集合论测试题

合集下载

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,0,2,2A =-,{}22B x x =≤,则A B =( )A .{}1,0,2-B .{}1,0-C .{}0,2D .{}0,2,22.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--3.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(, C .{}0x x ≤D .{}32x x -≤<-4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.设集合(){}2log 1A x y x ==-,{}1,0,3B =-,则A B =( ) A .{}0 B .{}1,1- C .{}1,0-D .1,0,1,26.设全集U =R ,已知集合2|4A x x x >={},|4B x y x ==-{},则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-8.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)9.设{}{}21,230A x x B x x x =>=--<,则()R A B ⋂=( )A .{}1x x >-B .{}11x x -<≤C .{}11x x -<<D .{}13x x <<10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .PB .QC .∅D .U 11.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( ) A .P Q R ⋂=B .P Q ⊆C .Q P ⊆D .P Q R =12.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( )A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-13.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-14.从集合{1,2,3}U =的非空子集中随机选择两个不同的集合A ,B ,则{1}A B ⋂=的概率为( ) A .421B .542C .17D .55615.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________. 19.设函数()1ln 12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.设集合{}1,2,3,,2021M =⋅⋅⋅,对M 的任一非空子集A ,令()A σ为集合A 中元素的最大值与最小值之和,则所有这样的()A σ的算术平均值为______.22.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.23.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.24.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .27.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.28.关于x 的不等式()()2220R ax a x a +--≥∈的解集为][(),12,-∞-⋃+∞.(1)求a 的值;(2)若关于x 的不等式()()2320x c a x c c a -++-<解集是集合A ,不等式()()210x x -+>的解集是集合B ,若A B ⊆,求实数c 的取值范围.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈.(1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式化简集合B ,再利用交集的定义计算作答. 【详解】解不等式22x ≤得:x ≤{|B x x =≤,因{}2A =-,所以{A B ⋂=-. 故选:A 2.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 3.D 【解析】 【分析】根据韦恩图,写出相应集合即可 【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是UA ,所以{}32UA x x =-≤<-;故选:D4.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.C 【解析】 【分析】由对数函数定义域可求得集合A ,根据交集定义可得结果. 【详解】由10x ->得:1x <,即{}1A x x =<,{}1,0A B ∴=-. 故选:C. 6.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|1}{|1}A x y x x x ==+=≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 9.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据补集、交集的定义计算可得; 【详解】解:由2230x x --<,即()()310x x -+<,解得13x ,所以{}{}2230|13B x x x x x =--<=-<<,又{}1A x x =>,所以{}R1A x x =≤,所以(){}R 11A B x x ⋂=-<≤;故选:B 10.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;【详解】解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 11.C 【解析】 【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解. 【详解】如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=, 所以Q P ⊆. 故选:C.12.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 13.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 14.A 【解析】 【分析】写出集合{1,2,3}U =的非空子集,求出总选法,再根据{1}A B ⋂=,列举出集合,A B 的所有情况,再根据古典概型公式即可得解. 【详解】解:集合{1,2,3}U =的非空子集有{}{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,1,2,3共7个,从7个中选两个不同的集合A ,B ,共有2742A =种选法,因为{1}A B ⋂=,当{}1A =时,则B 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2A =时,{}1,3B =共1种,同理当{}1B =时,则A 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2B =时,{}1,3A =共1种, 则符合{1}A B ⋂=的共有31318+++=种, 所以{1}A B ⋂=的概率为844221=. 故选:A. 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个. 故答案为:4 17.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥18.7【解析】 【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果. 【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个.故答案为:719.10,2⎛⎤⎥⎝⎦【解析】 【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解. 【详解】解:因为函数1()ln12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>,所以()()f x f x -=-,即1112ln ln ln 12121mx mx xx x mx-+-=-=+-+, 所以112121mx xx mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln 12x f x x+=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦.故答案为:10,2⎛⎤⎥⎝⎦.20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:5 21.2022 【解析】 【分析】先分别求出集合M 的所有非空子集中最小的元素与最大的元素之和,从而得出答案. 【详解】集合{}1,2,3,,2021M =⋅⋅⋅的非空子集共有202121-个其中以1为最小元素的非空子集共有20202个,以2为最小元素的非空子集共有20192个, …………以2021为最小元素的非空子集共有021=个,所以集合M 的所有非空子集中最小的元素之和为202020190122220212⨯+⨯++⨯ ①其中以2021为最大元素的非空子集共有20202个,以20202为最大元素的非空子集共有20192个,…………以1为最大元素的非空子集共有021=个,所以集合M 的所有非空子集中最大的元素之和为202020190202122020212⨯+⨯++⨯ ②由① + ②可得:()()()202020190202112202022120212+⨯++⨯+++⨯202020190202222022220222=⨯+⨯++⨯()()2021202020192021122022222202220222112-=⨯+++=⨯=--所以所有这样的()A σ的算术平均值为:()20212021202221202221-=-故答案为:2022 22.4 【解析】 【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数. 【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2, 所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M = 故满足A M B ⊆⊆的集合M 的个数为4, 故答案为:4.23.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}-24.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断. (2)利用元素与集合的关系判断. (3)利用元素与集合的关系判断. (4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ; 13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数,当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果.27.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4}; (2){a |1<a ≤2}, 【解析】 【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得. (1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4}; (2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2,因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}. 28.(1)1;(2)72c --≤≤ 【解析】 【分析】(1)由给定条件可得-1,2是方程()2220ax a x +--=的根,且0a >,再借助韦达定理计算作答.(2)求出集合B ,按集合A 是空集和不是空集分类求解作答. (1)依题意,方程()2220ax a x +--=的解为-1,2,且0a >,于是得2122aa a -⎧=⎪⎪⎨-⎪=-⎪⎩,解得:1a =,所以1a =. (2)由(1)知,()(){}231210A x x c x c c =-++-<,而()1,2B =-,又A B ⊆,当A =∅时,()()2231811410c c c c c ∆=+--=++≤,解得77c --≤-+ 当A ≠∅时,2Δ1410311221(31)2(1)042(31)2(1)0c c c c c c c c c ⎧=++>⎪+⎪-<<⎪⎨⎪+++-≥⎪-++-≥⎪⎩,解得72c -+<≤综上得:72c --≤所以实数c的取值范围是72c --≤ 29.(1){23A B x x ⋂=-<≤或}9x =,A B R = (2)(){2R B A x x ⋂=≤-或}9x > 【解析】 【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R,然后再由交集的定义即可求解.(1)解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >, 所以(){2R B A x x ⋂=≤-或}9x >. 30.(1){|12}x x <<; (2)20,3⎛⎤ ⎥⎝⎦. 【解析】 【分析】(1)解一元二次不等式求集合A 、B ,应用集合的交运算求交集即可.(2)根据必要不充分关系有B A ≠⊂,即可求a 的范围. (1)由题设,{|12}A x x =-<<,当1a =时{|13}B x x =<<, 所以{|12}A B x x =<<; (2)由题设,{|3}B x a x a =<<,且{|12}A x x =-<<, 若p 是q 的必要不充分条件,则B A ≠⊂,又a 为正实数,即320a a ≤⎧⎨>⎩,解得203a <≤,故a 的取值范围为20,3⎛⎤⎥⎝⎦.。

集合论试题

集合论试题

一、 填空 20% (每空 2分)1、 如果有限集合A 有n 个元素,则|2A |= 。

某集合有101个元素,则有 个子集的元素为奇数。

2、设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= 。

B A = 。

3、 设|A|=3,则A 上有 个二元关系。

4、 A={1,2,3}上关系R= 时,R 既是对称的又是反对称的。

5、 偏序集><≤R A ,的哈斯图为,则≤R = 。

6、某人有三个儿子,组成集合A={S 1,S 2,S 3},在A 上的兄弟关系具有 性质。

7、设}1,0{=A ,N 为自然数集,⎩⎨⎧=是偶数。

,是奇数,,x x x f 10)(若A A f →:,则f 是 射的,若A N f →:,则f 是 射的。

二、选择 20% (每小题 2分)1、 集合}}}{,{},{,{ΦΦΦΦ=B 的幂集为( )。

A 、}},},{{},{{ΦΦΦΦ;B 、}}}},{,{},{{}}},{,{,{}},{,{}}},{,{{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;C 、}}}},{,{},{{}}},{,{,{}},{,{}},{,{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;D 、},}}},{,{},{{}}},{{,{}},{,}{{{B ΦΦΦΦΦΦΦΦΦΦ,2、下列结果正确的是( )。

A 、B A B A =-⋃)(;B 、Φ=-⋂A B A )(;C 、A B B A =⋃-)(;D 、Φ=Φ⋃Φ}{3、下面函数( B )是单射而非满射。

A 、12)(,:2-+-=→x x x f R R f ; B 、x x f R Z f ln )(,:=→+; C 、的最大整数表示不大于x x x x f Z R f ][],[)(,:=→;D 、12)(,:+=→x x f R R f 。

集合命题测试题及答案

集合命题测试题及答案

集合命题测试题及答案1. 已知集合A={x|x<5},B={x|x>3},求A∪B。

2. 集合M={x|-3≤x≤2},N={x|x<-1或x>5},求M∩N。

3. 集合P={x|x^2-5x+6=0},Q={x|x^2-4=0},求P∩Q。

4. 已知集合R={x|0<x<10},S={x|x∈N},判断R⊆S是否成立。

5. 集合T={x|-2<x<4},U={x|x>-3},求C_{U}T。

6. 已知集合W={x|x^2-x-6=0},求W的补集,假设全集为R。

7. 如果A={x|-1<x<3},B={x|-3<x<2},求A-B。

8. 集合X={1,2,3},Y={2,3,4},求X∪Y,X∩Y,X-Y。

答案1. 解:A∪B表示所有小于5或大于3的数,因此A∪B={x|x<5或x>3}。

2. 解:M∩N表示同时满足-3≤x≤2和x<-1或x>5的数。

由于x<-1和x>5不能同时满足,所以M∩N={x|-3≤x<-1}。

3. 解:P={x|x^2-5x+6=0}的解为{2,3},Q={x|x^2-4=0}的解为{-2,2},因此P∩Q={2}。

4. 解:R⊆S表示R中的所有元素都是S的元素。

由于R中的元素都是正整数,而S是自然数集,显然R⊆S不成立。

5. 解:C_{U}T表示U的补集与T的交集,即所有不属于U但属于T的数。

因此C_{U}T={x|-3≤x≤-2}。

6. 解:W={x|x^2-x-6=0}的解为{-2,3},全集R表示所有实数,因此W 的补集为R-W={x|x≠-2且x≠3}。

7. 解:A-B表示属于A但不属于B的元素。

因此A-B={x|-1<x≤2}。

8. 解:X∪Y={1,2,3,4},X∩Y={2,3},X-Y={1}。

结束语集合命题的题目类型多样,但核心都是围绕集合的基本运算和关系进行。

离散数学集合论练习题

离散数学集合论练习题

离散数学集合论练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN集合论练习题一、选择题1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).A .{2}∈B B .{2, {2}, 3, 4}BC .{2}BD .{2, {2}}B2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ).A .B ⊂ A ,且B ∈A B .B ∈ A ,但B ⊄AC .B ⊂ A ,但B ∉AD .B ⊄ A ,且B ∉A3.设集合A = {1, a },则P (A ) = ( ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}4.已知A ⊕B ={1,2,3}, A ⊕C ={2,3,4},若2∈ B,则( )A . 1∈CB .2∈C C .3∈CD .4∈C5. 下列选项中错误的是( )A . ∅⊆∅B . ∅∈∅C . {}∅⊆∅D .{}∅∈∅6. 下列命题中不正确的是( )A . x ∈{x }-{{x }}B .{}{}{{}}x x x ⊆-C .{}A x x =⋃,则x ∈A 且x A ⊆D . A B A B -=∅⇔=7. A , B 是集合,P (A ),P (B )为其幂集,且A B ⋂=∅,则()()P A P B ⋂=( )A . ∅B . {}∅C . {{}}∅D .{,{}}∅∅8. 空集∅的幂集()P ∅的基数是( )A . 0B .1C .3D .49.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的 B.对称的C.对称和传递的 D.反自反和传递的10.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反 B.传递 C.对称 D.以上都不对11. 设A={1,2,3,4},下列关系中为等价关系。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2,4,6A =,{}2,3,4,5B =,则A B 中元素的个数为( ) A .1B .2C .3D .42.已知集合{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .233x x ⎧⎫≤<⎨⎬⎩⎭B .2|43x x ⎧⎫<≤⎨⎬⎩⎭C .{}04x x <≤D .{}03x x <<3.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,54.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,35.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1-- C .{}2,1,1--D .{}2,1,1,2--6.设集合{}2|230A x x x =+-<,集合{|B y y ==,则A B =( )A .()1,1-B .()0,1C .[)0,1D .()1,+∞7.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加参加径赛和田赛有3人,同时参加径赛和球类比赛有3人,没有人同时参加三项比赛.只参加球类比赛的人数为( ) A .6B .7C .8D .98.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,211.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞ D .()1,2-12.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( ) A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( )A .∅B .[)1,-+∞C .[)1,5-D .()5,+∞15.设集合{}*5,,5m M x x C m N m ==∈≤,则M 的子集个数为( )A .8B .16C .32D .64二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.18.已知(){}22,1,01M x y xy y =+=<≤,(){},,N x y y x b b R ==+∈,如果MN ≠∅,那么b 的取值范围是______.19.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.20.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 21.已知全集{}1,2,3,4,5,6,7U =,集合A 、B 均为U 的子集.若{}5A B =,{}7A B ⋂=,则A =______.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.25.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 三、解答题26.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围.条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.27.已知集合{}{}{}2|60,|15,|1A x x x B x x C x a x a =+-≥=<<=≤<+(1)求A B(2)若B C C =,求实数a 的取值范围.28.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.29.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围.30.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的定义,即可求解. 【详解】因为集合{}1,2,4,6A =,{}2,3,4,5B =,所以{}2,4A B =,故A B 中元素的个数为2. 故选:B 2.A 【解析】 【分析】在数轴上分别作出集合A ,集合B ,再由交集的概念取相交部分. 【详解】因为{}03A x x =<<,2|43B x x ⎧⎫=≤≤⎨⎬⎩⎭,所以2|33A B x x ⎧⎫=≤<⎨⎬⎩⎭.故答案为:A. 3.C 【解析】 【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 4.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 5.C 【解析】 【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答.【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 6.C 【解析】 【分析】化简集合A 、B ,然后利用交集的定义运算即得. 【详解】因为集合{}2|230{|31}A x x x x x =+-<=-<<,集合{[,)|0B y y =+∞=, 所以[0,1)A B =. 故选:C . 7.C 【解析】 【分析】 由容斥原理求解 【详解】设同时参加球类比赛和田赛的人数为x ,由于没有人同时参加三项比赛 故281581433x =++---,得3x = 故只参加球类比赛的人数为14338--= 故选:C 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.D 【解析】 【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果. 【详解】()(){}120{2B x x x x x =-->=或1}x <,因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞. 故选:D. 10.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 11.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 12.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 13.B 【解析】 【分析】根据集合的并集计算即可. 【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤, 故选:B 14.B 【解析】【分析】先解一元二次不等式,在根据并集定义计算. 【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+,∴[)1,A B =-+∞. 故选:B. 15.A 【解析】 【分析】根据组合数的求解,先求得集合M 中的元素个数,再求其子集个数即可. 【详解】因为*5,,5m x C m N m =∈≤,由14555C C ==,235510C C ==,551C =,故集合M 有3个元素,故其子集个数为328=个. 故选:A.二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个. 故答案为:4 17.P Q ≠⊂ 【解析】 【分析】根据两个集合中的元素可判断出包含关系. 【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素,P Q ≠∴⊂.故答案为:P Q ≠⊂18.(-【解析】 【分析】数形结合,进行求解. 【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111b d ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-19.(){}2,5【解析】 【分析】由方程组可求得交点坐标,由此可得交集. 【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=.故答案为:(){}2,5. 20.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭.故答案为:1,1,22⎧⎫-⎨⎬⎩⎭21.{5,7}##{}7,5 【解析】 【分析】根据给定条件结合集合的运算性质即可计算作答. 【详解】因集合A 、B 均为U 的子集,则有U B B =⋃,于是得()()()A A U A B B A B A B =⋂=⋂⋃=⋂⋃⋂,而{}5A B =,{}7A B ⋂=, 所以{5,7}A = 故答案为:{5,7} 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:524.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.25.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}.三、解答题26.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+. 27.(1){}25A B x x ⋂=≤< (2)14a <≤ 【解析】 【分析】(1)先求出集合A 再计算A B 即可;(2)由B C C =得C B ⊆,列出不等式组,即可求解. (1){}{2603A x x x x x =+-≥=≤-或}2x ≥,故{}25A B x x ⋂=≤<;(2)由B C C =得C B ⊆,又C ≠∅,可得115a a >⎧⎨+≤⎩ ,解得14a <≤. 28.(1)[)2,A =+∞(2)(],2a ∈-∞【解析】【分析】(1)根据对数函数的单调解不等式即可;(2)先求()R ,2A =-∞,再分类讨论并满足R B A ⊆可得答案.(1) ()()2222222log log 2log log 220x x x x x x ≥⇒≥⇒≥>解得2x ≥,故[)2,A =+∞(2)由(1)()R ,2A =-∞当1a =时,B =∅,满足题意;当1a >时,()1,B a =,只需2a ≤;当1a <时,(),1B a =,满足题意.综上所述,(],2a ∈-∞.29.(1)[3,0]-(2)][(),62,∞∞--⋃+【解析】【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+≥⎧⎨=≤⎩,解得30a -≤≤,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x ∈-的值域为集合A ,()5g x ax a =+-,[1,3]x ∈-的值域为集合B .则对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立⇔A B ⊆. 因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x ∈-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-≤≤+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-≤≤+,因为A B ⊆,所以521523a a a a -≤-⎧⎨+≥+⎩,解得2a ≥;当0a <时,()g x 的值域为{|5252}B y a y a =+≤≤-,因为A B ⊆,所以521523a a a a +≤-⎧⎨-≥+⎩,解得6a ≤-.综上,实数a 的取值范围为][(),62,∞∞--⋃+30.1,2⎡⎫-+∞⎪⎢⎣⎭ 【解析】【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.。

集合论答案

集合论答案

一、填空 20%(每空2分)1、2n ;2100;2、{< 1 , 2 > , < 2 , 4 > , <3 , 3 > , < 1,3 >,<2,4> ,<4,2>}、{< 1 , 4 > , < 2 , 2 > };3、29;4、{< 1 , 1 > , < 2 , 2 > , <3 , 3 > ;5、{<a,b>,<a,d>,<a,e>,<b,d>,<b,e>,<a,c>,<a,f>,<a,g>,<c,f>,<c,g>}; 6、反自反性、对称性、传递性; 7、双射;满射。

二、选择三、Warshall 算法 15% 解:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000000010100000100000011R M=i 1时,R M [1,1]=1, A =R M=i 2时,M[1,2]=M[4,2]=1A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000001010100000100001011=i 3时,A 的第三列全为0,故A 不变=i 4时,M[1,4]=M[2,4]=M[4,4]=1A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000001010100000101001011 =i 5时,M[3,5]=1 ,这时 A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000001010100000101001011所以t (R)={<1,1>, <1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>} 。

四、 5%证明:对称性:0,,,**>>∈++<∈+∈+∀ac R di c bi a C di c C bi a 且 R bi a di c ca >∈++<∴>⇒,,0。

集合测试题与答案

集合测试题与答案

一、选择题(每题5分,共30分) 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-3.下列表示图形中的阴影部分的是()A .()()A CB CB .()()AB A CC .()()A B B CD .()A B C4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212=+的解可表示为{}1,1;其中正确命题的个数为( )A .0个B .1个C .2个D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题(每题5分,共30分)1.用符号“∈”或“∉”填空 (1)0______N ,5______N , 16______NA BC(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C AB =,则C 的非空子集的个数为 。

3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。

大学集合论试题及答案

大学集合论试题及答案

大学集合论试题及答案一、选择题(每题3分,共30分)1. 集合论的创始人是()。

A. 康托尔B. 罗素C. 希尔伯特D. 哥德尔2. 集合A和集合B的并集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'3. 若集合A是集合B的子集,则表示为()。

A. A⊆BB. A⊇BC. A⊂BD. A⊃B4. 空集是所有集合的()。

A. 子集B. 真子集C. 并集D. 交集5. 集合A和集合B的交集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'6. 若集合A和集合B的交集为空集,则A和B是()。

A. 子集B. 真子集C. 互斥的D. 相等的7. 集合的幂集是指()。

A. 集合的所有子集的集合B. 集合的所有元素的集合C. 集合的所有真子集的集合D. 集合的所有非空子集的集合8. 集合A和集合B的差集表示为()。

A. A∩BB. A∪BC. A-BD. A∩B'9. 集合的元素个数称为集合的()。

A. 基数B. 序数C. 秩D. 维数10. 集合论中,无限集合的基数可以是()。

A. 有限的B. 可数的C. 不可数的D. 以上都是二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集有个元素。

2. 集合{a, b, c}和集合{a, b}的交集是。

3. 集合{1, 2, 3}和集合{2, 3, 4}的并集是。

4. 集合{1, 2, 3}和集合{2, 3, 4}的差集是。

5. 集合{1, 2, 3}的补集在全集U={1, 2, 3, 4, 5}中是。

6. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∪B= 。

7. 集合{1, 2, 3}的子集个数是。

8. 集合{1, 2, 3}的真子集个数是。

9. 集合{1, 2, 3}的非空真子集个数是。

10. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B= 。

三、解答题(每题10分,共50分)1. 证明:若集合A是集合B的子集,且集合B是集合C的子集,则集合A是集合C的子集。

集合论作业

集合论作业
9
§3 关系的特性
1. 设 A={1, 2, 3}, 定义 A 上的二元关系如下: R={1, 1, 2, 2}, S={1, 1, 1, 2, 2, 1}, T={1, 2, 1, 3}, U={1, 3, 1, 2, 2, 1}.
试说明 R, S, T, U 是否是 A 上的对称关系和反对称关系.
2. 在 R2 平面上画出下述关系的关系图, 判断每一关系成立哪些性质. (1) R1={x, y | x=y}. (2) R3={x, y | | x |≤1 且| y |≥1}.
3. 设 A={1, 2, 3, 4}, 确定下列关系是否是自反的, 反自反的, 对称的, 反对称的或 传递的.
.
5
单元测试题(一)
一、单项选择题
1. 若集合 A={a, b, c}, 为空集合, 则下列表示正确的是( )
(A) {a}A
(B) {a}A
2. 对任意集合 S, S∪=S, 满足(
(C) aA )
(D) A
(A) 幂等律
(B) 零一律
(C) 同一律
(D) 互补律
3. 设 S1=, S2={}, S3=P({}), S4=P(), 以下命题为假的是( )
3. 找出由关系图所确定的关系并且给出它的关系矩阵.
f d e
b
c
a
7
§2 关系的运算
1. 设 A={1, 2, 3, 4}, R={1, 2, 2, 4, 3, 4, 4, 4}, S={1, 3, 2, 4, 4, 2, 4, 3}. (1) 求出 R∪S, R∩S, R-S, R1. (2) 求出 dom (R), ran (R), dom (R∩S), ran (R∩S).

集合论习题

集合论习题

课程作业——集合论部分•填空题1、集合有两种表示方法,分别为法和法。

2、“使有意义的所有的集合。

”可表示为:。

“大于3而小于或等于7的整数组成的集合”表示为。

3、写出A={a,b,c,d}}的全部子集,真子集为。

4、设A,B是两个集合,A={1,2,3,4},B={2,3,5},则A-B= ,r(B)-r(A)= ,r(A)的元素个数为。

5、设,则A-B= ,B-A= ,~A= ,~B= 。

6、全集E={a,b,c,d,e},A={a,d},B={a,b,e},C={b,d},求(AÇB)È~C= ,r(A)Çr(B)= 。

7、集合运算的基本定律:1)AÇA=A,满足律;2)AÇE=A,满足律;3)~(AÈB)=~AÇ~B,满足律。

8、A和B是任意两个集合,若有序对的第一个元素是A的一个元素,第二个元素是B的一个元素,则所有这样的有序对集合称为集合A和B 的,记作A´B,即A´B= 。

9、设A、B是两个集合,其中A={1,2},B={a,b,c},则A×B= ,B×A= ,所以笛卡尔积不满足律。

10、设A、B为两个有限集合,则根据包含排斥定理知:|A∪B|= 。

11、有序对(a,b)=(x,y)的充分条件是。

•单项选择题1、由集合运算定义,下列各式正确的有()。

•XÍXÈY B.XÊXÈY C.XÍXÇY D.YÍXÇY2、下列命题正确的是()。

A.fÇ{f}=f B.fÈ{f}=f C.{a}Î{a,b,c} D.fÎ{a,b,c}3、设集合,则()。

4、下列式子中正确的有()。

5、设为任意集合,下列命题正确的有()A、若,则;B、若,则;C、若则;D、若,则6、对于任意集合S,,满足()A、等幂律B、同一律C、零一律D、互补律7、某个集合的元数为10,可以构成()个子集。

集合论、图论重要习题100

集合论、图论重要习题100

集合论、图论重要习题100例:1、设A,B是两个集合,B≠¢,试证:若A×B=B×B, 则A=B。

2、设A,B,C,D是任意四个集合,证明:(A∩B)×(C∩D)=(A×C)∩(B×D)3、某班30名学生中学英语有7人,学日语有5人,这两科都选有3人,问两科都不选的有多少人?(|AC∩BC|+|A∪B|=30, |AC∩BC|=21人)4、令N={1,2,3,…},S:N→N,则(1)?n∈N,S(n)=n+1,S称为自然数集N上的后继函数。

(2)S(1)=1,?n∈N,S(n)=n-1,n≥2,S称为自然数集N 上的前仆函数。

5、设f:N×N →N,f((x,y))=xy。

则(1)说明f是否是单射、满射或双射?(2)求f(N×{1}),f-1({0})。

(1,4)≠(2,2),f((1,4))=f((2,2))=4;y∈N,f((1,y))=1·y=y,任一元都有原象;[f不是单射,f是满射]f(N×{1})={n·1|n ∈N}=N;f-1({0})={(x,y)|xy=0}={N×{0}}?{{0}×N}。

6、设R、I、N是实数、整数、自然数集合,下面定义映射f1,f2,f3,f4,f5,f6,试确定它们的性质。

(0 ∈N)(1)f1:R→R,f1(x)=2x;(2)f2:I→N,f2(x)=|x|;f1单射,不是满射。

f2不是单射,满射。

(3)f3:N→N,f3(n)=n(mod3);(4)f4:N→N×N,f4(n)=(n,n+1);f3不是单射,不是满射;f4单射,不是满射。

(5)f5:R→R,f5(x)=x+2;(6)f6:R→R,f6(x)=x2,x≥0,f6(x)=-2,x<0;f5是双射(单射,满射);f6不是单射,不是满射。

7、证明:在52个正整数中,必有两个整数,使得这两个整数之和或差能被100整除。

集合论复习题.doc

集合论复习题.doc

1.设集合A,B,其中A={1,2,3},B={1,2},则A-B=: P(A)-P(B)= .2.设有限集合A,|A| = n,则|P(AxA)| =.3.设集合A = {。

,幻,B = {1, 2},则从A到B的所有映射是, 其中双射的是.4.设A、B 为两个集合,A={ 1,2,4},B={3,4},则从AcB=; AuB=;A—B= .5.设A=(a, b, c, d),其上偏序关系R的哈斯图如右图所示,则R= o6.设A={1, 2, 3},则A上既不是对称的又不是反对称的关系%=;A上既是对称的又是反对称的关系R_2=。

7.A={1, 2, 3, 4, 5’ 6}, A上一兀关系『 = {<》,、>卜+〉是素数},用列T= ;T的关系图为;T具有性质。

8.偏序集<A,R>的哈斯图如右图所示,则《=o1.设集合A={2,{a},3,4},B = {{a},3,4,l},E为全集,则下列命题正确的是()。

(A){2}eA (B)(a}cA (C)0c({a}}cBcE (D){ {a},l,3,4}uB.2.设集合A={1,2,3},A 上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R 不具备()•A自反性B传递性C对称性D反对称性3.设有序集(A,W)关系W的哈斯图如下所示,若A的子集B = {2,3,4,5},则元素 6 为 B 的()。

L(A)下界(B)上界(C)最小上界(D)以上答案都不对3 y4.G =(2',㊉),其中S = {1,2,3},①为集合对称差运算,'则方程{1,2}S = {1,3}的解为()。

A、UK;B、{I?" c、{¥}; D、中。

5.集合A={1,2,3,4}上的偏序关系图如右图所示,则它的哈斯图为()oA、f : R t R, /Xx) = -+ 2x-1.B、f:Z*—R, /(x) = lnx.C、f,.R T Z, /(x) = [%],[%]表示不大于x的最大整数.D、f : R T R, /(.r)-2.r + l o7,下图描述的偏序集中,子集{b, e,f}的上界为(B )。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( )A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3] B .[1,5)- C .{1,2,3,4}D .{}1,2,3 3.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B ⋂=( )A .(,1)-∞B .[)1,+∞C .(]2,0-D .(0,1)4.若集合302x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x <<B .{}3x x >C .{}2x x >-D .{}3x x >-5.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()U A B B .()()U U A B C .()U A B ⋂ D .()U A B 7.若全集U =R ,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6} 8.已知集合{1,2,3},{2,3},{1,4}A B C ===,下列结论正确的是( )A .B A ∈B .{1}AC = C .{1}A C =D .A B 的真子集个数有4个 9.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()R AB =( ) A .(2,2)- B .(1,2)C .[)1,2D .(1,2]10.已知集合(){}lg 2A x y x ==-,{}2540B x x x =-+<,则A B =( ) A .{}12x x <<B .{}12x x <≤C .{}24x x <<D .{}24x x <≤11.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<12.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2 B .{}2,3 C .{}0,3 D .{}313.已知集合{}2,0,2A =-,{}0B x x =≥,则A B =( )A .{}0,2B .{}2C .{}2,2-D .2,0,2 14.已知集合{}12,12x A y y x -==≤≤,|lg 2B x y x ,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则M N =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2 二、填空题16.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.18.组成平面图形的点的集合是P ,这个平面图形所在的平面上的所有点组成的集合为Q ,那么P 与Q 的关系是___________.19.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.23.已知a ∈R ,不等式1a x≥的解集为P ,且-1∈P ,则a 的取值范围是____________. 24.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.25.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______. 三、解答题26.已知集合{}2280A x x x =+-≤.集合106x B x x -⎧⎫=<⎨⎬-⎩⎭,设集合()R I A B =. (1)求I ;(2)当x I ∈时,求函数9()1f x x x =+-的最小值.27.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈.(1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围;(2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.28.已知全集{1,2,3,4,5,6,7}U =,集合{2,3,6}A =,集合{1,2,3,5}B =,(1)求A B ,U B (2)求()()U U A B A B ,29.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284x B x ⎧⎫=<<⎨⎬⎩⎭. (1)当1a =-时,求()U A B ⋃;(2)若A ∩B =A ,求实数a 的取值范围.30.已知集合{}20A x ax bx c =++>,{}2540B x x x =-+<. (1)若2a =,5b =-,3c =-,求A B ;(2)若A B ⊆且B A ⊆,求不等式20cx bx a ++<的解集.【参考答案】一、单选题1.A【解析】【分析】根据补集的概念求出U A ,再根据并集运算即可求出结果. 【详解】由题意可知{}2,4U A =,又{}4B =,所以(){}2,4U A B =.故选:A.2.D【解析】【分析】根据集合的交集的概念可求出结果.【详解】{1,2,3,4}A =,{1,2,3}A B ⋂=. 故选:D3.B【解析】【分析】求出集合A 的补集,化简集合B ,再根据交集的概念可求出结果.【详解】 因为{}21A x x =-<<,所以R (,2][1,)A =-∞-+∞, 又{}lg B x y x ==(0,)=+∞,所以()R A B ⋂=[1,)+∞.故选:B4.C【解析】【分析】解分式不等式确定集合A ,再由并集的定义计算.【详解】 解:依题意,{}30232x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-,故选:C .5.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A6.C【解析】【分析】利用交集,并集和补集运算法则进行计算,选出正确答案.【详解】{}1,2,3,4A B =,(){}5U A B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5U U A B ==,B 错误;(){}{}{}4,53,44UA B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2U A B ==,D 错误.故选:C7.A【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B , {}|3U B x x =≥,则(){}3,4,5,6U B A =.故选:A8.C【解析】【分析】根据集合的运算逐一判断即可【详解】对于A ,B A ⊂,故A 错误对于B ,{}1,2,3,4A C =,故B 错误对于C ,{}1A C =,故C 正确对于D ,{}2,3A B ⋂=,则A B 的真子集有∅,{}2,{}3共3个,故D 错误.9.B【解析】【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可.【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=, {}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R , ∴()R A B =(1,2).故选:B.10.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】 由题知:(){}{}{}lg 2202A x y x x x x x ==-=->=>,{}{}254014B x x x x x =-+<=<<,所以,{}24A B x x ⋂=<<. 故选:C .11.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.12.D【解析】【分析】利用补集和交集的定义可求得结果.【详解】由已知可得{}0,3U A =,因此,(){}U 3A B ⋂=,故选:D.13.A【解析】【分析】利用交集的定义可求得结果.由已知可得{}0,2A B =.故选:A.14.C【解析】【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案.【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞.∵2A ∈,2B ∈/,故A 错,B 错;∵R 2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C15.D【解析】【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可.【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>,又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭,故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.710##0.7 【解析】【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果.【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 18.P Q ≠⊂ 【解析】【分析】根据两个集合中的元素可判断出包含关系.【详解】集合P 包含的所有元素都在集合Q 中,且集合Q 包含集合P 所不包含的其他元素, P Q ≠∴⊂. 故答案为:P Q ≠⊂ 19.{}1x x <【解析】【分析】利用并集概念及运算法则进行计算.【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<. 故答案为:{}1x x <20.4a ≤-或5a ≥【解析】【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案.【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥解得4a ≤-或5a ≥故答案为:4a ≤-或5a ≥21.{(2,1)}【解析】【分析】利用加减消元法求得方程组的解集.【详解】依题意13x y x y -=⎧⎨+=⎩, 两式相加得24,21x x y ==⇒=,所以方程组的解集为{(2,1)}.故答案为:{(2,1)}22.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,323.(]1-∞-【解析】【分析】把1x =-代入不等式即可求解.【详解】因为1P -∈,故11a ≥-,解得:1a ≤-,所以a 的取值范围是(]1-∞-. 故答案为:(]1-∞-24.{}34x x ≤<【解析】【分析】 求出{}24A x x =<<与{}3B x x =≥,进而求出A B .【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤< 故答案为:{}34x x ≤<25.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.三、解答题26.(1){}26x x <<;(2)7.【解析】【分析】(1)化简集合,然后利用补集的定义及交集的定义运算即得; (2)利用基本不等式即得.(1) ∵{}{}228042A x x x x x =+-≤=-≤≤,{}10166x B x x x x -⎧⎫=<=<<⎨⎬-⎩⎭, ∴{R 4A x x =<-或}2x >,(){}R 26I A B x x =⋂=<<;(2) 当x I ∈时,()11,5x -∈,∴99()111711f x x x x x =+=-++≥=--, 当且仅当911x x -=-,即4x =取等号, 所以函数9()1f x x x =+-的最小值为7. 27.(1)1,22⎡⎫⎪⎢⎣⎭ (2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可,(2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合, 故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2)解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题, 所以R B A ≠∅,即125a +,解得2a .所以a 的取值范围[)2,+∞.28.(1){1,2,3,5,6}A B ⋃=,{4,6,7}U B = (2)(){1,5},(){1,4,5,6,7}U U A B A B ⋂=⋂=【解析】【分析】 (1)根据并集和补集的概念与运算直接求得结果;(2)根据补集和交集的概念与运算先求出U A 、A B ,再求出()()U U A B A B ⋂⋂、即可. (1)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{1,2,3,5,6}A B ⋃=,{4,6,7}U B =; (2)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{}1,4,5,7U A =,{}2,3A B ⋂=,所以(){1,5}(){1,4,5,6,7}U U A B A B ⋂=⋂=,.29.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 30.(1)(3,4)(2){x |14x <或x >1} 【解析】【分析】(1)可求出集合A ,B ,然后进行交集的运算即可;(2)根据题意知A =B ,从而可判断a <0,并得出b =−5a ,c =4a ,从而原不等式可变成24510x x -+>,然后解出x 的范围即可.(1)B ={x |1<x <4},a =2,b =−5,c =−3时,{}21|2530{|2A x x x x x =-->=<-或x >3}, ∴A ∩B =(3,4);(2)∵A B ⊆且B A ⊆,∴B A =,∴a <0,154a b c ==--, ∴b =−5a ,c =4a ,∴不等式20cx bx a ++<变成2540a ax x a -+<,且a <0,∴24510x x-+>,解得14x<或x>1,∴不等式20cx bx a++<的解集为{x|14x<或x>1}。

《集合论、常用逻辑用语、函数及其图像、导数及其应用》测试题

《集合论、常用逻辑用语、函数及其图像、导数及其应用》测试题

18.(12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立, 则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+ (b-1)(a≠0). (1)当a=1,b=-2时,求f(x)的不动点; (2)若对于任意实数b,函数f(x)恒有两个相异不动点,求a 的取值范围.
【解析】(1)当a=1,b=-2时,f(x)=x2-x-3,因为x0为不动 点,所以f(x0)=x02-x0-3=x0,解得x0=-1或x0=3,-1和3是 函数的两个不动点. (2)因为函数f(x)恒有两个相异的不动点,所以方程 f(x)=ax2+(b+1)x+(b-1)=x,也就是ax2+bx+(b-1)=0 对任何实数b恒有两个不相等的实数根,即b2-4a(b-1)>0 对任意的b∈R恒成立,这个不等式可化为b2-4ab+4a>0, 所以(4a)2-16a<0,解得0<a<1.
【解析】①显然正确;对于②,有f(x)=x|x|+c
x 2 x
c(x显然0)f(,x)在R上是增函数,②正确;对于
2 cx<0
③,由f(-x)+f(x)=(-x|-x|-bx+c)+(x|x|+bx+c)=2c

f(x)的Байду номын сангаас象关于点(0,c)对称,③正确;对于④,当b=
-4,c=3时,方程有三个根,故①②③是正确的.
(C)①③④
(D)②③④
【解析】选A.①x2+2x>4x-3推得x2-2x+3=(x-1)2+2>0恒成立.
故正确;②根据基本不等式可知要使不等式成立,需要

集合论测试题

集合论测试题

1.用列元素法表示下列集合:(1)S1={x | x是十进制的数字}(2)S2={x | x=2或x=5}(3)S3={x | x∈Z 且 3<x<12 }(4)S4={x | x∈R 且 x2-1=0且x>3}(5)S5={ (x,y) | x,y∈Z 且0≤x≤2且-1≤y≤0}2.设A,B,C,D是Z的子集,其中:A={1,2,7,8}B={ x | x2<50且x∈Z}C={ x∈Z且0≤x≤30且x可以被3整除}D={x | x=2k且k且0≤k≤6}用列举法表示A∩B∩C∩D和A∪B∪C∪D3.设R为实数集,X={x | x∈R且-3≤x<0}Y={x | x∈R且-1≤x<5}W={x | x∈R且x<1}求(X∩Y)-W4.设X={1,2,3},Y={2,3,4,5},W={2,3},求(X∪Y)⊕W5.设A,B,C是任意集合,证明:(1)(A-B)-C=A-(B∪C)(2)(A-B)-C=(A-C)-(B-C) (3)(A-B)-C=(A-C)-B6.证明集合恒等式(1)A(B~A)=B∩A(2)~((~A∪~B)∩~A)=A7.已知,{ 求A×P(A)8.设A={1,2,4,6},列出下列关系R:(1)R={(x , y) | x , y ∈A 且 x+y≠2} (2)R={(x , y) | x , y ∈A 且 |x-y|=1} (3)R={(x , y) | x , y ∈A 且 x/y∈A} (4)R={(x , y) | x , y ∈A 且 y为素数}9.设A={0,1,2,3},R是A上的关系,且R={(0,0),(0,3),(2,0),(2,1),(2,3),(3,2)}给出R的关系矩阵和关系图。

10.设A={(1,2),(2,4),(3,3)}B={(1,3),(2,4),(4,2)}求A∪B,A∩B,dom(A),dom(B),dom(A∪B),ran(A),ran(B),ran(A∩B)11.设A={a,b,c,d},R1,R2为A上的关系,其中R1={(a,a),(a,b),(b,d)}R2={(a,d),(b,c),(b,d),(c,b)}求R1O R2,R2O R1,R12,R2312.设R1和R2为A上的关系,证明:(1)(R1∪R2)-1=R1-1∪R2-1(2)(R1∩R2)-1=R1-1∩R2-113.设R={(a,b),(b,c),(b,e),(c,d),(d,c),(e,e)},试给出r(R),s(R),t(R)及其关系图14.设A={1,2,3,4},R是A上的等价关系,且R在A上所构成的等价类是{1},{2,3,4}。

集合练习题及答案

集合练习题及答案

集合练习题一.选择题1.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是A 、8B 、7C 、6D 、52.若集合{}0|2≤=x x A ,则下列结论中正确的是 A 、A=0B 、0A ⊆C 、∅=A D 、A ∅⊆3.下列五个写法中①{}{}2,1,00∈,②{}0≠⊂∅,③{}{}0,2,12,1,0⊆,④∅∈0, ⑤∅=∅ 0,错误的写法个数是 A 、1个B 、2个C 、3个D 、4个4.方程组⎩⎨⎧-=-=+11y x y x 的解集是A {}0,1x y ==B {}1,0C {})1,0(D {}(,)|01x y x y ==或5.设A 、B 是全集U 的两个子集,且A ⊆B,则下列式子成立的是 AC U A ⊆C U BBC U A ⋃C U B=UCA ⋂C U B=φDC U A ⋂B=φ6.已知全集⎭⎬⎫⎩⎨⎧∈∈-=Z a N a a M 且56|,则M=A 、{2,3}B 、{1,2,3,4}C 、{1,2,3,6}D 、{-1,2,3,4} 7.集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是A 、1-≤aB 、1≤aC 、1-≥aD 、1≥a8.设集合P 、S 满足P ⋂S=P,则必有APS ;BP ⊆S ;CSP ;DS=P;9.设全集},,,,{e d c b a U =,A 、B 都是U 的子集}{e B A =⋂,}{d B A C U =⋂,},{b a B C A C U U =⋂,则下列判断中正确的是AcA 且cB ; BcA 且cB ; CcA 且cB ; DcA 且cB; 10.若C A B A ⋃=⋃,则一定有AB=C ;B C A B A ⋂=⋂; C C C A B C A U U ⋃=⋂;D C A C B A C U U ⋂=⋂;11.已知集合M 和N 间的关系为M N M =⋂,那么下列必定成立的是A Φ=⋂M N C U ;B Φ=⋂N MC U ; C Φ=⋂N C M C U U ;D Φ=⋃N C M C U U ;12.若U={x,y ∣x,y ∈R},M={x,y ∣123=--x y },N={x,y ∣y-3=x-2},则C U MN 是A φ; B{2,3};C{2,3};D{x,y ∣y-3≠x-2};13.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则)(B A A --总等于AA ;BB ;C B A ⋂;D B A ⋃;14.若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==,},16|{Z n n a c C ∈+==,则A 、B 、C 的关系是AABC ; BAB=C ; CA=BC ;DA=B=C;15.下列表述中错误的是A .若AB A B A =⊆ 则,B .若B A B B A ⊆=,则C .)(B A A)(B A D .()()()B C A C B A C U U U =16.下列各项中,不可以组成集合的是A .所有的正数B .约等于2的数C .接近于0的数D .不等于0的偶数 17.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .M NC .N MD .φ=⋂N M 18.表示图形中的阴影部分 A .)()(C B C A ⋃⋂⋃ B .)()(C A B A ⋃⋂⋃ C .)()(C B B A ⋃⋂⋃D .C B A ⋂⋃)(19.已知集合A 、B 、C 为非空集合,M=A ∩C,N=B ∩C,P=M ∪N,则 A .C ∩P=C B .C ∩P=P C .C ∩P=C ∪P D .C ∩P=φ20.定义集合运算:A ⊙B ={z ︳z =xyx+y ,x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为A0B6C12D18 二、填空题1.调查某班50名学生,音乐爱好者40名,体育爱好者24名,则两方面都爱好的人数最少是,最多是2.已知{}2|1,A y y x x ==+∈R ,全集U =R ,则A = N U.A B C3.设{}22,4,1U a a =-+,{}2,|1|A a =+,{}7A = U,则a =.4.已知A ={x |x <3},B ={x |x <a } 1若B ⊆A,则a 的取值范围是______ 2若A B,则a 的取值范围是______5.若{1,2,3}A ⊆{1,2,3,4},则A =______ 6.已知{}{}22|2004(2)400x x a x a +⨯++-==,则a =.7.若{}2|10,A x x x x R =+-=∈,{}2|10,B x x x x R =-+=∈,则集合,A B 的关系是. 8.若已知{}2|220A x x x a =-+-=,{}2|2220B x x x a =-++=,A B =∅,则实数a 的取值范围是.9.设集合},12|{2R x x x y y A ∈+-==,集合},1|{2R x x y y B ∈+-==,则=⋂B A ; 10.}|),({22y x y x A ==,}|),({2x y y x B ==,则=⋂B A ;11.设集合}043|{2=-+=x x x A ,}01|{=-=ax x B ,若B B A =⋂, 则实数a=;12.设全集},1001|{Z x x x U ∈≤≤=及其二个子集},12,1001|{Z k k m m m A ∈+=≤≤=,},3,1001|{Z k k n n n B ∈=≤≤=,则B A C U ⋂中数值最大的元素是;13.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围; 若至少有一个元素,则a 的取值范围;14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为.15.已知}1,0,1,2{--=A ,{|,}B y y x x A ==∈,则B =.16.方程0)3)(2()1(2=-+-x x x 的解集中含有_________个元素;17.已知U={},8,7,6,5,4,3,2,1(){},8,1=⋂B C A U (){},6,2=⋂B A C U ()(){},7,4=⋂B C A C U U 则集合A=18.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则A∩B=19.设含有三个实数的集合既可以表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可以表示成{}2,,0a a b +,则20032004a b +=;20.满足{}1234,,,M a a a a ⊆,且{}{}12312,,,M a a a a a =的集合M 的个数是;集合练习题2答案一、选择题答案 题号 1 2 3 4 5 6 7 8 9 10 答案 C D C C C D C B D D 题号 11 12 13 1415 16 17 18 19 20 答案 A CCCC C B A B D二、填空题答案1.14,24;{}0,2,3,4}2-B A 01a <<,-41,113.9|,08a a a ⎧⎫≥=⎨⎬⎩⎭或,9|8a a ⎧⎫≤⎨⎬⎩⎭当A 中仅有一个元素时,0a =,或980a ∆=-=; 当A 中有0个元素时,980a ∆=-<; 当A 中有两个元素时,980a ∆=->;∪B 15.{0,1,2}{}8,5,3,1(){}1,1-1-。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题1. 集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},则A与B的交集A∩B是:A. {1, 2, 3}B. {4, 5}C. {6, 7, 8}D. ∅2. 设集合C={x | x是质数},集合D={x | x是偶数},则C与D的并集C∪D是:A. {2, 3, 5, 7}B. {1, 2, 3, 4, 5}C. {2, 3, 5, 7, 9}D. ∅3. 若集合E={x | x是小于8的正整数},集合F={x | x是3的倍数},则E与F的补集∁_{U}(E∩F)在全集U={1, 2, 3, 4, 5, 6, 7, 8, 9}中表示为:A. {1, 2, 4, 5, 6, 7}B. {3, 6, 9}C. {1, 2, 4, 5, 6, 7, 8}D. {2, 4, 6, 8}二、填空题4. 设集合G={0, 1, 2},集合H={1, 3, 4},求G与H的对称差,即G△H = ______。

5. 集合K={x | x是小于10的正整数},集合L={x | x是2的整数幂},则K与L的交集不包括的元素是 ______。

6. 给定集合M={x | x是4的倍数},集合N={x | x是5的倍数},求M与N的差集,即M\N = ______。

三、简答题7. 描述集合的运算性质,并给出两个例子说明。

答:集合的运算性质包括交换律、结合律、分配律和德摩根律。

例如,交换律指的是集合的并集和交集不依赖于集合的顺序,如A∪B = B∪A,A∩B = B∩A。

结合律意味着并集和交集的运算可以分步进行,如(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

德摩根律指的是补集的补集是原集合,如∁_{U}(∁_{U}(A)) = A。

8. 解释什么是集合的幂集,并给出一个例子。

答:集合的幂集是指原集合所有子集构成的集合。

例如,集合P={a, b}的幂集是{{a}, {b}, {a, b}, ∅},它包含了P的所有可能子集。

集合论习题

集合论习题
1奇整数集合2小于7的非负整数集合33571113171923297
1 集合
3. 确定下列的包含和属于关系是否正确 (1) 正确,ø是所有集合的子集 (2) 错误,ø没有真子集 (3) 错误,ø没有元素 (4) 正确,{ ø }集合有ø元素 (5) 正确,ø是所有集合的子集 (6) 正确,综合(4)(5) (7) 错误,{ ø }不是{ ø }的元素,{ ø }是{ ø }的子集 (8) 正确,ø是所有集合的子集,所以ø是 P(A)的子集; A 的 0 元子集是ø,所以ø∈P(A) (9) 正确,{a, b}是{a, b, {a, b}}的元素 (10) 错误,{a, b}不是{a, b, {a, b, c}}的元素 (11) 错误,{a, b}不是{a, b, {{a, b}}}的元素 4. 设 A,B,C 为任意三个集合,下列各命题是否为真,并证明你的结论 (1) 若 A ∈B,且 B 包含于 C 则 A ∈C (此命题为真) 证明: 对任意 x, x∈B → x∈C 为真,故 A∈B 为真时,A ∈C 为真 (2) 若 A ∈B,且 B 包含于 C 则 A 包含于 C (此命题为假) 因为 A 可能是元素,此时不可能是 C 的子集 (3) 若 A 包含于 B,且 B∈C 则 A∈C (此命题为假) 不妨设 A={a, b}, B={a, b, c}, 是 C 的元素 (4) 若 A 包含于 B,且 B∈C 则 A 包含于 C (此命题为假) 不妨设 A={a, b}, B={a, b, c}, C={{a, b, c}, d},此时 A 不是 C 的子集 5. 试证明属于关系不满足传递性,即对任意集合 A,B,C 若 A∈B 且 B∈C 不一定 有 A∈C 证明: (举一反例即可) 不妨设 A={a}, B={{a}, b}, C={ {{a}, b}, c},此时 A∈B, B∈C, 但 A 不是 C 的元素。 6. 列出下列集合的各元子集,并求幂集 (1)A={a,b,c} 解:0 元子集为:ø 1 元子集为:{a},{b},{c} 2 元子集为:{a,b},{a,c},{b,c} 3 元子集为:{a,b,c}

经典集合测试题及答案

经典集合测试题及答案

集合测试题(测试时间:40分钟总分:100分)学生姓名______________成绩________________一、选择题1.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合; (3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。

A .0个B .1个C .2个D .3个2.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为()A .1B .1-C .1或1-D .1或1-或03.若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有()A .MN M =B .M N N =C .M N M =D .M N =∅ 4.方程组⎩⎨⎧=-=+9122y x y x 的解集是()A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-。

5.下列式子中,正确的是()A .R R ∈+B .{}Z x x x Z ∈≤⊇-,0|C .空集是任何集合的真子集D .{}φφ∈ 6.下列表述中错误的是()A .若AB A B A =⊆ 则,B .若B A B B A ⊆=,则C .)(B AA )(B AD .()()()B C A C B A C U U U =二、填空题1.用适当的符号填空(1){}()(){}1|,____2,1,2|______3+=≤x y y x x x(2){}32|_______52+≤+x x , 子曰:学而不思则罔,思而不学则殆。

(3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭2.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则___________,__________==b a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.用容斥原理求解下列问题 某班有学生70人,期末数学、语文 和英语统考。其中数学优秀的有31人, 语文优秀的有36人,英语优秀的有29 人,3门成绩都优秀的有5人,仅有两 门成绩为优秀的有24人,问3门成绩都 不为优秀的有多少人?
4.设R1是集合A、B上的二元关系,R2是集合 B、C上的二元关系,则有 1 ( R1 R2 ) 1 R2 R11 5、设R是集合A上的二元关系,则 rs(R)=sr(R) 6.设R是A上的二元关系,则 R是对称的,当且 仅当R=R-1。
则R是(
A. 自反的 B. 对称的 C. 反对称的 D. 可传递的
13. A {a, b, c}, 则A有 ___个不同的子集; A A有 __ 个元素; A上的二元关系有__ 个。
第二篇
集合、关系、函数测试
1.求下列集合的幂集。 ① P ( {Ø }) ② P ( {{Ø}}) ③ P ( {{Ø}}) ④ P ({Ø ,{Ø }})
2.试证明
a ) A ( B C ) ( A B) ( A C )
b) A ( B C ) ( A B ) ( A C ) c ) A ( B C ) ( A B) ( A C )
7.设集合 A 4, B 3,则 从集合 A到B可以定义 _____种不同的二元关系, 其中 _____个符合函数定义。 有 _____个单射, _____个满射。
8.设集合 A 3, B 4,则 从集合 A到B可以定义 _______ 种不同的二元关系, 其中 _______ 个符合函数定义。 有 _______ 个单射, _______ 个满射。
9、A上的偏序关系是指具有()性质的关系; A上的等价关系是指具有()性质的关系;
A上的相容关系是指具有()性质的关系。
10. f : A B存在逆函数的条件是( )。
11、非空集合A上的平凡关系是(); 非空集合A的平凡子集是()。
12.
设A={0,1,2,3},A上的关系 )
R {0,0, 0,2, 1,1, 1,3, 2,2, 2,0, 3,1} ,
相关文档
最新文档