数理统计学课后答案
概率论与数理统计学1至7章课后答案
第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。
数理统计课后答案.
数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。
025.01015u ⨯±4、假设检验的统计思想是 。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
数理统计凌能祥课后答案
f (x;θ)dx
=
θ3
+ 6θ 2 −2θ 2
+10θ +12 −θ +1
(此处是根据结论猜的,没有直接算)
(注意,上面这里最后一步没有算,直接猜的,不知道对不对),
所以 1 =
−2θ2 − θ +1
,
nI (θ) n(θ3 + 6θ2 +10θ +12)
又
∫ ∫ EX
∞
=xf
(
x;
θ
)
1
= (θ +
∫ ∫ ∫ (1)求矩估计量: EX
=X
+∞
= xf
( x; θ )dx
1
=θxdx +
2
(x − θx)dx
=3
−θ
,解得,
−∞
0
1
2
θ = 3 − X 2
n
∏ (2)求最大似然估计量:似然函数为, L(x= ;θ) f (x= ;θ) θ N (1− θ)n−N , i =1
ln L(x;θ=) N ln θ + (n − N ) ln(1− θ) ,
∑ nθ − xi
∏ (2)似然函数为= L(x;θ) = f (x;θ) e , i=1
i =1
n
ln L(x;θ=) nθ − ∑ xi , i =1
d ln L(x;θ)= dθ
n > 0 ,所以, L(x;θ) 是θ 的单调递增函数,又需要满足不等式 xi ≥ θ
所以,θ 的最大似然估计为 θ = min{xi}(1 ≤ i ≤ n) 。
+∞
= X =xf
( x; θ )dx
数理统计教程课后重要答案习题
第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。
研究生-数理统计课后答案参考
, i 1, 2, , n
解
由已知条件得: Yi ~ B(1, p) ,其中 p 1 FX ( ) .
因为 X i 互相独立,所以 Yi 也互相独立,再根据二项分布的可加性,有
Y ~ B(n, p) , p 1 F
i 1 i
n
X
( ) .
9 设 X1 ,, X n 是来自总体 X 的样本,试求 EX , DX , ES 2 。假设总体的分布为: 1) X ~ B( N , p); 2) X ~ P( ); 3) X ~ U [a, b]; 4) X ~ N ( ,1);
解
n 2 2 2 E Xi X E (n 1) S (n 1) ES i 1 (n 1) DX (n 1) 2
2 (n 1) S 2 n 2 4 D X i X D ( n 1) S D 2 i 1
试画出身高直方图,它是否近似服从某个正态分布密度函数的图形. 解
图 1.2 数据直方图
它近似服从均值为 172,方差为 5.64 的正态分布,即 N (172,5.64) . 4 设总体 X 的方差为 4,均值为 ,现抽取容量为 100 的样本,试确定常数 k,使得 满足 P( X k ) 0.9 .
2)对总体 X ~ P( )
P( X 1 x1 , X 2 x2 , X 3 x3 , X 4 x4 , X 5 x5 ) P( X i xi )
i 1 i 1 n 5
x
i
xi !
e
5xBiblioteka x !i 1 i5
e 5
其中: x
数理统计课后题答案完整版
第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
《概率论与数理统计教程》课后习题解答
第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。
解 样本点总数为7828⨯=A 。
所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。
于是14978632)(=⨯⨯⨯=A P 。
1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。
解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。
概率论与数理统计统计课后习题答案(有过程)
概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。
2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。
3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。
223由题设可知样本点总数,。
2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。
表示按逆时针方向乙在甲的第i个位置,。
则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。
《数理统计学(第2版)》习题答案及解题步骤
"+ !,0)0!"+
!"0,"+(6!>"))0!#!>"">(6!?"06!>/">"),0)0!#!?"
"?(!06!?/"?")
6!!"连续#当 ">,%#"?,%时#有6!>/">",6!>"#6!?/"?",6!?"
2#),!>#?"(:";><,%7!!!)"+!>/"">>",#!"!,?"+!?#?/"?"" "?,%
##!!)"+!>#>/">)##!!,"+!?#?/"?)
即有)0!个观测值小于等于>#一个落入区间 !>#>/">"#,0)0!个落入区间
!>/">#?)#一个落入区间 !?#?/"?)#余下"0,个大于?/"?$
27!!!)"+!>#>/">"#!!,"+!?#?/"?""
(!)0!"+ !+
(!)0!"+
"+ !,0)0!"+
!"0,"+(6!>"))0!(6!?"06!>"),0)0!
数理统计课后答案-第二章
证
(1) X n +1 =
= (1 −
(2)
1 1 1 )X n + X n +1 = X n + ( X n +1 − X n ) ; n +1 n +1 n +1 1 n +1 2 1 n +1 2 2 ( X − X ) = Xi − Xn ∑ ∑ +1 i n +1 n + 1 i =1 n + 1 i =1
1
(1)求样本均值 X ,修正样本方差 S * ,修正样本标准差 S * ,样本方差 S 和样本标准 差 S 的观测值; (2)求样本极差 R 和样本中位数 med( X 1 , L , X n ) 的观测值。 解 (1) 用计算器的统计功能可以求得 X = 2.125 , S * = 0.017127 , S * = 0.00029333 ,
2
1 n 1 X i − na ∑ n n X − a n i =1 1 X −a 1 n = = 解 (1) Y = ∑ Yi = ∑ i ; n i =1 b b n i =1 b
(2) S y =
2
1 n 1 n Xi − a X − a 2 1 2 ( Y − Y ) = ( − ) = 2 ∑ ∑ i n i =1 b b n i =1 nb
2
( X1 + X 2 )2 ( X 3 + X 4 + X 5 )2 ⎛ X1 + X 2 ⎞ ⎛ X 3 + X 4 + X 5 ⎞ 2 ~ χ ( 2) 。 =⎜ ⎟ + ⎟ +⎜ ⎜ ⎟ 2 3 2 ⎠ ⎝ 3 ⎝ ⎠
可见,只有当 a = 布,其自由度为 2。 (2) 因为 X 1 ~ N (0 ,1) , X 2 ~ N (0 ,1) , X 1 , X 2 相互独立,所以由 χ 分布的定义可知
概率论与数理统计学1至7章课后答案
第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201k k V V ==∑,求(105)P V >的近似值。
数理统计课后答案-第四章
T=
X − μ0 S*
n=
10.4867 − 10.5 × 15 = −0.2192 。 0.235635
2
对 α = 0.05 ,查 t 分布表可得 t1−α ( n − 1) = t 0.975 (14) = 2.1448 。 因为
T = − 0.2192 < 2.1448 ,所以接受 H 0 : μ = 10.5 ;
2
与正常情况相比,是否有显著的差异?(显著水平 α = 0.05 ) 解 问题相当于要检验 H 0 : σ = 20 。 n = 25 , S * = 404.77 。
2
χ2 =
2
(n − 1) S *2
σ
2 0
=
(25 − 1) × 404.77 = 24.286 。 20 2
对 α = 0.05 ,查 χ 分布表可得
对 α = 0.05 ,查 t 分布表可得 t1−α ( m + n − 2) = t 0.975 (15) = 2.1314 。 因为 T = 0.1956 = 0.1956 < 2.1314 ,所以接受 H 0 : μ1 = 产滚珠直径的平均值没有显著的差异。 4.9 甲、乙两台机床加工同一种零件,从这两台机床加工的零件中,随机抽取一些样品, 测得它们的外径(单位:mm)如下: 机床甲 机床乙 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9 19.7, 20.8, 20.5, 19.8, 19.4, 20.6, 19.2
α = 0.05 ) 。
n = 5 , X = 4.364 , S * = 0.054129 。
(1)
T=
X − μ0 S*
n=
数理统计学导论课后答案
规
数量
格 身高 分布范围
比重 (套)
小 160 以
0.158
号下
65 190.38
中 160-16 均值±1*标准 0.682
号8
差
7 819.24
大 168 以
0.158
号上
65 190.38
合计
1200
数理统计学导论课后答案
7.解:用 1 代表“是”(即具有某种特征),0 代表“非”(即不具 有某种特征)。设总次数为 N,1 出现次数为 N1,频率(N1/N)记为 P。 由加权公式来不难得出:是非变量的均值=P;方差=P(1-P);标准差 = P(1 P) 。
23
85
1955
1
7258.47
80 81 90 以上
19
95
1805
1
21677.2
92 81 合计
110 ——
8300
7
平均成
标准
88 82
全班
绩:
方差: 差:
73 85
75.455 197.066 14.038
65 78
离差平方
72 80 成绩 人数 f 组中值 x xf
和
74 72 40 以下
2.任意一个变量数列都可以计算算术平均数和中位数,但可能
无法计算众数,同样,算术平均数和中位数可以衡量变量集中趋势,
但是众数有时则不能。因为有时有两个众数有时又没有众数。
3.答:可计算出总体标准差为 10,总体方差为 100,于是峰度
系数 K=34800/10000=3.48,可以认为总体呈现非正态分布。
83 88 成绩 人数 f 组中值 x xf
和
数理统计课后题标准答案
(2)若 未知。
解:n=16, x 2.125, s* 0.017
(1)若已知
0.01(cm),构造函数u
x
/
n
:
N (0,1)
给定置信概率90%,有 P{u u } 1
即
P(x u
2
0
n
x u
2
0 ) 1 2
n
置信区间为(x u
2
0 )为(2.125 0.0041)
n
(2)若 未知
解:作变换
yi
xi
100, a
100,
y
1 n
i
yi
1 5
0
0
x a y 100
sx2
sy2
1 n
i
yi 2
2
y
1 5
[(8)2
(6)2
32
52
62 ]
0
34
3.设X1,X2,…,Xn是参数为的泊松分布的母体 的一个子样,是子样平均数,试求EX 和 X
D解:x。:
p( ),
Ex
E(1 n
a
cyi
xi (a cyi ), nx na cn y, x a c y
i
i
而sx2
1 n
i
( xi
x)2
1 n
i
(a
cyi
a
c
y)2
c2 n
i
( yi y)2 c2sy2
2. 在五块条件基本相同的田地上种植某种 农作物,亩产量分别为92,94,103,105, 106(单位:斤),求子样平均数和子样方 差。
i
( xi )2 i
i
yi 2
概率论与数理统计学1至7章课后答案解析
第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{Λ===k k X P k,求 };6,4,2{)1(Λ=X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==ΛΛΛX P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。
数理统计教程第二章课后习题答案
数理统计第二章习题解答1.设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 2. 已知母体ξ均匀分布于()βα,之间,试求βα,的矩法估计量.解: 2βαξ+=E ,()122αβξ-=D 。
令()⎪⎪⎩⎪⎪⎨⎧=-=+22122n S αβξβα得 n S 3ˆ-=ξα,.3ˆnS +=ξβ 3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量.解: ()322adx x a a x E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a 中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i ix∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫ ⎝⎛⋅++=∏=n i i x n L ααα 令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα,得 ∑=--=ni iL xn1ln 1ˆα。
由于 ()01ln 222<+-=∂∂ααnL 故∑=--=ni iL xn1ln 1ˆα是α极大似然估计.(2) 由211+-=αξE 令ξα=+-211 得 .112ˆξξα--=5.用极大似然法估计几何分布 ()(),2,1,11=-==-k p p k P k ξ中的未知参数p .解:()()n x ni p p p L -∑-=1,令 ()01ln =---=∂∂∑pn x p n p p L i 得x p1ˆ=而01ln 2ˆ2<--=∂∂=x x n p Lpp ξ1ˆ=∴p是P 的极大似然估计. 6. 设随机变量ξ的密度函数为()0,,21>∞<<-∞=-σσσx e x f x,n ξξ,,1 是ξ的容量为n 的子样,试求σ的极大似然值. 解: ()()∑=--ix neL σσσ12,()01ln 2=+-=∂∂∑i x n L σσσσ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计学课后答案【篇一:数理统计习题】为总体(或母体),而把组成总体的每个元素称为个体。
1. 2 设随机样本(x1,x2,?,xn)来自总体为正态分布(x1,x2,?,xn)的联合分布函数为f(x1,x2,?,xn)?(2??)*2?n2n(?,?2),则样本exp{?12?2?(xi?1n2i??)}。
1.3 若对一批n件产品的合格率进行检查,从中有放回地随机抽取n件。
分别以0,1表示某件产品为次品和合格品,?(0??的0—1分布,即?1)表示产品的合格率,则总体x服从参数为?p(x?x)??x(1??)1?x,x?0,1。
所以样本(x1,x2,?,xn)的联合分布律数为p(x1?x1,x2?x2,?,xn?xn)???i?1nxi(1??)1?xi,xi?0,1.21.4 设随机样本x1,x2,x3来自总体为正态分布n(?,?数,则(x1?x2?x3)??,),其中?,?2是未知参11(x1?x2)??和(x1?x2?x3)都不是统计量,2?11222因为它们都含有未知参数,而(x1?x2?x3)(x1?x2?x3)和x1?x2?x3 32都是统计量。
1.5 设随机样本x1,x2,x3来自总体为正态分布n(?,?知参数,则213),其中?已知,?2是未12(x12?x22111(x1?x2?x3)??,(x1?x2)??(x1?x2?x3)和32312?x3)都是统计量,而(x1?x2?x3)不都是统计量。
?1.6 设x1,x2,?,xn是来自总体x的一个样本,则称统计量121ns?(xi?)2 ?nx??xi,ni?1ni?1n分别为样本的均值和样本方差;统计量1nk1nak??xi,bk??(xi?x)kni?1ni?1分别为样本k 阶原点矩和k 阶中心矩。
2显然,a1?x, b2?sn。
1.7 设(x1,x2,?,xn)是来自正态总体n(?,?任意一个确定线性函数2)的一个样本,统计量是样本的u?a1x1?a2x2???anxn,则统计量u?a1x1?a2x2???anxn也是服从正态分布的随机变量,其均值和方差分别为e(u)??(a1?a2???an)???ai?1ni,nd(u)??(a1?a2???an)??特别地,取a1?a2???an?22222?ai?12i。
1,则统计量u是样本的均值x,有下面的推论。
n21.8 设(x1,x2,?,xn)是来自正态总体n(?,?)的一个样本,则样本的均值?2)。
(2 x~n(?,n1.9 设(x1,x2,?,x25)是来自正态总体n(2,5)的一个样本,求统计量x的密度函数。
解由推论知52x~n(2,)?n(2,1),25则x的密度函数为fx(x1,x2,?,x25)?1exp[?(x?2)2]。
22?11.10 设(x1,x2,?,xn)是来自正态总体n(?,?数,求统计量t?的分布。
解作变换yi?2)的一个样本,且?是已知常?(xi?1ni??)2xi???,i?1,2,?,n,则y1,y2,?,yn相互独立,且同服从n(0,1)分布,所以2t?2??(i?1nxi???)??yi22i?1n服从?分布。
从而统计量t的密度函数为1.11 ①如果f~f(m,n),则②x1~f(n,m)。
f与y独立,则f~?2(1), y~?2(n),x?t2,即f(1,n)与t2(n)相同。
21.12 设(x1,x2,?,xn)是来自正态总体n(?,?)的一个样本,x??1nx??xi,则u?~n(0,1)。
ni?1?/n证明因为x1,x2,?,xn相互独立,与总体服从同一分布n(?,? 2),即xi~n(?,?21n),由正态分布的加性定理知x??xi服从正态分布。
又因为 ni?11n1ne(x)?e?xi}??e(xi)??,ni?1ni?11n1d(x)?d?xi}?2ni?1n所以?d(x)?ii?1n?2n,x~n(?,?2n)。
再由正态分布的性质知 u?x???/n~n(0,1)。
1.13 设(x1,x2,?,xn)是来自正态总体n(?,?2)的一个样本,则1?2?(xi?1ni??)2~?2(n)。
2证明因为x1,x2,?,xn相互独立,与总体服从同一分布n(?,? ),即xi~n(?,?2),于是xi???~n(0,1),(i?1,2,?,n)。
再由?2的定义,则1?2?(xi?1ni??)2~?2(n)。
21.14 设(x1,x2,?,xn)是来自正态总体n(?,?)的一个样本,则t?x??sn/n?1x??~t(n?1)。
nsn2证明由定理2.2知,2?/n~n(0,1),由定理2.10知,?2~?2(n?1),且x???/n与nsn?2相互独立。
由t分布的定义,则2nsn?/~t(n?1)。
t?2sn/n?1?/n(n?1)?x??x??1.15 设(x1,x2,?,xm)是来自正态总体(y1,y2,?,yn)是来自正态总体2n(?1,?1)2的一个样本,和n(?2,?2)的一个样本,且x1,x2,?,xmy1,y2,?,yn相互独立,则(x?y)?(?1??2)?21m??22~n(0,1)。
n证明因为(x1,x2,?,xm)是来自正态总体(y1,y2,?,yn)是来自正态总体2?2n(?1,?1)2的一个样本,n(?2,?2)的一个样本,所以x~n(?1,2?12m),y~n(?2,性定理知n)。
又因为x1,x2,?,xm和y1,y2,?,yn相互独立,再由正态分布的可加x?y~n(?1??2,从而?12m?2?2n),(x?y)?(?1??2)?21m??22~n(0,1)。
n1.16 设(x1,x2,?,xm)是来自正态总体(y1,y2,?,yn)是来自正态总体n(?1,?2)的一个样本,和n(?2,?2)的一个样本,且x1,x2,?,xmy1,y2,?,yn相互独立,则t?(x?y)?(?1??2)mn(m?n?2)~t(m?n?2)。
22m?nms1?ns21m1n1n1m222其中s??(xi?x),x??xi;s2??(yi?y),y??yi。
mi?1ni?1ni?1mi?121证明由定理2.10知,ms12?22~?(m?1),2ns22?2~?2(n?1),又x1,x2,?,xm和y1,y2,?,yn相互独立,由?的加法定理可得【篇二:数理统计习题】、填空题(本题15分,每题3分)1、总体x~n(20,3)的容量分别为10,15的两独立样本均值差?~________;22、设x1,x2,...,x16为取自总体x~n(0,0.52)的一个样本,若已知?0.01(16)?32.0,则p{?xi2?8}=________;i?1163、设总体x~n(?,?2),若?和?2均未知,n为样本容量,总体均值?的置信水平为1??的置信区间为(x??,x??),则?的值为________;4、设x1,x2,...,xn为取自总体x~n(?,?2)的一个样本,对于给定的显著性水平?,已知关于?2检验的拒绝域为?2≤?12??(n?1),则相应的备择假设h1为________;?2已知,5、设总体x~n(?,?2),在显著性水平0.05下,检验假设h0:???0,h1:???0,拒绝域是________。
1、n(0);2、0.01;3、t?(n?1)212sn2; 4、?2??0; 5、z??z0.05。
二、选择题(本题15分,每题3分)1、设x1,x2,x3是取自总体x的一个样本,?是未知参数,以下函数是统计量的为()。
13(a)?(x1?x2?x3) (b)x1?x2?x3 (c)x1x2x3(d)?(xi??)23i?1?2、设x1,x2,.,2?xn为取自总体x~n(?,?)的样本,x为样本均值,sn121n(xi?)2,?ni?1则服从自由度为n?1的t分布的统计量为()。
(a)n?1(x??)n(x??)n(x??)n?1(x??)(b)(c)(d)??snsn221n(xi?x)2, 3、设x1,x2,?,xn是来自总体的样本,d(x)??存在,s??n?1i?1则()。
(a)s2是?2的矩估计(b)s2是?2的极大似然估计(c)s2是?2的无偏估计和相合估计(d)s2作为?2的估计其优良性与分布有关224、设总体x~n(?1,?1),y~n(?2,?2)相互独立,样本容量分别为n1,n2,样本方差分别2222为s12,s2,在显著性水平?下,检验h0:?1的拒绝域为()。
??2,h1:?12??2(a)2s2s122s2?f?(n2?1,n1?1)(b)2s2s122s2?f1??2(n2?1,n1?1)(c)s12?f?(n1?1,n2?1)(d)s12?f1??2(n1?1,n2?1)5、设总体x~n(?,?2),?2已知,?未知,x1,x2,?,xn是来自总体的样本观察值,已知?的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平??0.05时,检验假设h0:??5.0,h1:??5.0的结果是()。
(a)不能确定(b)接受h0(c)拒绝h0 (d)条件不足无法检验 1、b; 2、d; 3、c; 4、a; 5、b.?2x0?x???,三、(本题14分)设随机变量x的概率密度为:f(x)???2,其中未知其他??0,参数??0,x1,?,xn是来自x的样本,求(1)?的矩估计;(2)?的极大似然估计。
解:(1) e(x)????xf(x)dx??0???2x2x??,3?22???)???,得?令e(x(2)似然函数为:l(xi,?)??i?1n233为参数?的矩估计量。
2?2n2xi?2?2n0?xi??,(i?1,2,?,n), ?xi,i?1n??max{x,x,?,x}。
而l(?)是?的单调减少函数,所以?的极大似然估计量为? 12n四、(本题14分)设总体x~n(0,?2),且x1,x2?x10是样本观察值,样本方差s2?2,(1)求?的置信水平为0.95的置信区间;(2)已知y?2x2?2?x2??~?(1),求d???3?的置信??222水平为0.95的置信区间;(?0。
.975(9)?2.70,?0.025(9)?19.023)解:?1818??,即为(0.9462,6.6667)(1)?2的置信水平为0.95的置信区间为?2; ,2???(9)?(9)0.975?0.025??x2?1?x2?122?=???(2)d?; dd[?(1)]?2??3??2??2??2??????22??x2?22??, ??由于d?是的单调减少函数,置信区间为?,??3??2?22?????即为(0.3000,2.1137)。