误差与分析数据处理题26页PPT
合集下载
2019分析化学课件第二章误差及分析数据的统计处理
15.9
16.0 16.1
测量值
16.2
16.3
问题: 测量次数趋近于无穷大时的频率分布?
测量次数少时的频率分布?
某段频率分布曲线下的面积具有什么意义?
2021/3/3
2、正态分布:
分析化学中测量数据一般符合正态分布,即高斯分布。
yf(x) 1 e(x22)2
2
x 测量值,μ总体平均值, σ总体标准偏差
定量分析的任务:准确测定组分在试样中的含 量。
实际测定不可能得到绝对准确的结果。
2021/3/3
• 客观上误差是经常存在的,在实验过程中, 必须检查误差产生的原因,采取措施,提 高分析结果的准确度。同时,对分析结果 准确度进行正确表达和评价。
2021/3/3
一、准确度和精密度
(一).准确度和精密度——分析结果的衡量指标。
测量值
2021/3/3
No 分组
1 15.84 2 15.87 3 15.90 4 15.93 5 15.96 6 15.99 7 16.02 8 16.06 9 16.09 10 16.12 11 16.15 12 16.18 201231/3/3 16.21
频数 频率 (ni) (ni/n)
1 0.005 1 0.005 3 0.015 8 0.040 18 0.091 34 0.172 55 0.278 40 0.202 20 0.101 11 0.056 5 0.025 2 0.010 0 0.000
化学课件第二章误差及分析数据的统计处理
基本要点: 1. 了解误差产生的原因及其表示方法; 2. 理解误差的分布及特点; 3. 掌握分析数据的处理方法及分析结果的表示。
2021/3/3
误差分析ppt
5
4.真值 任何测量都存在误差,真值不可能得到,只能尽
量接近 (1) 约定真值 由国际计量大会定义的单位(国际
单位)及我国法定的计量单位 七个基本单位:
长度、质量、时间、电流强度、热力学温度 发光强度、物质的量 例如:1米是光在真空中在 1/299792458 秒的时间 间隔内行程的长度.
6
(2)标准值(相对真值) 通过高精密度测量到获得的更 接近真值的值。 获得标准值的试样为标准试样(标准参考物质) 经有权威机构认定并提供
(2) 产生的原因 偶然因素、不确定因素
13
3. 过失
分析过程中的过失造成的误差不同于前两类误差。 它是由于分析工作者粗心大意或违反操作规程所产生的错误,
如溶液溅失、沉淀穿滤、读数记错等,都会使结果有较大的 “误差”。在处理所得数据时,如发现由于过失引起的“误差”,
应该把该次测定结果弃去不用。
14
(1) 准确度──分析结果与真实值的接近程度 (2) 精密度──几次平行测定结果相互接近程度 (3) 两者的关系
精密度是保证准确度的先决条件; 精密度高准确度不一定高; 准确度高精密度一定高。
9
精密度好, 准确度不好
精密度、 准确度都很好
精密度、 准确度都不好 10
二、系统误差和偶然误差
1. 系统误差 (可定误差)
滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格;
试剂纯度不够
(含待测组份或干扰离子)。
d.操作误差——操作人员主观因素造成
例:对指示剂颜色辨别偏深或偏浅;
滴定管读数不准。
12
2. 偶然误差(随机误差,不可定误差):
由不确定原因引起
(1) 特点 a.不恒定不具单向性(大小、正负不定) b.难以校正,不可消除(原因不定) c.服从统计规律 (正态分布)
4.真值 任何测量都存在误差,真值不可能得到,只能尽
量接近 (1) 约定真值 由国际计量大会定义的单位(国际
单位)及我国法定的计量单位 七个基本单位:
长度、质量、时间、电流强度、热力学温度 发光强度、物质的量 例如:1米是光在真空中在 1/299792458 秒的时间 间隔内行程的长度.
6
(2)标准值(相对真值) 通过高精密度测量到获得的更 接近真值的值。 获得标准值的试样为标准试样(标准参考物质) 经有权威机构认定并提供
(2) 产生的原因 偶然因素、不确定因素
13
3. 过失
分析过程中的过失造成的误差不同于前两类误差。 它是由于分析工作者粗心大意或违反操作规程所产生的错误,
如溶液溅失、沉淀穿滤、读数记错等,都会使结果有较大的 “误差”。在处理所得数据时,如发现由于过失引起的“误差”,
应该把该次测定结果弃去不用。
14
(1) 准确度──分析结果与真实值的接近程度 (2) 精密度──几次平行测定结果相互接近程度 (3) 两者的关系
精密度是保证准确度的先决条件; 精密度高准确度不一定高; 准确度高精密度一定高。
9
精密度好, 准确度不好
精密度、 准确度都很好
精密度、 准确度都不好 10
二、系统误差和偶然误差
1. 系统误差 (可定误差)
滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格;
试剂纯度不够
(含待测组份或干扰离子)。
d.操作误差——操作人员主观因素造成
例:对指示剂颜色辨别偏深或偏浅;
滴定管读数不准。
12
2. 偶然误差(随机误差,不可定误差):
由不确定原因引起
(1) 特点 a.不恒定不具单向性(大小、正负不定) b.难以校正,不可消除(原因不定) c.服从统计规律 (正态分布)
分析化学误差及分析数据的统计处理ppt课件
修约规则
保留四位 14.2442 14.24 26.4863 26.49 15.0250 15.02 15.0150 15.02 15.0251 15.03
精选ppt课件
42
运算规则
加减法 按绝对误差大者保留
乘除法 按相对误差大者保留
采用安全数字 先修约? 先计算?
精选ppt课件
Xn - Xn-1 或 X2 -X1
(4) 计算:
QXnXn1 或 QX2X1
XnX1
XnX1
精选ppt课件
35
可疑数据的取舍
(5) 根据测定次数和要求的置信度,(如90%)查表:
测定次数 3 4 8
表1--2
Q90
0.94 0.76 0.47
不同置信度下,舍弃可疑数据的Q值表
Q95
0.98
Q99
2.误差及分析数据的统计处理
1--定量分析中的误差 2--分析结果的数据处理 3--有效数字及其运算规则
精选ppt课件
1
上叶
1—定量分析中的误差
分析过程是测量过程 测量的基本方法是比较 误差的存在不可避免
2
精选ppt课件
误差与准确度
误差—测定值与真值之差 绝对误差:
Exi
相对误差:
Er
0.99
0.85
0.93
0.54
0.63
(6)将Q与QX (如 Q90 )相比, 若Q > QX 舍弃该数据, (过失误差造成) 若Q < QX 舍弃该数据, (偶然误差所致)
当数据较少时 舍去一个后,应补加一个数据。
精选ppt课件
36
平均值与标准值得比较(方法准确度/系统误差)
t 检验法
误差理论与数据处理课件(很实用)
报告审核与修改
对报告进行同行评审或专家审核,根据反馈 进行必要的修改和完善。
06
案例分析与实践
案例一:医学数据处理
总结词
医学数据处理是误差理论应用的重要领域,涉及临床 试验、诊断、治疗等多个方面。
详细描述
医学数据处理中,误差的来源包括测量误差、随机误 差和系统误差等。这些误差可能导致数据失真,影响 医学研究的准确性和可靠性。因此,医学数据处理需 要遵循严格的标准和规范,如临床试验数据管理规范 、医疗器械检测标准等。同时,医学数据处理也需要 采用各种误差处理技术,如数据清洗、数据变换、数 据筛选等,以减小误差对数据的影响。
数据预处理包括数据的排序、筛选、分组和编码等操作,为后续的数据分析提供 准确和一致的数据集。
03
误差的识别与控制
系统误差的识别与控制
系统误差的识别
系统误差通常表现为数据呈现一定的 规律性偏差,可以通过对比实验数据 与理论值、检查实验装置和环境条件 等方式进行识别。
系统误差的控制
控制系统误差的方法包括改进实验装 置、优化实验环境、采用标准仪器和 设备、定期校准和检测等措施,以减 小系统误差对数据的影响。
先滞后关系。
时间序列平稳性
检验时间序列数据的平 稳性,以确定是否适合
进行时间序列分析。
05
实验设计与数据分析
实验设计原则
01
02
03
04
科学性原则
实验设计应基于科学理论和实 践经验,确保实验的合理性和
可行性。
随机性原则
实验对象的分配应随机化,以 减少系统误稳定性和可靠性
案例二:金融数据分析
总结词
金融数据分析中,误差的来源包括数据采集、数据处 理和数据分析等多个环节。
分析化学(误差和分析数据的处理)
2 2
S y Sz y z
2
2
23
分析天平称量时,单次的标准偏差为0.10mg,求减 量法称量时的标准偏差。
W W1 W2
2 2 2 S S1 S2 0 . 10 0 . 10 0.14mg 2
3.测量值的极值误差 在分析化学中,若需要估计整个过程可能出现的 最大误差时,可用极值误差来表示。它假设在最 不利的情况下各种误差都是最大的,而且是相互 累积的,计算出结果的误差当 然也是最大的,故称极值误差。
大概率 事件
5
若无明显过失,离群值不可随意舍弃, 常用的取舍检验方法有: (1)Q 检验法 1)将所有测定值由小到大排序, 其可疑值为X1或Xn
x1 , x 2 ,x n
2)求出极差
R X n X1
3)求出可疑值与其最邻近值之差 x2 - x1 或 xn - xn-1
4)求出统计量Q
6
x n x n 1 Q x n x1
5)查临界值QP,n
或
x 2 x1 Q x n x1
6) 若Q > QP.n,则舍去可疑值,否则应保留。
过失误 差造成
不同置信度下的Q值表
测定次数n 3 4 5 6 7 8 9
偶然 误差 所致 10
Q(90%) Q(95%)
Q(99%)
0.94 0.97
0.99
0.76 0.84
0.93
第一节
一、系统误差
误差
定义:由于某种确定的原因引起的误差,也称
可测误差
特点: 分类:
①重现性
②单向性
③可测性
溶解损失 终点误差
1.方法误差:
S y Sz y z
2
2
23
分析天平称量时,单次的标准偏差为0.10mg,求减 量法称量时的标准偏差。
W W1 W2
2 2 2 S S1 S2 0 . 10 0 . 10 0.14mg 2
3.测量值的极值误差 在分析化学中,若需要估计整个过程可能出现的 最大误差时,可用极值误差来表示。它假设在最 不利的情况下各种误差都是最大的,而且是相互 累积的,计算出结果的误差当 然也是最大的,故称极值误差。
大概率 事件
5
若无明显过失,离群值不可随意舍弃, 常用的取舍检验方法有: (1)Q 检验法 1)将所有测定值由小到大排序, 其可疑值为X1或Xn
x1 , x 2 ,x n
2)求出极差
R X n X1
3)求出可疑值与其最邻近值之差 x2 - x1 或 xn - xn-1
4)求出统计量Q
6
x n x n 1 Q x n x1
5)查临界值QP,n
或
x 2 x1 Q x n x1
6) 若Q > QP.n,则舍去可疑值,否则应保留。
过失误 差造成
不同置信度下的Q值表
测定次数n 3 4 5 6 7 8 9
偶然 误差 所致 10
Q(90%) Q(95%)
Q(99%)
0.94 0.97
0.99
0.76 0.84
0.93
第一节
一、系统误差
误差
定义:由于某种确定的原因引起的误差,也称
可测误差
特点: 分类:
①重现性
②单向性
③可测性
溶解损失 终点误差
1.方法误差:
分析化学第二章误差与分析数据处理
选择合适的分析方法
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
误差分析与数据处理ppt课件.ppt
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
误差数据处理.pptx
如何检验和消减测定中的系统误差?
第4页/共46页
系统误差还具有的规律:
例如,重量法测明矾中铝含量,用氨水作沉淀剂,若氨水中混有硅酸,便与Al(OH)3共沉淀,明矾取样量越大,造成的绝对误差越大,但相对误差基本不变
多次测量系统误差的绝对值保持不变,但相对值随被测组分增大而减小 恒定误差
偶然误差(determinate error)
系统误差(systematic error)
方法误差仪器或试剂误差操作误差
按来源分为
第2页/共46页
方法误差——由于分析方法本身的缺陷或不够完善所引起的误差。通常影响较大。如:溶解损失、终点误差
— 用其他方法校正
对照试验:标准方法、标准样品、标准加入
人,用最完善的方法,最精密的仪器,最纯的试剂对同一样品作多次测定,所得结果也不会完全一样。因此误差总是难免的,只能采取有效的措施提高测定的准确度,使测定结果尽量靠近真实值。
第1页/共46页
一、 系统误差特点——原因固定,具单向性、重现性,为可测误差.
§1 误差的分类
根据误差性质
保留三位有效数字
第22页/共46页
二.有效数字的修约规则
被修约的数
≤4 舍
≥6 进
= 5
5后面有不为零的任何数时 5进
5后面无数据或为零
5前为偶数 5舍
5前为奇数 5进
留双
如:150.650 10.2150 16.851
1.修约规则:四舍六如五成双
-----150.6
第13页/共46页
准确度和精密度的关系 准确度表示测量结果的正确性 精密度表示测量结果的重现性 精密度高是保证准确度好的前提。 一般情况下,精密度高,准确度不一定高,精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度好,准确度就高。 理想的测定,既要精密度高,又要准确度高。
第4页/共46页
系统误差还具有的规律:
例如,重量法测明矾中铝含量,用氨水作沉淀剂,若氨水中混有硅酸,便与Al(OH)3共沉淀,明矾取样量越大,造成的绝对误差越大,但相对误差基本不变
多次测量系统误差的绝对值保持不变,但相对值随被测组分增大而减小 恒定误差
偶然误差(determinate error)
系统误差(systematic error)
方法误差仪器或试剂误差操作误差
按来源分为
第2页/共46页
方法误差——由于分析方法本身的缺陷或不够完善所引起的误差。通常影响较大。如:溶解损失、终点误差
— 用其他方法校正
对照试验:标准方法、标准样品、标准加入
人,用最完善的方法,最精密的仪器,最纯的试剂对同一样品作多次测定,所得结果也不会完全一样。因此误差总是难免的,只能采取有效的措施提高测定的准确度,使测定结果尽量靠近真实值。
第1页/共46页
一、 系统误差特点——原因固定,具单向性、重现性,为可测误差.
§1 误差的分类
根据误差性质
保留三位有效数字
第22页/共46页
二.有效数字的修约规则
被修约的数
≤4 舍
≥6 进
= 5
5后面有不为零的任何数时 5进
5后面无数据或为零
5前为偶数 5舍
5前为奇数 5进
留双
如:150.650 10.2150 16.851
1.修约规则:四舍六如五成双
-----150.6
第13页/共46页
准确度和精密度的关系 准确度表示测量结果的正确性 精密度表示测量结果的重现性 精密度高是保证准确度好的前提。 一般情况下,精密度高,准确度不一定高,精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度好,准确度就高。 理想的测定,既要精密度高,又要准确度高。
相关主题