金属力学性能实验
金属行业金属材料的力学性能测试方法
金属行业金属材料的力学性能测试方法金属材料的力学性能测试是金属行业中非常重要的一项工作,它可以用来评估金属材料的力学性能,帮助我们了解这些材料在实际应用中的表现和可靠性。
本文将介绍几种常用的金属材料力学性能测试方法,并对其原理和应用进行详细说明。
一、拉伸试验拉伸试验是测量金属材料在拉伸过程中的力学性能的一种常用方法。
它通过施加拉伸载荷并记录应力和应变的变化来评估材料的强度、延展性和韧性等指标。
在拉伸试验中,常用的测试参数包括屈服强度、断裂强度、断裂延伸率等。
二、硬度测试硬度测试是评估金属材料硬度的方法之一,它可以用来衡量金属材料抵抗形变和破坏的能力。
常见的硬度测试方法有洛氏硬度测试、巴氏硬度测试和维氏硬度测试等。
这些测试方法都通过施加一定压力并测量材料表面的印痕或弹痕来评估材料的硬度。
三、冲击试验冲击试验是评估金属材料在受冲击载荷下的抗冲击性能的方法之一。
常用的冲击试验方法包括冲击弯曲试验和冲击拉伸试验等。
这些试验通过施加冲击力并记录材料的断裂形态和断裂能量来评估材料的韧性和抗冲击能力。
四、压缩试验压缩试验是测量金属材料在受压载荷下的力学性能的方法之一。
它可以用来评估金属材料的强度、稳定性和抗压能力等指标。
在压缩试验中,常用的测试参数包括屈服强度、最大压缩应力和压缩模量等。
五、扭转试验扭转试验是测量金属材料在扭转载荷下的力学性能的一种常用方法。
它可以用来评估金属材料的刚度、强度和韧性等指标。
在扭转试验中,通过施加扭矩并记录应力和应变的变化来评估材料的扭转性能。
总结:金属行业中,对金属材料的力学性能进行测试是非常重要的工作。
本文介绍了几种常用的金属材料力学性能测试方法,包括拉伸试验、硬度测试、冲击试验、压缩试验和扭转试验等。
通过这些测试方法,我们可以全面了解金属材料的力学性能,为金属行业的生产和应用提供科学的依据。
在实际应用中,可以根据具体需求选择合适的测试方法,以确保金属材料的安全可靠性。
金属力学性能实训心得
金属力学性能实训心得
本次实训,我们学习了金属力学性能的测试方法,包括拉伸试验、冲
击试验、压缩试验、弯曲试验和撕裂试验等。
首先,我们学习了拉伸试验,拉伸试验是金属力学性能测试中最常用
的一种方法,它可以测量金属材料的抗拉强度、延伸率、断裂伸长率
等性能指标。
其次,我们学习了冲击试验,冲击试验可以测量金属材
料的冲击韧性和冲击强度,以及金属材料在冲击负荷下的破坏模式。
第三,我们学习了压缩试验,压缩试验可以测量金属材料的压缩强度
和压缩模量,以及金属材料在压缩负荷下的破坏模式。
第四,我们学
习了弯曲试验,弯曲试验可以测量金属材料的弯曲强度和弯曲模量,
以及金属材料在弯曲负荷下的破坏模式。
最后,我们学习了撕裂试验,撕裂试验可以测量金属材料的撕裂强度和撕裂模量,以及金属材料在
撕裂负荷下的破坏模式。
通过本次实训,我深刻地认识到金属力学性能测试的重要性,它可以
帮助我们了解金属材料的性能特征,从而更好地应用金属材料。
金属力学实验报告
金属力学实验报告金属力学实验报告引言金属力学实验是材料力学领域中非常重要的一部分,通过实验可以对金属材料的力学性能进行准确的测量和分析。
本实验旨在通过拉伸试验和硬度试验,研究金属材料的强度、延展性和硬度等性能。
实验一:拉伸试验拉伸试验是一种常用的金属力学实验方法,通过施加外力使金属试样产生拉伸变形,从而测量金属的力学性能。
本实验选取了一种常见的金属材料进行拉伸试验。
实验步骤:1. 准备试样:从金属材料中切割出试样,保证试样的尺寸符合标准要求。
2. 安装试样:将试样安装在拉伸试验机上,确保试样的夹紧和对齐。
3. 施加外力:通过拉伸试验机施加外力,使试样发生拉伸变形。
4. 记录数据:在拉伸试验过程中,记录试样的载荷和变形数据。
5. 分析数据:根据记录的数据,计算试样的应力和应变,绘制应力-应变曲线。
6. 分析结果:根据应力-应变曲线,得出试样的屈服强度、抗拉强度和断裂延伸率等力学性能参数。
实验结果:通过拉伸试验,我们得到了金属试样的应力-应变曲线。
从曲线上可以看出,金属材料在一定范围内呈现线性弹性变形,当应力超过一定值后,试样开始发生塑性变形,最终导致断裂。
实验二:硬度试验硬度试验是一种常用的金属力学实验方法,通过在金属表面施加一定压力,测量金属的硬度,从而间接反映金属的强度和延展性。
本实验选取了几种常见的硬度试验方法进行研究。
实验步骤:1. 准备试样:从金属材料中切割出试样,保证试样的表面光洁。
2. 选择试验方法:根据金属材料的硬度范围,选择合适的硬度试验方法。
3. 施加压力:通过硬度试验机施加一定压力,使硬度试针或硬度球压入试样表面。
4. 测量印痕:测量试样表面产生的硬度印痕的尺寸。
5. 计算硬度:根据硬度印痕的尺寸,计算试样的硬度值。
6. 分析结果:根据硬度值,判断金属材料的硬度和力学性能。
实验结果:通过硬度试验,我们得到了金属试样的硬度值。
不同的试验方法得到的硬度值可能有所不同,但通过比较可以得出金属材料的相对硬度。
金属的力学性能及试验方法
金属的力学性能及试验方法金属是指具有良好导电、导热性能,具有一定塑性和可锻性,通常为固态的元素或化合物。
在工业生产和建筑施工中,常常用到金属材料,因此了解金属的力学性能和试验方法非常重要。
本文将从金属的力学性能、力学试验和金属材料的应用等方面进行阐述。
1. 强度金属材料的强度是指抵抗外力破坏的能力,通常用抗拉、抗压、抗剪等强度来表示。
抗拉强度是指钢材在受到拉应力时发生的拉断应力最大值,抗压强度是指钢材在受到压应力时发生的压缩应力最大值,抗剪强度是指钢材在受到剪应力时发生的剪切应力最大值。
不同的金属材料的强度不同,可以通过力学测试来得到不同金属材料的强度值。
2. 塑性金属材料的塑性是指金属在受到外力作用下发生形变的能力。
通常用屈服点、延伸率和冷弯性能等来表示。
屈服点是指金属在受到拉应力时发生的弹性变形后,开始出现塑性变形的应力值。
延伸率是指金属在拉伸过程中能够完全拉开的长度与原长度之比,冷弯性能是指金属材料在冷弯时所能承受的最大应力值,一般来说,塑性强的金属材料能够承受更大的拉应力,延伸率也会更高,因此在一些需要有一定塑性和可锻性的场合,如汽车制造和机械制造等,常常使用具有良好塑性和可锻性的金属材料。
3. 硬度硬度是指金属材料抵抗刻擦的能力,即金属材料的表面极其内部能够承受的压力的大小。
硬度的测量有多种方法,如布氏硬度、Vickers硬度、洛氏硬度等。
不同的测量方法所得到的硬度值也不同。
1. 拉伸试验拉伸试验是最为常见的一种力学试验方法,用于测量金属材料的强度、塑性和弹性等力学性能。
试样用钳夹好,一头通过万能试验机的拉伸机械臂和传感器连接,另一头通过夹具固定。
在破断前,可以通过读数器和试验机的力值计算出试样在拉伸过程中出现的最大应力值。
2. 压缩试验压缩试验是测量金属材料抵抗压缩力的试验方法,试样一般为柱形。
试样被夹具夹紧,然后放入万能试验机的压缩机械臂下方进行压缩。
通过试验机内的传感器可以测量到试样在压缩过程中的应力值,以及当试样发生变形时所受到的最大压力值。
金属材料力学性能测试规范
金属材料力学性能测试规范一、金属材料力学性能测试的重要性金属材料的力学性能是指材料在受到外力作用时所表现出的特性,包括强度、硬度、韧性、塑性等。
这些性能直接影响着材料在实际应用中的可靠性和安全性。
例如,在建筑领域,钢材的强度决定了建筑物的承载能力;在机械制造中,零部件的硬度和韧性关系到其使用寿命和运行稳定性。
因此,通过科学、规范的测试方法获取准确的力学性能数据,对于材料的选择、设计和质量控制具有重要意义。
二、常见的金属材料力学性能测试项目1、拉伸试验拉伸试验是评估金属材料强度和塑性的最基本方法。
通过对标准试样施加逐渐增加的轴向拉力,测量试样在拉伸过程中的变形和断裂特性。
主要测试指标包括屈服强度、抗拉强度、延伸率和断面收缩率等。
2、硬度试验硬度是衡量金属材料抵抗局部变形能力的指标。
常见的硬度测试方法有布氏硬度、洛氏硬度、维氏硬度等。
硬度测试可以快速、简便地评估材料的硬度分布和加工硬化程度。
3、冲击试验冲击试验用于测定金属材料在冲击载荷下的韧性。
通过使标准试样承受一定能量的冲击,观察试样断裂的情况,计算冲击吸收功,以评估材料的抗冲击性能。
4、疲劳试验疲劳试验模拟材料在交变载荷作用下的失效行为。
通过对试样进行多次循环加载,记录试样发生疲劳破坏的循环次数,从而评估材料的疲劳强度和寿命。
三、测试设备和仪器1、万能材料试验机万能材料试验机是进行拉伸、压缩、弯曲等力学性能测试的主要设备。
它能够精确控制加载速率和测量试样的变形。
2、硬度计根据不同的硬度测试方法,选择相应的硬度计,如布氏硬度计、洛氏硬度计、维氏硬度计等。
3、冲击试验机冲击试验机用于进行冲击试验,常见的有摆锤式冲击试验机和落锤式冲击试验机。
4、疲劳试验机疲劳试验机专门用于进行疲劳性能测试,包括旋转弯曲疲劳试验机、轴向疲劳试验机等。
四、试样制备试样的制备是保证测试结果准确性的关键环节。
试样的尺寸、形状和加工精度应符合相关标准的要求。
1、拉伸试样通常采用圆形或矩形截面的试样,其标距长度、直径或宽度等尺寸应根据材料的种类和测试标准进行确定。
国家开放大学《材料科学》金属材料的力学性能实验报告
国家开放大学《材料科学》金属材料的力学性能实验报告实验目的1. 掌握金属材料力学性能的基本测试方法。
2. 了解材料在不同温度和加载速度下的力学性能变化。
3. 分析实验结果,探讨材料力学性能与微观结构的关系。
实验原理金属材料的力学性能主要包括抗拉强度、抗压强度、弹性模量等。
本实验通过拉伸试验、压缩试验和硬度试验等方法,测试材料在不同温度和加载速度下的力学性能,分析材料微观结构对其力学性能的影响。
实验材料与设备1. 实验材料:低碳钢、不锈钢、铜等。
2. 实验设备:万能材料试验机、高温炉、硬度计等。
实验方法与步骤1. 拉伸试验:a. 按照国家标准制备试样。
b. 将试样装入万能材料试验机。
c. 以不同的加载速度和温度进行拉伸试验。
d. 记录应力-应变曲线,计算抗拉强度、弹性模量等参数。
2. 压缩试验:a. 按照国家标准制备试样。
b. 将试样装入万能材料试验机。
c. 以不同的加载速度和温度进行压缩试验。
d. 记录应力-应变曲线,计算抗压强度等参数。
3. 硬度试验:a. 按照国家标准制备试样。
b. 使用硬度计在不同温度下进行硬度测试。
c. 记录硬度值,计算硬度系数。
实验结果与分析1. 拉伸试验结果:- 低碳钢:抗拉强度约为400 MPa,弹性模量约为200 GPa。
- 不锈钢:抗拉强度约为500 MPa,弹性模量约为180 GPa。
- 铜:抗拉强度约为200 MPa,弹性模量约为110 GPa。
2. 压缩试验结果:- 低碳钢:抗压强度约为500 MPa。
- 不锈钢:抗压强度约为600 MPa。
- 铜:抗压强度约为300 MPa。
3. 硬度试验结果:- 低碳钢:硬度系数约为0.2。
- 不锈钢:硬度系数约为0.15。
- 铜:硬度系数约为0.1。
结论1. 金属材料的力学性能受微观结构影响显著。
2. 随着温度的升高,材料力学性能降低。
3. 加载速度对材料力学性能有一定影响,加载速度越高,材料力学性能越差。
建议1. 进一步研究材料微观结构与力学性能的关系,为材料设计提供理论依据。
金属材料力学性能测试与分析实验报告
金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。
在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。
通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。
实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。
1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。
因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。
本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。
2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。
2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。
2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。
2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。
3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。
载荷-位移曲线呈现出典型的应力-应变曲线特征。
根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。
硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。
3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。
金属材料力学性能测试及分析
金属材料力学性能测试及分析金属材料在现代制造业中起着不可替代的作用。
无论是汽车、飞机、船舶、建筑或机器设备,都离不开金属材料。
为了保证产品质量和安全性,金属材料的力学性能测试和分析显得十分重要。
一、金属材料力学性能测试在金属材料生产过程中,进行力学性能测试是必不可少的一步。
常见的金属材料力学性能测试项目包括拉伸、弯曲、压缩、硬度等。
拉伸试验是最常见的力学性能测试之一。
此测试可以从材料应变-应力曲线中获得许多关键参数,例如最大强度、屈服强度、延伸率和断裂强度等。
该测试需要将单根金属材料在两千斤以上的极限负荷下逐渐拉伸至断裂,测试设备一般为万能试验机。
弯曲试验主要是评估金属材料的弯曲能力。
弯曲测试要求金属材料在弯曲时不出现断裂或裂缝。
该试验主要用于评估金属材料的加工性和设计强度。
压缩试验通常用于评估金属材料在压缩方向上的性能表现。
测试设备为常见的万能试验机,将金属材料放在一个钢模具中,逐渐施加负载直至金属材料发生压缩。
硬度测试评估金属材料的抵抗变形能力。
硬度测试设备可以对金属材料进行加压、打击或穿刺测试,来评估金属在不同环境或应用中的抵抗性。
二、金属材料力学性能分析在完成力学性能测试后,接下来是进行力学性能分析。
为此,需要将之前得到的数据进行处理和分析。
拉伸试验的结果通过应力-应变曲线进行分析,得到金属材料的强度和延展性能。
其中,屈服强度代表材料开始变形的阈值,最大强度反映材料在加载末期阶段的性能,以及延伸性能表示在材料断裂前的延展能力。
弯曲试验的结果提供了材料的弯曲强度和弯曲刚度,可以用于评估材料在实际应用中的使用寿命。
压缩试验的结果反映了金属材料的压缩强度和塑性应变能力。
在这个测试中,金属材料具有最高应变和强度,因此其性能表现主要取决于材料的完整性和微观结构。
硬度测试可用于评估金属材料的耐磨性和耐切削性。
更硬的材料将具有更高的耐久性和更少的形变。
三、应用金属材料力学性能测试和分析在制造业中广泛应用。
金属材料力学性能测试
❖ 弯曲试验不能使塑性很好的材料破坏,不 能测定其断裂弯曲强度。
❖ 试样上表面应力最大,可以较灵敏地反映
材料表面缺陷情况。
1) 的定义:试样拉断后,颈缩处横截面面积的
最大缩减量与原始横截面面积的百分比。
S0 S1 100%
S0
式中: S 0 为试样原始横截面面积;
截面面积S 。1 为试样断裂后,颈缩处最细部分的横
2) 的测定
.
34
拉伸试验机
❖ 拉伸试验一般在液压式万能试验机或电子 式万能试验机上进行。
❖ WE系列液压式万能材料试验机是一种适 用性强、用途广的试验机,系列规格有 l00KN、300KN 、600KN、1000KN,当 然也有特殊规格,目前为一般力学实验室 普遍配套使用。
(1)图解法
按公式: 公式中:
max
d
arctg(max d)
为试样直径2。Le
m a x 为试样标距范围的最大扭转角。
L e 为试样 .
54
§ 1.2 金属材料扭转时的力学性能
(五)剪切弹性模量的测定 1、定义:扭转时,剪应力与剪应变成线性比例
关系范围内,剪应力 与剪应变 之比称为剪切
弹性模量,以 G 表示。
18
§ 1.1 金属材料拉伸试验
各项强度指标定义如下:
1)比例极限: p
p
Pp A0
2)弹性极限: e
e
Pe A0
3)屈服极限: s
s
Ps A0
4)强度极限: b
b
Pb A0
5)断裂强度: k
.
k
Pk A0
19
§ 1.1 金属材料拉伸试验
各应力指标的定义及测试方法:
金属力学性能测定实验报告
金属力学性能测定实验报告一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。
(2)学会恰当采用硬度计。
二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金淬火试样若干(ф20×10mm的工业纯铁,20,45,60,t8,t12等)。
(6)ф20×10mm的 20,45,60,t8,t12钢退火态,正火态,淬火及回火态的试样。
三、实验内容1、概述硬度就是指材料抵抗另一较软的物体装入表面抵抗塑性变形的一种能力,就是关键的.力学性能指标之一。
与其它力学性能较之,硬度实验简单易行,又迪代工件,因此在工业生产中被广泛应用。
常用的硬度试验方法存有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。
洛氏硬度试验——主要用作金属材料热处理后产品性能检验。
维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。
显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。
2、实验内容及方法指导(1)布氏硬度试验测定。
(2)洛氏硬度试验测量。
(3)试验方法指导。
3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。
(2)圆柱形试样应当放到具有“v”形槽的工作台上操作方式,以免试样翻转。
(3)加载时应细心操作,以免损坏压头。
(4)测完硬度值,刺破载荷后,必须并使压头全然返回试样后再摘下试样。
(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。
(6)应当根据硬度实验机的采用范围,按规定合理采用相同的载荷和压头,少于采用范围,将无法赢得精确的硬度值。
四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷p把直径为d的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积a,然后再计算出单位面积所受的力(p/a值),用此数字表示试件的硬度值,即为布氏硬度,用符号hb表示。
金属力学性能试验标准
金属力学性能试验标准金属材料是工程领域中广泛应用的材料之一,其力学性能的测试和评估对于材料的选用和设计具有重要意义。
金属力学性能试验标准是对金属材料进行力学性能测试的规范和要求,其制定和执行对于保证金属材料的质量和可靠性具有重要意义。
首先,金属力学性能试验标准包括了金属材料的拉伸试验、硬度试验、冲击试验等多个方面。
在拉伸试验中,我们可以通过对金属材料施加不同的拉伸载荷,来测试其在拉伸过程中的应力-应变关系,从而得到材料的屈服强度、抗拉强度、延伸率等力学性能指标。
而硬度试验则是通过在金属表面施加一定的压力,来测试材料的硬度,这对于评价金属材料的耐磨性和耐腐蚀性具有重要意义。
此外,冲击试验则是通过对金属材料施加冲击载荷,来测试其在受冲击载荷下的抗冲击性能,这对于金属材料在受到外部冲击时的抗损伤能力具有重要意义。
其次,金属力学性能试验标准的制定和执行对于保证金属材料的质量和可靠性具有重要意义。
通过严格执行金属力学性能试验标准,可以保证对于不同厂家生产的金属材料进行公平的力学性能测试,从而客观评价材料的质量和性能。
同时,金属力学性能试验标准的制定还可以促进金属材料行业的技术进步和产品质量提升,推动金属材料的应用领域不断拓展和深化。
此外,金属力学性能试验标准的执行还可以为工程设计和产品制造提供可靠的数据支持,从而保证工程项目和产品的安全可靠性。
总之,金属力学性能试验标准是对金属材料进行力学性能测试的规范和要求,其制定和执行对于保证金属材料的质量和可靠性具有重要意义。
通过严格执行金属力学性能试验标准,可以客观评价金属材料的力学性能,促进金属材料行业的技术进步和产品质量提升,为工程设计和产品制造提供可靠的数据支持,推动金属材料的应用领域不断拓展和深化。
因此,我们应该重视金属力学性能试验标准的制定和执行,为金属材料的质量和可靠性保驾护航。
金属力学性能测试
Xi Jianfa 33
试验操作要点
试验温度; 洛氏硬度标尺的选定; 硬度计的检查; 试样的支承与固定; 试验力保持时间; 压痕间距;
Xi Jianfa
34
Xi Jianfa
35
表面洛氏硬度
采用洛氏原理及洛氏压头; 采用较小试验力,解决对极簿工件及氮 化层¸ 金属镀层等硬度测定; 常数k取100,以每0.001 ㎜残余压痕增量 为一个硬度e单位;
必须使F/D2值为常数;
F ASin 2 D 2
由此可知,试验时只要F/D2值为一常数, 就可使压入角保持不变,从而保证得到几何 相似的压痕.
Xi Jianfa 12
对于同一材料选用不同的F/D试验时,必须使 F/D2保持常数,即
F1 F2 F 2 2 常数 2 D1 D 2 D
第2部分:硬度计的检验与校准 第3部分:标准硬度块的标定
Xi Jianfa
22
洛氏硬度试验
试验原理
洛氏硬度试验原理与布氏方法不 同,不是测量压痕面积,而是测量压 痕深度,以压痕深度的大小来表示材 料硬度的。
金属材料力学性能测定及其应用
金属材料力学性能测定及其应用一、引言金属材料在工业生产中具有广泛的应用,对金属材料的力学性能的测定是对其使用性能评价和加工质量控制的重要手段。
本文将着重介绍金属材料的力学性能测定方法及其应用。
二、金属材料的力学性能测定方法1. 拉伸试验拉伸试验是一种常见的金属材料力学性能测试方法,该方法适用于金属拉伸力学性能的测定。
在拉伸试验时,通过机械设备施加一定的拉伸载荷,测量被试样发生塑性变形的力和变形量,从而计算出试样的强度和韧性等力学性能指标。
2. 碳氢分析法碳氢分析法可以用于测量铁、钢等金属中碳含量的方法。
该方法首先通过化学反应将样品中的碳转化为一定量的二氧化碳,然后使用专门的仪器,量化检测样品中的二氧化碳含量,从而计算出样品中的碳含量。
3. 硬度试验硬度试验是一种简单易行的类比试验方法,适用于测定金属材料抗压、抗拉等力学性能。
硬度试验可分为维氏硬度试验、布氏硬度试验、洛氏硬度试验和肖氏硬度试验等几种类型,不同类型的硬度试验方法有不同的适用范围和测定参数,可以根据不同情况进行选择。
三、金属材料的力学性能应用1. 工程应用金属材料作为制造工程的常见材料,其力学性能测定对工程生产具有重要意义。
工程师可以通过测定金属材料的力学性能,选择合适的材料加工工艺,提高生产效率,降低制造成本,保障工程质量等。
2. 质量控制金属材料力学性能的差异往往与其质量有直接关系。
在工业生产过程中,金属材料的力学性能测定可以作为对其质量控制的重要手段。
通过测定金属材料力学性能,可以检测金属材料的质量是否合格,并准确识别渗透性、组织结构等方面的缺陷。
3. 产品应用金属材料的力学性能测定对其在产品应用中发挥全面性能至关重要。
例如,在汽车制造过程中,通过测定轮毂的材质、硬度等力学性能指标,可以保证汽车在高速行驶时的安全性能。
四、结论通过以上讨论,本文介绍了金属材料的力学性能测定方法及其应用。
在工业生产和应用方面,对金属材料的力学性能指标的了解和掌握极其重要,涉及到制造工艺选择、产品性能分析等诸多方面,对推进各个行业的技术升级和质量控制有着至关重要的作用。
金属材料力学性能试验方法分析
金属材料力学性能试验方法分析摘要:金属材料是工业生产中的常用材料,在日常生活中极为常见,使用金属材料时,一定要注意金属材料的力学性能。
本文介绍金属材料力学性能试验标准、试验方法以及仪器设备,在力学性能试验中,重点探究金属材料拉伸性能、压缩性能、扭转性能、硬度性能的试验方法,为金属材料试验提供参考。
关键词:金属材料;力学性能;试验方法前言:金属材料的力学性能会直接影响材料的使用状态和使用寿命,如果材料力学性能较差,有可能会使机器频繁发生故障,金属产品也无法发挥实际的功效,必须要加强力学性能检测,采用科学的力学性能试验方法,参考相关标准,对试验结果进行分析,综合分析金属材料的力学性能,不断强化金属材料的性能。
1金属材料力学性能试验标准分析金属材料力学性能试验需要以规范化的试验标准为参考依据,试验人员需要了解试验标准体制的具体规定,对最新修订的试验标准进行研究,按照科学的试验方法和规范的试验标准展开力学性能试验。
不同的试验方法有着不同的标准,如拉伸试验标准、压缩试验标准、扭转试验标准、硬度试验标准、弯曲试验标准、冲击试验标准、疲劳试验标准等,需要根据具体的试验内容和方法选择对应的试验标准,与力学性能试验结果进行比较,分析金属材料力学性能的实际情况[1]。
2金属材料力学性能试验方法研究2.1拉伸试验对金属材料的拉伸性能进行测试,需要采用拉伸测试方法,对拉伸试验结果进行分析,判断金属材料的极限拉伸范围,根据极限拉伸范围继续进行试验,对金属材料在试验中的变化情况进行记录和分析。
在拉伸试验中,为了保证数据的准确性和测试结果的可靠性,需要对各种影响因素进行控制,尽量避免拉伸试验过程受到其他因素的影响。
试验人员要仔细检查拉伸试验中的设备和仪器,确保设备仪器具有良好的性能,保证拉伸试验数据的精确性,避免试验结果受到设备仪器的影响。
以低碳钢材料为例,对该材料进行拉伸试验时,判断低碳钢的极限屈服荷载PS,当主动指针不再转动的时候,对低碳钢进行测量。
金属材料力学性能实验断裂韧度试验
金属材料力学性能试验断裂韧度试验6.2 断裂韧度试验6.2.1结构线Construction line在J-Δa 和δ-Δa 试验记录上画一条线,代表表观裂纹扩展(即裂纹表面的位移量),包括裂纹端钝化6.2.2裂纹扩展阻力曲线Crack entension resistance curveR-曲线δ 或J 与稳定裂纹扩展Δa 的变化6.2.3裂纹平面取向Crack plane orientation按照裂纹平面的法向方向和试验中裂纹预期的扩展方向处理裂纹,对于锻造产品参考其特征晶粒流动方向6.2.4裂纹嘴张开位移Crack-mouth opening displacement (CMOD)V在裂纹开始缺口附近,测量与原始裂纹平面垂直的裂纹平面的相对位移量6.2.5裂纹尖端张开位移Crack-tip opening displacementδ在原始裂纹尖端(即疲劳预裂纹尖端)测量与原始裂纹平面垂直的裂纹平面的相对位移量6.2.6临界J Critical J对应裂纹扩展开始时的J 值6.2.7临界δ Critical δ对应裂纹扩展开始时的δ 值6.2.8断裂韧度fracture toughness准静态单一加载条件下的裂纹扩展阻力的通用术语6.2.9J-积分J-integral与积分路径无关的闭合回路或表面积分,用来表征裂纹前缘周围地区的局部应力-应变场,在塑性效应不可忽视的地方提供能量释放速率,用来表征对应表观裂纹扩展a 时的势能变化J与J 积分相当的加载参数,当测定力-加载线位移图时特指裂纹尖端塑性变形不可忽视条件下的断裂6.2.10J-R 曲线J-R curveJ-Δa 图,在塑性效应不容忽视的地方,用于描述稳定裂纹扩展阻力6.2.11最大疲劳应力强度因子Maximum fatigue stress intensity factorKf在疲劳预裂纹的最后阶段,K 的最大值6.2.12类型mode裂纹平面位移三种方式之一注:阿拉伯数字1,2 和3 用于通常的例子,分别代表拉伸张开型,平面滑动型,剪切型。
金属材料力学性能测试——拉伸、压索和扭转实验
0/A P =s s σ金属材料力学性能测试——拉伸实验拉伸实验是测定材料力学性质基本的重要实验之一。
根据国家标准金属拉力实验法的规定,拉伸试件必须做成标准试件。
圆截面试件如图1-1所示:长试件L=10d 0,短试件L=5d 0。
拉伸时材料的强度指标和塑性指标测定: 1、强度指标的测定:材料拉伸时的力学性能指标(如s σ,b σ,δ,ψ ),由拉伸破坏实验来确定。
图1-2是低碳钢拉伸实验时的拉伸图。
OA 段为弹性变形阶段,过了A 点,材料进入屈服阶段,材料进入上屈服点,A 点对应上屈服点的载荷Psu ,B 点对应 屈服点的载荷Psl 。
由于上屈服点的值不稳定(对同一批材料而言) ,下屈服点较稳定,因此在没有特别说明的情况下,规定下屈服点的载荷为屈服载荷Ps ,则屈服极限为: MPa 。
其中:A0为试件的初始横截面面积,拉伸图上D 点对应的最大荷载值为Pb,此后试件发生劲缩现象,迅速破坏。
材料的抗拉强度极限为:0/A P =b b σMPa 。
铸铁的拉伸实验图如图1-3所示。
试件变形很小,到达一定的载荷突然断裂,拉断时的最大载荷,即为强度的载荷Pb 铸铁拉伸强度极限为:0/A P =b b σMPa 。
2、塑性指标测定:将拉断后的低碳钢试件拼接后,测量断后标距L1;劲缩处的平均值径d1,由下列公式计算延伸率δ和断面收缩率ψ;%100/)(%100/)(010001⨯A A -=ψ⨯-=A L L L δ其中:A1为试件断开处的横截面积,L 1为试件断后的标距。
拉伸时材料机械性质的测定室温_____℃ 日期____年___月___日实验目的:1.测定低碳钢的屈服极限s σ,极限强度b σ,延伸率δ,面积收缩率ψ,铸铁的极限强度b σ。
2.观察拉伸过程中的实验现象。
实验设备:电子万能试验机。
游标卡尺。
实验主要步骤:1.分别测量两种材料的上、中、下横截面直径并填入表格。
2.安装试件,然后开始实验。
3.记录拉伸载荷,测量断后标距及收缩直径,代入公式计算。
金属材料力学性能检测
§ 1.1 金属材料拉伸试验
§ 1.1 金属材料拉伸试验
2、定标距试样
定标距试样的原始标距与横截面间无比例关
系,一般 L取0 100mm, 200m。m
3、取样与制样
• 通常从产品、压制坯或铸锭切取样坯经机加工 制成试样。但具有恒定横截面的产品(型材、 棒材、线材等)和铸造试样(铸铁和铸造非铁合 金)可以不经机加工而进行试验。
金属材料力学性能检测
▪§ 1.1 拉伸试验 ▪§ 1.2 金属扭转及弯曲试验 ▪§ 1.3 金属硬度试验 ▪§ 1.4 金属冲击韧性试验
§ 概述
金属材料在外力作用下所表现出的诸如强度、 塑性、弹性等等力学特性称为材料的力学性能, 而衡量金属材料力学性能的指标统称为力学(机 械)性能指标,这些指标是通过实验来确定的。 本章就依据国家标准来讨论这些指标的意义及测 定方法。
1)比例极限: p
p
Pp A0
2)弹性极限: e
e
Pe A0
3)屈服极限: s
4)强度极限: b
5)断裂强度: k
s
Ps A0
b
Pb A0
k
Pk A0
§ 1.1 金属材料拉伸试验
各应力指标的定义及测试方法:
1、 比例极限
p
定义:应力与应变成直线关系的最大应力值。
变的应力作为屈服强度,以 0.表2 示
测量方法与弹s 性极限相似。
§ 1.1 金属材料拉伸试验
4、强度极限(抗拉强度) b
定义:曲线上最大应力为强度极限。 标志:出现颈缩现象。
§ 1.1 金属材料拉伸试验
5、断裂强度 k
定义:试样拉断时的真实应力,表征材料对断裂 的抗力。
金属力学性能试验
•
1. 根据测试要求和试样的形状、尺寸选择相应的夹具。
•
⒉ 打开计算机。
•
⒊ 打开试验机控制器电源,等候数秒,以待控制系统检测。
•
⒋ 根据测试要求,在计算机上打开相应的测试程序。
•
⒌ 等候数秒,当计算机桌面上的工具栏所有图标示出来后,按控制器面板上的“ON”按钮以
使 主机和测试程序相连。
•
⒍ 在计算机上打开测试要求的相关测试程序。
二、实验内容
• 1.根据国家标准GB228/T—2002 《金属材料室温拉伸试验方法》测 定低碳钢、灰铸铁、铸铝的E; ReH;ReL;Rp0.1;Rp0.2;Rm;Agt; Ag;At;A;Z。
• 2.分析和讨论试验结果。
三、实验测试原理
三、实验测试原理
低碳钢退火态拉伸曲线 : 弹性变形→屈服变形→均匀塑性变形→集中 塑性变形→断裂
•
⒎ 根据测试要求和试样的尺寸,在计算机桌面上点击“设置参数”,输入相关测试参数。
•
⒏ 点击 “夹具复位”,使横梁到达设置位置。
•
⒐ 夹持试样,输入试样尺寸
•
⒑ 点击“力值清零”。
•
⒒ 点击“开始”,开始测试。
•
⒓ 在弹出的对话框中输入试样尺寸。
•
⒔ 点击“OK”,试验机进入测试状态。
•
⒕ 测试结束后,从夹具上取下试样。
首次下降前的最大应力。 • ReL:下屈服强度 —屈服期间,不计初始
瞬时效应时的最低应力。
高强度钢拉伸应力―应变
Stress in Mpa
1600
1400
1200
1000
800
600
400
200
金属材料的力学性能测试与分析
金属材料的力学性能测试与分析金属材料广泛应用于各个领域,具有优良的力学性能是其重要的特征之一。
为了保证金属材料的质量和可靠性,对其力学性能进行测试与分析是至关重要的。
本文将重点介绍金属材料力学性能测试方法及分析步骤。
一、金属材料的力学性能测试1. 强度测试强度是金属材料抵抗外力的能力,可以通过拉伸试验来进行测试。
该试验的原理是将金属试样放置在拉伸机上,施加逐渐增加的力,直到断裂为止。
在试验过程中,可以测量材料的屈服强度、抗拉强度、延伸率等指标。
这些参数对于评估金属材料的力学性能至关重要。
2. 硬度测试硬度是金属材料抵抗表面压力的能力。
硬度测试可通过使用洛氏硬度计或布氏硬度计进行。
试验时,试样表面受到一定压力,通过测量压印的深度来确定硬度指标。
硬度测试可以帮助判断金属材料的耐磨性和抗变形能力。
3. 韧性测试韧性是金属材料在承受外力时能够吸收能量并发生塑性变形的能力。
冲击试验是测试韧性的常用方法之一。
冲击试验中,将标准试样放置在冲击机上,施加特定冲击载荷,并记录试样失效前所吸收的能量。
韧性测试结果可以评估金属材料在低温环境下的可靠性。
二、金属材料力学性能分析1. 强度分析通过强度测试获得的数据,可以进行强度分析。
通常包括计算应力-应变曲线、屈服强度、抗拉强度、断裂延伸率等参数。
这些数据可用于比较不同金属材料的强度,评估材料的抗拉伸能力以及预测它们在实际应用中的行为。
强度分析对于材料的选择、设计和制造过程中的质量控制具有重要意义。
2. 硬度分析硬度测试结果的分析可用于比较不同金属材料之间的硬度差异。
通过硬度值,可以评估材料的耐磨性和抗变形能力。
硬度分析还可以为金属材料的工艺设计和材料选择提供重要参考。
3. 韧性分析韧性测试结果的分析有助于评估金属材料的抗冲击能力和低温性能。
韧性分析还可以用于指导金属材料的合金设计和淬火工艺的优化。
通过分析韧性参数,可以对材料的破坏机理进行理解,并提供改进金属材料韧性的方法。
金属材料力学性能实验报告
金属材料力学性能实验报告姓名:班级:学号:成绩:实验名称实验一金属材料静拉伸试验实验设备1)电子拉伸材料试验机一台,型号HY-100802)位移传感器一个;3)刻线机一台;4)游标卡尺一把;5)铝合金和20#钢。
试样示意图图1 圆柱形拉伸标准试样示意图试样宏观断口示意图图2 铝合金试样常温拉伸断裂图和断口图(和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)图3 正火态20#钢常温拉伸断裂图和断口图(可以明显看出,试样在拉断之后在断口附近产生颈缩。
断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.009.97 9.92 10.00 10.00 10.00 10.00 9.92左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm )两试样的初始标距为050 L mm 。
表3 铝合金拉断后标距测量数据记录(单位:mm )AB BC AB+2BC 平均 12.32 23.16 58.64 58.7924.0217.4658.94测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。
测量得到铝合金拉断后的断面直径平均值为7.96mm 。
数据处理:1.20#钢正火材料(具有明显物理屈服平台的材料)20#钢正火材料试样的载荷-位移曲线试验结果见图4。
(1)由图可得各特征力值及对应的位移值分别为: 比例伸长力20.6 kN p F =;下屈服力24.5 kN el F =;最大力37.2 kN m F =; 断裂载荷27.1 kN F F =; 断裂后塑性伸长21.4 mm F L ∆=; 断裂后弹性伸长 2.4 mm e L ∆=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 调整试样放置的位置,使得试验机的上压头中心正好在试样的裂 纹延长线上……。
• 打开测试软件及试验机开始实验,对试样施加弯曲载荷直到试样 断裂。
• 取下试样和引伸计。 • 用读数显微测量试样断口处的平均裂纹长度a,
• a=(a2+a3+a4)/3
用95%斜率割线法,求PQ 。
计算K : Q
PS
KQ
Q 3
BW 2
f (a) w
验算: (1)
k
B 2.5(
) Q
2
RP 0.2
(2)
P max 1.1 PQ
如满足以上二个判据,KQ才算有效;则KQ=KⅠC,否则KQ≠KⅠC。
七、实验报告
1.试验目的和内容。 2.筒述测试原理。 3.试验材料及试样尺寸。 4.实验结果和数据处理(根据计
失稳扩展的临界负荷),计算出的KQ值。
KQ
PQ S
3
BW 2
f (a) w
PQ的确定(斜率降低5%的割线法)
四、实验试样及其材料
• 材料:30CrMnSi;870℃淬火+200℃回火;Rp0.2=1450Mpa • 试样类型:三点弯曲试样、S=4W、W=2B、a=(0.45~0.55)W
裂纹长度a:机械裂纹a0+疲劳裂纹af
KⅠ=KⅠc
• 场的强式度中,KⅠ在为线Ⅰ弹型性裂条纹件应下力,场其强一度般因表子达,式它为表征:裂纹尖端附近应力
k y a
• 式中:Y是和裂纹形状因子,是与试样类型和加负荷方式等有关的量, 也称几何因子。
σ是外加应力。
α是裂纹体内的裂纹长度。
• K何 下Ⅰ形 ,是状 材一和料个尺中复Ⅰ寸合型;力(外学即加参张应量开力,型的其)大裂值小纹的,发大分生小布失仅等稳决。扩定而展于K时构Ⅰ的件C是应(在包力平括场面裂强应纹度变)因的条子几件的
一、实验目的
1.正确掌握平面应变断裂韧度kⅠc的测 试方法。
2.了解测定kⅠc所需的仪器设备装置。
二、实验内容
1. 测定被测材料的P-V的曲线,计算条件断 韧度KQ值。 2.验算实验所得KQ值,确定有效KⅠC值。
三、基本概念和测试原理
• 根据线弹性断裂力学的分析,裂纹发生失稳扩展而导致裂纹体脆断的 判据是:
3
f( ) w
BW 2
• 其中:式中:P——负荷 ;B—试样厚度 ;W——试样宽度 ; S——跨度 ; a——裂纹长度
•
•
其中:
f(
a w
)
3(
a w
1
)2
[(1.99
a )(1 w
2(1
a w
2
) (2.15 3.93
a
)(1
a
3
)2a w Nhomakorabea2.7a2 w2
)]
ww
• 通过实验可出被测材料的P-V曲线(负荷-位移曲线),从P-V曲线上确定的值(裂纹
C
C
• 因此,只要知道带裂纹试样的应力场强度因子KⅠ的表达式,试样的尺寸又能保证裂纹
前端处于平面应变状态下,则只需测得带裂纹试样发生失稳断裂时的负荷Pc,(或应力
σc),就可利用已知的KⅠ表达式求出相应的临界值KⅠ,即为试祥材料的平面应变断裂
韧度KⅠC。
PS a
• 本实验采用标准三点弯曲试样,其KⅠ表达式为: KI
算机得到的原始采样数据自己 重新作出P~V曲线,并求出P5和 KQ值)。 5.分析讨论。
五、实验仪器设备和装置
高频疲劳试验机、材料试验机、夹式引伸计 (COD规)、游标卡尺、读数显微镜等。
六、实验步骤
• 测量试样尺寸W,B • 在缺口两边贴上两片刀
口片,如下图,用来固 定夹式引伸计
• 刀口安装部位示意图
• 引伸计示意图
1.将试样放于试验机的支承座上,把引伸计装在 两片刀口之中。
。 将试样放于试验机的支承座上,把引伸计装在两片刀口之中
临界值,即材料的平面应变断裂韧度,它是材料固有的抵抗脆性断裂
的一种力学性能,是材料的常数。由上式可知,当外加应力增高时,
裂 即 件 σ=纹 材 ,σ前 料 就c,端的能;的平导则应面致:力应裂强变纹度断体因 裂 脆子 韧 断y度 ,KⅠ此K也Ⅰ时增 Ca时外大,加,k也应当即力达KσⅠ到增达裂大到纹到临失等界稳于应扩某力展一σ的临c,临界若界值将条,