薄膜的制备
第二章 薄膜制备的物理方法
反应方程举例如下:
Al(激活蒸汽) O2 (活性气体) Al2O3(固相沉积)
Sn(激活蒸汽) O2(活性气体) SnO2 (固相沉积) 在反应蒸发中,蒸发原子或低价化合物分子与活
为了避免污染薄膜材料,蒸发源中所用的支撑材 料在工作温度下必须具有可忽略的蒸汽压,以避 免支撑材料原子混入蒸发气体中。
通常所用的支撑材料为难熔的金属和氧化物。
同时,选择某一特殊支撑材料时,一定要考虑蒸 发物与支撑材料之间可能发生的合金化和化学反 应、相互润湿程度等问题。
支撑材料的形状则主要取决于蒸发物。
源,则膜厚分布为:
d
1
d0 1 l / h2 2
沉积速率和膜厚分布
沉积速率和膜厚分布
实际蒸发过程中,蒸发粒子都要受到真空室中残 余气体分子的碰撞,碰撞次数取决于分子的平均 自由程。设有N0个蒸发分子,飞行距离l后,未受 到残余气体分子碰撞的数目N为:
N N0 exp(l / )
同时,脉冲激光沉积可以实现高能等离子体沉积 以及能在气氛中实现反应沉积。
PLA的局限性:
(1)小颗粒的形成。在PLA膜中通常有0.110um的小颗粒,解决的办法是利用更短波 长的紫外线、靶转动和激光束扫描以保持 靶面平滑,更有效的办法是转动快门将速 度慢的颗粒挡住。
(2)膜厚不够均匀。熔蒸“羽辉”(发光部 分类似羽毛)具有很强的定向性,只能在 很窄的范围内形成均匀厚度的膜。
第二章 薄膜制备的物理方法
物理气相沉积
薄膜沉积的物理方法主要是物理气相沉积法,物 理气相沉积(Physical Vapor Deposition,简称 PVD)是应用广泛的一系列薄膜制备方法的总称, 包括真空蒸发法,溅射法,分子束外延法等。
薄膜的制备方法有哪些
薄膜的制备方法有哪些薄膜是一种非常常见的材料形式,它在许多领域都有着广泛的应用,比如电子产品、光学器件、包装材料等。
薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。
接下来,我们将介绍一些常见的薄膜制备方法。
首先,物理方法是制备薄膜的一种重要途径。
其中,蒸发法是一种常用的物理方法。
通过加热固体材料,使其升华成气体,然后在基底表面凝结成薄膜。
这种方法制备的薄膜质量较高,适用于制备金属薄膜和部分无机物薄膜。
其次,溅射法也是一种常见的物理方法。
在溅射法中,通过向靶材表面轰击离子或中性粒子,使靶材表面的原子或分子脱落,并在基底表面沉积成薄膜。
这种方法制备的薄膜具有较好的结晶性和附着力,适用于制备金属薄膜、氧化物薄膜等。
除了物理方法,化学方法也是制备薄膜的重要手段。
溶液法是一种常用的化学方法。
在溶液法中,将溶解了所需材料的溶液涂覆在基底表面,然后通过溶剂挥发或化学反应使溶液中的物质沉积成薄膜。
这种方法制备的薄膜适用范围广,可以制备有机薄膜、无机薄膜等。
此外,化学气相沉积(CVD)也是一种常用的化学方法。
在CVD 中,将气态前体物质输送到基底表面,经过化学反应生成薄膜。
这种方法制备的薄膜质量较高,适用于制备氧化物薄膜、氮化物薄膜等。
最后,生物方法也在制备薄膜中发挥着重要作用。
生物合成法是一种常见的生物方法。
在生物合成法中,利用生物体内的生物大分子,如蛋白质、多糖等,通过生物合成过程制备薄膜。
这种方法制备的薄膜具有生物相容性和可降解性,适用于医用材料等领域。
综上所述,薄膜的制备方法多种多样,包括物理方法、化学方法和生物方法等。
不同的制备方法适用于不同类型的薄膜材料,选择合适的制备方法对于薄膜的性能和应用具有重要意义。
希望本文能够帮助您更好地了解薄膜制备方法,为您的研究和应用提供参考。
第3章 薄膜的化学制备方法
概 念:薄膜制备过程中,凡是需要在一定化学反应发生的前提下完成薄膜制备的
技术方法,统称为薄膜沉积的化学方法。
条 件:化学反应需要能量输入和诱发 优、缺点:设备简单、成本较低、甚至无需真空环电热境化激即学活可作作进用用行::;电CV镀D、、阳热极生氧长化处理
化学制备、工艺控制复杂、有可能涉及高温环境。
热壁 冷壁
CVD :整炉高温、等温环境 CVD :局部加热(仅基片和基片架)
按反应激活方式不同,可分为 光热致激活活化(普CV通DC(V紫D )外光、激光、可见光)
等离子体激活(PECVD)
电化学镀膜方法
概念:电流通过在电解液中的流动而产生化学反应,在阳极或阴极上沉积薄膜的方法。
具体地,即利用电解反应,在
气相反应方法
化学气相沉积(CVD ) 热生长
分
类:
液相反应方法
电化以CVD为主
溶液化学反应
化学镀 溶胶凝胶法
L - B 技术
化学气相沉积(CVD)
在热CVD法中,把含有要生成膜材料的挥发性化合物(称为源)汽化,尽可能均 匀地送到加热至高温的基片上,在基片上进行分解、还原、氧化、置换等化学反 应,并在基片上生成薄膜。作为挥发性化合物使用的有卤化物、有机化合物、碳 氢化合物、碳酰等。
输运 反应
一、概述:
按工作压力不同,可分为
常压 低压
CVD :无需真空、靠载气输运、污染较大 CVD :易于气化反应物、无载气、污染小
低温 CVD(200 ~ 500℃)
按沉积温度不同,可分为
3)分类:
中温 高温
CVD(500 ~ 1000℃) CVD(1000 ~ 1300℃)
按加热方式不同,可分为
薄膜的制备及其特性测试
图1 双靶反应磁控溅射原理图 如图,双靶法同时安装两块靶材互为阴阳极进行轮回溅射镀膜 如图,
1.4、射频反应磁控溅射 1.4、
在一定气压下,在阴阳极之间施加交流电压,当其频率 增高到射频频率时即可产生稳定的射频辉光放电。射频辉光 放电在辉光放电空间中电子震荡足以产生电离碰撞的能量, 所以减小了放电对二次电子的依赖,并且能有效降低击穿电 压。射频电压可以穿过任何种类的阻抗,所以电极就不再要 求是导电体,可以溅射任何材料,因此射频辉光放电广泛用 于介质的溅射。频率在5~30MHz都称为射频频率。
透光率是透明薄膜的一项非常重要的光学性能指标, 透光率是透明薄膜的一项非常重要的光学性能指标,透光 率是指以透过材料的光通量与入射的光通量之比的百分数表示, 率是指以透过材料的光通量与入射的光通量之比的百分数表示,在 测试中采用相对测量原理,将通过透明薄膜的光通量记为T2 T2, 测试中采用相对测量原理,将通过透明薄膜的光通量记为T2,在没 有放入透明薄膜的光通量记为T1 那么薄膜的透光率为: T1, 有放入透明薄膜的光通量记为T1,那么薄膜的透光率为: Tt =T2/T1⊆ 其中,T1,T2均为测量相对值 均为测量相对值) =T2/T1⊆100% (其中,T1,T2均为测量相对值) 一般用来测量透过率的仪器有透过率雾度测试仪和分光光 度计法, 度计法,其原理图分别如下
1.5、化学气相沉积(CVD)法 (CVD) 1.5、化学气相沉积(CVD)法
化学气相沉积是一种化学气相生长法,简称CVD(Chemical V apor Deposition)技术。这种技术是把含有构成薄膜元素的一种 或几种化合物质气体供给基片,利用加热等离子体、紫外光乃至 激光等能源,借助气体在基片表面的化学反应(热分解或化学合 成)生成要求的薄膜。例如下图是利用化学气相沉淀法制备ITO的 原理结构图
薄膜制备方法
薄膜制备方法薄膜制备方法是一种将材料制备成薄膜状的工艺过程。
薄膜是指厚度在纳米至微米级别的材料,具有特殊的物理、化学和电学性质,在许多领域具有重要的应用价值。
薄膜制备方法有多种,包括物理气相沉积法、化学气相沉积法、物理溅射法、溶液法等。
一、物理气相沉积法物理气相沉积法是一种利用高温或高能粒子束使材料原子或分子在基底表面沉积形成薄膜的方法。
常见的物理气相沉积方法有热蒸发法、电子束蒸发法和磁控溅射法等。
其中,热蒸发法是通过加热材料使其蒸发,并在基底上沉积形成薄膜;电子束蒸发法则是利用电子束的热能使材料蒸发并沉积在基底上;磁控溅射法是通过在真空室中加入惰性气体,并利用高能电子束轰击靶材使其溅射出原子或离子,从而沉积在基底上形成薄膜。
二、化学气相沉积法化学气相沉积法是一种利用气相反应在基底表面沉积材料的方法。
常见的化学气相沉积方法有化学气相沉积法、低压化学气相沉积法和气相扩散法等。
其中,化学气相沉积法是通过将反应气体在基底表面分解或氧化生成薄膜的方法;低压化学气相沉积法则是在较低的气压下进行反应,以控制薄膜的成分和结构;气相扩散法是通过将反应气体在基底表面进行扩散反应,使材料沉积在基底上。
三、物理溅射法物理溅射法是一种利用高能粒子轰击靶材使其原子或分子从靶表面溅射出来,并沉积在基底上形成薄膜的方法。
物理溅射法包括直流溅射法、射频溅射法和磁控溅射法等。
其中,直流溅射法是利用直流电源加电使靶材离子化并溅射出来;射频溅射法则是利用射频电源产生高频电场使靶材离子化并溅射出来;磁控溅射法则是在溅射区域加入磁场,利用磁控电子束使靶材离子化并溅射出来。
四、溶液法溶液法是一种利用溶液中的材料分子或离子在基底表面沉积形成薄膜的方法。
常见的溶液法包括浸渍法、旋涂法和喷雾法等。
其中,浸渍法是将基底放置在溶液中,使其吸附溶剂中的材料分子或离子,然后通过蒸发或热处理使其形成薄膜;旋涂法是将溶液倒在旋转的基底上,通过离心作用使溶液均匀涂布在基底上,然后通过蒸发或热处理使其形成薄膜;喷雾法则是将溶液喷雾到基底上,通过蒸发或热处理使其形成薄膜。
薄膜材料的制备和应用研究进展
薄膜材料的制备和应用研究进展薄膜材料是一种在日常生活中用途广泛的材料。
它的应用范围涉及光学、电子、生物医学,甚至涂层等很多领域。
制备和应用研究方面也有很多成果,本文将从几个方面介绍薄膜材料的制备方法以及应用研究进展。
一、制备方法1、物理气相沉积法物理气相沉积法是指利用热能或者电子束激励的方式使材料蒸发并沉积在基底上形成薄膜。
这种方法可以制备高质量、高结晶度的薄膜材料。
其中分子束蒸发技术和反蒸发方法属于物理气相沉积法的一种,依靠非常高的真空和完整的分子束,可以制备出高质量的薄膜材料,但是设备成本也非常高。
2、化学气相沉积法化学气相沉积法是指在较低的气压环境下,将材料前驱体分子通过热解、裂解或者还原等化学反应,制备出薄膜材料。
这种方法成本较低,操作简单,可以制备大面积、高质量的薄膜,因此尤其适合大规模生产。
3、物理涂敷法物理涂敷法是指利用物理过程,将材料沉积在基底上形成薄膜。
常见的物理涂敷法有磁控溅射、电子束蒸发、激光蒸发等。
这种方法可以制备出膜层均匀、结构紧密的薄膜,但是缺点是沉积速度较慢,不能用于大面积生产。
4、化学涂敷法化学涂敷法是指利用化学反应将材料前驱体分子沉积在基底上形成薄膜。
常见的化学涂敷法有溶胶凝胶法、自组装法等。
这种方法可以制备出薄膜材料的更多形式,如多孔薄膜、纳米结构薄膜等。
但是化学反应的复杂度和化学材料的不稳定性也增加了制备过程的难度。
二、应用研究进展1、光电材料在光电领域,薄膜材料的应用非常广泛。
其中,一些透明导电薄膜材料如氧化铟锡、氧化镓锌、氧化铟和氧化钙、锡等材料已成为制作 OLED 光电器件的重要材料。
此外,半导体材料如氧化物和硫化物薄膜也被广泛应用于光电器件中,如可见光光伏器件、光传感器等。
因此,随着该领域的发展,薄膜材料在光电设备中的应用前景不断向好。
2、生物医学薄膜材料在生物医学领域的应用也越来越广泛。
其中,一种叫做生物基薄膜的材料能够在各种生物医学应用中发挥重要作用。
第三章薄膜制备技术ppt课件
分子束外延是在超高真空条件下精确控制源材料的中性分子束强度,并使其在加热的基片上进行外延生长的一种技术。从本质上讲,分子束外延也属于真空蒸发方法,但 与传统真空蒸发不同的是,分子束外延系统具有超高真空,并配有原位监测和分析系统,能够获得高质量的单晶薄膜。
2、溅射法 荷能粒子轰击固体材料靶,使固体原子从表面射出,这些原子具有一定的动能和方向性。在原子射出的方向上放上基片,就可在基片上形成一层薄膜,这种制备薄膜的方法叫做溅射法。 溅射法属于物理气相沉积(PVD),射出的粒子大多处于原子状态,轰击靶材料的荷能粒子一般是电子、离子和中性粒子。
3.1.2 化学气相沉积 (chemical vapor deposition )
化学气相沉积:一定化学配比的反应气体,在特定激活条件下(一般是利用加热、等离子体和紫外线等各种能源激活气态物质),通过气相化学反应生成新的膜层材料沉积到基片上制取膜层的一种方法。 Chemical vapor deposition (CVD) is a chemical process often used in the semiconductor industry for the deposition of thin films of various materials.
薄膜制备工艺技术
薄膜制备工艺技术薄膜制备工艺技术是指通过化学合成、物理沉积、溶液制备等方法制备出具有一定厚度和特殊性能的薄膜材料的技术。
薄膜广泛应用于光电子、微电子、光学、传感器、显示器、纳米技术等领域。
本文将详细介绍几种常见的薄膜制备工艺技术。
第一种是物理沉积法。
物理沉积法主要包括物理气相沉积法(PVD)和物理溶剂沉积法(PSD)两种。
其中,物理气相沉积法是将固态材料加热至其熔点或升华点,然后凝华在基底表面上形成薄膜。
而物理溶剂沉积法则是通过在沉积过程中溶剂的挥发使溶剂中溶解的材料沉积在基底表面上。
物理沉积法具有较高的沉积速度和较低的工艺温度,适用于大面积均匀薄膜的制备。
第二种是化学沉积法。
化学沉积法通过在基底表面上进行化学反应,使反应物沉积形成薄膜。
常见的化学沉积法有气相沉积法(CVD)、溶液法和凝胶法等。
气相沉积法是将气体反应物输送至反应室内,通过热、冷或化学反应将气体反应物沉积在基底表面上。
而溶液法是将溶解有所需沉积材料的溶液涂覆在基底表面上,通过溶剂挥发或加热使溶液中的沉积材料沉积在基底上。
凝胶法则是通过凝胶溶胶中的凝胶控制沉积材料的沉积,形成薄膜。
化学沉积法成本低、制备工艺简单且适用于大面积均匀薄膜的制备。
第三种是离子束沉积法(IBAD)、激光沉积法和磁控溅射法。
离子束沉积法是通过加速并聚焦离子束使其撞击到基底表面形成薄膜。
激光沉积法则是将激光束照射在基底表面上,通过激光能量转化和化学反应形成薄膜。
磁控溅射法是将材料附着在靶上,通过离子轰击靶表面并溅射出材料颗粒,最终沉积在基底表面上。
这些方法制备的薄膜具有优异的结构和性能,适用于制备复杂结构和功能薄膜。
综上所述,薄膜制备工艺技术包括物理沉积法、化学沉积法、离子束沉积法、激光沉积法和磁控溅射法等多种方法。
不同的方法适用于不同的材料和薄膜要求,可以根据具体需求选择合适的工艺技术。
薄膜材料的制备及其应用
薄膜材料的制备及其应用随着科学技术的发展,薄膜材料在工业、生活中应用越来越广泛。
那么,什么是薄膜材料呢?简单地说,薄膜材料就是厚度很薄的材料,通常在几纳米到几百微米之间。
它具有许多优良的性能,比如光透过性、电绝缘性、机械性强等,因此在电子、光学、医学、环保等领域有着广泛的应用。
薄膜材料的制备方法很多,下面就介绍几种常见的方法。
1. 真空蒸发法真空蒸发法是一种将材料在高真空下蒸发形成薄膜的方法。
这种方法能让材料形成单晶状态,并且薄膜的结构均匀。
但是,真空蒸发法收率低,难以控制厚度,且材料成本较高。
2. 磁控溅射法磁控溅射法是将材料置于空气不及其它气体的真空区域中,然后在材料表面上放置一排镀失控的靶材,高能电子或离子轰击靶材,使其蒸发,材料形成薄膜。
这种方法能有效控制薄膜厚度和成分,并且成本低,是大量生产薄膜材料的主要方法。
3. 溶液法溶液法又称溶液旋涂法,是在材料分子间溶解剂中制备薄膜的方法。
该方法速度快,降低了制造成本,但难以制造低缺陷率的薄膜。
薄膜材料拥有的优良性质是由于分子间相互作用力和表面效应的影响。
因此,薄膜材料在许多领域中都有着广泛的应用。
下面就以电子和生命科学为例分别介绍一下薄膜材料在这两个领域中的应用。
1. 电子方面的应用半导体电子学是薄膜材料的主要应用领域之一。
半导体薄膜可以制造出用于制作半导体器件的掩模、曝光和电子束光刻的压电材料和透镜材料。
此外,具有特殊电学性能的有机或无机高分子材料可以制造出各种电路板。
并且,一些薄膜材料可以转换为导电薄膜,例如透明导电薄膜用于制造液晶显示器和触摸屏,复合导电薄膜用于制造柔性电子纸、可擦写电子图书和柔性电子纸屏幕等。
2. 生命科学应用生命科学中的薄膜材料主要用于细胞培养、过滤纯化、药物控释等,例如,被广泛使用的细胞培养板使用薄膜材料制作。
另外,纳米孔薄膜为分离和处置废水、有色中和和固体废物处理提供了可行的环保方法。
其它的,薄膜材料还可以制造出用于医学治疗和组织工程的生物材料,如胶原薄膜、海藻酸薄膜等。
薄膜制备方法
薄膜造备要领之阳早格格创做1.物理气相重积法(PVD):真空蒸镀、离子镀、溅射镀膜2.化教气相重积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD.一、真空蒸镀即真空挥收镀膜,是造备薄膜最普遍的要领.那种要领是把拆有基片的真空室抽成真空,使气体压强达到10¯²Pa以下,而后加热镀料,使其本子大概者分子从表面气化劳出,产死蒸汽流,进射到温度较矮的基片表面,凝结产死固态薄膜.其设备主要由真空镀膜室战真空抽气系统二大部分组成.包管真空环境的本果有预防正在下温下果气氛分子战挥收源爆收反应,死成化合物而使挥收源劣化.预防果挥收物量的分子正在镀膜室内与气氛分子碰碰而阻拦挥收分子间接到达基片表面,以及正在途中死成化合物大概由于挥收分子间的相互碰碰而正在到达基片前便凝结等正在基片上产死薄膜的历程中,预防气氛分子动做杂量混进膜内大概者正在薄膜中产死化合物.挥收镀根据挥收源的类型有几种:⑴、电阻加热挥收源.常常适用于熔面矮于1500℃的镀料.对付于挥收源的央供为a、熔面下b、鼓战蒸气压矮c、化教本量宁静,正在下温下没有与挥收资料爆收化教反应d、具备良佳的耐热性,功率稀度变更小.⑵、电子束挥收源.热电子由灯丝收射后,被电场加速,赢得动能轰打处于阳极的挥收资料上,使挥收资料加热气化,而真止挥收镀膜.特天符合创造下熔面薄膜资料战下杂薄膜资料.便宜有a、电子束轰打热源的束流稀度下,能赢得近比电阻加热源更大的能量稀度,不妨使下熔面(可下达3000℃以上)的资料挥收,而且有较下的挥收速率.b、镀料置于热火铜坩埚内,预防容器资料的挥收,以及容器资料与镀料之间的反应,那对付于普及镀膜的杂度极为要害.c、热量可间接加到挥收资料的表面,缩小热量益坏.⑶、下频感触挥收源.将拆有挥收资料的坩埚搁正在下频螺旋线圈的中央,使挥收资料正在下频电磁场的感触下爆收强盛的涡流益坏战磁滞益坏(铁磁体),从而将镀料金属加热挥收.时常使用于洪量挥收下杂度金属.分子束中延技能(molecular beam epitaxy,MBE).中延是一种造备单晶薄膜的新技能,它是正在符合的衬底与符合条件下,沿衬底资料晶轴目标逐层死少新单晶薄膜的要领.中延薄膜战衬底属于共一物量的称“共量中延”,二者分歧的称为“同量中延”.MBE是正在810—Pa的超真空条件下,将薄膜诸组分元素的分子束流,正在庄重监控之下,间接喷射到衬底表面.其中已被基片捕获的分子,即时被真空系统抽走,包管到达衬底表面的经常新分子束.那样,到达衬底的各元素分子没有受环境气氛的效率,仅由挥收系统的几许形状战挥收源温度决断.二、离子镀是正在真空条件下,利用气体搁电使气体大概被挥收物量离化,正在气体离子大概被挥收物量离子轰打效率的共时,把挥收物大概其反应物蒸镀正在基片上.时常使用的几种离子镀:(1)曲流搁电离子镀.挥收源:采与电阻加热大概电子束加热;充进气体:充进Ar大概充进少量反应气体;离化办法:被镀基体为阳极,利用下电压曲流辉光搁电离子加速办法:正在数百伏至数千伏的电压下加速,离化战离子加速所有举止.(2)空心阳极搁电离子镀(HCD,hollow cathode discharge ).等离子束动做挥收源,可充进Ar、其余惰性气体大概反应气体;利用矮压大电流的电子束碰碰离化, 0至数百伏的加速电压.离化战离子加速独力支配.(3)射频搁电离子镀.电阻加热大概电子束加热,真空,Ar,其余惰性气体大概反应气体;利用射频等离子体搁电离化, 0至数千伏的加速电压,离化战离子加速独力支配.(4)矮压等离子体离子镀.电子束加热,惰性气体,反应气体. 等离子体离化, DC大概AC 50V离子镀是一个格中搀杂历程,普遍去道末究包罗镀料金属的挥收,气化,电离,离子加速,离子之间的反应,中战以及正在基体上成膜等历程,其兼具真空蒸镀战真空溅射的特性.三、溅射镀膜是正在真空室中,利用荷能粒子轰打靶表面,使被轰打出的粒子正在基片上重积的技能.用戴有几十电子伏特以上动能的粒子大概粒子束映照固体表面,靠拢固体表面的本子会赢得进射粒子所戴能量的一部分从而背真空中劳出,那种局里称为溅射.应用于当前工业死产的主要溅射镀膜办法:(1)射频溅射是利用射频搁电等离子体中的正离子轰打靶材、溅射出靶材本子从而重积正在接天的基板表面的技能.由于接流电源的正背性爆收周期接替,当溅射靶处于正半周时,电子流背靶里,中战其表面散集的正电荷,而且散集电子,使其表面浮现背偏偏压,引导正在射频电压的背半周期时吸引正离子轰打靶材,从而真止溅射.由于离子比电子品量大,迁移率小,没有像电子那样很快天背靶表面集结,所以靶表面的面位降下缓缓,由于正在靶上会产死背偏偏压,所以射频溅射拆置也不妨溅射导体靶.射频溅射拆置的安排中,最要害的是靶战匹配回路.靶要火热,共时要加下频下压.(2)磁控溅射(下速矮温溅射).其重积速率快、基片温度矮,对付膜层的益伤小、支配压力矮.磁控溅射具备的二个条件是:磁场战电场笔曲;磁场目标与阳极(靶)表面仄止,并组成环形磁场.电子正在电场E的效率下,正在飞背基片历程中与氩本子爆收碰碰,使其电离爆收出Ar 战新的电子;新电子飞背基片,Ar 正在电场效率下加速飞背阳极靶,并以下能量轰打靶表面,使靶材爆收溅射.正在溅射粒子中,中性的靶本子大概分子重积正在基片上产死薄膜,而爆收的二次电子会受到电场战磁场效率,爆收E(电场)×B(磁场)所指的目标漂移,简称E×B漂移,其疏通轨迹近似于一条晃线.若为环形磁场,则电子便以近似晃线形式正在靶表面干圆周疏通,它们的疏通路径没有但是很少,而且被束缚正在靠拢靶表面的等离子体天区内,而且正在该天区中电离出洪量的Ar 去轰打靶材,从而真止了下的重积速率.随着碰碰次数的减少,二次电子的能量消耗殆尽,渐渐近离靶表面,并正在电场E的效率下最后重积正在基片上.由于该电子的能量很矮,传播给基片的能量很小,以致基片温降较矮.(3)反应溅射.反应溅射是指正在存留反应气体的情况下,溅射靶材时,靶材会与反应气体反应产死化合物(如氮化物大概氧化物),正在惰性气体溅射化合物靶材时由于化教没有宁静性往往引导薄膜较靶材少一个大概更多组分,此时如果加上反应气体不妨补偿所缺少的组分,那种溅射也不妨视为反应溅射.化教气相重积chemical vapor deposition(CVD)一、热CVD指把含有形成薄膜元素的气态反应剂大概液态反应剂的蒸气及反应所需其余气体引进反应室,正在衬底表面爆收化教反应死成薄膜的历程.本理:利用挥收性的金属卤化物战金属的有机化合物等,正在下温下爆收气相化教反应,包罗热领会、氢还本(可造备下杂度金属膜)、氧化战置换反应等,正在基板上重积所需要的氮化物、氧化物、碳化物、硅化物、硼化物、下熔面金属、金属、半导体等薄膜.造备条件:1)正在重积温度下,反应物具备脚够的蒸气压,并能以符合的速度被引进反应室;2)反应产品除了产死固态薄膜物量中,皆必须是挥收性的;3)重积薄膜战基体资料必须具备脚够矮的蒸气压.二、等离子体CVD(plasma chemical vapor deposition)是正在下频大概曲流电场效率下,将本料气体电离产死等离子体,利用矮温等离子体动做能量源,通进适量的反应气体,利用等离子体搁电,使反应气体激活并真止化教气相重积的技能.正在脆持一定压力的本料气体中,输进曲流、下频大概微波功率,爆收气体搁电,产死等离子体.正在气体搁电等离子体中,由于矮速电子与气体本子碰碰,故除爆收正、背离子中,还会爆收洪量的活性基(激励本子、分子等),从而可大大巩固反映气体的活性.那样便不妨正在较矮的温度下,爆收反应,爆收薄膜.PCVD不妨正在更矮的温度下成膜.可缩小热益伤,减矮膜层与衬底资料间的相互扩集及反应多用于太阳能电池及液晶隐现器等.三、有机金属CVD(MOCVD)是将反应气体战睦化的有机物通过反应室,通过热领会重积正在加热的衬底上产死薄膜.它是利用运载气携戴金属有机物的蒸气加进反应室,受热领会后重积到加热的衬底上产死薄膜.其特性是:1.较矮的衬底温度; 2.较下的死少速率,可死少极薄的薄膜; 3.透彻的组分统造可举止多元混晶的身分统造,可真止多层结构及超晶格结构; 4.易赢得大里积匀称薄膜;其缺陷是:1.残留杂量含量下 2.反应气体及尾气普遍为易焚、易爆及毒性很强的气体.。
薄膜制备方法
薄膜制备方法1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。
一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。
这种方法是把装有基片的真空室抽成真空,使气体压强达到10¯²Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。
其设备主要由真空镀膜室和真空抽气系统两大部分组成。
保证真空环境的原因有①防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。
②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。
蒸发镀根据蒸发源的类别有几种:⑴、电阻加热蒸发源。
通常适用于熔点低于1500℃的镀料。
对于蒸发源的要求为a、熔点高b、饱和蒸气压低c、化学性质稳定,在高温下不与蒸发材料发生化学反应d、具有良好的耐热性,功率密度变化小。
⑵、电子束蒸发源。
热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。
特别适合制作高熔点薄膜材料和高纯薄膜材料。
优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。
b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。
c、热量可直接加到蒸发材料的表面,减少热量损失。
⑶、高频感应蒸发源。
将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。
常用于大量蒸发高纯度金属。
分子束外延技术(molecular beam epitaxy,MBE)。
薄膜的制备方法有哪些
薄膜的制备方法有哪些薄膜的制备方法是指将材料制备成薄膜的工艺方法,主要包括物理气相沉积、化学气相沉积、溶液法、激光烧结法等多种方法。
下面将对这些方法进行详细介绍。
首先,物理气相沉积是一种常用的薄膜制备方法,其主要原理是通过物理手段将原料气体转化为固态薄膜。
常见的物理气相沉积方法包括蒸发沉积、溅射沉积和激光烧结法。
其中,蒸发沉积是通过加热原料使其蒸发,然后在基底上凝结成薄膜;溅射沉积是通过离子轰击原料使其溅射到基底上形成薄膜;激光烧结法则是利用激光束将原料烧结成薄膜。
其次,化学气相沉积是另一种常用的薄膜制备方法,其原理是通过化学反应使气态原料在基底上沉积成薄膜。
常见的化学气相沉积方法包括化学气相沉积、原子层沉积和气相沉积等。
其中,化学气相沉积是通过将气态原料与化学反应气体在基底上反应生成薄膜;原子层沉积是通过将气态原料分别按照周期性的顺序吸附在基底上形成单层原子膜,然后重复多次形成薄膜;气相沉积是通过将气态原料在基底上沉积成薄膜。
此外,溶液法也是一种常用的薄膜制备方法,其原理是将材料溶解在溶剂中,然后通过溶液的挥发或化学反应在基底上形成薄膜。
常见的溶液法包括旋涂法、喷涂法和浸渍法等。
其中,旋涂法是将溶液滴在旋转基底上,通过离心作用使溶液均匀涂布在基底上形成薄膜;喷涂法是通过将溶液喷洒在基底上,然后通过干燥使溶液挥发形成薄膜;浸渍法是将基底浸入溶液中,然后通过溶液的挥发或化学反应在基底上形成薄膜。
最后,激光烧结法是一种利用激光束将材料烧结成薄膜的方法。
其原理是通过激光束的照射使材料在基底上烧结成薄膜。
这种方法适用于高能激光烧结材料,可以制备高质量的薄膜。
综上所述,薄膜的制备方法包括物理气相沉积、化学气相沉积、溶液法和激光烧结法等多种方法。
每种方法都有其特点和适用范围,可以根据具体需求选择合适的方法进行薄膜制备。
薄膜制备实验报告
一、实验目的1. 了解薄膜制备的基本原理和方法;2. 掌握薄膜制备过程中的关键参数;3. 熟悉薄膜制备设备的使用;4. 学习薄膜性能的测试方法。
二、实验原理薄膜是一种厚度小于1微米的材料,广泛应用于电子、光学、能源、生物等领域。
薄膜制备方法主要有物理气相沉积(PVD)、化学气相沉积(CVD)、溶液法、旋涂法等。
三、实验仪器与材料1. 实验仪器:磁控溅射设备、热蒸发设备、旋涂设备、椭偏仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)等;2. 实验材料:靶材、衬底、前驱体、溶剂等。
四、实验步骤1. 磁控溅射法制备薄膜(1)将衬底清洗、烘干,并放入溅射腔中;(2)调整溅射参数,如功率、气压、溅射时间等;(3)启动溅射设备,制备薄膜;(4)对制备的薄膜进行性能测试。
2. 热蒸发法制备薄膜(1)将靶材放置在热蒸发设备中;(2)调整蒸发参数,如温度、蒸发速率等;(3)启动热蒸发设备,制备薄膜;(4)对制备的薄膜进行性能测试。
3. 旋涂法制备薄膜(1)将前驱体溶解于溶剂中,配制成一定浓度的溶液;(2)将衬底清洗、烘干,并放入旋涂设备中;(3)将溶液滴在衬底上,进行旋涂;(4)对制备的薄膜进行性能测试。
五、实验结果与分析1. 磁控溅射法制备薄膜(1)通过调整溅射参数,制备出厚度均匀、质量良好的薄膜;(2)对薄膜进行椭偏仪测试,得到薄膜的厚度和折射率;(3)通过SEM观察薄膜表面形貌,发现薄膜表面平整,无裂纹;(4)通过XRD测试,分析薄膜的晶体结构和成分。
2. 热蒸发法制备薄膜(1)通过调整蒸发参数,制备出厚度均匀、质量良好的薄膜;(2)对薄膜进行椭偏仪测试,得到薄膜的厚度和折射率;(3)通过SEM观察薄膜表面形貌,发现薄膜表面平整,无裂纹;(4)通过XRD测试,分析薄膜的晶体结构和成分。
3. 旋涂法制备薄膜(1)通过调整旋涂参数,制备出厚度均匀、质量良好的薄膜;(2)对薄膜进行椭偏仪测试,得到薄膜的厚度和折射率;(3)通过SEM观察薄膜表面形貌,发现薄膜表面平整,无裂纹;(4)通过XRD测试,分析薄膜的晶体结构和成分。
薄膜制备方法
薄膜制备方法
薄膜制备方法是指通过化学反应、物理沉积、溅射等方法将材料制备成薄膜的过程。
薄膜制备是目前晶体学、电子学、材料学等领域的重要研究方向之一,广泛应用于半导体器件、显示器、太阳能电池、照明生物医学等领域。
下面就几种常见的薄膜制备方法进行介绍:
1. 化学气相沉积法
化学气相沉积法是一种使用化学反应使沉积物沉积在载体上的制备方法。
一般来说,这个方法包括两个步骤:在气相中生成反应物和反应产物;将反应产物转化为固态物质使其沉积到载体表面。
这种方法通常可以制备高纯度、与晶体结构相近的薄膜。
但是,由于反应速率较慢,制备时间较长,使得这种方法的成本较高。
2. 磁控溅射法
磁控溅射法是一种通过在真空中使用磁场将材料溅射到基底上形成薄膜的制备方法。
通常此方法要求将材料放置于真空室中,然后在高能离子的存在下使用磁场来将材料溅射到基底上。
这种方法可以制备高质量的薄膜,但细节处理要求严格,需要在无菌的实验环境下进行操作。
3. 化学溶液法
化学溶液法是一种通过将反应物溶解在溶液中,然后将溶液施加到基底上制备薄膜的方法。
通常,这种方法可以制备多种不同成分的薄膜,可以在一定温度、压力和pH范围内进行调节。
但是,这种方法需要严格控制反应物的比例、加热等条件来保证薄膜质量。
4. 气体吸附法
气体吸附法是一种通过使气体从气相中吸附在基底表面,形成薄膜的制备方法。
有许多气体可以用作制备薄膜的吸附剂,如氢气、氧气等。
但是,这种方法通常需要较高的温度和压力来保证薄膜的质量,而且这种方法的工艺流程通常比较复杂。
薄膜材料的制备方法
薄膜材料的制备方法薄膜材料的制备方法有很多种,下面我将介绍几种常见的方法。
1. 溶液法:溶液法是最常见的薄膜制备方法之一。
该方法主要是将待制备的材料溶解在适当的溶剂中,形成溶液后,利用涂布、旋涂、印刷等技术将溶液均匀地涂覆到基底上,然后通过加热、蒸发或水解等方法使溶剂蒸发或分解,最终得到所需的薄膜。
溶液法具有设备简单、制备工艺容易控制等优点,可以制备出大面积、均匀的薄膜。
2. CVD法:CVD(化学气相沉积)法是一种在高温条件下通过化学反应直接在基底上沉积薄膜的方法。
该方法通常包括气相反应源、载气和基底三个组成部分。
首先,将反应源和载气输入反应室中,在高温下进行反应,产生的气体在基底表面发生化学反应,形成所需的薄膜。
该方法制备的薄膜具有高质量、高效率的特点,适用于制备高纯度、多晶或无晶结构的薄膜。
3. 真空蒸发法:真空蒸发法是一种在真空环境下利用材料的高温蒸发,使蒸发物质沉积在基底上形成薄膜的方法。
原料通过加热的方式进入气相状态,然后在真空室中通过各种控制手段将蒸发物质输送到基底上进行沉积。
该方法制备的薄膜具有优异的化学纯度和均匀性,可用于制备光学薄膜、金属薄膜等。
4. 溅射法:溅射法是一种利用离子轰击的方式将固体材料溅射到基底上形成薄膜的方法。
该方法通常在真空或惰性气体环境下进行。
材料通过电弧、射频等方式激发成粒子或离子状态,然后被加速并轰击到基底表面,形成均匀的薄膜。
溅射法具有制备多种材料的能力,可以得到具有各种结构和性质的薄膜。
5. 模板法:模板法是一种利用模板的孔隙结构来制备薄膜的方法。
首先,在模板表面形成薄膜前体,然后通过热处理或溶剂处理等方式,将前体转化为所需的薄膜。
模板法制备的薄膜具有具有有序的孔隙结构,可以用于制备滤膜、分离膜等。
总结起来,薄膜材料的制备方法包括溶液法、CVD法、真空蒸发法、溅射法和模板法等。
不同的制备方法适用于不同的材料和要求,选择合适的方法可以得到具有优异性能的薄膜材料。
第4章薄膜的制备
椭偏光法的测量精度高达10Å ,且可同时测出薄膜的
折射率,它还是一种非破坏性测量方法。
椭偏光法是用椭圆偏振光照射被测样品,观察反射光偏 振状态的改变,从而测出样品上膜的厚度或光学常数。光源
发出自然光,经过起偏器后成为线偏振光,其偏振
30
方向由起偏器决定,转动起偏器可改变偏振光的偏振方向。
此线偏振光经过四分之一波长片后变为椭圆偏振光,该偏振
26
9.二氧化硅膜质量检测 氧化膜的质量主要表现在表面无斑点、裂纹、白雾和针 孔等缺陷;厚度达到规定标准,薄厚均匀;可动离子含量
低,符合要求等。
二氧化硅膜的质量,直接关系到半导体芯片的性能。因
此,其质量必须达到预定的要求。
(1)氧化膜厚度的测量 比色法,膜的厚度不同,在光的照射下,由于光的干 涉,会呈现出不同的颜色。根据干涉次数与颜色,就
离通常选择的就是二氧化硅。例如,LOCOS工艺中,晶体 管的隔离就是在晶体管之间生长厚的二氧化硅膜;CMOS工 艺中的场氧就是用来隔离PMOS的有源区和NMOS的有源 区的。
9
4.热氧化法生长二氧化硅膜 二氧化硅的生长方法有很多种,热氧化、热分解淀积、
溅射、蒸发等。
由于热氧化的氧化反应发生在硅-二氧化硅交界面,接
近于干氧氧化。
15
5.氧化生长模式
(1)硅消耗 无论是湿氧还是干氧,在氧化过程中,硅-二氧化硅的 界面都会由硅表面移向内部,即氧化过程要消耗硅。
16
(2)硅-二氧化硅界面
在界面处,有的硅原子没
有和氧原子键合,累积了大量
正电荷。界面处还存在一些陷
阱电荷、可动电荷等,这些电 荷会使MOS器件的开启电压变化不定。 氧化工艺,通常采用在氢气或氢-氮混合气氛中低温退 火的方式降低界面电荷的密度。(100)晶面的界面电荷密
举例说明薄膜制备的几种方式及特点
薄膜制备是一种常见的工程技术,可以用于制备各种材料的薄膜,包括聚合物、金属和无机物等。
在实际应用中,薄膜制备的方式有很多种,每种方式都有其特点和适用范围。
本文将举例说明薄膜制备的几种常见方式及其特点,以便读者更好地了解薄膜制备技术。
一、溶液旋涂法溶液旋涂法是一种常用的薄膜制备方式,其原理是将制备材料溶解于适当的溶剂中,然后将溶液滴在旋转的基板上,通过离心力将溶液甩到基板上形成薄膜。
该方法具有以下特点:1. 简单易行,无需复杂的设备。
2. 可以制备较大面积的薄膜。
3. 适用于制备柔性基板上的薄膜。
然而,溶液旋涂法的缺点也很明显,例如溶液的浓度和旋转速度对薄膜质量的影响比较大,且薄膜厚度不易控制。
二、真空蒸发法真空蒸发法是一种常见的薄膜制备方式,其原理是将制备材料加热至蒸发温度,然后在真空条件下蒸发到基板表面形成薄膜。
该方法具有以下特点:1. 可以制备高纯度的薄膜。
2. 薄膜的厚度和组分可以精确控制。
3. 适用于制备高要求的光学薄膜和导电薄膜。
但真空蒸发法也存在一些问题,例如对制备材料的纯度要求较高,设备成本较高,且只能制备较小面积的薄膜。
三、喷雾法喷雾法是一种以喷雾技术为基础的薄膜制备方式,其原理是将制备材料溶解于适当的溶剂中,通过气雾喷射技术将溶液喷洒到基板上形成薄膜。
该方法具有以下特点:1. 可以制备均匀性较好的薄膜。
2. 适用于大面积薄膜的制备。
3. 可以制备复杂结构的薄膜。
喷雾法的缺点主要在于薄膜的厚度控制较难,且溶液浓度和喷雾条件对薄膜质量有较大影响。
四、离子束溅射法离子束溅射法是一种以物理气相沉积过程为基础的薄膜制备方式,其原理是利用离子束轰击靶材,使靶材表面蒸发形成薄膜。
该方法具有以下特点:1. 薄膜的成分均匀,密度高。
2. 可以制备复杂结构的薄膜。
3. 适用于制备高温材料的薄膜。
离子束溅射法的缺点在于设备成本较高,且只能制备较小面积的薄膜。
五、激光熔化法激光熔化法是一种以激光为能量源的薄膜制备方式,其原理是利用激光对基板上的薄膜进行加热,使薄膜融化后再凝固形成新的薄膜。
薄膜的制备方法有哪些
薄膜的制备方法有哪些
薄膜是一种在工业和科学研究中广泛应用的材料,它具有薄、轻、柔韧等特点,常用于光电子器件、电池、传感器、柔性显示器
等领域。
薄膜的制备方法多种多样,下面将介绍几种常见的薄膜制
备方法。
首先,薄膜的溶液旋涂是一种常见的制备方法。
该方法通过将
溶解了所需材料的溶液滴在旋转的基板上,利用离心力使溶液均匀
分布并形成薄膜。
这种方法制备的薄膜成本低,适用于大面积薄膜
的制备,但需要对溶液的浓度、旋涂速度等参数进行精确控制。
其次,薄膜的物理气相沉积是另一种常用的制备方法。
这种方
法利用高温或真空条件下,将固体材料直接蒸发或溅射到基板表面,形成薄膜。
物理气相沉积制备的薄膜质量较高,结晶度好,适用于
制备光学薄膜、导电薄膜等。
此外,化学气相沉积也是一种常见的薄膜制备方法。
该方法通
过将挥发性的前驱体气体引入反应室,在基板表面发生化学反应并
沉积形成薄膜。
化学气相沉积可以制备多种复杂化合物薄膜,如氧
化物薄膜、氮化物薄膜等,具有较高的成膜速率和较好的控制性能。
此外,溅射法也是一种常用的薄膜制备方法。
该方法利用高能粒子轰击靶材,使靶材表面的原子或分子蒸发并沉积到基板表面,形成薄膜。
溅射法可以制备多种材料的薄膜,且可控制薄膜的成分和结构。
总的来说,薄膜的制备方法多种多样,每种方法都有其适用的特定领域和材料。
在实际应用中,需要根据具体要求选择合适的制备方法,并结合实际情况进行优化和调整,以获得符合要求的薄膜材料。
希望本文介绍的薄膜制备方法对您有所帮助。
薄膜的化学制备方法
应用实例
光学薄膜
利用溶胶-凝胶法制备的光学薄膜 具有高透光性、高反射性和高截 止特性等优点,广泛应用于光学
仪器、太阳能光伏等领域。
电子薄膜
溶胶-凝胶法制备的电子薄膜具有 良好的电学性能和化学稳定性,适 用于制备电子元器件和集成电路等。
生物医用薄膜
通过溶胶-凝胶法制备的生物医用薄 膜具有良好的生物相容性和生物活 性,可用于制备医疗器械、生物传 感器和组织工程支架等。
应用实例
金属薄膜
如镍、铜、钴等金属薄膜的制备,可用于电子器 件的制造和装饰行业。
半导体薄膜
如氧化锌、二氧化钛等半导体薄膜的制备,可用 于光电器件和太阳能电池等领域。
复合薄膜
如金属/氧化物、金属/非金属等复合薄膜的制备, 可用于传感器、催化器和防腐蚀涂层等领域。
05
喷涂法
原理与特点
原理
喷涂法是一种将液体材料通过喷枪或 喷涂设备,以雾状形式均匀地喷涂在 基材表面,形成薄膜的方法。
等离子体增强CVD法
总结词
利用等离子体激活反应气体,在较低温度下制备薄膜。
详细描述
等离子体增强CVD法是一种先进的化学气相沉积技术,利用等离子体激活反应气体,使气体在较低温 度下也能发生化学反应,从而在衬底表面形成固态薄膜。这种方法具有反应温度低、薄膜附着力强、 沉积速率高等优点,适用于制备各种功能性薄膜。
03
化学溶液沉积
原理与特点
原理
通过将溶有欲形成薄膜的物质的溶液,以一定的方式(如旋转、喷涂、电泳等) 涂敷在基片上,经过一定时间后,溶剂蒸发,溶质以晶体或非晶体的形式沉积 在基片上,形成薄膜。
特点
设备简单、操作方便、成本低廉,可制备大面积的薄膜,但薄膜的厚度和均匀 性不易控制,且容易引入杂质。
薄膜制备总结报告
薄膜制备总结报告一、引言薄膜制备是一种重要的材料加工技术,广泛应用于电子、光学、医疗等领域。
本报告旨在总结薄膜制备的基本原理和常见方法,以及其应用。
二、薄膜制备的基本原理薄膜是指厚度在纳米到微米级别之间的材料层,其制备基于材料表面上吸附分子或离子的物理或化学反应。
这些反应可以通过不同的方法实现,包括物理气相沉积(PVD)、化学气相沉积(CVD)、溶液法和电化学沉积等。
三、常见的薄膜制备方法1. 物理气相沉积(PVD)物理气相沉积是利用高能量粒子轰击靶材使其释放出原子或分子,并在衬底表面上形成一层薄膜。
该方法包括磁控溅射、电弧离子镀和激光热解等。
2. 化学气相沉积(CVD)化学气相沉积是将一种或多种反应性气体输送到衬底表面上,通过化学反应形成薄膜。
该方法包括低压CVD、大气压CVD和热分解CVD 等。
3. 溶液法溶液法是将溶解了材料的溶液涂覆在衬底表面上,并通过挥发或化学反应形成薄膜。
该方法包括旋涂法、喷雾法和浸渍法等。
4. 电化学沉积电化学沉积是利用电解质中的离子在电场作用下沉积在电极表面形成薄膜。
该方法包括阴极沉积、阳极氧化和电沉积等。
四、应用领域1. 电子领域薄膜制备技术在微电子器件、光伏器件和显示器件中得到广泛应用。
例如,金属氧化物半导体场效应晶体管(MOSFET)和有机发光二极管(OLED)都需要通过薄膜制备技术来实现。
2. 光学领域光学镀膜是一种常见的光学加工技术,可以通过控制不同材料的厚度和折射率来实现对光的反射、透过和吸收。
薄膜制备技术在光学镀膜中发挥着重要作用。
3. 医疗领域生物医学中的诊断和治疗设备需要使用到多种材料,例如生物传感器、人工关节和药物输送系统等。
这些设备中的材料需要具有高度的生物相容性和可控性,薄膜制备技术可以实现对这些材料的精确控制。
五、结论本报告总结了薄膜制备的基本原理和常见方法,并介绍了其在电子、光学和医疗领域中的应用。
随着科技的不断发展,薄膜制备技术将继续得到广泛应用,并为各个领域带来更多新的机遇和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝聚态结构与性质重点实验室
激光分子束外延
激光分子束外延:脉冲激光源 是与超高真空系统隔离的,脉 冲激光束通过一个光学窗口进 人真空系统人射到可旋转的靶 材表面,使靶材局部气化产生 激光焰,被剥蚀的粒子获得很 高的动能,到达可加热的衬底表 面形成薄膜。在L-MBE系统中, 衬底温度、激光能量、激光斑 的形状与尺寸、激光焰与衬底 的距离、靶的密度和表面质量、 靶的旋转速度等都可以调节, 从而可获得最佳的工艺参数。
凝聚态结构与性质重点实验室
分子束外延装置图
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
二、 溅射镀膜(Sputtering)
溅射是指用高速正离子轰击膜料(靶)表面,通过动量传递,使
其分子或原子获得足够的动能而从靶表面逸出(溅射),在被镀件 表面凝聚成膜。 所谓“溅射”是指荷能粒子轰击固体(称为靶)表面,使固体原 子(或分子)从表面射出的现象。这些被溅射出来的原子将带有一 定的动能,并且具有 方向性。应用这一现象将溅射出来物质沉积到基片或工件表面形成 薄膜的方法称为溅射(镀膜)法。 溅射法属于物理气相沉积的一种,射出的粒子大多呈原子状态, 常称为溅射原子。 ™ 用于轰击靶的荷能粒子可以是电子、离子或中性粒子,因为离子 在电场下易于加速并获得所需动能,因此大多采用离子作为轰击粒 子,该离子又被称为入射离子。 ™ 溅射法现在已经广泛地应用于各种薄膜的制备之中。如用于制备 金属、合金、半导体、氧化物、绝缘介质薄膜,以及化合物半导体、 碳化物及氮化物薄膜,乃至高温超导薄膜等。
,又可以用多个纯元素靶。
• 第三,应用范围广,由于激光焰的方向性很强 , 因而对系统的污染很少,所以可以在 同一台设备上制备多种材料的薄膜,如各种超导膜、光学膜、铁电膜、铁磁膜、金属 膜、半导体膜、压电膜、绝缘体膜甚至有机高分子膜等。又因为其能在较高的反应性 气体分压条件下运转,所以特别有利于制备含有复杂氧化物结构的薄膜。 • • 第四,可以选择最佳成膜条件,指导制备高质量的薄膜和开发新型薄膜材料。 第五,便于深入研究激光与靶物质的相互作用动力学过程以及不同工艺条件下的成膜
真空蒸发镀膜包括以下三个基本过程
凝聚态结构与性质重点实验室
常选用的几种蒸发装置
凝聚态结构与性质重点实验室
2.电子束蒸发源
已成为蒸发法中高速沉积高纯物质薄膜的一种主要的加热方法。电子束加热 的原理是基于电子在电场作用下获得动能轰击阳极的蒸发材料,使蒸发材料 气化而实现镀膜。 电子束蒸发沉积可以做到避免坩埚材料的污染。在同一蒸发沉积装置中可以 ™ 安置多个坩埚,这使得人们可以同时或分别对多种不同的材料进行蒸发。
凝聚态结构与性质重点实验室
4.激光蒸发源
™
采用高功率的连续或脉冲激光束作为能源进行薄膜的蒸发沉积的方 法被称为激光沉积法。
™ 然,这种方法也具有加热温度高,可避免坩埚污染,材料蒸发速 显 率高,蒸发过程容易控制等特点。 ™ 时,由于在蒸发过程中,高能激光光子能量直接转移给被蒸发的 同 原子,因而激光蒸发法的粒子能量一般显著高于其他的蒸发方法。
溅射镀膜的类型
电极的结构、电极的相对位置以及溅射镀膜的过程可以分为二极 溅射、三极溅射、磁控溅射、对向靶溅射、离子束溅射、ECR溅 射等。 按溅射方式的不同,又可分为直流溅射、射频溅射、偏压溅射和 反应溅射等。
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
由能容易满足二维生长的热力学条件,பைடு நூலகம்而更容易获得二维生长模式 ,
同时可以获得不易在平衡态下形成的亚稳相。
凝聚态结构与性质重点实验室
激光分子束外延的特点与优势
• 第一,可以人工设计和剪裁不同结构具有特殊功能的多层膜或超晶格,并用RHEED( 反射高能电子衍射仪)和薄膜测厚仪可以原位实时精确监控薄膜生长过程,实现原子 和分子水平的外延,从而有利于发展新型薄膜材料。 • 第二, 可以原位生长与靶材成分相同化学计量比的薄膜,即可以用单个多元化合物靶
凝聚态结构与性质重点实验室
激光分子束外延通常可分为三个个阶段:1.靶体材料的剥离和激光焰的形 成2.激光焰在工作气体中的传播3.剥蚀的粒子在衬底表面上形核成膜。 在第一个阶段, 激光脉冲首先在靶表面产生致密的蒸气层,这个蒸气层吸收 大部分脉冲激光的能量而获得很高的温度和压力, 然后形成等离子体层。 该等离子体层在压力梯度的驱动下, 从靶表面开始扩张, 在扩张中等离 子体的内能转化为被剥蚀粒子的动能而加速。 第二阶段,激光焰开始传播并与工作气体相互作用而形成复杂的动力学过 程,直至这些粒子到达衬底表面。 第三阶段, 形核与成膜,其中有两个明显的特征决定这一过程与普通的分子 束外延有很大的区别。第1个特征是在沉积过程中粒子具有很大的动能 (约1ev),而对于普通的热蒸发过程仅为约 0.1ev。第2个特征是对于 普通热蒸发为几分钟1个单原子层而L-MBE有着极高的瞬时溅射率。极 高的瞬时粒子束流为薄膜的生长提供了很高的形核速率 , 它们的表面自
凝聚态结构与性质重点实验室
固相反应法
固相反应法是陶瓷材料制备中一种传统的材料制备方法,其 基本原理是将一定摩尔比的高纯度氧化物充分混合、研磨,而 后在高温下进行多次烧结,对温度依赖性非常强,所以需要在 高温下才能进行,而且反应速度很慢,所以需要很长的反应时 间。虽然固相反应法有其固有的缺点,如能耗大、效率低、易 混入杂质等,由于该方法制备工艺简单、成本低、产量大等优 点,迄今为止,此方法仍是制备多晶粉末和陶瓷的常用方法。 固相反应法制备靶材的过程中,烧结过程是最为重要的一 环。烧结温度通常。按照泰曼温度和海德华定律来确定,一 般取主成分熔点的2/3。烧结时间则需综合考虑。烧结过程 中材料体系总的自由能逐步降低,其中表面能降低得最为显 著,这是烧结过程的驱动力。靶材烧结一般分为接触、形成 烧结晶、致密化、晶粒生长等阶段。随着烧结温度持续升高 凝聚态结构与性质重点实验室 ,
凝聚态结构与性质重点实验室
靶材的制备
溶胶-凝胶法(Sol-Gel) 优点:该种制备方法具有许多特殊的优点,例如:产物粒 径小、均匀性好、纯度高及反应易控制等,使得其在材料粉 体的制备过程中得到广泛的应用,目前,用溶胶-凝胶法合 成钙钛矿结构的氧化物材料是非常普遍的。 目前,溶胶-凝胶技术在复合氧化物材料、氧化涂层材料 及功能陶瓷材料的合成中均取得了较为成功的应用,该法 已成为材料制备领域,特别是无机材料的制备中极其重要 的方法之一。溶胶-凝胶制备方法是化学反应方法之一, 其基本过程是一些易水解的金属化合物(无机盐或金属醇 盐)在某种溶剂中与水发生反应,经过水解与缩聚过程而 逐渐凝胶化,再经过干燥、烧结等后处理工艺,最后制得 所需的材料。其基本的工艺过程如图所示。
3. 电弧蒸发源
可以避免加热线或坩埚材料污染,具有加热温度较高的特点,特别适用于 熔点高并具有一定导电性的难熔金属的蒸发沉积。而且,这一方法所用的 设备比电子束加热装置简单。 在电弧放电中,将待蒸发的材料制成放电电极。在薄膜沉积时,依靠调节 ™ 真空室内电极间距的方法来点燃电弧,而瞬间的高温电弧将使电极端部产 生蒸发从而实现薄膜的沉积。控制电弧的点燃次数就可以沉积出一定厚度 的薄膜。 电弧加热方法既可以采用直流加热法,又可以采用交流加热法。 ™ 接转移给被蒸发的原子,因而激光蒸发法的粒
凝聚态结构与性质重点实验室
优点:膜层在基片上的附着力强,膜层 纯度高,可同时溅射多种不同成分的合 金膜或化合物。 缺点:需制备专用膜料,靶利用率低
凝聚态结构与性质重点实验室
溅射的基本原理
溅射是轰击粒子与靶粒子之间动量传递的结果。而整个溅射过程都是 建立在辉光放电的基础之上,即溅射离子都来源于气体辉光放电。 辉光放电溅射指利用电极间的辉光放电进行溅射。辉光放电指在真空 度约为1~10Pa 的稀薄气体中,两个电极之间加上电压时产生的一种 稳定的自持放电,是气体放电的一种类型,并伴有辉光的气体放电现 象。 辉光放电溅射,靶材作为阴极,被镀件作为阳极或偏置,可以放在阴 极暗区之外任何方便的地方。
机理等基本物理问题。
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
化学气相沉积的类型
化学气相沉积,包括低压化学气相沉积(low pressure CVD,LPCVD)、离子增强型气相沉(plasmaenhanced CVD,PECVD)常压化学气相沉积(atmospherepressure CVD,APCVD)、金属有机物气相沉积(MOCVD)和微波 电子回旋共振化学气相沉积(MW-ECR-CVD)等 CVD技术可按照沉积温度、反应器内的压力、反应器壁 的温度和沉积反应的激活方式进行分类。 ™ 按沉积温度可分为低温(200~500℃)、(500~1000℃) 和高温(1000~1300℃)CVD。 ™ 按反应器内的压力可分为常压化学气相沉积(APCVD) 和低压化学气相沉积(LPCVD)。 ™ 按反应器壁的温度可分为热壁方式和冷壁方式。 ™ 按反应激活方式可分为热激活和等离子体激活等。 凝聚态结构与性质重点实验室
磁控溅射的两个弱点是
第一,不能实现强磁性材料的低温高速溅射,因为几乎所用的磁通量 都是通过磁性靶的,所以在靶附近不能外加强磁场; ™ 第二,靶的利用率较低(约30%),这是由于靶的侵蚀不均匀造成 的。
凝聚态结构与性质重点实验室
p75
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
薄膜生长
薄膜的制备方法
凝聚态结构与性质重点实验室
薄膜制备技术概述
凝聚态结构与性质重点实验室
凝聚态结构与性质重点实验室
物理气相沉积技术
凝聚态结构与性质重点实验室
物理气相沉积的特点
凝聚态结构与性质重点实验室
真空蒸发镀膜
凝聚态结构与性质重点实验室
真空蒸发镀膜主要原理