空间向量 空间解析几何试题及部分答案(一)
8第八章空间解析几何答案
8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
向量与空间解析几何习题及详细解答
解:设动点为 M(x, y, z)
M0M {x 1, y 1, z 1}
因 M0M n ,故 M0M n 0 .
即 2(x-1)+3(y-1)-4(z-1)=0 整理得:2x+3y-4z-1=0 即为动点 M 的轨迹方程. 14. 求满足下列各组条件的直线方程: (1) 经过点 (2,-3, 4), 且与平面 3x-y+2z-4=0 垂直; (2) 过点 (0,2,4) ,且与两平面 x+2z=1和 y-3z=2 平行;
解:设四顶点依次取为 A, B, C, D.
AB {0,1, 2}, AD {2, 2,1}
则由 A,B,D 三点所确定三角形的面积为
1 1
35
S1 2 | AB AD | 2 | 5i 4 j 2k | 2 .
同理可求其他三个三角形的面积依次为 1 , 2, 3 . 2
故四面体的表面积 S 1
A. xOz 平面上曲线 (z a)2 x2 绕 y 轴旋转所得曲面 B. xOz 平面上直线 z a x 绕 z 轴旋转所得曲面 C. yOz 平面上直线 z a y 绕 y 轴旋转所得曲面
D. yOz 平面上直线 (z a)2 y2 绕 X 轴旋转所得曲面
(5)下列方程所对应的曲面为双曲抛物面的是( D )
ijk s n1 n2 1 0 2 {2,3,1}
0 1 3
故过点(0,2,4)的直线方程为
x y2 z4 2 3 1
(3)所求直线与已知直线平行,故其方向向量可取为 s={2,-1,3}
故过点(-1,2,1)的直线方程为
x 1 y 2 z 1. 2 1 3
15. 试确定出下列各题中直线与平面间的关系:
k 12i 20 j 8k
高二数学空间向量与立体几何试题答案及解析
高二数学空间向量与立体几何试题答案及解析1.在空间直角坐标系中,已知的坐标分别为,则线段的长度为_________________ .【答案】【解析】利用空间两点间的距离公式可以求得【考点】本小题主要考查空间两点间距离的计算.点评:此类问题直接讨论公式求解即可.2.在棱长为的正方体中,则平面与平面间的距离()A.B.C.D.【答案】B【解析】建立如图所示的直角坐标系,设平面的一个法向量,则,即,,平面与平面间的距离【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小()A.B.C.D.【答案】A【解析】取BC的中点O,连AO.由题意平面平面,,∴平面,以O为原点,建立所示空间直角坐标系,则,,,,∴,,,由题意平面ABD,∴为平面ABD的法向量.设平面的法向量为,则,∴,∴,即.∴不妨设,由,得.故所求二面角的大小为.故选A。
【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神.(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取时,会算得,从而所求二面角为,但依题意只为.因为二面角的大小有时为锐角、直角,有时也为钝角.所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”.4.(12分)已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小【答案】arccos或-arccos.【解析】解:如图建立空间直角坐标系,=(-1,1,0),=(0,1,-1)设、分别是平面A1BC1与平面ABCD的法向量,由可解得=(1,1,1)易知=(0,0,1),所以,=所以平面A1BC1与平面ABCD所成的二面角大小为arccos或-arccos.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。
空间向量练习及答案解析
空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。
(完整版)空间解析几何与向量代数习题与答案
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
考研数学二(向量代数和空间解析几何)-试卷1
考研数学二(向量代数和空间解析几何)-试卷1(总分:44.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.过点(一1,2,3)且垂直于直线并平行于平面7x+8y+9z+10=0的直线方程是(分数:2.00)A. √B.C.D.解析:解析:设所求直线的方向向量为s,直线的方向向量为s 1=(4,5,6),平面7x+8y+9z+10=0的法向量为n=(7,8,9),故由点法式方程知,所求直线为整理得,应选(A).3.设有直线则L 1与L 2的夹角为(分数:2.00)A.B.C. √D.解析:解析:由已知条件,L 1的方向向量为s 1 =(1,一2,1).4.设有直线Lπ:4x一2y+z一2=0,则直线L( )(分数:2.00)A.平行于π.B.在π上.C.垂直于π.√D.与π斜交.解析:解析:L一28,14,一7)=7(一4,2,一1).π的法向量n=(4,一2,1).显然s∥n,所以选(C).5.如果直线L 1:相交,则λ(分数:2.00)A.B.C.D. √解析:解析:由已知,L 1的方向向量s 1 =(1,2,λ),且过点A(1,一1,1);L 2的方向向量s 2 =(1,1,1),且过点B(一1,1,0).若L 1与L 2相交,则s 1,s 2,共面,即6.π:2x+7y+4z一1=0,则( )(分数:2.00)A.L 1∥π.√B.L 1⊥πC.L 2∥π.D.L 1⊥L 2.解析:解析:L 1的方向向量s 1=(一1,2,一3).L 2的方向向量s 2=(3,1,2).π的法向量n=(2,7,4),由于s 1 .n=一1×2+2×7—3×4=0,故L 1∥π,从而应选(A).二、填空题(总题数:1,分数:2.00)7.已知|a|=2,|b|=5,a和b A=λa+17b与B=3a一b垂直,则系数λ= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:40)解析:解析:由已知,A.B=0,于是(λa+17b).(3a—b)=0,即3λ|a| 2 +(51一λ)a.b一17|b| 2 =0,亦即12λ+(51一λ一425=0,解得λ=40.三、解答题(总题数:15,分数:30.00)8.解答题解答应写出文字说明、证明过程或演算步骤。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
高二数学-空间向量与立体几何测试题及答案
高二数学空间向量与立体几何测试题第1卷(选择题,共50分)一、选择题:(本大题共10个小题每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在下列命题中:CD若a、b共线则a、b所在的直线平行;@若a、b所在的直线是异面直线,则a、b一定不共面;@若a、b、c三向量两两共面,则a、b、c三向量一定也共面;@已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=a+yb+zc,, y, z R.其中正确命题的个数为( )A. 0B. 1C. 2D. 32. 若三点共线为空间任意一点且则的值为()A. lB.C.D.3. 设,且,则等千()A. B. 9 C. D4. 已知a=(2, —1, 3) , b= C—1, 4, —2) , c= (7, 5, 入),若a、b、c三向量共面,则实数入等千()A. B. C.5.如图1,空间四边形的四条边及对角线长都是,点分别是的中点则等千()D.A.C...BD6. 若a、b均为非零向量,则是a与b共线的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7. 已知点0是LABC所在平面内一点满足• = • = • '则点0是LABC的()A. 三个内角的角平分线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点8. 已知a+b+c=O,al =2, bl =3,A. 30°B. 45°D.三条高的交点l e = , 则向量a与b之间的夹角为()C. 60°D. 以上都不对9. 已知, ' ,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.10. 给出下列命题:CD已知,则C. D.@为空间四点若不构成空间的一个基底,那么共面;@已知则与任何向量都不构成空间的一个基底;@若共线则所在直线或者平行或者重合.正确的结论的个数为()C. 3A.1B.2D.4 第II卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.已知LABC的三个顶点为A(3, 3, 2) , B (4, —3, 7) , C (0, 5, 1) , 则BC边上的中线长为12. 已知三点不共线为平面外一点若由向量确定的点与共面,那么13. 已知a,b,c是空间两两垂直且长度相等的基底,m=a+b,n=b-c,则m,n的夹角为14. 在空间四边形ABC D中,AC和B D为对角线G为L:.ABC的重心,E是B D上一点BE=3E D, 以{, , }为基底,则=15. 在平行四边形ABCD中,AB=AC=l,乙ACD=90, 将它沿对角线AC折起,使AB与CD成60角,则B,D两点间的距离为16. 如图二面角a-t -B的棱上有A,B两点直线AC,B D分别在这个二面角的两个半平面内,且都垂直千AB,已知AB=4,AC=6, B D=8, C D= ,二面角Q—t—B的大小三、解答题(本大题共5小题,满分70分),17. C lo分)设试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.18. (12分)如图在四棱锥中,底面ABC D是正方形,侧棱底面ABC D,, 是PC的中点,作交PB千点F.(1)证明PAIi平面EDB:(2)证明PB上平面E F D:(3)求二面角的大小.、、、、、、、、.、19. (12分)如图在直三棱柱ABC—AlBlCl中,底面是等腰直角三角形,乙ACB=90°.侧棱AA1=2, D. E 分别是CCl与AlB的中点点E在平面ABO上的射影是DAB D的重心G.(1)求AlB与平面ABO所成角的大小.(2)求Al到平面ABO的距离1) 20. 12分)如图在三棱柱ABC-AlBlCl中,AB上AC,顶点Al在底面ABC上的射影恰为点B,且AB=AC=A1B=2.2)求棱AA1与BC所成角的大小;在棱BlCl上确定一点P,使AP=, 并求出二面角P—AB—Al的平面角的余弦值A1C1B21. (12分)如图直三棱柱ABC-AlBlCl中AB上AC,D.E分别为AAl.B lC的中点DEl_平面BCCl.C I)证明:A B=ACC II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小c,22. (12分)P是平面ABC D外的点四边形ABC D是平行四边形,AP= (-1, 2, -1)(1)求证:PA 平面ABC D.(2)对千向量,定义一种运算:,试计算的绝对值;说明其与几何体P—ABC D的体积关系,并由此猜想向量这种运算的绝对值的几何意义(几何体P-ABC D叫四棱锥,锥体体积公式:V= ) .一、选 1 2 择题(本大题土2上、10小题,每3 4空间向量与立体几何(2)参考答案5 6 7 8 9 10小题5/刀\.让,/、50分)题号答案D D D A B C A 二、填空题(本大题共4小题,每小题6分,共24分)11. (0, ,) 12. 0 13. 1, —3 14. 90° l厮—15。
考研数学一(向量代数和空间解析几何)-试卷1
考研数学一(向量代数和空间解析几何)-试卷1(总分:48.00,做题时间:90分钟)一、选择题(总题数:11,分数:22.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.已知a,b均为非零向量,(a+3b)⊥(7a一5b),(a一4b)⊥(7a一2b),则向量a与b的夹角为((分数:2.00)A.B. √C.D.3.设a,b,c为非零向量,且a=b×c,b=c ×a,c=a×b,则|a|+|b|+|c|=( )(分数:2.00)A.0.B.1.C.2.D.3.√解析:解析:由题设知a,b,c两两相互垂直,则|a|=|b×c|=|b||c|,|b|=|a||c|,|c|=|a||b|,由此可得|a|=|b|=|c|=1,故|a|+|b|+|c|=3.4.已知曲面z=4一x 2一y 2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是( )(分数:2.00)A.(1,一1,2).B.(一1,1,2).C.(1,1,2).√D.(一1,一1,2).解析:解析:由面z=4一x 2一y在点(x 0,y 0,z 0 )处的法线向量为(2x 0,2y 0,1).由题设知,则x=y=1,代入z=4一x 2一y 2得z=2,故选C。
5.已知向量a,b的模分别为|a|=2,|b| a.b=2,则|a×b|=( )(分数:2.00)A.2.√D.1.6.已知直线L 1:x+1=y一1=z与直线L 2:λ等于( )(分数:2.00)A.0.B.1.C.√解析:解析:直线:L 1:x+1=y一1=z的方向向量为s 1 =(1,1,1),直线L 2:的方向向量为s 2=(1,2,λ).显然s 1与s 2不平行,则L 1与L 2相交于一点的充要条件是L 1与L 2共面,即7.直线1:( )(分数:2.00)A.L 1∥L 2.√B.L 1与L 2相交但不垂直.C.L 1⊥L 2且相交.D.L 1,L 2是异面直线.8.函数f(x,y,z)=x 2 y 3 +3y 2 z 3在点(0,1,1)处方向导数的最大值为( )(分数:2.00).√C.117.D.107.解析:解析:函数f(x,y,z)=x 2 y 3 +3y 2 z 3在点(0,1,1)处方向导数的最大值等于f(x,y,z)在点(0,1,1)处梯度向量的模. gradf(0,1,1)=(0,6,9),故选B.9.设可微函数f(x,y,z)在点(x 0,y 0,z 0 )处的梯度向量为g,l=(0,2,2)为一常向量,且g.l=1,则函数f(x,y,z)在点(x 0,y 0,z 0 )处沿l方向的方向导数等于(分数:2.00)A.B. √C.D.解析:解析:设l的方向余弦为cosα,cosβ,cosγB.10.在曲线x=t,y=一t 2,z=t 3的所有切线中,与平面x+2y+z=4平行的切线( )(分数:2.00)A.只有一条.B.只有两条.√C.至少有三条.D.不存在.解析:解析:曲线x=t,y=一t 2,z=t 3在点t=t 0处的切向量为t=(1,一2t 0,3t 02).平面x+2y+z=4的法线向量为n=(1,2,1).由题设知n上t,即1—4t 0 +3t 02 =0,则t 0 =1或t 0,故选B.11.设L是圆周x 2 +y 2 =1,n为L的外法线向量,u(x,( )(分数:2.00)A.0.√C.π.D.一π.解析:解析:(n,y),这里的cos(n,x),cos(n,y)为曲线L的外法线向量的方向余弦,设t为L的逆时针方向的切线向量,则cos(n,x)=cos(t,y),COS(n,y)=—cos(f,x)二、填空题(总题数:11,分数:22.00)12.过(1,1,一1),(一2,一2,2)和(1,一1,2)三点的平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:x一3y一2z=0)解析:解析:设已知的三个点分别是A(1,1,一1),B(一2,一2,2)和C(1,一1,2),因此可知向量=(0,一2,3).平面的法向量n与以上两个向量垂直,因此=3i一9j一6k=(3,一9,一6),由点法式可得3(x一1)一9(y一1)一6(z+1)=0,化简得x一3y一2z=0.13.经过平面∏ 1:x+y+1=0与平面∏ 2:x+2y+2z=0的交线,并且与平面∏ 3:2x—y—z=0垂直的平面方程是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3x+4y+2z+2=0)解析:解析:联立∏ 1与∏ 2的方程取x=0,可得点P 0 (0,一1,1).由所求平面∏过点P 0且π1,π2交线的方向向量s与n 3 =(2,一1,一1)垂直,因此故π的方程为3z+4y+2z+2=0.14. 1,(分数:2.00)填空项1:__________________ (正确答案:正确答案:x—y+z=0)解析:解析:设所求平面方程是Ax+By+Cz+D=0A=t,B=一t,C=t.则所求平面方程是tx—ty+tz+0=0,即x一y+z=0.15.若α∥β,α={6,3,一2},而|β|=14,则β= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:±2{6,3,一2})解析:解析:设β=λα,则|β|=|λ||α|,即解得|λ|=2,故β=±2{6,3,一2}.16.设(a×b).c=2,则[(a+b)×(b+c)].(c+a)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4)解析:解析:[(a+b)×(b+c)].(c+a) =[(a+b)×b].(C+a)+[(a+b)×c].(c+a) =(a×b).c+(b×c).a=(a×b).c+(a×b).c=4.17.若α,β,γ是单位向量且满足α+β+γ=0,则以α,β为边的平行四边形的面积S= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:令=θ,则以α,β18.已知三个向量a,b,c,其中c⊥a,c⊥b,a与b|a|=6,|b|=|c|=3,则(a×b).c= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:±27)解析:解析:由题设可知|a×b|=|a||b|sin(a,.由于c⊥a,c⊥b,则c∥(a×b),即c与a×b之间夹角为α=0或π.因此,(a×b).c=|a×b||c|cosα=9×3×(±1)==±27.。
空间向量及立体几何练习试题和答案解析
1 •如图,在四棱锥P- ABCD中,底面ABC助正方形,平面PADL平面ABCD点M 在线段PB ±, PD//平面MAC PA二PD; AB=4(1)求证:M为PB的中点;(2)求二面角B- PD- A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设ACH BD=O则0为BD的中点,连接0M利用线面平行的性质证明0M/ PD 再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PGLAD,再由面面垂直的性质可得PGL平面ABCD贝U PGLAD, 连接0G则PGLOG再证明OGLAD.以G为坐标原点,分别以GD GO GP所在直线为x、y、z 轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B- PD- A的大小;(3)求出门;的坐标,由:〃与平面PBD的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP所成角的正弦值.【解答】⑴证明:如图,设ACH BD=O••• ABCL正方形,二0为BD的中点,连接0M••• PD//平面MAC PD?平面PBD 平面PBDH 平面AMC=OM••• PD// 0M则一-一,即卩M为PB的中点;BD BP(2)解:取AD中点G,••• PA=PD- PGL心• ••平面PADL平面ABCD且平面PADH平面ABCD=AD••• PG!平面ABCD 贝U PG!AD,连接OG 贝U PG1OG由G是AD的中点,0是AC的中点,可得OG/ DC贝U OGLAD.以G为坐标原点,分别以GD GO GP所在直线为x、y、z轴距离空间直角坐标系,由 PA 二PD : AB=4 得 D (2, 0, 0), A (- 2, 0, 0), P (0, 0,西),C (2, 4, 0) , B (- 2, 4, 0), M (- 1 , 2 ,• ••二面角B- PD- A 的大小为60°(3)解::一,L...:,平面BDP 的一个法向量为;…• ••直线MC 与平面BDP 所成2.如图,在三棱锥P- ABC 中,PAL 底面ABC / BAC=90 •点D, E, N 分别为 棱PA PC, BC 的中点』是线段AD 的中点,PA 二AC 二4 AB=2(I)求证:MN/平面BDE(U)求二面角c- EMM —川的正弦值;(川)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为二,求线段・:, r 1设平面PBD 的一个法向量为;y, z),则由丿 ,得-,取〜丁,得I !■ ,m^DB=0的二° 取平面PAD 的一个法向量为1, 0). 〉二站 二- 11 In 2X1 ~~T训练了利用空间向量求空间角,属中二 cos 角的正弦值为cos V档题.AH的长.【分析】(I)取AB中点F,连接MF、NF,由已知可证MF//平面BDE NF//平面BDE得到平面MFN/平面BDE则MN/平面BDE(U)由PAL底面ABC / BAC=90 •可以A为原点,分别以AB AC AP所在直线为x、y、z轴建立空间直角坐标系•求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C- EM- N的余弦值,进一步求得正弦值;(川)设AH=t,则H ( 0, 0, t ),求出丽*豆的坐标,结合直线NH与直线BE所成角的余弦值为'列式求得线段AH的长.21【解答】(I)证明:取AB中点F,连接MF NF,••• M 为AD 中点,二MF// BD••• BD?平面BDE MF?平面BDE 二MF// 平面BDE••• N 为BC 中点,二NF// AC又D E分别为AP PC的中点,二DE// AC则NF// DEv DE?平面BDE NF?平面BDE 二NF// 平面BDE又ME NF=F• ••平面MFN/平面BDE则MN/平面BDE(U)解:v PA!底面ABC / BAC=90 ・•••以A为原点,分别以AB AC AP所在直线为x、y、z轴建立空间直角坐标系.v PA=AC=4 AB=2…A (0, 0, 0), B (2, 0, 0), C (0, 4, 0), M( 0, 0, 1), N (1, 2, 0), E (0, 2, 2),设平[ftl MEN 勺一个法向量为;由图可得平面CME 的一个法向量为一门・「(川)解:设 AH 二t,则 H( 0, 0, t ), □ T.;…直线NH 与直线BE 所成角的余弦值为牛!- 2tz2_|=V7I NH I I 傅尹 X 2V3 21解得:t=¥或t=£.5 2•••当H 与P 重合时直线NH 与直线BE 所成角的余弦值为],此时线段AH 的长为【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考 查计算能力,是中档题. f f > - io*n4 Wsi ID,in n V21 s 121 面角C- EM- N 的余弦值为 丄—则正弦值为cosV则Z 」-1 ,『由严号二0,得x+2yb2y z=0取z 二2,得• V COS3•如图,几何体是圆柱的一部分,它是由矩形ABC(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是I•的中点.(I)设P是」上的一点,且API BE,求/ CBP的大小;(U)当AB=3 AD=2时,求二面角E-AG C的大小.【分析】(I)由已知利用线面垂直的判定可得BEX平面ABP得到BE! BP,结合/ EBC=120 求得/ CBP=30 ;(n)法一、取L的中点H,连接EH GH CH可得四边形BEGH为菱形,取AG中点M连接EM CM EC,得到EML AG CM! AG说明/ EMC为所求二面角的平面角•求解三角形得二面角E-AG- C的大小.法二、以B为坐标原点,分别以BE BP, BA所在直线为x, y, z轴建立空间直角坐标系•求出A, E, GC的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E- AG- C的大小.【解答】解:(I): APL BE, AB 丄BE 且AB AP?平面ABP ABA AP=A… BE!平面ABP又BP?平面ABP… BE! BP,又/ EBC=120 ,因此/ CBP=30 ;(n)解法一、取三「的中点H,连接EH, GH CH vZ EBC=120,二四边形BECH 为菱形, … AE二GE二AC二GC-:・取AG中点M连接EM CM EC贝U EML AG CML AG •••/ EMC为所求二面角的平面角.又AM=1 • EM=CM=-在八BEC中,由于/ EBC=120 ,由余弦定理得:EC=22+22- 2X 2X 2X cosl20° 二12, •V ■:二,因此△ EMC为等边三角形,故所求的角为60°・解法二、以B为坐标原点,分别以BE, BP, BA所在直线为x,直角坐标系.y, z轴建立空间由题意得:A (0,C (- 0, 3) , E (2,1,血,0),0, 0) , G (1,體,3), 设ID 二(K「y 1 E !)为平面AEG的一个法向量,由V,得亠m* AC设口二(牙和y2' 七)为平面ACG的一个法向量,x 2 y 2~ °'可得丿2沁一0 '取=得"心,-2).m * n 1 •cosn> = L ・右.I Ini <【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.4•如图,在以A, B, C, D, E, F为顶点的五面体中,面ABEF为正方形,AF=2FD/ AFD=90,且二面角D- AF- E与二面角C- BE- F都是60°・(I)证明平面ABE吐平面EFDC【分析】(I)证明AF丄平面EFDC利用平面与平面垂直的判定定理证明平面ABEFL 平面EFDC(U)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC平面ABC的法向量,代入向量夹角公式可得二面角E-BC- A的余弦值.【解答】(I)证明::ABEF为正方形,二AFLEF.vZ AFD=90,二AFL DF,v DFn EF=F,• • • AFL 平面EFDCv AF?平面ABEF• ••平面ABEL平面EFDC(U)解:由AFLDF, AFLEF,可得/ DFE为二面角D- AF- E的平面角;由ABEF为正方形,AF丄平面EFDC…BE! EF,…BE!平面EFDC即有CE! BE,可得/ CEF为二面角C- BE- F的平面角.可得/ DFE二/ CEF=60 ・••• AB// EF, AB?平面EFDC EF?平面EFDC••• AB// 平面EFDC•••平面EFD© 平面ABCD=CDAB?平面ABCD…AB// CD …CD// EF,•••四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a则E (0, 0, 0), B (0 , 2a, 0) , C — a.) , A (2a , 2a , 0),2•••匸_= (° , 2a , 0>,~. =(—, 一2且,一R,一■二(一2a , 0 , 0)设平面BEC的法向量为|=(Xi, yi, Zi),则丿….nTRC二00, - i)・n_BC_0设平面ABC的法向量为II二(X2, y2, Z2), ___ ?La 73y X2~2ay 2 -2亠2」二0设二面角E- BC- A的大小为6,则cos0=! E1. j:1 二V3+1-V3+16则二面角E-2A的余弦值为-辔.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.5•如图,菱形ABCD勺对角线AC与BD交于点0, AB=5 AC二6点E, F分别在AD CD ±, AE=CF=, EF交于BD于点H, #△ DEF沿EF折至力EF的位置,40D 二顶.(I)证明:D H丄平面ABCD(U )求二血角B—D‘ A- C的正弦值.D'【分析】(I )由底面ABC助菱形,可得AD=CQ结合AE=C阿得EF# AQ再由ABCD是菱形,得AC丄BD,进一步得到EF丄BD,由EF丄DH可得EF丄D H,然后求解直角三角形得D H丄0H再由线面垂直的判定得D H丄平面ABCD(n)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到屁、疋厂、兀的坐标,分别求出平面ABD与平面AD C的一个法向量厂(J,设二面角二面角B- D A- C的平面角为氏求出IcosB | •则二面角B- D A- C的正弦值可求.【解答】⑴证明::ABCD1菱形,…AD=DC 又 AE=CF=,贝 U EF// AC,又由ABCD 是菱形,得ACL BD 贝U EF± BD …EFL DH 则 EFL D H,…AC=6…A0=3又 AB=5 ACL OB••• 0B=4OH 里叩 D 二1 ,贝 U DH=D H=32 2 2•••I OD | =|OH +| D H ,则 D H± OH又 OFT EF=H• D H 丄平面ABCD(n)解:以H 为坐标原点,建立如图所示空间直角坐标系, …AB=5 AC=6• B (5 , 0 , 0), C (1 , 3 , 0) , D ( 0 , AB= (a» 3, 0). AL 二(-1, 3, 3), AC= (0» 6, 设平面ABD 的一个法向量为石二7Z z),丑二D /曰©+3y 二0 怖。
高中数学空间向量与立体几何经典题型与答案
空间向量与立体几何经典题型与答案1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使14,00,.25AN MC AN MC x z λ⊥=-==只需即解得),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角30304||,||,.5552cos(,).3||||2arccos().3AN BN AN BN AN BN AN BN AN BN ===-∴==-⋅-故所求的二面角为2 如图,在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD(Ⅰ)证明:AB ⊥平面VAD ;(Ⅱ)求面VAD 与面DB 所成的二面角的大小证明:以D 为坐标原点,建立如图所示的坐标图系(Ⅰ)证明:不防设作(1,0,0)A ,则(1,1,0)B , )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB VA ⊥,又AB AD ⊥,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直∴AB ⊥平面VAD(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,AEB ∠是所求二面角的平面角,,721||||),cos(=⋅⋅=EB EA EB EA EB EA 解得所求二面角的大小为.721arccos3 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底V面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出点N 到AB 和AP 的距离解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为1473 (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(,0,)x z ,则)1,21,(z x NE --=,由NE ⊥面PAC 可得,⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(,从而N 点到AB 和AP 的距离分别为31,64 如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中14,2,3,1AB BC CC BE ====(Ⅰ)求BF 的长; (Ⅱ)求点C 到平面1AEC F 的距离解:(I)建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z∵1AEC F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面1AEC F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为α,则 .333341161133||||cos 1111=++⨯=⋅⋅=n CC n CC α ∴C 到平面1AEC F 的距离为.11334333343cos ||1=⨯==αCC d5 如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移动 (1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==c a ba 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为.313212||||1=-+=⋅=n n E D h (3)设平面1D EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b CE n C D n 令1,2,2b c a x =∴==-, ∴).2,1,2(x n -= 依题意.225)2(222||||||4cos211=+-⇒=⋅⋅=x DD n DD n π∴321+=x (不合,舍去),322-=x∴23AE =-时,二面角1D EC D --的大小为4π6 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于1,C C 的一点,1EA EB ⊥,已知112,2,1,3AB BB BC BCC π===∠=,求:(Ⅰ)异面直线AB 与1EB 的距离;(Ⅱ)二面角11A EB A --的平面角的正切值解:(I)以B 为原点,1BB 、BA 分别为,y z 轴建立空间直角坐标系ﻩ由于,112,2,1,3AB BB BC BCC π===∠=ﻩ在三棱柱111ABC A B C -中有1(0,0,0),(0,0,2),(0,2,0)B A B ,)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥侧面11BB C C ,故AB BE ⊥ 因此BE 是异面直线1,AB EB 的公垂线,则14143||=+=BE ,故异面直线1,AB EB 的距离为1 (I I)由已知有,,1111EB A B EB EA ⊥⊥故二面角11A EB A --的平面角θ的大小为向量EA A B 与11的夹角.22tan ,32||||cos ),2,21,23(),2,0,0(111111==⋅=--===θθ即故因A B EA A B EA EA BA A B7 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PF EC ⊥ 已知,21,2,2===AE CD PD 求(Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E PC D --的大小解:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为,,x y z 轴建立空间直角坐标系由已知可得(0,0,0),(0,0,2),(0,2,0)D P C则(2EF =-由0EF PC ⋅=得又由F 在PC 上得,(2222EF =-因,,EF PC DG PC ⊥⊥故E -的大小为向量EF DG 与的夹角22||||DG EF DG EF ⋅=4。
第四章 解析几何与向量代数(厦门理工作业答案)
高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 向量及其线性运算(1)一.选择题1.定点)1,3,2(--A 与)1,3,2(-B 对称的坐标面为 [ C ] (A )xOy 坐标面 (B )yOz 坐标面 (C )zOx 坐标面 (D )y 轴对称 2.两点)2,2,1(A 与)1,0,1(-B 的距离为 [ B ] (A )1 (B )3 (C )13 (D )4 3.非零向量 a 和b ,若满足| a –b |=| a | + |b | ,则 [ C ] (A )a , b 方向相同 (B )a , b 互相垂直 (C )a , b 方向相反 (D )a , b 平行4.已知向量 a = }1,5,3{-, b ={2 ,2 ,3 },则2a –3b 为 [ C ] (A ){0,12,11} (B ){16,12,3} (C ){11,4,0-} (D ){11,14,4} 二.填空题:1.求出点)5,3,4(-A 到坐标y 2.一个向量的终点在点)7,1,2(-B 它在坐标轴上的投影顺次是4, 4- 和 7,这个向量的起点A 三.解下列各题:1.求向量a =21M M 的模、方向余弦和方向角。
已知M 1(1,2,4 ) , M 2(3 ,0 ,2 )。
解:)1,2,1(1221--=-==OM OM M M a 2121=++=∴cos x a α==-12,cos y a β==-22,cos z a γ==12 所以方向角为 3,43,32πγπβπα===2.求向量a =→→→+-k j i 532的模,并用单位向量 a o 表达向量a 。
解: (=+=22a ∴=038a a3.设向量r 的模是4,它与轴u 的夹角是60o , 求r 在轴u 上的投影。
解: ()cos u r r •ϕ=⋅=⨯=1422所以r 在轴u 上的投影为2。
4.证明以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形 解: )3,2,6(--=-=OA OB AB )6,3,2(--=-=OA OC AC )3,5,8(--=-=OB OC BC2792564,79436==++==++==∴所以以三点A(4 ,1 ,9) , B(10 ,1- ,6) ,C(2 ,4 ,3) 为顶点的三角形是等腰直角三角形高等数学练习题 第四章 空间解析几何与向量代数 系 专业 班 姓名 学号4.1 数量积 向量积 (2)一.选择题1.判断向量→a =→→→++k j i 23和→b =→→-j i 32位置是 [ B ] (A )平行 (B )垂直 (C ) 相交 (D )以上都不是。
高考数学压轴专题最新备战高考《空间向量与立体几何》真题汇编附答案解析
【最新】《空间向量与立体几何》专题解析(1)一、选择题1.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】-,易证平面PAD⊥平面ABCD,平面PCD⊥平面画出该几何体的直观图P ABCDPAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面PCD⊥平面PAD,同理可证:平面PAB⊥平面PAD,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)++B .6(8823)++C .8(6632)++D .6(8832)++ 【答案】A 【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为2,则该几何体的表面积为2116(222)42282322S ⎡⎤=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦8(6623)=++.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.4.《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为23厘米,瓶颈到水位线距离和水位线到瓶底距离均为332厘米,现将1颗石子投入瓶中,发现水位线上移32厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )A .2颗B .3颗C .4颗D .5颗【答案】C 【解析】 【分析】利用图形中的数据,分别算出石子的体积和空瓶的体积即可. 【详解】如图,9,3,33AB cm EF GH cm LO cm ====所以60A ∠=︒,原水位线直径6CD cm =,投入石子后,水位线直径5IJ cm = 则由圆台的体积公式可得石子的体积为:()22319133MN CN IM CN IM ππ⋅⋅++⋅= 空瓶的体积为:()22213LN CN EL CN EL EL KL ππ⋅++⋅+⋅⋅633363993888πππ=+=()99329783,491913ππ=∈ 所以至少需要4颗石子 故选:C 【点睛】本题考查的是圆台和圆柱体积的算法,掌握其公式是解题的关键.5.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3 B .3:4C .16:9D .9:16【答案】C 【解析】 【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值. 【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,则母线长为2r , 则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为23R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=,故选:C . 【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.6.在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD (不包括端点)上的动点,且线段12PP 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 A .124B .112C .16D .12【答案】A 【解析】由题意在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD 上的动点,且线段12PP 平行于平面11121,AADD PP B AD B ∆~∆,设1,(0,1)PB x x =∈,即122,PP P =到平面11AA B B 的距离为x , 所以四棱锥121PP AB 的体积为2111(1)1()326V x x x x =⨯⨯-⨯⨯=-, 当12x =时,体积取得最大值124,故选A .点睛:本题考查了空间几何体的结构特征,及几何体的体积的计算,其中解答中找出所求四面体的底面面积和四面体的高是解答的关键,着重考查了分析问题和解答问题的能力,对于空间几何体的体积与表面积的计算时,要正确把握几何体的结构特征和线面位置关系在解答中的应用.7.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+ ⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为2221284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.8.在ABC ∆中,设BAC α∠=,CA 与CB 所成的角是β,绕直线AC 将AB 旋转至AB ',则在所有旋转过程中,关于AB '与BC 所成的角γ的说法正确的是( )A .当4παβ-≥时,[],γαβαβ∈-+B .当4παβ-<-时,[],γβααβ∈-+C .当4παβ+≥时,[],γαβαβ∈-+D .当4παβ+<时,,γαβαβ∈⎡-+⎤⎣⎦ 【答案】D 【解析】 【分析】首先理解异面直线所成的角的范围是0,2πγ⎛⎤∈ ⎥⎝⎦,排除选项A,B,C,对于D 可根据AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值. 【详解】因为γ是异面直线所成的角,所以0,2πγ⎛⎤∈ ⎥⎝⎦A.当4παβ-≥时,αβ+的范围有可能超过2π,比如,3,46ππαβ==,所以不正确; B.当4παβ-<-时,当3,46ππβα==,此时[],γβααβ∈-+,也不正确; C.当4παβ+≥,当3,46ππαβ==,此时[],γαβαβ∈-+,故也不正确; D. 4παβ+<时,AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,如图,过点A 作BC 的平行线AD ,且CAD β∠=,'AB 与BC 所成的角γ转化为AB '与AD 所成的角,由图象可知,当AB '是AB 时,角最大,为αβ+,当AB '在平面ABC 内时,不与AB 重合时,角最小,此时为αβ-故选:D 【点睛】本题考查异面直线所成的角,重点考查轨迹,数形结合分析问题的能力,属于中档题型,本题的关键是判断,并画出AB 绕AC 旋转,形成以AC 为轴的圆锥.9.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4π C .512π D .2π 【答案】C 【解析】 【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()2cos 0442QPM x x x∠=≤≤+-,,即可求出33cos QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果.【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-, 在正四面体A BCD -中,易知PQ MQ =, 所以在等腰三角形PMQ 中,()2cos 0442QPM x x x∠=≤≤+-所以33cos QPM ∠∈⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C.【点睛】本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.10.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643π B .83163ππ+C .28πD .82163ππ+【答案】B 【解析】 【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l πππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.11.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( ) A .3B .3 C .13D .3【答案】B 【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB = ∴132232ABC S ∆=⨯⨯=∵CD ⊥底面ABC ,//AE CD ,2CD AE == ∴四边形AEDC 为矩形,则F 为EC 与AD 的中点 ∴三棱锥F ABC -的高为112CD = ∴三棱锥F ABC -的体积为13313V ==故选B.12.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( )A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A 【解析】 【分析】D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO POAPB PD a α==∠,同理可得:sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>.故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.13.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系14.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C 【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.15.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P -ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P -ABC 的侧面积为35【答案】C 【解析】 【分析】根据三视图,可得三棱锥P -ABC 的直观图,然后再计算可得. 【详解】解:根据三视图,可得三棱锥P -ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC . 所以三棱锥P -ABC 的体积为114222323⨯⨯⨯⨯=,2AC BC PD ∴===,AB ∴==,||||||DA DB DC ∴===||||||PA PB PC ∴====222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直,122PBA S ∆=⨯=Q 122PBC PAC S S ∆∆===Q∴三棱锥P -ABC 的侧面积为故正确的为C. 故选:C. 【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.16.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( )A .4B .2C .2D .4【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1122BDE S BD OE ∆==g ,即α 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.17.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13三棱柱的高为23 A .323πB .163πC .83π D .643π【答案】A 【解析】 【分析】求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解. 【详解】由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=, 根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =,所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A .152πB .12πC .112π D .212π【答案】A 【解析】 【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A 【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C 【解析】 【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C 【解析】 【分析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。
高三数学空间向量试题答案及解析
高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。
空间解析几何复习题答案
2 2 2 ⎧ ⎪x + y = a (3) ⎨ 。 2 2 2 ⎪ x + z = a ⎩ 8.4.2 分别求母线平行于 x 轴及 y 轴而且通过曲线 2 2 2 ⎧ ⎪ 2 x + y + z = 16 ⎨ 2 2 2 ⎪ ⎩x + z − y = 0
的柱面方程。 答案:母线平行于 x 轴的柱面方程: 3 y 2 − z 2 = 16 ;母线平行于 y 轴的柱面方程: 3x 2 + 2x 2 = 16 。 8.4.3 求在 yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程) 。 ⎧x 2 + y 2 + z 2 = 1 ⎧ y 2 + z 2 =1 ⎧x 2 + y 2 + z 2 = 1 答案: ⎨ ;⎨ ; ⎪ 。 ⎨ 2 2 ⎪ ⎩x = 0 ⎩x = 0 ⎩y + z =1 8.4.4 指出下列方程所表示的曲线 ⎧ x 2 + y 2 + z 2 + 25 (1) ⎨ ⎩x = 3 ⎧ x 2 − 4 y 2 + z 2 = 25 (3) ⎨ ; ⎩ x = −3 ⎧ x 2 + 4 y 2 + 9 z 2 = 30 (2) ⎨ ; ⎩z = 1 ⎧ y 2 + z 2 − 4x + 8 = 0 (4) ⎨ ; ⎩y = 4
4 3⎞ ⎛ 4 3⎞ 答案: ⎛ ⎜ 0, , − ⎟ , ⎜ 0, − , ⎟ 5⎠ ⎝ 5 5⎠ ⎝ 5 8.2.7 已知 | a |= 3, | b |= 26, | a × b |= 72 ,计算 a ⋅ b 。 答案: ±30 8.2.8 已知 | a |= 3, | b |= 5 ,问 λ 为何值时 a + λb 与 a − λb 互相垂直? 3 5 8.2.9 已知向量 a = 2i − 3 j + k , b = i − j + 3k 和 c = i − 3 j ,计算 (1) (a ⋅ b)c − (a ⋅ c )b ; (2) (a + b) × (b + c ) ; 答案: ± 答案: (1) (-3,-13,-33) ; (2) (4,-1,-4) ; (3)7
高等数学第七章空间解析几何与向量代数试题[1]
(一)选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( )A )B )C ) 6D )9532. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ;A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( )A )B )C )D )2π4π3ππ5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( )A )5焦耳B )10焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( )A )B )C )D )2π4π3ππ7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( )A ) B C ) D )13811815818. 设求是:(),23,a i k b i j k =-=++r r r r r r r a b ⨯r r A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k9. 设⊿的顶点为,求三角形的面积是:( ABC (3,0,2),(5,3,1),(0,1,3)A B C -)A )B )C )D )33623643210. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( )A )2x+3y=5=0B )x-y+1=0C )x+y+1=0D )01=-+y x .填空题(1) a ∙b = (公式)(2) a ·b = (计算)(3).=⨯b a r r (4)][c b a r r r =(5) 平面的点法式方程是(6) 三维向量 21M M 的模为| 21M M |=(7) 坐标面的曲线绕轴旋转生成的旋转曲面的方程是:yoz 0),(=z y f z (8) 已知两点与,与向量方向一致的单位向量= 。
空间向量与立体几何-答案解析
,
AB 则{
1
⋅
n
=0
− 即{
3x − y + 3z = 0 , 取z = 1,则x =
3,得 n = ( 3, 0, 1),
B1C1 ⋅ n = 0 2y = 0
∵ cos⟨BB1 ,
n⟩ =
BB1 ⋅ n ∣∣∣BB1 ∣∣∣ ∣∣∣ n ∣∣∣
=
3 3×2
=
1 ,
2
1 ∴ BB1与平面AB1C1所成的角的正弦值为 2 ,
3,
2 2
).
故cos ⟨AE, CF ⟩ =
AE ⋅ CF ∣∣∣AE∣∣∣ ∣∣∣CF ∣∣∣
=−
3. 3
3 所以直线AE与直线CF 所成角的余弦值为 3 .
例题4
1
【答案】 3 3
【解析】在矩形ACC1A1中,∵ AC1⊥平面A1BD,∴ AC1⊥A1D,可知△A1AD ∼ △ACC1,
AC 则
可得AC1 = (−2, 2, 2),A1E = (−2, 2, −1).
由题意可知AC 1 即为平面A1 B D 的一个法向量, 设A1 E与平面A1 B D 所成的角为θ ,
则sin θ
=
∣∣cos⟨AC ∣
1
,
A1
E⟩∣∣ ∣
=
AC1 ⋅ A1E ∣∣∣AC1∣∣∣ ⋅ ∣∣∣A1E∣∣∣
=
2
可得A (0, − 3, 0),C (0, 3, 0),
由BE⊥平面ABCD,AB = BC,可知AE = EC.
又AE⊥EC,所以EG = 3,且EG⊥AC.
在Rt△EBG中,可得BE =
2,故DF =
2. 2
所以E (1, 0, 2),F (−1, 0, 2 ), 2