高二文科数学期末复习导数练习题(优选.)

合集下载

(完整word版)高二数学导数大题练习题

(完整word版)高二数学导数大题练习题

(完整word 版)高二数学导数大题练习题一、解答题1.已知函数()()2e 1=-+xf x ax x (a ∈R ,e 为自然对数的底数). (1)若()f x 在x=0处的切线与直线y=ax 垂直,求a 的值; (2)讨论函数()f x 的单调性; (3)当21ea ≥时,求证:()2ln 2x x f x x ---≥. 2.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数. 3.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <4.已知()2ex x af x -=.(1)若()f x 在3x =处取得极值,求()f x 的最小值; (2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围. 5.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.6.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.7.设函数()1eln 1x af x a x -=--,其中0a >(1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.8.已知函数()ln (1af x x a x =+-为常数),且函数()f x 的图象在2x =处的切线斜率小于1.2-(1)求实数a 的取值范围;(2)试判断(1)ln e a -与(e 1)ln a -的大小,并说明理由. 9.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 10.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)1a = (2)答案见解析 (3)证明见解析 【解析】 【分析】(1)由导数的几何意义求出切线的斜率,再由直线的位置关系可求解;(2)由于()()(1)e 2xf x x a =+-',令()0f x '=,得1x =-或2ln x a=,通过比较两个值分类讨论得到单调区间;(3)方法一:通过单调性,根据求最值证明;方法二:运用放缩及同构的方法证明. (1)()()(1)e 2x f x x a =+-',则(0)2f a '=-,由已知(2)1a a -=-,解得1a = (2)()()(1)e 2x f x x a =+-'(ⅰ)当0a ≤时,e 20x a -<,所以()01f x x '>⇒<-,()01f x x '<⇒>-,则()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减;(ⅱ)当0a >时,令e 20x a -=,得2ln x a=, ①02e a <<时,2ln 1a>-,所以()01f x x '>⇒<-或2ln x a >,()012ln af x x <⇒-<<',则()f x 在(,1)-∞-上单调递增,在21,ln a⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;②2e a =时,()1()2(1)e 10x f x x +=+'-≥,则()f x 在(,)-∞+∞上单调递增;③2e a >时,2ln 1a<-,所以2ln ()0x a f x >⇒<'或1x >-,2ln ()01f x ax <⇒<<-',则()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增.综上,0a ≤时,()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减;02e a <<时,()f x 在(,1)-∞-上单调递增,在21,ln a ⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;2e a =时,()f x 在(,)-∞+∞上单调递增;2e a >时,()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a ⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增. (3) 方法一:2()ln 2(0)f x x x x x ≥--->等价于e ln 10(0)x ax x x x --+≥>当21ea ≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 令221()e ln 1,()(1)e x x g x x x x g x x x --⎛⎫=--+=+- ⎝'⎪⎭令21()ex h x x-=-,则()h x 在区间(0,)+∞上单调递增 ∵11(1)10,(2)02h h e=-<=>, ∴存在0(1,2)x ∈,使得()00h x =,即020001e,2ln x x x x -=-=- 当()00,x x ∈时,()0g x '<,则()g x 在()00,x 上单调递减,当()0,x x ∈+∞时,()0g x '>,则()g x 在()0,x +∞上单调递增∴()02min 000000001()e ln 1210x g x g x x x x x x x x -==--+=⋅+--+=∴()0g x ≥,故2()ln 2f x x x x ≥--- 方法二: 当21a e≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 2ln 2()e ln 1e (ln 2)1x x x g x x x x x x -+-=--+=-+--令ln 2t x x =+-,则t R ∈, 令()e 1t k t t =--,则()e 1t k t =-'当0t <时,()0k t '<;当0t >时,()0k t '>∴()k t 在区间(,0)-∞上单调递减,(0,)+∞上单调递增. ∴()(0)0k t k ≥=,即()0g x ≥ ∴2()ln 2f x x x x ≥---, 【关键点点睛】解决本题的关键:一是导数几何意义的运用,二是通过导函数等于零,比较方程的根对问题分类讨论,三是隐零点的运用及放缩法的运用. 2.(1)0a =或4; (2)答案见解析. 【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =.综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x x ϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a⎛⎫'-=---< ⎪⎝⎭,()11101h a'=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+,所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 3.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞(2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x=-<<, 则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 4.(1)2e - (2)[)1,+∞ 【解析】 【分析】(1)先求得函数的导函数,然后利用极值的必要条件求得a 的值,进而判定导数的正负区间,得到函数的单调性,然后结合左右两端的极限值与极小值,求得函数的最小值;(2)分离参数得到2(1)e x a x x ≥--对于任意[)1,x ∞∈+恒成立.构造函数,利用导数求得不等号右侧的最大值,进而根据不等式恒成立的意义得到实数a 的取值范围. (1)∵()2ex x af x -=,∴()()()2222e e 2e e x xxx x x a x x a f x ⋅--⋅--'==-, ∵()f x 在3x =处取得极值,()2332330e af -⨯-'=-=,∴3a =,∴()23e x x f x -=,()223(1)(3)e e x xx x x x f x --+-'=-=-,当1x <-时,()’0f x <;当13x 时,()’0f x >;当3x >时,()’0f x <. ∴()f x 在(],1-∞-上单调递减,在[]1,3-上单调递增,在[)3,+∞上单调递减. 又∵当3x >时,()0f x >,()12e 0f -=-<, ∴()f x 的最小值为2e -. (2)由已知得221(1)e ex x x ax a x x -≤-⇔≥--对于任意[)1,x ∞∈+恒成立.令2()(1)e x g x x x =--,则()2e (2e )x x g x x x x '=-=-,在1≥x 时,()(2e )0x g x x '=-<,所以函数()g x 在1≥x 时上单调递减, 所以max ()(1)1g x g ==, 所以a 的取值范围是[)1,+∞. 5.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解; (2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-, 所以2()2f x x x'=-,令()0f x '=,得1x =, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点; (2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x, 当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫ ⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=,所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=,所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫ ⎪⎝⎭上单调递增,所以212x x ->,122x x +<; 设1ln ()12t t F t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <, 所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x -+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-.所以()()21f x f x <.【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.7.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析.【解析】【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a +=,构造()ln 1x h x x a =+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫ ⎪+⎝⎭、()1e a h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1) 当1a =时,()1e ln 1x f x x -=--,定义域为()0,+∞,则()11e xf x x -'=-,()121e 0x f x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=,当01x <<时,0f x,所以()f x 在区间0,1上单调递减; 当1x >时,0f x ,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增.(2)由题意,()11e x a f x x -='-,()1211e 0x a f x a x -=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111x x x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增.当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x ,令0f x ,则e e x a x ⋅=,两边取自然对数可得ln 1x x a +=, 令()ln 1x h x x a =+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e e ln e e 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥:因为()01001e 0x a f x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-, 所以()010000eln 11120x a x a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立, 综上,()f x 有唯一极值点0x 且()00f x ≥,得证.【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式.8.(1)(1,)+∞(2)答案见解析【解析】【分析】(1)求导后根据题意解不等式(2)化为相同形式,构造函数根据单调性判断(1) 由22(2)1()(1)x a x f x x x '-++=-,且函数()f x 在2x =处的切线斜率小于12-, 知2222(2)11(2)2(21)2a f -++'=<--,解得 1.a > 故a 的取值范围为(1,)+∞(2)由(1)可知(1)ln e a -与(e 1)ln a -均为正数.要比较(1)ln e a -与(e 1)ln a -的大小,可转化为比较ln e e 1-与ln 1a a -的大小. 构造函数ln ()(1)1x x x x ϕ=>-,则211ln ()(1)x x x x ϕ--'=-,再设1()1ln m x x x =--,则21()x m x x -'=, 从而()m x 在(1,)+∞上单调递减,此时()()10m x m <=,故()0x ϕ'<在(1,)+∞上恒成立,则ln ()1x x x ϕ=-在(1,)+∞上单调递减. 综上可得,当(1,e)a ∈时,(1)lne (e 1)ln a a -<-当e a =时,(1)lne (e 1)ln a a -=-当(e,)a ∈+∞时,(1)lne (e 1)ln a a ->-9.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减(2)证明见解析【解析】【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--.令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++ 设()32333x g x a x x =-++, 则()g x '()()222269033x x x x x ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 10.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围; (2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增,故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.。

高二文科数学期末复习导数练习题

高二文科数学期末复习导数练习题

导数专练答案一、选择题1.下列函数求导运算正确的个数为( )①(3x)′=3xlog 3e ;②(log 2x )′=1x ·ln 2;③(e x)′=e x ;④⎝ ⎛⎭⎪⎪⎫1ln x ′=x ;⑤(x ·e x )′=e x +1. A .1 B .2 C .3 D .4 【解析】 ①(3x)′=3xln 3;②(log 2x )′=1x ln 2;③(e x)′=e x;④⎝ ⎛⎭⎪⎪⎫1ln x ′=-1x(ln x )2=-1x ·(ln x )2;⑤(x ·e x )′=e x +x ·e x =e x(x +1),故选B.2. 曲线221y x =+在点(1,3)P -处的切线方程为()A .41y x =--B .47y x =--C .41y x =-D .47y x =+3.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个4.(2012·辽宁高考)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【解析】 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].【答案】 B 5.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( ) A .x=12是f(x)极大值点 B .x=12是f(x)极小值点 C .x=2是 f(x)极大值点 D .x=2是 f(x)极小值点 【解析】()22212'x f x x x x-=-+=,令()'0f x =,则2x =. 当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的.所以2x =是()f x 的极小值点.故选D .6. 若函数3()3f x x x a =--在区间[0,3]上的最大值、最小值分别为M 、N ,则M N -的值为( )A .2B .4C .18D .207.(山东省烟台市2014届高三3月)函数f(x)=1nx-212x 的图像大致是( )【答案】函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得, 01x <<,即增区间为(0,1).由21'()0x f x x-=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选B.8. (临沂市2014届高三5月)曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为(A)()11,e -- (B)()0,1 (C)()1,e (D)()0,2 【答案】B 直线30x y -+=的斜率为1,所以切线的斜率为1,因为'x y e =,所以由'1x y e ==,解得0x =,此时01y e ==,即点A 的坐标为()0,1,选B.9、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3]10.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 二、填空题11. .曲线sin x y x=在点(,0)M π处的切线方程为12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________.13.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是14.(山东省实验中学2014届高三第二次诊断)若函数a x x x f +-=3)(3有三个不同的零点,则实数a 的取值范围是____________.【答案】(2,2)-【解析】由3()30f x x x a =-+=,得2'()33f x x =-,当2'()330f x x =-=,得1x =±,由图象可知(1)=2(1)=2f a f a -+-极大值极小值,,要使函数a x x x f +-=3)(3有三个不同的零点,则有(1)=20,(1)=20f a f a -+>-<极大值极小值,即22a -<<,所以实数a 的取值范围是(2,2)-.15.(山东省泰安市2014届高三上学期期末)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示若函数()y f x a =-有4个零点,则a 的取值范围为__________. 【答案】[1,2)【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值.由()0y f x a =-=得()f x a =.由图象可知,要使函数()y f x a =-有4个零点,由图象可知12a ≤<,所以a 的取值范围为12a ≤<,即[1,2). 三、解答题16.[2014·重庆卷] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值; (2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.17、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ; 解: (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .18.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知函数()()12ln 2(0)f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性;【答案】解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x xxx x -'=+=-=> 由()2210x f x x -'=>,解得12x > ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞ ⎪⎝⎭上是增函数∴()f x 的极小值为122ln 22f ⎛⎫=- ⎪⎝⎭,无极大值(2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==>①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;②当2a =-时,()f x 在()0,+∞上是减函数;③当2a <-时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数19.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知2()1,f x x ax nx a R =+-∈.(1)若a=0时,求函数()y f x =在点(1,()f x )处的切线方程; (2)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围;(3)令2()(),g x f x x =-是否存在实数a,当(0,](x e e ∈是自然对数的底)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.20.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知函数a f (x )ln x x=-.(I)若a >0,试判断f (x )在定义域内的单调性; (Ⅱ)若f (x )在[1,e]上的最小值为32,求a 的值; (III)若2f (x )x <在(1,+∞)上恒成立,求a 的取值范围 【答案】解 (I)由题意知f (x )的定义域为(0,+∞), 且f ′(x )=1x +a x 2=x +a x2∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数(II)由(I)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去)②若a ≤-e,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去)③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上为增函数, ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =-e .综上所述,a =-e(Ⅲ)∵f (x )<x 2,∴ln x -a x<x 2.又x >0,∴a >x ln x -x 3令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1x -6x =1-6x 2x.∵x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减函数. ∴h (x )<h (1)=-2<0,即g ′(x )<0, ∴g (x )在(1,+∞)上也是减函数. g (x )<g (1)=-1,∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立21. (14分)(2014·淄博模拟)已知f(x)=ax -ln x ,a ∈R. (1)当a =2时,求曲线f(x)在点(1,f(1))处的切线方程; (2)若f(x)在x =1处有极值,求f(x)的单调递增区间; (3)是否存在实数a ,使f(x)在区间(0,e]的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)由已知得f(x)的定义域为(0,+∞),∵f(x)=ax -ln x ,∴f ′(x)=a -1x ,当a =2时, f(x)=2x -ln x ,∴f(1)=2, ∵f ′(x)=2-1x ,∴f ′(1)=2-11=1 .(2分)∴曲线f(x)在点(1,f(1))处的切线方程为y -2=f ′(1)(x -1),即 x -y +1=0.(4分)(2)∵f(x)在x =1处有极值,∴f ′(1)=0,由(1)知 f ′(1)=a -1,∴a =1,经检验,a =1时f(x)在x =1处有极值.(6分)∴f(x)=x -ln x ,令f ′(x)=1-1x >0,解得x >1或x <0; ∵f(x)的定义域为(0,+∞),∴f ′(x)>0的解集为(1,+∞),即f(x)的单调递增区间为(1,+∞).(8分)(3)假设存在实数a ,使f(x)=ax -ln x(x ∈(0,e])有最小值3, ①当a ≤0时,∵x ∈(0,e],∴f ′(x)<0,∴f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).(10分)②当0<1a <e 时,f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增, f(x)min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2,满足条件.(12分)③当1a ≥e 时,∵x ∈(0,e],∴f ′(x)<0,∴ f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).综上,存在实数a =e 2,使得当x ∈(0,e]时,f(x)有最小值3.(14分)。

高二期末数学试卷导数答案

高二期末数学试卷导数答案

一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 4,求f'(x)的值。

答案:f'(x) = 6x^2 - 6x。

解析:根据导数的定义,f'(x) = lim(h→0)[f(x+h) - f(x)] / h。

将f(x) = 2x^3 - 3x^2 + 4代入,得到f'(x) = lim(h→0)[2(x+h)^3 - 3(x+h)^2 + 4 - (2x^3 - 3x^2 + 4)] / h。

化简后得到f'(x) = 6x^2 - 6x。

2. 已知函数f(x) = x^2 + 2lnx,求f'(x)的值。

答案:f'(x) = 2x + 2/x。

解析:f(x) = x^2 + 2lnx,根据导数的运算法则,f'(x) = (x^2)' + (2lnx)'。

其中,(x^2)' = 2x,(2lnx)' = 2/x。

因此,f'(x) = 2x + 2/x。

3. 已知函数f(x) = e^x - sinx,求f'(x)的值。

答案:f'(x) = e^x - cosx。

解析:f(x) = e^x - sinx,根据导数的运算法则,f'(x) = (e^x)' - (sinx)'。

其中,(e^x)' = e^x,(sinx)' = cosx。

因此,f'(x) = e^x - cosx。

二、填空题1. 已知函数f(x) = x^3 - 6x^2 + 9x - 1,求f'(2)的值。

答案:f'(2) = 2。

解析:根据导数的定义,f'(x) = lim(h→0)[f(x+h) - f(x)] / h。

将f(x) = x^3 - 6x^2 + 9x - 1代入,得到f'(x) = 3x^2 - 12x + 9。

高二文科导数求导练习题

高二文科导数求导练习题

高二文科导数求导练习题1. 求导函数:f(x) = 3x^2 - 2x + 5我们将使用导数的定义来求解这个练习题。

首先,我们需要确定函数f(x)在给定的区间内是可导的。

在这种情况下,我们不需要担心定义域或间断点。

根据导数的定义,导数f'(x)为函数f(x)在x点的极限值:f'(x) = lim(h->0) [f(x+h) - f(x)] / h我们将使用极限的性质来简化这个表达式。

首先,我们计算f(x+h):f(x+h) = 3(x+h)^2 - 2(x+h) + 5= 3(x^2 + 2xh + h^2) - 2x - 2h + 5= 3x^2 + 6xh + 3h^2 - 2x - 2h + 5接下来,我们计算f(x+h) - f(x):f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 - 2x - 2h + 5) - (3x^2 - 2x + 5)= 6xh + 3h^2 - 2h现在我们可以将此结果代入到导数的定义中:f'(x) = lim(h->0) [6xh + 3h^2 - 2h] / h我们可以通过取消分式中的h来简化上述表达式:f'(x) = lim(h->0) 6x + 3h - 2最后,当h趋近于0时,只有常数项6x会影响极限的结果:f'(x) = 6x最后的结果表明,在给定的区间内,函数f(x)的导数f'(x)是6x。

2. 求导函数:g(x) = sqrt(x^3) + 2x与第一个练习题相似,我们将使用导数的定义来求解这个问题。

同样地,我们需要确定函数g(x)在给定的区间内是可导的。

根据导数的定义,导数g'(x)为函数g(x)在x点的极限值:g'(x) = lim(h->0) [g(x+h) - g(x)] / h首先,我们计算g(x+h):g(x+h) = sqrt((x+h)^3) + 2(x+h)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h接下来,我们计算g(x+h) - g(x):g(x+h) - g(x) = (sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h) - (sqrt(x^3) + 2x)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h - sqrt(x^3) - 2x= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h现在我们可以将此结果代入到导数的定义中:g'(x) = lim(h->0) [sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h] / h将分式中的h进行约分,我们可以得到:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h + 2]当h趋近于0时,我们只需要考虑第一项中的根式部分,其他项不会影响极限的结果:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h]为了使计算更加便捷,我们将使用导函数的性质。

高二文科数学导数习题

高二文科数学导数习题

高二文科数学导数习题一、选择题(共10小题,每小题5分,共50分)1、 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 得值为( ) A 、1B 、2C 、-1D 、 02、 一个物体得运动方程为21t t s +-=其中s 得单位就是米,t 得单位就是秒,那么物体在3秒末得瞬时速度就是( )A 7米/秒B 6米/秒C 5米/秒D 8米/秒 3 ()f x 与()g x 就是定义在R 上得两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A ()f x =()g xB ()f x -()g x 为常数函数C ()f x =()0g x =D ()f x +()g x 为常数函数4、 函数3y xx 得递增区间就是( ) A ),0(+∞ B )1,(-∞ C ),(+∞-∞ D ),1(+∞5、若函数f(x)在区间(a ,b)内函数得导数为正,且f(b)≤0,则函数f(x)在(a, b)内有( ) A 、 f(x) 〉0 B 、f(x)〈 0 C 、f(x) = 0 D 、无法确定6、0'()f x =0就是可导函数y =f(x)在点x =x 0处有极值得 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.非充分非必要条件7.曲线3()2f x x x在0p 处得切线平行于直线41yx ,则0p 点得坐标为( )A (1,0)B (2,8)C (1,0)与(1,4)--D (2,8)与(1,4)--8.函数313y x x =+- 有 ( )A 、极小值-1,极大值1B 、 极小值-2,极大值3C 、极小值-1,极大值3D 、 极小值-2,极大值2 9 对于R 上可导得任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A (0)(2)2(1)f f f +<B (0)(2)2(1)f f f +≤ C(0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +>10.函数)(x f 得定义域为开区间),(b a ,导函数)(x f '在),(b a 内得图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A 、 1个B 、2个C 、3个D 、4个 二、填空题(共4小题,每小题5分,共20分) 11.函数32y x x x =--得单调区间为___________________________________、12.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 得取值范围就是 、 13、曲线x x y 43-=在点(1,3)- 处得切线倾斜角为__________、14、对正整数n ,设曲线)1(x x y n -=在2x =处得切线与y 轴交点得纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭得前n 项与得公式就是 、三、解答题:(本大题共 6 小题、共 80 分、解答应写出文字说明、证明过程或演算步骤) 15.(12分)求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切得直线方程16.(12分)如图,一矩形铁皮得长为8cm,宽为5cm,在四个角上截去 四个相同得小正方形,制成一个无盖得小盒子,问小正方形得边长 为多少时,盒子容积最大?17.(14分)已知c bx ax x f ++=24)(得图象经过点(0,1),且在1x =2,请解答下列问题:(1)求)(x f y =得解析式; (2)求)(x f y =得单调递增区间。

高二导数练习题及答案

高二导数练习题及答案

高二导数练习题及答案1. 求函数f(x) = 3x^2 - 4x + 1的导数。

解答:由导数的基本定义,对于多项式函数f(x) = ax^n,其导数为f'(x) = anx^(n-1)。

根据该定义,对于函数f(x) = 3x^2 - 4x + 1,求导得到f'(x) = 6x - 4。

因此,函数f(x) = 3x^2 - 4x + 1的导数为f'(x) = 6x - 4。

2. 计算函数g(x) = (3x - 5)^4的导数。

解答:应用链式法则,对于复合函数f(g(x)),其导数为f'(g(x)) * g'(x)。

对于函数g(x) = (3x - 5)^4,可以看作f(u) = u^4的复合函数,其中u = 3x - 5。

首先计算f'(u) = 4u^3,然后计算g'(x) = 3。

根据链式法则,得到g'(x) = f'(g(x)) * g'(x) = 4(3x - 5)^3 * 3。

因此,函数g(x) = (3x - 5)^4的导数为g'(x) = 12(3x - 5)^3。

3. 求函数h(x) = e^x * ln(x)的导数。

解答:根据指数函数和对数函数的导数性质,对于函数f(x) = e^x和g(x) = ln(x),其导数分别为f'(x) = e^x和g'(x) = 1/x。

应用乘法法则,对于函数h(x) = e^x * ln(x),其导数为h'(x) = f'(x) * g(x) + f(x) * g'(x)。

代入导数表达式,得到h'(x) = e^x * ln(x) + 1/x * e^x。

因此,函数h(x) = e^x * ln(x)的导数为h'(x) = e^x * ln(x) + e^x/x。

4. 求函数f(x) = sin^2(x) + cos^2(x)的导数。

导数练习题高二

导数练习题高二

导数练习题高二高二导数练习题导数在高中数学中是一个重要的概念,它可以用来描述函数的变化率。

通过练习导数的计算,可以增强对导数概念的理解,并培养解决实际问题的能力。

本文将提供一些高二水平的导数练习题,帮助学生巩固导数的计算方法。

一、求导法则练习题1. 求函数f(x) = 3x^2 + 2x - 1的导函数f'(x)。

2. 求函数f(x) = √(x^2 + 1)的导函数f'(x)。

3. 求函数f(x) = e^x * sin(x)的导函数f'(x)。

4. 求函数f(x) = ln(x^2 + 1)的导函数f'(x)。

5. 求函数f(x) = (2x + 1)^3的导函数f'(x)。

二、导数的应用练习题1. 现有一辆汽车在直线路段上的位置函数为s(t) = 2t^3 - 3t^2 + 4t + 1,求该车在t = 2时的瞬时速度。

2. 一架炮弹被发射后的高度函数为h(t) = -5t^2 + 20t + 10,求炮弹达到最高点时的速度。

3. 某水果店销售某种水果的每日销量函数为V(t) = 50t^2 - 60t + 100,求当销量最大时的时间和销量。

4. 已知函数f(x)在区间[0, 4]上是递减的,并且f(0) = 5,f(4) = 1。

证明在该区间上至少存在一点c,使得f'(c) = -1。

5. 某物体的速度v(t)满足v(t) = 3^t + 2t - 1,求物体运动的加速度a(t)。

三、综合练习题1. 求函数f(x) = x^3 - 3x^2 + 2的驻点和拐点。

2. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,在区间[-2, 3]上存在极值点。

求该函数的最大值和最小值。

3. 求函数f(x) = x^4 - 4x^3 + 4x - 1的间断点。

4. 已知函数f(x)在区间[0, 2]上单调递增,并且f(0) = 1,f(2) = 5。

高二导数测试题及答案

高二导数测试题及答案

高二导数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^3 - 5x^2 + 3x + 1的导数f'(x)为:A. 6x^2 - 10x + 3B. 6x^2 - 10x + 1C. 6x^2 - 10x + 2D. 6x^3 - 10x^2 + 32. 已知某函数的导数为g'(x) = 4x^3 + 6x^2,那么g(x)为:A. x^4 + x^3 + CB. x^4 + 2x^3 + CC. x^4 + 3x^3 + CD. x^4 + 4x^3 + C3. 函数h(x) = sin(x) + cos(x)的导数h'(x)为:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)4. 如果函数F(x)的导数F'(x) = e^x,那么F(x)为:A. e^x + CB. e^(2x) + CC. (1/2)e^x + CD. 2e^x + C5. 函数f(x) = (x^2 - 1)^3的导数f'(x)为:A. 6x(x^2 - 1)^2B. 3x^2(x^2 - 1)C. 3(x^2 - 1)^2D. 6(x^2 - 1)^36. 已知函数f(x) = 1/x,则f'(x)为:A. -1/x^2B. 1/x^2C. -1/xD. 1/x7. 函数G(x) = x^n (n为正常数)的导数G'(x)为:A. nx^(n-1)B. n/x^(n-1)C. n/x^nD. nx^n8. 函数H(x) = ln(x)的导数H'(x)为:A. 1/xB. xC. ln(x)D. 19. 函数R(x) = sqrt(x)的导数R'(x)为:A. 1/(2sqrt(x))B. 1/sqrt(x)C. 2/sqrt(x)D. 2/(2sqrt(x))10. 已知函数S(x)在点x=2处的导数为5,则S(2)的值是:A. 10B. 7C. 5D. 无法确定二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 6x^2的导数f'(x)为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改导数专练答案一、选择题1.下列函数求导运算正确的个数为( )①(3x)′=3xlog 3e ;②(log 2x )′=1x ·ln 2;③(e x )′=e x ;④⎝ ⎛⎭⎪⎫1ln x ′=x ;⑤(x ·e x )′=e x +1.A .1B .2C .3D .4【解析】 ①(3x )′=3x ln 3;②(log 2x )′=1x ln 2;③(e x )′=e x ;④⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2=-1x ·(ln x )2;⑤(x ·e x )′=e x +x ·e x =e x (x +1),故选B.2. 曲线221y x =+在点(1,3)P -处的切线方程为()A .41y x =--B .47y x =--C .41y x =-D .47y x =+ 3.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个4.(2012·辽宁高考)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【解析】 由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].【答案】 B 5.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( )A .x=12是f(x)极大值点B .x=12是f(x)极小值点 C .x=2是 f(x)极大值点 D .x=2是 f(x)极小值点【解析】()22212'x f x x x x-=-+=,令()'0f x =,则2x =. 当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的.所以2x =是()f x 的极小值点.故选D .6. 若函数3()3f x x x a =--在区间[0,3]上的最大值、最小值分别为M 、N ,则M N -的值为( )A .2B .4C .18D .207.(山东省烟台市2014届高三3月)函数f(x)=1nx-212x 的图像大致是( )【答案】函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得, 01x <<,即增区间为(0,1).由21'()0x f x x-=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选B.8. (临沂市2014届高三5月)曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为(A)()11,e -- (B)()0,1 (C)()1,e (D)()0,2 【答案】B 直线30x y -+=的斜率为1,所以切线的斜率为1,因为'x y e =,所以由'1x y e ==,解得0x =,此时01y e ==,即点A 的坐标为()0,1,选B.9、[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2] D .[-4,-3]10.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 二、填空题11. .曲线sin x y x=在点(,0)M π处的切线方程为12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________.13.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是14.(山东省实验中学2014届高三第二次诊断)若函数a x x x f +-=3)(3有三个不同的零点,则实数a 的取值范围是____________.【答案】(2,2)-【解析】由3()30f x x x a =-+=,得2'()33f x x =-,当2'()330f x x =-=,得1x =±,由图象可知(1)=2(1)=2f a f a -+-极大值极小值,,要使函数a x x x f +-=3)(3有三个不同的零点,则有(1)=20,(1)=20f a f a -+>-<极大值极小值,即22a -<<,所以实数a 的取值范围是(2,2)-.15.(山东省泰安市2014届高三上学期期末)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示若函数()y f x a =-有4个零点,则a 的取值范围为__________. 【答案】[1,2)【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值.由()0y f x a =-=得()f x a =.由图象可知,要使函数()y f x a =-有4个零点,由图象可知12a ≤<,所以a 的取值范围为12a ≤<,即[1,2). 三、解答题16.[2014·重庆卷] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值; (2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.17、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ; 解: (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x .18.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知函数()()12ln 2(0)f x a x ax a x=-++≤. (1)当0a =时,求()f x 的极值; (2)当0a <时,讨论()f x 的单调性;【答案】解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x xxx x-'=+=-=> 由()2210x f x x -'=>,解得12x > ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞ ⎪⎝⎭上是增函数∴()f x 的极小值为122ln 22f ⎛⎫=- ⎪⎝⎭,无极大值(2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==> ①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;②当2a =-时,()f x 在()0,+∞上是减函数;③当2a <-时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数19.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知2()1,f x x ax nx a R =+-∈.(1)若a=0时,求函数()y f x =在点(1,()f x )处的切线方程; (2)若函数()f x 在[1,2]上是减函数,求实数a 的取值范围;(3)令2()(),g x f x x =-是否存在实数a,当(0,](x e e ∈是自然对数的底)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.20.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知函数a f (x )ln x x=-.(I)若a >0,试判断f (x )在定义域内的单调性; (Ⅱ)若f (x )在[1,e]上的最小值为32,求a 的值;(III)若2f (x )x <在(1,+∞)上恒成立,求a 的取值范围 【答案】解 (I)由题意知f (x )的定义域为(0,+∞), 且f ′(x )=1x +a x 2=x +ax2∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数(II)由(I)可知,f ′(x )=x +ax2.①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去)②若a ≤-e,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-e2(舍去)③若-e<a <-1,令f ′(x )=0得x =-a ,当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e)上为增函数, ∴f (x )min =f (-a )=ln(-a )+1=32,∴a =-e .综上所述,a =-e(Ⅲ)∵f (x )<x 2,∴ln x -a x<x 2.又x >0,∴a >x ln x -x 3令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2, h ′(x )=1x -6x =1-6x 2x.∵x ∈(1,+∞)时,h ′(x )<0, ∴h (x )在(1,+∞)上是减函数. ∴h (x )<h (1)=-2<0,即g ′(x )<0, ∴g (x )在(1,+∞)上也是减函数. g (x )<g (1)=-1,∴当a ≥-1时,f (x )<x 2在(1,+∞)上恒成立21. (14分)(2014·淄博模拟)已知f(x)=ax -ln x ,a ∈R. (1)当a =2时,求曲线f(x)在点(1,f(1))处的切线方程; (2)若f(x)在x =1处有极值,求f(x)的单调递增区间; (3)是否存在实数a ,使f(x)在区间(0,e]的最小值是3?若存在,求出a 的值;若不存在,请说明理由.由已知得f(x)的定义域为(0,+∞),∵f(x)=ax -ln x ,∴f ′(x)=a -1x, 当a =2时, f(x)=2x -ln x ,∴f(1)=2,∵f ′(x)=2-1x ,∴f ′(1)=2-11=1 .(2分) ∴曲线f(x)在点(1,f(1))处的切线方程为y -2=f ′(1)(x -1),即 x -y +1=0.(4分)(2)∵f(x)在x =1处有极值,∴f ′(1)=0,由(1)知 f ′(1)=a -1,∴a =1,经检验,a =1时f(x)在x =1处有极值.(6分)∴f(x)=x -ln x ,令f ′(x)=1-1x>0,解得x >1或x <0; ∵f(x)的定义域为(0,+∞),∴f ′(x)>0的解集为(1,+∞),即f(x)的单调递增区间为(1,+∞).(8分)(3)假设存在实数a ,使f(x)=ax -ln x(x ∈(0,e])有最小值3, ①当a ≤0时,∵x ∈(0,e],∴f ′(x)<0,∴f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去).(10分) ②当0<1a <e 时,f(x)在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增, f(x)min =f ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2,满足条件. (12分)③当1a≥e 时,∵x ∈(0,e],∴f ′(x)<0,∴ f(x)在(0,e]上单调递减, f(x)min =f(e)=ae -1=3,解得a =4e(舍去). 综上,存在实数a =e 2,使得当x ∈(0,e]时,f(x)有最小值3.(14分)最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。

相关文档
最新文档