.∴当n≤5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=9n-n2.当n>5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-9n+n2=n2-9n+40,∴T n=Error!11.若数列{a n}的前n项和是S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( ) A.15 B.35 C.66 D.100答案 C解析 易得a n =Error!|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n 为( )A .6B .7C .8D .9答案 B解析 设数列{a n }是公差为d 的等差数列,则{S n n }是公差为d2的等差数列.因为S 1515-S 77=-8,故可得8×d2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15=________.答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.14.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16=________.答案 310解析 设S4=k,S8=3k,由等差数列的性质得S4,S8-S4,S12-S8,S16-S12构成等差数列.所以S8-S4=2k,S12-S8=3k,S16-S12=4k.所以S12=6k,S16=10k.S8S16=3 10.15.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.答案 11 7解析 设等差数列{a n}的项数为2n+1(n∈N*),S奇=a1+a3+…+a2n+1=(n+1)(a1+a2n+1)2=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n(a2+a2n)2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11,为所求的中间项.16.已知数列{a n}的前n项和为S n,a n>0,a1<2,6S n=(a n+1)(a n+2).(1)求证:{a n}是等差数列;(2)令b n=3a n a n+1,数列{b n}的前n项和为T n,求证:T n<1.证明 (1)因为6S n=(a n+1)(a n+2),所以当n≥2时,6S n-1=(a n-1+1)(a n-1+2),两式相减,得到6a n=(a2n+3a n+2)-(a2n-1+3a n-1+2),整理得(a n-a n-1)(a n+a n-1)=3(a n+a n-1),又因为a n>0,所以a n-a n-1=3,所以数列{a n}是公差为3的等差数列.(2)当n=1时,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因为a1<2,所以a1=1,由(1)可知a n-a n-1=3,即公差d=3,所以a n=a1+(n-1)d=1+(n-1)×3=3n-2,所以b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,所以T n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1.。

等差数列的前n项和性质及应用

等差数列的前n项和性质及应用

S偶
anቤተ መጻሕፍቲ ባይዱ1
性质2:(1)若项数为奇数2n-1,则 S2n-1=(2n- 1)an (an为中间项),
此时有:S偶-S奇= an ,
S奇 S偶
两等差数列前n项和与通项的关系 性质4:若数列{an}与{bn}都是等差数列,且
Sn 性质3: { } 为等差数列. n
n n1
S 2 n 1 前n项的和分别为Sn和Tn,则 an bn T2n1
1 Sn 13n n( n 1) ( 2) 2 2 2 n 14n (n 7) 49
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题 例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值. 解法2 由S3=S11得 d=-2<0
等差数列{an}前n项和的性质的应用 例5.一个等差数列的前12项的和为354, 其中项数为偶数的项的和与项数为奇数 的项的和之比为32:27,则公差为 5 . 例6.(09宁夏)等差数列{an}的前n项的和 为Sn,已知am-1+am+1-am2=0,S2m-1=38,则 m= .
10
例7.设数列{an}的通项公式为an=2n-7, 则|a1|+|a2|+|a3|+……+|a15|= 153 .
则Sn的图象如图所示 又S3=S11 所以图象的对称轴为
∴当n=7时,Sn取最大值49.
Sn
3 11 n 7 2
n 3 7 11
等差数列的前n项的最值问题 例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值. 解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15 15 n an 0 2 由 得 13 a 0 n 1 n 2 ∴当n=7时,Sn取最大值49.

4.2.2等差数列的前n项和的性质及应用(第2课时)

4.2.2等差数列的前n项和的性质及应用(第2课时)
当 d>0时, 有最小值;当 d<0时, 有最大值;
且n取最接近对称轴的自然数时, 取到最值
(2)图象法:
利用二次函数图象的对称性来确定n的值,使 取得最值.
(3) 邻项变号法:
当 > , < 时,满足ቊ
当 < , > 时,满足ቊ

的项数n使 取得最大值.
前n 项和的最大值问题
提示:
结合 对应的二次函数知, 有最大值,当n=3时, 取到最大值.
合作探究
拓展: 等差数列前n项和 的最值
(1)二次函数法:



= +
= + −




将 配方,转化为二次函数的最值问题,借助函数单调性来解决。但要注意 ∈ ∗
从第2排起后一排都比前一排多2个座位,问第1排应安排多少个座位.
分析:将第1排到第20排的座位数依次排成一列,构成数列{ }. 设数列{ }的前n项和为 .
由题意可知,{ }是等差数列,并且公差及前20项的和已知,所以可利用等差数
列的前n项和公式求首项.
解: 设报告厅的座位从第1排到第20排,各排的座位依次排成一列,构成等差数
( ++ )( + )

= + + =
( + )
= + =

上面两式相比,得
+

=
解得 n=10


课堂练习
5 在等差数列{ }中,设 为其前n项和,且 > , = ,当 取得最
大值时,n的值为____.
解法1:(函数法)
由 = ,可得

(文章)等差数列前n项和性质及应用

(文章)等差数列前n项和性质及应用

彰显数学魅力!演绎网站传奇!学数学 用专页 第 1 页 共 3 页 版权所有 少智报·数学专页等差数列前n 项和的性质及应用本文中所提到的数列都是等差数列,S n 为数列的前n 项和,d 为等差数列的公差,所有下标都是正整数.性质1:{a }为等差数列S =a2+bnS nn=an+b (a,b 为常数) 性质2:S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列性质3:若项数为2k +1,则S 奇S 偶=k +1k ,S -S =a =中间项,S =(×中间项,S =k ×中间项;若项数为2k,则S 奇S 偶=a na n +1,S -S =n 例1 已知等差数列的项数为奇数,S =7=6=1求项数n和末项a .分析 ∵S :S =(即(k+1):k=77:66,解得k=6,n=2k+1=13.∵S =12(a +a )·(k+1)=77,∴a +a =2∴a =2性质4:a =S 2n -12n -1,即S =(-1)a . 性质5:若S ,T 分{a },{}的前n 项和,则a n b n =S 2n -1T 2n -1. 例2 已知等差数列{a },}的前n 项和分别为S ,T ,若S n T n =2n +13n +1,则a 4b 4=_____. 分析a 4b 4=S 7T 7=2×7+13×7+1=1522. 性质6:若S ,T 分{a },{}的前n 项和,则S n T n =a 1+a nb 1+b n. 例3 设两个等差数列{a }与{b }的前n 项和之比S :P =(求a 7b 7的值.分析a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=S 13P 13=7×13+213+3=9316.性质7:S m+nm+n=S m-S nm-n.例4若等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为____.分析∵S3m3m=S2m-S m2m-m,∴S=3-S)=-30)=210.性质8:等差数列{a}中,S nn是n的一次函数,且点(n,S nn)都在直线y=d2x+(a-d2)上.例5已知数列{a n}为等差数列,前10项和S10=100,前100项和S100=10,求前110项和S110.分析设S nn=kn+b(k,b为常数),则由S=3得S1010=3,即10k+b=10①;由S=1得S100100=110,即100k+b=110②.由①②解得k=-11100,b=11110.∴S110110=110k+b=110×(-11100)+11110=-1.∴S=-110. 性质9:S m+n=S m+S n+mnd性质10:S=k+k(k -1)n2d2(k,n∈N*)例6在等差数列{a n}中,S10=100,S100=10,求S110的值.分析由性质9和性质10知,S110 = S10+ S100+10×100d ,S100 = 10S10+10×(10-1)×102d2.即S110 = 100+10+1000d ,10 = 10×100+4500d .解得S=-110.性质11:记等差数列{a}的前n项和为S.①若a>0公差d<0,则当a≥0且a≤0时,S最;②若a<0公差d>0,则当a≤0且a0时,S最.性质12:{a}为一个项数为n的等差数列,前m项和为p,后m项和为q,S为{a}的各项项,则S=n(p+q) 2m.例7若一个等差数列前3项和为34,后3项和为146,且所有项和为390,则这个数列有____项.-2-彰显数学魅力!演绎网站传奇!学数学 用专页 第 3 页 共 3 页 版权所有 少智报·数学专页分析 ∵390=n (34+146)2×3,∴可解得n=13.。

等差数列的前n项和公式的性质

等差数列的前n项和公式的性质
2
例 3. 项数为奇数的等差数列{an },奇数项之和为 44,偶数项之和为
33,求这个数列的中间项及项数.
解:设等差数列{an}共有(2n+1)项,则奇数项有(n+1)项,偶数项
有 n 项,中间项是第(n+1)项,即 an+1,
1
S奇 2a1+a2n+1n+1 n+1an+1 n+1 44 4
解法1: 由S3=S11, 得
1
1
3 13 3 2 d 1113 1110 d
2
2
∴ d=-2
1
Sn 13n n(n 1) (2)
2
n2 14n
( n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0
=
5+2

,则
+3

10n 3
67
7
=_______;
=_______;
2n 2
18
8
课堂小结
等差数列的前n项和公式的性质
性质1:数列{an}是等差数列⟺Sn=An2+Bn (A,B为常数)
Sn

性质2: 若数列{an}是公差为d的等差数列, 则数列 也
d
n
是等差数列, 且公差为 2 .
当m=n时,公式变化?
an S 2 n 1

bn T2 n1
例 4.已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,
5
a5
Sn 2n+2
Tn,且T =
,则b =________.
3
n
5
n+3
变式1. 若

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

第2课时 等差数列前n 项和的性质及应用(教师独具内容)课程标准:1.掌握等差数列前n 项和的性质,并能够运用其来解决问题.2.体会等差数列前n 项和公式与二次函数的联系,并能够运用二次函数的知识解决数列问题.教学重点:等差数列前n 项和的性质及其应用. 教学难点:运用二次函数的知识解决数列问题.1.等差数列的前n 项和公式与二次函数之间的关系一般地,对于等差数列{a n },如果a 1,d 是确定的,前n 项和S n =na 1+n n -12d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,设A =d 2,B =a 1-d 2,上式可写成S n =An 2+Bn .当A ≠0(即d ≠0)时,S n 是关于n 的二次函数,那么(n ,S n )在二次函数y =Ax 2+Bx 的图象上.因此,当d ≠0时,数列S 1,S 2,S 3,…,S n 的图象是抛物线y =Ax 2+Bx 上的一群孤立的点.可以证明:{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 2.等差数列的前n 项和的最值解决等差数列的前n 项和的最值的方法:(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意的是n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取最值. (3)通项法:当a 1>0,d <0时,n 为使a n ≥0成立的最大的自然数时,S n 最大.这是因为:当a n >0时,S n >S n -1,即递增;当a n <0时,S n <S n -1,即递减.类似地,当a 1<0,d >0,则n 为使a n ≤0成立的最大自然数时,S n 最小.1.判一判(正确的打“√”,错误的打“×”)(1)若等差数列{a n}的前n项和为S n,则S n一定同时存在最大值和最小值.( )(2)若等差数列{a n}的前n项和为S n,则数列S m,S2m,S3m,…(m∈N*)为等差数列.( )(3)若等差数列{a n}的公差d>0,则该数列S n一定有最小值,d<0,则该数列S一定有最大值.( )n2.做一做(请把正确的答案写在横线上)(1)已知某等差数列共有101项,各项之和为202,则奇数项之和S奇=________,偶数项之和S偶=________.(2)设等差数列{a n}的前n项和为S n,若S4=8,S8=20,则a13+a14+a15+a16=________.(3)在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时,S取最大值,则d的取值范围为________.n题型一等差数列前n项和性质的应用例1 等差数列{a n}中,前m项的和为30,前2m项的和为100,试求前3m 项的和.[跟踪训练1] 设S n是等差数列{a n}的前n项和,若S3=27,S6=81,则S12=( )A.270 B.108C.162 D.150题型二等差数列前n项和在实际中的应用例2 某人用分期付款的方式购买一件家电,价格为1150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?[跟踪训练2] 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A.12尺B.815尺C.1629尺D.1631尺题型三等差数列前n项和的最值问题例3 等差数列{a n}中,a1=25,S17=S9,问数列前多少项之和最大,并求此最大值.[条件探究] 本例中将“a1=25”改为“a1<0”,其他条件不变,则n为何值时,S n最小?[跟踪训练3] 设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.题型四等差数列的奇(偶)项和问题例4 一个等差数列项数为偶数,奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差、项数.[跟踪训练4] (1)一个等差数列共2011项,求它的奇数项和与偶数项和之比;(2)一个等差数列前20项和为75,其中的奇数项和与偶数项和之比为1∶2,求公差d.题型五等差数列前n项和的比例问题例5 (1)已知等差数列{a n},{b n}的前n项和分别为S n,T n且SnTn=7n+2n+3,则a5b5=________;(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,求该数列的公差d .[结论探究] 如果把本例(1)中问题,改为求a 5b 7=________,怎样解答呢?[跟踪训练5] 若两个等差数列{a n }和{b n }的前n 项和A n 和B n 满足关系式A nB n=7n +14n +27(n ∈N *),求a nb n.1.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D .122.已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( ) A .30 B .25 C .20D .153.(多选)设数列{a n }是等差数列,S n 是其前n 项和,a 1>0且S 6=S 9,则( ) A .d >0B .a 8=0C .S 7或S 8为S n 的最大值D .S 5>S 64.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子?”这个问题中,得到橘子最多的人所得的橘子个数是________.5.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n (n ∈N *)均在函数y =3x -2的图象上,求数列{a n }的通项公式.A级:“四基”巩固训练一、选择题1.等差数列{a n}的前n项和为S n,若S3=-6,S18-S15=18,则S18等于( ) A.36 B.18C.72 D.92.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于( )A.6 B.7C.8 D.93.设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是( )A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列4.已知等差数列{a n}和等差数列{b n}的前n项和分别为S n,T n,且(n+1)S n=(7n+23)T n,则使anbn为整数的正整数n的个数是( )A.2 B.3C.4 D.55.(多选)等差数列{a n}中,若S6<S7且S7>S8,则下面结论正确的是( ) A.a1>0 B.S9<S6C.a7最大D.(S n)max=S7二、填空题6.在等差数列{a n}中,a n=4n-52,a1+a2+…+a n=an2+bn(n∈N*),其中a,b均为常数,则ab=________.7.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为________米.8.设等差数列{a n }的前n 项和为S n ,若S 3=6,S 7=28,则a n =________,a 1+a nS n +4的最大值是________.三、解答题9.在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值. 10.已知函数f (x )=x 2-2(n +1)x +n 2+5n -7,n ∈N *.(1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:数列{a n }为等差数列;(2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n .B 级:“四能”提升训练1.已知数列{a n }的前n 项和为S n ,a n >0,且满足(a n +2)2=4S n +4n +1,n ∈N *.(1)求a 1及通项公式a n ;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n .2.已知数列{a n }的前n 项和为S n ,点⎝ ⎛⎭⎪⎫n ,S n n 在直线y =12x +112上,数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项和为153.(1)求数列{a n },{b n }的通项公式; (2)设c n =32a n -112b n -1,数列{c n }的前n 项和为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值.第2课时 等差数列前n 项和的性质及应用(教师独具内容)课程标准:1.掌握等差数列前n 项和的性质,并能够运用其来解决问题.2.体会等差数列前n 项和公式与二次函数的联系,并能够运用二次函数的知识解决数列问题.教学重点:等差数列前n 项和的性质及其应用. 教学难点:运用二次函数的知识解决数列问题.1.等差数列的前n 项和公式与二次函数之间的关系一般地,对于等差数列{a n },如果a 1,d 是确定的,前n 项和S n =na 1+n n -12d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,设A =d 2,B =a 1-d 2,上式可写成S n =An 2+Bn .当A ≠0(即d ≠0)时,S n 是关于n 的二次函数,那么(n ,S n )在二次函数y =Ax 2+Bx 的图象上.因此,当d ≠0时,数列S 1,S 2,S 3,…,S n 的图象是抛物线y =Ax 2+Bx 上的一群孤立的点.可以证明:{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 2.等差数列的前n 项和的最值解决等差数列的前n 项和的最值的方法:(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意的是n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取最值. (3)通项法:当a 1>0,d <0时,n 为使a n ≥0成立的最大的自然数时,S n 最大.这是因为:当a n >0时,S n >S n -1,即递增;当a n <0时,S n <S n -1,即递减.类似地,当a 1<0,d >0,则n 为使a n ≤0成立的最大自然数时,S n 最小.1.判一判(正确的打“√”,错误的打“×”)(1)若等差数列{a n }的前n 项和为S n ,则S n 一定同时存在最大值和最小值.( )(2)若等差数列{a n }的前n 项和为S n ,则数列S m ,S 2m ,S 3m ,…(m ∈N *)为等差数列.( )(3)若等差数列{a n }的公差d >0,则该数列S n 一定有最小值,d <0,则该数列S n 一定有最大值.( )答案 (1)× (2)× (3)√2.做一做(请把正确的答案写在横线上)(1)已知某等差数列共有101项,各项之和为202,则奇数项之和S 奇=________,偶数项之和S 偶=________.(2)设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 13+a 14+a 15+a 16=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取最大值,则d 的取值范围为________.答案 (1)102 100 (2)20 (3)⎝ ⎛⎭⎪⎫-1,-78题型一 等差数列前n 项和性质的应用例1 等差数列{a n }中,前m 项的和为30,前2m 项的和为100,试求前3m 项的和.[解] 解法一:利用等差数列{a n }前n 项和公式S n =na 1+n n -12d .由已知得⎩⎪⎨⎪⎧S m=ma 1+m m -12d =30,S 2m=2ma 1+2m 2m -12d =100,解得a 1=10m +20m 2,d =40m 2,所以S 3m =3ma 1+3m3m -12d =210.解法二:记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m-S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,所以S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.等差数列前n项和的常用性质解决此类问题的方法较多,可利用方程的思想方法确定出系数,从而求出S n;也可利用等差数列的“片断和性质”,构造出新数列,从而使问题得到解决.[跟踪训练1] 设S n是等差数列{a n}的前n项和,若S3=27,S6=81,则S12=( )A.270 B.108C.162 D.150答案 A解析∵S3,S6-S3,S9-S6,S12-S9成等差数列,且该数列的公差d=S6-S3-S3=27,∴S9-S6=S3+2d=81,S12-S9=S3+3d=108,∴S9=162,S12=270.题型二等差数列前n项和在实际中的应用例2 某人用分期付款的方式购买一件家电,价格为1150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?[解]设每次交款数额依次为a1,a2,…,a20,则a1=50+1000×1%=60(元),a2=50+(1000-50)×1%=59.5(元),…a10=50+(1000-9×50)×1%=55.5(元).即第10个月应付款55.5元.由于{a n}是以60为首项,以-0.5为公差的等差数列,所以有S20=60+60-19×0.52×20=1105(元),即全部付清后实际付款1105+150=1255(元).建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.[跟踪训练2] 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A.12尺B.815尺C.1629尺D.1631尺答案 C解析由题意可得,每天织布的量组成了等差数列{a n},a1=5,S30=9×40+30=390,设公差为d,则30×5+30×292d=390,解得d=1629.故选C.题型三等差数列前n项和的最值问题例3 等差数列{a n}中,a1=25,S17=S9,问数列前多少项之和最大,并求此最大值.[解]由题意,可知a1=25,S17=S9,则17a1+17×162d=9a1+9×82d,d=-2.解法一:S n=25n+n n-12×(-2)=-(n-13)2+169.故前13项之和最大,最大值是169.解法二:S n=d2n2+⎝⎛⎭⎪⎫a1-d2n(d<0),S n 的图象是开口向下的抛物线上一群离散的点,最高点的横坐标为9+172,即S13最大.如右图所示,最大值为169.解法三:∵S 17=S 9, ∴a 10+a 11+…+a 17=0.∴a 10+a 17=a 11+a 16=…=a 13+a 14=0. ∵a 1=25>0,∴a 13>0,a 14<0. ∴S 13最大,最大值为169.解法四:∵a 1=25>0,由⎩⎨⎧a n =25-2n -1≥0,a n +1=25-2n <0,得⎩⎪⎨⎪⎧n ≤1312,n >1212.∴当n =13时,S n 有最大值169.[条件探究] 本例中将“a 1=25”改为“a 1<0”,其他条件不变,则n 为何值时,S n 最小?解 ∵S 17=S 9,∴a 10+a 11+…+a 17=0, ∴a 10+a 17=a 11+a 16=…=a 13+a 14=0. ∵a 1<0,∴a 13<0,a 14>0,∴S 13最小,∴当n =13时,S n 最小.求解等差数列前n项和最值问题的常用方法(1)二次函数法,即先求得S n 的表达式,然后配方.若对称轴恰好为正整数,则就在该处取得最值;若对称轴不是正整数,则应在离对称轴最近的正整数处取得最值,有时n 的值有两个,有时可能为1个.(2)不等式法①当a 1>0,d <0时,由⎩⎨⎧ a m ≥0,a m +1<0⇒S m 为最大值;②当a 1<0,d >0时,由⎩⎨⎧a m ≤0,a m +1>0⇒S m 为最小值.(3)寻求正、负项交替点法,即利用等差数列的性质,找到数列中正数项与负数项交替变换的位置,其实质仍然是找到数列中最后的一个非正数项(或非负数项),然后确定S n 的最值.[跟踪训练3] 设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围;(2)问前几项的和最大,并说明理由.解 (1)∵a 3=12,∴a 1=12-2d ,∵S 12>0,S 13<0, ∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0,即⎩⎨⎧ 24+7d >0,3+d <0,∴-247<d <-3. (2)∵S 12>0,S 13<0,∴⎩⎨⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0,又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.题型四 等差数列的奇(偶)项和问题例4 一个等差数列项数为偶数,奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差、项数.[解] 解法一:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *).根据题意,得⎩⎪⎨⎪⎧S 奇=24,S偶=30,a2k -a 1=212,即⎩⎪⎨⎪⎧12k a 1+a 2k -1=24,12k a 2+a2k=30,2k -1d =212,∴⎩⎪⎨⎪⎧ k [a 1+k -1d ]=24,k a 1+kd =30,2k -1d =212,解得a 1=32,d =32,k =4,∴首项为32,公差为32,项数为8.解法二:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *).根据题意,得⎩⎪⎨⎪⎧S奇=24,S偶=30,a2k -a 1=212,∴⎩⎨⎧S 偶-S 奇=6,a2k -a 1=212,∴⎩⎨⎧kd =6,2k -1d =212,∴⎩⎨⎧k =4,d =32.代入S 奇=k 2(a 1+a 2k -1)=24,可得a 1=32.∴首项为32,公差为32,项数为8.等差数列的奇(偶)项和的性质(1)设等差数列{a n }的项数为2n (n ∈N *),则有: ①S 2n =n (a n +a n +1); ②S 偶-S 奇=nd ,S 偶S 奇=a n +1a n(S 奇,S 偶分别是数列{a n }的所有奇数项和、偶数项和).(2)设等差数列{a n }的项数为2n -1(n ≥2,且n ∈N *),则S 2n -1=(2n -1)a n (a n是数列的中间项),S奇-S偶=a n,S奇S偶=nn-1.[跟踪训练4] (1)一个等差数列共2011项,求它的奇数项和与偶数项和之比;(2)一个等差数列前20项和为75,其中的奇数项和与偶数项和之比为1∶2,求公差d.解(1)等差数列{a n}共有1006个奇数项,1005个偶数项,∴S奇=1006a1+a20112,S偶=1005a2+a20102.∵a1+a2011=a2+a2010,∴S奇S偶=10061005.(2)前20项中,奇数项和S奇=13×75=25,偶数项和S偶=23×75=50,又S偶-S奇=10d,∴d=50-2510=2.5.题型五等差数列前n项和的比例问题例5 (1)已知等差数列{a n},{b n}的前n项和分别为S n,T n且SnTn=7n+2n+3,则a5b5=________;(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,求该数列的公差d.[解析](1)解法一:a5b5=S9T9=7×9+29+3=6512.解法二:可设S n=(7n+2)nt,T n=(n+3)nt(t≠0).则a5=S5-S4=65t,b5=T5-T4=12t.故a5b5=65t12t=6512.(2)由题意,知⎩⎨⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎨⎧S 偶=192.S 奇=162.因为S 偶-S 奇=6d ,所以d =192-1626=5. [答案] (1)6512(2)见解析 [结论探究] 如果把本例(1)中问题,改为求a 5b 7=________,怎样解答呢? 答案6516解析 设S n =(7n +2)nt ,T n =(n +3)nt (t ≠0), ∴a 5=65t ,b 7=T 7-T 6=(7+3)×7t -(6+3)×6t =16t .∴a 5b 7=65t 16t =6516.解决等差数列前n 项和问题的两种思路(1)涉及一个有限的等差数列的奇数项和与偶数项和之比的问题,宜用等差数列前n 项和的性质求解.(2)涉及两个等差数列项的比,可以转化为两等差数列前n 项和之比来处理. [跟踪训练5] 若两个等差数列{a n }和{b n }的前n 项和A n 和B n 满足关系式A n B n=7n +14n +27(n ∈N *),求a nb n. 解 ∵等差数列的前n 项和S n =na 1+n n -12d =dn 22+⎝⎛⎭⎪⎫a 1-d 2n ,A n B n =7n +14n +27, ∴设A n =k (7n 2+n ),B n =k (4n 2+27n ).当n ≥2时,a n =A n -A n -1=7kn 2+kn -7k (n -1)2-k (n -1)=k (14n -6),b n=B n -B n -1=k (4n 2+27n )-k [4(n -1)2+27(n -1)]=k (8n +23).∴a n b n =14n -68n +23,当n =1时,也成立.1.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D .12答案 A 解析 S 9S 5=92a 1+a 952a 1+a 5=92·2a 552·2a 3=9a 55a 3=95·a 5a 3=1. 2.已知等差数列{a n }的前n 项和为S n ,且S 10=12,S 20=17,则S 30为( ) A .30 B .25 C .20 D .15答案 D解析 因为S n 是等差数列{a n }的前n 项和,所以S 10,S 20-S 10,S 30-S 20成等差数列,所以S 10+(S 30-S 20)=2(S 20-S 10),所以12+(S 30-17)=2×(17-12),解得S 30=15.3.(多选)设数列{a n }是等差数列,S n 是其前n 项和,a 1>0且S 6=S 9,则( ) A .d >0B .a 8=0C .S 7或S 8为S n 的最大值D .S 5>S 6答案 BC解析 因为S n =na 1+n n -12d ,所以S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,又因为a 1>0,S 6=S 9,所以d <0,二次函数y =d2x 2+⎝⎛⎭⎪⎫a 1-d 2x 图象的对称轴为x =6+92=152,所以二次函数图象的开口向下,所以二次函数y =d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x 在⎣⎢⎡⎦⎥⎤1,152上单调递增,在⎣⎢⎡⎭⎪⎫152,+∞上单调递减,所以S 5<S 6,故A ,D 错误;在最靠近152的整数n =7或n =8时,S n 取得最大值,故C 正确;因为S 7=S 8,所以a 8=0,故B 正确.故选BC.4.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子?”这个问题中,得到橘子最多的人所得的橘子个数是________.答案 18解析 设第一个人分到的橘子个数为a 1,由题意,得S 5=5a 1+5×42×3=60,解得a 1=6.则a 5=a 1+(5-1)×3=6+12=18,∴得到橘子最多的人所得的橘子个数是18.5.设数列{a n }的前n 项和为S n ,点⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)均在函数y =3x -2的图象上,求数列{a n }的通项公式.解 依题意得,S nn=3n -2, 即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, 因为a 1=S 1=1,满足a n =6n -5, 所以a n =6n -5(n ∈N *).A 级:“四基”巩固训练一、选择题1.等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18等于( ) A .36 B .18 C .72 D .9答案 A解析 由S 3,S 6-S 3,…,S 18-S 15成等差数列,可知S 18=S 3+(S 6-S 3)+(S 9-S 6)+…+(S 18-S 15)=6×-6+182=36.2.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9答案 A解析 ∵{a n }是等差数列,∴a 4+a 6=2a 5=-6,即a 5=-3,则d =a 5-a 15-1=-3+114=2,∴{a n }是首项为负数的递增数列,所有的非正项之和最小.∵a 6=-1,a 7=1,∴当n =6时,S n 取得最小值.3.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 答案 C解析 设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A ,B 正确;因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确.4.已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n ,且(n +1)S n=(7n +23)T n ,则使a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5答案 C解析由题意,可得SnTn=7n+23n+1,则anbn=2a n2b n=n a1+a2n-12n b1+b2n-12=S2n-1T2n-1=14n+162n=7n+8 n =7+8n,经验证,知当n=1,2,4,8时,anbn为整数,即使anbn为整数的正整数n的个数是4,故选C.5.(多选)等差数列{a n}中,若S6<S7且S7>S8,则下面结论正确的是( ) A.a1>0 B.S9<S6C.a7最大D.(S n)max=S7答案ABD解析等差数列{a n}中,若S6<S7且S7>S8,则a7>0,a8<0,故d<0.a1=a7-6d>0,A正确;S9-S6=a7+a8+a9=3a8<0,故S9<S6,B正确;因为a6>a7,故C错误;因为a7>0,a8<0,故(S n)max=S7,D正确.故选ABD.二、填空题6.在等差数列{a n}中,a n=4n-52,a1+a2+…+a n=an2+bn(n∈N*),其中a,b均为常数,则ab=________.答案-1解析∵a n=4n-52,∴a1=32.设等差数列{a n}的公差为d,则d=a n+1-a n=4.∴an2+bn=a1+a2+…+a n=32n+n n-12×4=2n2-12n.∴a=2,b=-12,故ab=-1.7.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为________米.答案2000解析假设开始时将树苗集中放置在第n棵树坑旁边(其中1≤n≤20且n∈N*),则20名同学往返所走的路程总和为S=20+40+…+20(n-1)+20+40+…+20(20-n)=20[1+2+…+(n-1)+1+…+(20-n)]=20⎣⎢⎡⎦⎥⎤n -1+1n -12+20-n +120-n 2=20(n 2-21n +210)=20⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -2122+210-2124因为n ∈N *且1≤n ≤20,所以当n =10或11时,S 取最小值,且最小值为2000米.8.设等差数列{a n }的前n 项和为S n ,若S 3=6,S 7=28,则a n =________,a 1+a n S n +4的最大值是________.答案 n 17解析 设等差数列{a n }的公差为d ,则 ⎩⎨⎧S 3=3a 1+3d =6,S 7=7a 1+21d =28,解得⎩⎨⎧a 1=1,d =1,所以数列{a n }的通项公式为a n =a 1+(n -1)d =n .S n =n a 1+a n2=n n +12,∴a 1+a n S n +4=21+nn +5n +4,令t =n +1,则t ≥2且t ∈N ,a 1+a n S n +4=2tt +4t +3=2t +12t+7,由对勾函数的单调性可知,函数y =t +12t+7在t ∈(0,23)时单调递减,在t ∈(23,+∞)时单调递增,当t =3或t =4时,a 1+a n S n +4取得最大值为17. 三、解答题9.在等差数列{a n }中,a 10=18,前5项的和S 5=-15, (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值. 解 (1)设{a n }的首项、公差分别为a 1,d .则⎩⎨⎧a 1+9d =18,5a 1+52×4×d =-15,解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478, ∴当n =3或n =4时,前n 项的和取得最小值为-18.10.已知函数f (x )=x 2-2(n +1)x +n 2+5n -7,n ∈N *.(1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:数列{a n }为等差数列;(2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n .解 (1)证明:因为f (x )=x 2-2(n +1)x +n 2+5n -7 =[x -(n +1)]2+3n -8,所以a n =3n -8,因为a n +1-a n =3(n +1)-8-(3n -8)=3,所以数列{a n }为等差数列.(2)由题意知,b n =|a n |=|3n -8|,所以当1≤n ≤2时,b n =8-3n ,S n =n b 1+b n2=n [5+8-3n ]2=13n -3n 22,当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n -8) =7+n -2[1+3n -8]2=3n 2-13n +282.所以S n =⎩⎪⎨⎪⎧ 13n -3n 22,1≤n ≤2,n ∈N *,3n 2-13n +282,n ≥3,n ∈N *.B 级:“四能”提升训练1.已知数列{a n }的前n 项和为S n ,a n >0,且满足(a n +2)2=4S n +4n +1,n ∈N *.(1)求a 1及通项公式a n ;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n . 解 (1)对于(a n +2)2=4S n +4n +1, ①n =1时,(a 1+2)2=4a 1+5,a 21=1,而a n >0,则a 1=1.又(a n +1+2)2=4S n +1+4(n +1)+1, ②由②-①可得(a n +1+2)2-(a n +2)2=4a n +1+4,a 2n +1=(a n +2)2,而a n >0,∴a n +1=a n +2,即a n +1-a n =2.∴{a n }是以1为首项,2为公差的等差数列,即a n =1+2(n -1)=2n -1.(2)∵b n =(-1)n ·(2n -1),∴T n =-1+3-5+7+…+(-1)n (2n -1), 当n 为偶数时,T n ==n ; 当n 为奇数时,T n =-(2n -1)=-n . 综上所述,T n =(-1)n ·n .2.已知数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n 在直线y =12x +112上,数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项和为153. (1)求数列{a n },{b n }的通项公式;(2)设c n =32a n -112b n -1,数列{c n }的前n 项和为T n ,求使不等式T n >k 57对一切n ∈N *都成立的最大正整数k 的值. 解 (1)由已知,得S n n =12n +112,∴S n =12n 2+112n . 当n ≥2时,a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5. 当n =1时,a 1=S 1=6也符合上式,∴a n =n +5(n ∈N *).由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列. 由{b n }的前9项和为153,可得9b1+b92=9b5=153,得b5=17,又b3=11,∴{b n}的公差d=b5-b32=3.∵b3=b1+2d,∴b1=5.∴b n=3n+2(n∈N*).(2)c n=32n-16n+3=12⎝⎛⎭⎪⎫12n-1-12n+1,∴T n=12⎝⎛⎭⎪⎫1-13+13-15+…+12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1.∵n增大时,T n增大,∴{T n}是递增数列.∴T n≥T1=1 3 .若T n>k57对一切n∈N*都成立,只要T1=13>k57,∴k<19,则k max=18.。

等差数列前N项和的性质及其应用上课讲义

等差数列前N项和的性质及其应用上课讲义

肥东锦弘中学高一年级数学公开课教案授课教师:吴晗 班级:高一(11) 时间:3月31号下午第一节课 课题:等差数列前n 项和的性质及其应用 教学目标:(1) 进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前n项和公式研究n S 的最值。

(2) 经历公式应用过程。

(3) 通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生善于观察生活,从生活中发现问题,并用数学方法解决问题。

教学重点:熟练掌握等差数列求和公式。

教学难点:灵活应用求和公式解决问题。

教学方法:启发探究 学法指导:自主学习教学用具:粉笔、黑板、PPT 教学过程: 一、复习回顾(1) 等差数列的定义、通项公式、性质; (2) 等差数列前n 项和公式及其推导。

二、新课讲解探究一:等差数列前n 项和公式可以转化为关于n 的一元二次方程,n da n d d n n na S n )2(22)1(121-+=-+=,反过来如果一个数列的前n 项和是关于n 的一元二次方程,那么这个数列一定是等差数列吗?例1、如果一个数列{}n a 的前n 项和为n n S n 212+=,求这个数列的通项公式,这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么? 解:时,当2≥n 212)1(21)1(21221-=⎥⎦⎤⎢⎣⎡-+--+=-=-n n n n n S S a n n n 时,当1=n 2311==S a 也满足上式。

所以数列{}212-=n a a n n 的通项公式为 由此可见,{}的等差数列,公差为是一个首项为数列223n a课堂练习1、如果一个数列{}n a 的前n 项和为1212++=n n S n ,求这个数列的通项公式,这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么? 课本第45页的探究等差数列前n 项和的性质一:{}2,2ABn An S a n n 公差为是等差数列数列+=⇔探究二:既然等差数列的前n 项和n S 是关于n 的一元二次方程,那么它的最值怎么求呢?例2:已知等差数列Λ1,3,5的前n 项和为n S ,求使n S 最大的序号n 的值? 解1:由已知条件知,该等差数列首项2-,51==d a 公差 9)3(6)2(2)1(522+--=+-=--+=n n n n n n S n ∴使n S 最大的序号n 的值为3.解2:由已知条件知,52,72)1(251+-=+-=--=+n a n n a n n由⎩⎨⎧≤≥+001n n a a 解得2725≤≤n3=∴n等差数列前n 项和的性质二:不等式法求n S 的最值:若且0,01<>d a ⎩⎨⎧≤≥+001n n a a ,则n S 有最大值,若且0,01><d a ⎩⎨⎧≥≤+01n n a a ,则n S 有最小值。

等差数列前n项和公式的几个性质和与应用

等差数列前n项和公式的几个性质和与应用

等差数列前n项和公式的几个性质和与应用-CAL-FENGHAI.-(YICAI)-Company One1等差数列前n 项和公式的几个性质和与应用等差数列是高中数学的一项重要内容,其中心是通项公式与前n 项和公式。

透彻理解并掌握他们的相关性,能使我们的解题简洁方便。

现就等差数列前n 项和的几个性质与应用略举几个例子供大家参考。

性质1:设等差数列{}n a 的前n 项和公式和为n S ,公差为d ,*.N n m ∈ 则①()d m n m S n S m N -=-21 ②()mnd S S S S nm n m S n m n m n m ++=--+=+ 性质2:设等差数列{}n a 的前n 项和公式和为n S ,*..N k n m ∈若k n m ..成等差数列,则kS n S m S k n m ,,成等差数列 性质3:设等差数列{}n a 的前n 项和公式和为n S ,*....N n m q p ∈若n m q p +=+,则qp S S n m S S q p n m --=-- 性质4:设等差数列{}n a 的前n 项和公式和为k S①当()*2N k k n ∈=时,()12++=k k k a a k S②当()*12N k k n ∈-=时,()121212---=k k a k S例1:(人教版高中数学第一册上123P 7题)如果等差数列{}n a 的前4项和是2,前9项和是6-,求其前n 项和公式。

解:由性质1得:()()⎪⎪⎩⎪⎪⎨⎧-=--=-d n S nS d S S n 4214492149449 ()()21将9,294-==S S 代入()()2,1得:n n S n 30433072+-= 例2:(97年全国高考文科卷)设n S 是等差数列{}n a 的前n 项和,已知331S 和441S 的等比中项为551S ,331S 和441S 的等差中项为1,求等差数列{}n a 的通项公式n a 。

等差数列的前n项和性质及应用

等差数列的前n项和性质及应用

3、三种题型
数列{an}为等差数列
题型(一)——等差数列前n项和旳有关计算
知三求二
★注意 a a 旳整体代换
1
n
题型(二)——已知Sn,求通项公式an
an=SS1n-Sn-1
n=1, n>1,n∈N*.
题型(三)——等差数列前n项和Sn旳最值问题
4.求等差数列前n项和旳最值措施 (1)二次函数法:用求二次函数旳最值措施来求其 前n项和旳最值,但要注意n∈N*,结合二次函数 图象旳对称性来拟定n旳值,愈加直观. (2)通项法:当 a1>0,d<0,aann≥+1≤0 0 时,Sn 取 得最大值;当 a1<0,d>0,aann≤ +1≥0 0 时,Sn 取 得最小值.
例3.一种等差数列旳前10项旳和为100, 前100项旳和为10,则它旳前110项旳和 为 -110 .
例4.两等差数列{an} 、{bn}旳前n项和分
别是Sn和Tn,且 Sn 7n 1
求 a5 和 an . b5 bn
Tn 4n 27
a5 64 an 14n 6 b5 63 bn 8n 23
性质3:若Sm=Sp (m≠p),则 Sp+m= 0
性质4:(1)若项数为偶数2n,则
S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中
间两项), 此时有:S偶-S奇= nd
,
S奇 S偶
an an1
2024年10月9日星期三
性质4:(1)若项数为奇数2n-1,则 S2n-1=(2n- 1)an (an为中间项),
∴ an=13+(n-1) ×(-2)=-2n+15

an 0
an1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15

aann1
0
0

n n
15 2 13 2
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题
求等差数列前n项的最大(小)的方法
方法1:由Sn
d 2
n2
(a1
d 2
)n利用二次函
数的对称轴求得最值及取得最值时的n的值.
方法2:利用an的符号①当a1>0,d<0时,数列 前面有若干项为正,此时所有正项的和为
Sn的最大值,其n的值由an≥0且an+1≤0求得. ②当a1<0,d>0时,数列前面有若干项为负, 此时所有负项的和为Sn的最小值,其n的值
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得
313 1 3 2 d 1113 1 1110 d
2
2
∴ d=-2
1 Sn 13n 2 n(n 1) (2)
n2 14n (n 7)2 49
由an ≤0且an+1 ≥ 0求得.
练习:已知数列{an}的通项为an=26-2n, 要使此数列的前n项和最大,则n的值为
( C)
A.12 B.13 C.12或13 D.14
2.等差数列{an}前n项和的性质
在等差数列{an}中,其前n项的和为Sn,则有
性质1:Sn,S2n-Sn,S3n-S2n, …也在等差数列, 公差为 n2d
1.根据等差数列前n项和,求通项公式.
an
a1
Sn
Sn1
n1 n2
2、结合二次函数图象和性质求
S3=9,S6=36,则a7+a8+a9=( B)
A.63 B.45 C.36 D.27
例2.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列{an}前n项和的性质的应用
例3.一个等差数列的前10项的和为100, 前100项的和为10,则它的前110项的和 为 -110 .

1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
2d 2
2
由于n为正整数,所以当n=6时Sn有最大值.
练习1
已知等差数列25,21,19, …的前n项和 为Sn,求使得Sn最大的序号n的值.
练习2:
求集合 M {mm 2n 1,n N,m 60}
的元素个数,并求这些元素的和.
练习3:已知在等差数列{an}中,a10=23, a25=-22 ,Sn为其前n项和.
(1)问该数列从第几项开始为负?
(2)求S10 (3)求使 Sn<0的最小的正整数n.
(4) 求|a1|+|a2|+|a3|+…+|a20|的值
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法2 由S3=S11得 d=-2<0
则Sn的图象如图所示
Sn
又S3=S11
所以图象的对称轴为
3 11
n
n
7
2
3 7 11
∴当n=7时,Sn取最大值49.
S2n-1=(2n- 1)an (an为中间项),
性此质时5:有{ S:Sn偶} -为S等奇差= a数n 列, .SS奇 偶
n
n1
n
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
3.等差数列{an}前n项和的性质的应用 例1.设等差数列{an}的前n项和为Sn,若
例4.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
求 a5 和 an
b5
bn
.
Tn 4n 27
a5 64 an 14n 6 b5 63 bn 8n 23
等差数列{an}前n项和的性质的应用
例5.一个等差数列的前12项的和为354, 其中项数为偶数的项的和与项数为奇数
性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p)
性质3:若Sm=Sp (m≠p),则 Sp+m= 0
性质4:(1)若项数为偶数2n,则
S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中
间两项), 此时有:S偶-S奇= nd
,
S奇 S偶
an an1
性质4:(1)若项数为奇数2n-1,则
复习回顾
等差数列的前n项和公式:
形式1:
Sn
n(a1 2
an )
形式2:
Sn
na1
n(n 2
1)
d
1.将等差数列前n项和公式
n(n 1)d 看作是一Sn个关n于a1n的 函数2,这个函数
有什么特点?
Sn
d 2
n2
(a1
d 2
)n

A
d 2
,
B
a1
d 2

Sn=An2+Bn
当d≠0时,Sn是常数项为零的二次函数
的项的和之比为32:27,则公差为 5 .
例6.(09宁夏)等差数列{an}的前n项的和 为Sn,已知am-1+am+1-am2=0,S2m-1=38,则
m= 10 .
例7.设数列{an}的通项公式为an=2n-7,
则|a1|+|a2|+|a3|+……+|a15|= 153 .
等差数列{an}前n项和的性质
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法4 由S3=S11得
a4+a5+a6+……+a11=0 而 a4+a11=a5+a10=a6+a9=a7+a8
∴a7+a8=0 又d=-2<0,a1=13>0
∴a7>0,a8<0
∴当n=7时,Sn取最大值49.
例8.设等差数列的前n项和为Sn,已知
a3=12,S12>0,S13<0. (1)求公差d的取值范围;
(2)指出数列{Sn}中数值最大的项,并说明
理由.
a1+2d=12
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)

Sn
na1
1 2
n(n 1)d
相关文档
最新文档