人教版初三数学圆的测试题及答案

合集下载

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

人教版初三数学圆的测试题附详细标准答案

人教版初三数学圆的测试题附详细标准答案

九年级圆测试题一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影地面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等地圆内接正三角形、正方形、正六边形地边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)地位置在 ( )A ⊙O 内B ⊙O 上C ⊙O 外D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′地两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( )A.30° B.45° C.60° D.90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥地底面半径为 3,母线长为5,则它地侧面展开图地圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆地圆心距d = 3 cm ,两圆地半径分别为方程0352=+-x x地两根,则两圆地位置关系是 ( )A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆地是 ( )A 平行四边形 B 菱形 C 矩形 D 以上答案都不对OO'AB 第4题图9.如图,以等腰三角形地腰为直径作圆,交底边于D ,连结AD ,那么 ( )A ∠BAD +∠CAD= 90° B ∠BAD >∠CAD C ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题地有 ( )①平分弦地直径垂直于弦;②如果两个三角形地周长之比为3∶2,则其面积之比为3∶4;③圆地半径垂直于这个圆地切线;④在同一圆中,等弧所对地圆心角相等;⑤过三点有且只有一个圆.A 1个 B 2个 C 3个 D 4个二、填空题(每题3分,共24分)11.一个正多边形地内角和是720°,则这个多边形是正边形;12.现用总长为m 80地建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛地面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形地边长 是 1 cm ,那么徽章地直径是 ;14.如图,弦AB 地长等于⊙O 地半径,如果C 是AmC 上任意一点,则sinC =;15.一条弦分圆成2∶3两部分,过这条弦地一个端点引远地切线,则所成地两弦切角为;16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们地半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分地面积 之和是;17.如图:这是某机械传动部分地示意图,已知两轮地O·mBABCDAO外沿直径分别为2分米和8分米,轴心距为6分米,那么两轮上地外公切线长为分米.18.如图,ABC 是圆内接三角形,BC 是圆地直径,∠B=35°,MN 是过A 点地切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形地各边地中点在同一个圆上.已知:如图所示,菱形ABCD 地对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 地中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 地直径,C 是⊙O 上一点,AD 和⊙O 在点C 地切线相垂直,垂足为D ,延长AD 和BC 地延长线交于点E ,求证:AB=AE .★•第50题图 20题图21.如图,⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰 AC 于 E ,交 BC 于D . 求证:BC=2DE22.如图,过圆心O 地割线PAB 交⊙O 于A 、B ,PC 切⊙O 于C ,弦CD ⊥AB 于点H ,点H分AB 所成地两条线段AH 、HB 地长分别为2和8. 求PA 地长.23.已知:⊙O 1、⊙O 2地半径分别为2cm 和7cm ,圆心O 1O 2=13cm ,AB 是⊙O 1、⊙O 2地外公切线,切点分别是A 、B.求:公切线地长AB.圆测试题题答案一、选择题1. D.提示:设两个半圆交点为D.连接CD,CD ⊥AB.阴影地面积为两个半圆地面积减去直角三角形地面积2242 3.则CD=3,AD=1,BD=3.2.C .提示:设圆地半径为R,则三角形边长为3R,正方形边长为2R,正六边形地边长为R.3.B.提示:用勾股定理可以求出点A到圆心地距离为5.4.C.提示:连接O’A,O’B.O’O.O’A⊥OA,O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图地圆心角等于216°.7.D.提示:设两圆地半径r1,r2.r1+r2=22ba=ba=5.r1-r21-r2.两圆内含.8.B.提示:从圆地圆心引两条相交直径,再过直径端点作切线,可以得到菱形.9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形.AB=AC,∠BAD =∠CAD. . 10.A.提示:④正确.①错在两条直径平分但不互相垂直.②面积之比为3∶2.③直径垂直于过直径端点地切线.⑤这三点可能在同一直线上.二、填空题11.6.提示:根据多边形地内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值.13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形地边长22()()22a b+=1.r=1.14.12.提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°,∠C=30°.15.72°.提示:如图.劣弧AB=144°,∠AOB=144°,∠OBA=18°,∠ABC=72°,OCBA16.32π,五边形ABCDE地内角和为540°,五个阴影部分地扇形地圆心角为540°,540°地扇形相当于32个圆.图中五个阴影部分地面积之和是32π.17.提示:将两圆圆心与切点连接起来,并将两圆地圆心联结起来,两圆地半径差是3,可抽象出如下地图形.过O作OC⊥O’B,OO’=6,O’C=CBAO'O18.55°,35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B.∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形地对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上地中线,∴OE=12AB,OF=12BC,OG=12CD,OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径地圆上.应当指出地是:由于我们是在平面几何中研究地平面图形,所以在圆地定义中略去了“平面内”一词.更准确而严格地定义应是,圆是平面内到定点地距离等于定长地点地集合.证明四点共圆地另一种方法是证明这四个点所构成地四边形对角互补.20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径地,通常要将圆上地一点与直径地端点连接起来,构造直角三角形.我们发现∠ACD是弦切角,∠ACD =∠B.∠ACD与∠CAD互余.在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O地切线,∴∠ACD=∠B.又∵AB是⊙O地直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形地性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆地一个内角等于对角地外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理.PC2=PA•PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH•BH=CH2解:∵PC为O地切线,∴PC2=PA•PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH•BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点地半径,为求公切线地长AB,首先应连结O1A、O2B,得直角梯形O1ABO2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰地问题了.解:连结O1A、O2B,则O1A⊥AB,O2B⊥AB.过O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆地对称性可知,图中有两条外公切线,并且这两条外公切线地长相等.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.83lcP 。

初三圆测试题及答案

初三圆测试题及答案

初三圆测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,圆的周长为()。

A. 2πrB. πrC. 2rD. πr²2. 圆的直径为d,圆的面积为()。

A. πd²/4B. πd²C. πr²D. πr²/23. 点P在圆O的内部,则点P到圆心O的距离()。

A. 大于半径B. 等于半径C. 小于半径D. 不确定4. 圆的切线与过切点的半径垂直,切线的长度等于()。

A. 半径B. 直径C. 半径的一半D. 无法确定5. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内切6. 圆的内接四边形的对角互补,即()。

A. 对角和为180°B. 对角和为90°C. 对角和为360°D. 对角差为180°7. 圆的外接圆的半径等于()。

A. 边长B. 对角线的一半C. 对角线D. 无法确定8. 圆的内切圆的半径等于()。

A. 边长的一半B. 对角线的一半C. 对边之和的一半D. 无法确定9. 圆的弧长公式为()。

A. L = 2πrθ/360B. L = πrθC. L = rθD. L = 2πr10. 圆的扇形面积公式为()。

A. S = 1/2r²θB. S = r²θC. S = 1/2LD. S = 1/2rL二、填空题(每题2分,共20分)11. 圆的周长公式为C = ____________。

12. 若圆的半径为4,则圆的面积为___________。

13. 圆的切线与半径的关系是___________。

14. 圆的内接正六边形的边长等于___________。

15. 圆的外接正三角形的边长等于___________。

16. 圆的内切圆的半径等于圆的内接正六边形的边长的___________。

17. 圆的弧长公式中θ表示的是___________。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

人教版九年级上册数学《圆》单元测试带答案

人教版九年级上册数学《圆》单元测试带答案

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 73.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 27.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 1010.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案一、选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A. 1 个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选:A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中.2.如图,为圆的直径,弦,垂足为,,半径为25,则弦的长为( )A. 24B. 14C. 10D. 7【答案】B【解析】【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,AE==7,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.如图,AB,CD是⊙O的直径,弧AE=弧BD,若∠AOE=32°,则∠COE的度数是( )A. 32°B. 60°C. 68°D. 64°【答案】D【解析】【分析】根据圆心角、弧、弦的关系,由弧AE=弧BD得到∠AOE=∠BOD=32°,然后利用对顶角相等得∠BOD=∠A OC=32°,易得∠COE=64°.【详解】∵弧AE=弧BD,∴∠AOE=∠BOD=32°.∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4.如图,圆的两条弦AB,CD相交于点E,且弧AD=弧CB,∠A=40°,则∠CEB的度数为( )A. 50°B. 80°C. 70°D. 90°【答案】B【解析】【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】C【解析】试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选C.考点:点与圆的位置关系;线段垂直平分线的性质.6.如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线,点为切点.若大圆半径为2,小圆半径为1,则的长为()A. B. C. D. 2【答案】A【解析】【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴AP=,∴AB=2.故选:A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.7.已知正六边形的边长是2,则该正六边形的边心距是( )A. 1B.C. 2D.【答案】B【解析】【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM AB2=1,∴正六边形的边心距是OM.故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.8.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为( )A. πB. 2πC. 3πD. 4π【答案】B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式l.9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )A. 16B. 14C. 12D. 10【答案】B【解析】【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC的周长.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF.∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14.故选B.【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.10.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,如果∠CAB=40°,那么∠CAD的度数为( )A. 25°B. 50°C. 40°D. 80°【答案】A【解析】【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.二、填空题(共8小题)11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.【答案】∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D=_____度.【答案】30【解析】【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为:30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.【答案】4【解析】【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)【答案】5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.【答案】5【解析】【分析】连接OA,根据垂径定理求出AD.在Rt△AOD中,根据勾股定理列式计算即可.【详解】连接OA.∵OD⊥AB,∴AD AB=3.在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,解得:OC=5.故答案为:5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.【答案】70【解析】【分析】连接OA、OB,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】连接OA、OB,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB∠AOB140°=70°.故答案为:70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.【答案】(3,)【解析】【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=.∵D在第四象限,∴D(3,﹣3),即旋转2019后点A的坐标是(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为_____.【答案】.【解析】【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=在△ABC中,D为BC的中点BD=DCBD长为半径画一弧交AC于E点BD=DE∠A=60°,∠B=100°∠C=20°=∠DEC∠BDE=∠C+∠DEC=40°=aBC=2 r=1S=故答案为:【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键三、解答题(共7小题)19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF【答案】见解析【解析】【分析】连结AD,如图,根据垂径定理由CD⊥AB得到弧AC=弧AD,再根据圆周角定理得∠ADC=∠AED,然后根据圆内接四边形的性质得∠CEF=∠ADC,于是利用等量代换即可得到结论.【详解】证明:连结AD,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.【答案】(1)答案见解析;(2)135°.【解析】【分析】(1)根据正方形的性质得到AB=CD,根据圆心角、弧、弦的关系得到,得到,即可得到结论;(2)连接OA、OB、OM,根据正方形的性质求出∠AOB和∠AOM,计算即可.【详解】(1)∵四边形ABCD是正方形,∴AB=CD,∴.∵M为的中点,∴,∴,∴BM=CM;(2)连接OA、OB、OM.∵四边形ABCD是正方形,∴∠AOB=90°.∵M为弧AD的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.【答案】(1)45°;(2).【解析】【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S△ABC-S扇形DBC即可得到结论.【详解】(1)∵AB为半圆⊙O的直径,∴∠ACB=90°.∵AC=BC,∴∠ABC=45°;(2)∵AC=BC,∴∠ABC=45°,∴△ABC是等腰直角三角形.∵AB=2,∴BC=AB=,∴阴影部分的面积=S△ABC-S扇形DBC=.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.【答案】(1)证明见解析;(2)y=x2.【解析】【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=,∴四边形ODCE的面积为y=×OD×CD×2=x2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.如图,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=4,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.【答案】(1)4;(2)详见解析【解析】【分析】(1)首先连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长;(2)由OC=CP=4,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP =30°,则可证得OB⊥BP,继而证得PB是⊙O的切线.【详解】(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC=4;(2)证明:∵OC=CP,BC=OC,∴BC=CP,∴∠CBP=∠CPB,∵△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠CBP=30°,∴∠OBP=∠CBP+∠OBC=90°,∴OB⊥BP,∵点B在⊙O上,∴PB是⊙O的切线.【点睛】此题考查了切线的判定、等边三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD,证明△CDE∽△DBE,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD.∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC=∠BED,∴△CDE∽△DBE,∴,∴BD,∴⊙O的半径.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.。

人教版数学九年级上册《圆》单元综合检测(附答案)

人教版数学九年级上册《圆》单元综合检测(附答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题一、选择题1.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C【解析】【分析】 先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解.【详解】解:∵S 扇形FCD 29036096ππ==⨯⨯,S 扇形EAD 24036094ππ==⨯⨯,S 矩形ABCD 6424=⨯=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD )=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C .【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键.3.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.4.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB =12∠FOB=70°, ∵FO =BO , ∴∠OFB =∠OBF=(180°-∠FOB)÷2=20°,∵EF =EB ,∴∠EFB =∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO =∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A .54°B .27°C .36°D .46°【答案】C【解析】【分析】 先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】 本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7.如图,O e 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 32πB 332πC .23π-D 33π【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×32=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)360π⨯=32π-.故选A .8.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.9.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB 与O e 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为( )A .260cm πB .260013cm πC .272013cm πD .272cm π【答案】C【解析】【分析】 连接OB ,如图,利用切线的性质得OB AB ⊥,在Rt AOB ∆中利用勾股定理得12AB =,利用面积法求得6013BH =,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【详解】 解:连接OB ,作BH OA ⊥于H ,如图,Q 圆锥的母线AB 与O e 相切于点B ,OB AB ∴⊥,在Rt AOB ∆中,18513OA =-=,5OB =,2213512AB ∴=-=,Q 1122OA BH OB AB =g g , 512601313BH ⨯∴==, Q 圆锥形纸帽的底面圆的半径为6013BH =,母线长为12, ∴形纸帽的表面2160720212()21313cm ππ=⨯⨯⨯=. 故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.11.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】 本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.13.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( )A .60πB .65πC .85πD .90π【答案】D【解析】【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12,∴侧面母线长为2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.14.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8 【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.16.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB=22AC BC+=10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.17.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为( )A .91cmB .8cmC .6cmD .4cm【答案】B【解析】【分析】 由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,22AM=5-3=4,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2【答案】D【解析】【分析】先根据题意,画出图形,令直线y= 3x+ 23与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,作OH⊥CD于H;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C、D两点的坐标值;再在Rt△POC中,利用勾股定理可计算出CD的长,并利用面积法可计算出OH的值;最后连接OA,利用切线的性质得OA⊥PA,在Rt△POH中,利用勾股定理,得到21PA OP=-,并利用垂线段最短求得PA的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴2233⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221 PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。

人教版初三圆试题及答案

人教版初三圆试题及答案

人教版初三圆试题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 相交B. 相切B. 相离D. 无法确定2. 圆的周长是圆的直径的几倍?A. π倍B. 2倍C. 3倍D. 4倍3. 已知点A到圆心O的距离为6,点B到圆心O的距离为4,那么点A 和点B在圆上的位置关系是什么?A. 都在圆上B. 点A在圆外,点B在圆内C. 点A在圆内,点B在圆上D. 点A和点B都不在圆上二、填空题1. 圆的面积公式为__________。

2. 已知圆的半径为r,圆的直径为d,则d=__________。

3. 圆的切线与半径垂直,且切线的长度等于__________。

三、解答题1. 已知圆的半径为7,求圆的周长和面积。

解:圆的周长公式为C=2πr,代入r=7,得C=2×π×7=14π。

圆的面积公式为A=πr²,代入r=7,得A=π×7²=49π。

2. 已知点P在圆O上,OP=10,PA=6,求圆O的半径。

解:根据勾股定理,PA²+r²=OP²,即6²+r²=10²,解得r²=10²-6²=64,所以r=8。

四、应用题1. 某圆形花坛的周长为628厘米,求花坛的直径。

解:根据圆的周长公式C=πd,代入C=628,得d=628/π。

2. 一个圆的半径为8厘米,求这个圆的面积。

解:根据圆的面积公式A=πr²,代入r=8,得A=π×8²=64π。

结束语:本次试题涵盖了圆的基本性质和公式,通过选择题、填空题、解答题和应用题的形式,全面考察了学生对圆的理解和应用能力。

希望同学们能够通过练习,加深对圆的理解和掌握,提高解题技巧。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)一、单选题(共12题;共24分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A. πr2B. πr2C. πr2D. πr22.若⊙O的半径为6,点P在⊙O内,则OP的长可能是()A. 5B. 6C. 7D. 83.如图,A、B、C三点在⊙O上,∠AOB=80º,则∠ACB的大小()`A. 40ºB. 60ºC. 80ºD. 100º4.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A. =B. >C. <D. 不能确定5.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是():A. 相交B. 相离C. 内切D. 外切7.两圆的半径分别是5cm和4cm,圆心距为7cm,则两圆的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.如图,某公园的一座石拱桥是圆弧形(劣弧),拱的半径为13米,拱高CD为8米,则拱桥的跨度AB 的长为())A. 20米B. 24米C. 28米D. 24米9.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A. 10B. 12C. 16D. 2010.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A. B. 2 C. 2 D. 311.(2017•葫芦岛)如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是())A. 30°B. 35°C. 45°D. 70°12.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A. 6个B. 8个C. 10个D. 12个二、填空题(共6题;共20分)13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB =________°.14.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①________;②________.不同点:①________;②________.!15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有 ________条弦,它们分别是 ________16.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、综合题(共5题;共56分)19.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.》(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.如图,在半径为2的⊙O中,弦AB长为2.、(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.21.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD 的延长线交于点P,使∠PED=∠C.^(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.;22.(2017•安顺)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.`答案一、单选题1.B2. A3. A4.D5. B6. C7. A8. B9. C 10.C 11.B 12. C二、填空题13.4414.都是轴对称图形;都有外接圆和内切圆;内角和不同;对角线的条数不同15.三;AE,DC,AD.16.17.618.三、综合题19. (1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)解:∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.20.(1)解:过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD= AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD= = .即点O到AB的距离为.(2)解:如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA= (360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.21.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF=﹣2=.22.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD= BC= ,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD= = ,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE= OB=2 ,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2× ×2×2 ﹣=4 ﹣π23.(1)90;直径所对的圆周角是直角(2)解:△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴= = =∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=。

人教版九年级圆的试卷【含答案】

人教版九年级圆的试卷【含答案】

人教版九年级圆的试卷【含答案】专业课原理概述部分一、选择题1. 圆的半径为5cm,其直径长度为多少厘米?A. 5cmB. 10cmC. 15cmD. 20cm2. 下列哪个图形不是圆?A. 正方形B. 等边三角形C. 椭圆形D. 半圆3. 圆的周长公式是什么?A. C=2πrB. C=πr^2C. C=2rD. C=r^24. 圆的面积公式是什么?A. A=πr^2B. A=2πrC. A=r^2D. A=2r5. 圆的直径与半径的关系是什么?A. 直径是半径的两倍B. 半径是直径的两倍C. 直径与半径相等D. 直径是半径的一半二、判断题1. 圆的半径是圆心到圆上任意一点的距离。

(√)2. 圆的直径是圆上最长的一条线段。

(√)3. 圆的周长与半径成正比。

(√)4. 圆的面积与半径成反比。

(×)5. 圆的直径等于圆的半径的两倍。

(√)三、填空题1. 圆的半径是5cm,其直径长度为____厘米。

2. 圆的周长公式为____。

3. 圆的面积公式为____。

4. 圆的直径与半径的关系是____。

5. 圆的半径是圆心到圆上任意一点的____。

四、简答题1. 请简要解释圆的半径和直径的概念。

2. 请简要解释圆的周长和面积的概念。

3. 请简要解释圆的直径与半径的关系。

4. 请简要解释圆的周长公式。

5. 请简要解释圆的面积公式。

五、应用题1. 一个圆的半径是7cm,求其周长和面积。

2. 一个圆的周长是31.4cm,求其半径。

3. 一个圆的面积是78.5cm^2,求其半径。

4. 一个圆的直径是10cm,求其周长和面积。

5. 一个圆的周长是25.12cm,求其半径。

六、分析题1. 分析圆的周长和面积的关系。

2. 分析圆的半径和直径的关系。

七、实践操作题1. 请画出一个半径为5cm的圆,并标出其半径、直径、周长和面积。

2. 请画出一个直径为10cm的圆,并标出其半径、直径、周长和面积。

八、专业设计题1. 设计一个圆的图形,使其周长等于20cm。

人教版九年级数学上册《圆》试卷(含答案)

人教版九年级数学上册《圆》试卷(含答案)

圆 单元检测题一、选择题(每小题3分,共30分)1.若⊙O 的半径为8cm ,点A 到圆心O 的距离为6cm ,那么点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定2.已知⊙O 的半径为5,圆心到直线l 的距离为4,则直线l 与⊙O 的位置关系是( ) A .相交 B .相离 C .相切 D .相交或相切3.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( )A .45°B .85°C .90°D .95°4.小颖同学在手工制作中,把一个边长为12 cm 的等边三角形纸片贴到一个圆形的纸片上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A .2 3 cmB .4 3 cmC .6 3 cmD .8 3 cm5.如图,⊙O 是Rt△ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( )A .25°B .40°C .50°D .65°6.如图,等边△EFG 内接于⊙O,其边长为26,则⊙O 的内接正方形ABCD 的边长为( )A. 6B.563C .4D .5 7.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O,连接OB ,OD.若∠BOD=∠BCD,则BD ︵的长为( )A .π B.32π C .2π D .3π8.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )A .40°B .50°C .80 °D .90°9.半径为R 的圆内接正三角形的面积是( )A .232RB .2R πC .2332RD .2334R 10.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103πD .π二、填空题(每小题4分,共24分)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是_____12. 如图,AD 、AE 、CB 都是⊙O 的切线,AD=4,则△ABC 的周长是________.13. 如图,AP 为⊙O 的切线,P 为切点.若∠A=20°,C ,D 为圆周上的两点,且∠PDC =60°,则∠OBC 等于 .14. 已知△ABC 的三边长分别是6,8,10,则△ABC 外接圆的直径是 .15. 如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD= °.16..如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C逆时针旋转α角后得到△A′B′C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .三、解答题(每题6分,共18分)17. 如图,AB 是⊙O 的弦,C ,D 是AB 上的两点,并且AC =BD .求证:OC =OD .18. 如图,AB 是⊙O 的直径,半径OC ⊥AB ,过OC 的中点D 作弦EF ∥AB ,求∠ABE 的度数.19.如图,在⊙O 中,AC ︵=CB ︵,CD⊥OA 于D ,CE⊥OB 于E ,求证:AD =BE.四、解答题(每题7分,共21分)20.如图,在△AOC 中,∠AOC=90°,以点O 为圆心,OA 为半径的圆交AC 于点B ,且OB =BC ,求∠A 的度数.21.如图,C 、D 是半圆O 上的三等分点,直径AB=4,连接AD 、AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求∠AFE 的度数;(2)求阴影部分的面积(结果保留π和根号).22. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (﹣1,2)、B (﹣2,1)、C (1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A 1B 1C 1是△ABC 绕点 逆时针旋转 度得到的,B 1的坐标是 ;(2)求出线段AC 旋转过程中所扫过的面积(结果保留π).五.解答题(每题9分,共27分)23.如图,在△ABC 中,∠C =90°,∠A ,∠B 的平分线交于点D ,DE ⊥BC 于点E ,DF ⊥AC 于点F .⑴求证:四边形CFDE是正方形;⑵若AC=3,BC=4,求△ABC的内切圆半径.24.如图,AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D.(1)证明:FP是⊙O的切线;(2)若四边形OBPD是菱形,证明:FD=ED.25.如图,在Rt△ABC中,∠ACB=900,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)连接CD,若EC=3,BD=62,求CD的长度;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.圆 单元检测题参考答案AABBB CCBDC11. 20π 12. 8 13.65° 14.10 15.80 16. 60,23π 17. 解:过O 做OM ⊥AB 于M ,利用垂径定理证明.18. 解:如图,连接OE .∵EF ∥AB ,OC ⊥AB ,∴EF ⊥OC .∵点D 是OC 的中点,∴OD =12OC =12OE ,∴∠OED =30°.∵EF ∥AB ,∴∠EOA =30°,∴∠ABE =12∠EOA =15°.19. 证明:连接OC ,∵AC ︵=CB ︵,∴∠AOC=∠BOC.∵CD⊥OA 于D ,CE ⊥OB 于E ,∴∠CDO=∠CEO=90°.在△COD 和△COE 中,⎩⎪⎨⎪⎧∠DOC=∠EOC,∠CDO=∠CEO,CO =CO ,∴△COD≌△COE(AAS).∴OD=OE.∵AO=BO ,∴AD=BE.20. 解:∵OA=OB ,OB =BC ,∴∠A=∠OBA,∠BOC=∠C,又∵∠OBA=∠BOC+∠C,∴∠A=2∠C.∵△AOC 中,∠AOC=90°,∴∠A+∠C=90°,即3∠C=90°.∴∠C=30°,∠A=60°.21. 解:(1)连接OD ,OC ,∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.22. 解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.23. 解:⑴过D作DG⊥AB交AB于G点,∵AD是∠BAC的角平分线,∴DF=DG,同理可证DE=DG,∴DE=DF,∵∠C=∠CFD=∠CED=90°,∴四边形CFDE是正方形;⑵∵AC=3,BC=4,∴AB=5,由⑴知AF=AG,BE=BG,∴AF+BE=AB,∵四边CFDE是正方形,∴2CE=AC+CB-AB=2,即CE=1,△ABC的内切圆半径为1.24. 证明:(1)连接OP,∵OP=OA,∴∠A=∠APO.∵EC⊥AB,∴∠A+∠AEC=90°.∵∠FPE=∠FEP,∠FEP=∠AEC,∴∠AEC=∠FPE.∴∠OPA+∠FPA=90°.∴OP⊥PF.∵OP为⊙O的半径,∴FP是⊙O的切线.(2)∵四边形OBPD是菱形,∴PD∥AB,PB=OB.∵OB=OP,∴OP=OB=PB.∴△OPB是等边三角形.∴∠B=∠BOP=60°.∴∠A=30°.∴∠AEC=∠FEP=60°.∴∠FPE=∠FEP=60°.∴△FPE是等边三角形.∵PD∥AB,∴PD⊥EF.∴FD=ED.25、(1)证明:连接DO,∵∠ACB=90°,AC为直径,∴EC为⊙O的切线,又∵ED也为⊙O的切线,∴EC=ED.又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°,又∵∠B+∠A=90°∴∠BDE=∠B,∴EB=ED.∴EB=EC,即点E是边BC的中点.(2)CD=2 3(3)△ABC是等腰直角三角形. 理由:∵四边形ODEC为正方形,∴∠DOC=∠ACB=90°,即DO∥BC,又∵点E是边BC的中点,∴BC=2OD=AC,∴△ABC是等腰直角三角形.。

数学九年级上册《圆》单元检测题(附答案)

数学九年级上册《圆》单元检测题(附答案)
A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 16
【答案】A
【解析】
试题分析:连接AD,OD,
∵等腰直角△ABC中,
∴∠ABD=45°.
∵AB是圆的直径,
∴∠ADB=90°,
∴△ABD也是等腰直角三角形,
∴ .
∵AB=8,
∴AD=BD=4 ,
∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD- S△ABD)
(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.
17. 如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?为什么?
(2)若AC=2,AO= ,求OD 长度.
18.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为 的中点,连接DE,EB.
A.19B.16C.18D.20
【答案】D
【解析】
试题分析:延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.
A. B. C. D.
二、填空题
11.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______度.
12.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
13.如图,A,B,C,D是⊙O上 四个点,∠C=110°,则∠BOD=度.
延长AO交BC于D,作OE⊥BC于E;

人教版初中数学九年级数学上册第四单元《圆》测试题(有答案解析)

人教版初中数学九年级数学上册第四单元《圆》测试题(有答案解析)

一、选择题1.下列说法正确的是( )A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .2B .2C .2D .2 5.下列说法正确的有( )①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等A .1个B .2个C .3个D .4个6.如图,A 、B 、C 三点在O 上,D 是CB 延长线上的一点,40ABD ∠=︒,那么AOC ∠的度数为( ).A .80°B .70°C .50°D .40° 7.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 8.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒9.如图,在△ABC 中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)⊙O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P .根据以上作图过程及所作图形,下列四个结论:①BC =2NC ;②AB =2AM ;③点P 是△ABC 的内心;④∠MON +2∠MPN =360°. 其中正确结论的个数是( )A .1B .2C .3D .410.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .1213C .4D .511.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π 12.下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等 C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等二、填空题13.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.14.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.15.如图,PA ,PB 是O 的切线,A ,B 为切点,AC 是O 的直径,35BAC ∠=︒,则P ∠的度数为________.16.如图,有一半径为6cm 的圆形纸片,要从中剪出一个圆心角为60︒的扇形ABC ,AB ,AC 为⊙O 的弦,那么剪下的扇形ABC (阴影部分)的面积为 ___________.17.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.18.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD=________.19.如图,在⊙O中,弦AC、BD相交于点E,且AB BC CD==,若∠BEC=130°,则∠ACD的度数为_____π,半径为15cm的扇形卡纸,围成一个圆锥侧20.小红在手工制作课上,用面积为215cm面,则这个圆锥的底面半径为_______cm.三、解答题=,求证:21.如图,AB为O的弦,,C D是直线AB上两点,且AC BDC D∠=∠.22.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC 于点E,过点C作CG⊥AB交AB于点G,交AE于点F,过点E作EP⊥AB交AB于点P,∠EAD=∠DEB.(1)求证:BC是⊙O的切线;(2)求证:CE=EP;(3)若CG=12,AC=15,求四边形CFPE的面积.23.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).24.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.25.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .26.如图,O 是ABC 的外接圆,且AB AC =,点D 在弧BC 上运动,过点D 作//DE BC ,DE 交AB 的延长线于点E ,连接AD 、BD .(1)求证:ADB E ∠=∠;(2)当6AB =,3BE =时,求AD 的长?(3)当点D 运动到什么位置时,DE 是O 的切线?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对称轴的定义对A 进行判断;根据垂径定理的推论对B 进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D 进行判断.【详解】解:A 、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A 选项错误; B 、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误; C 、长度相等的弧不一定能重合,所以不一定是等弧,所以C 选项错误;D 、在同圆或等圆中,相等的圆心角所对的弦相等,所以D 选项正确.故选:D .【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.2.B解析:B【分析】连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x ,则OE=16-x ,再根据OB=OC 即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC ,作AB ,BC 的垂直平分线,交点为点O ,连接OB ,OC ,则OB=OC ,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x ,则OE=16-x ,∵OB=OC ,∴OB 2=OC 2,∴22+(16-x) 2=62+x 2,解得x=7,∴r 2=OB 2=22+92=85,∴圆的面积S=πr 2=85π,故选:B .【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.B解析:B【分析】设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+= 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.4.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++,∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 5.B解析:B【分析】根据垂径定理及其推论即可判定①正确,②错误;根据弧、弦、圆周角之间的关系可知③⑤错误,④正确.【详解】解:①根据垂径定理的推论可知,垂直平分弦的直线经过圆心;故本选项正确; ②直径是最长的弦,任意两条直径互相平分,但不一定互相垂直,故被平分弦不能是直径;故本选项错误;③在同圆或等圆中,相等的圆周角所对的弧相等,故本选项错误;④相等的弧所对的弦一定相等,故本选项正确;⑤∵在一个圆中一条弦所对的弧有两条,∴等弦所对的弧不一定相等,故本选项错误. 故选:B .【点睛】本题考查的是垂径定理及其推论、圆周角、弧、弦的关系,解题的关键是正确理解各知识点.6.A解析:A【分析】作弧ABC 所对的圆周角∠AEC ,如图,先利用邻补角计算出∠ABC=140°,再利用圆内接四边形的性质计算出∠E=40°,然后根据圆周角定理得到∠AOC 的度数.【详解】解:作弧ABC 所对的圆周角∠AEC ,∵∠ABD=40°,∴∠ABC=180°-40°=140°,∵∠AEC+∠ABC=180°,∴∠E=40°,∴∠AOC=2∠AEC=2×40°=80°.故选:A.【点睛】本题考查了圆内接四边形对角互补,以及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.C解析:C【分析】如图:连接OB、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴BC=2222OB OC+=+=.2222故答案为C.【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.8.B解析:B【分析】=,再根据等边三角形的判定与性质可得如图(见解析),先根据圆的性质可得OC OB∠=︒,然后根据圆周角定理即可得.BOC60【详解】如图,连接OC ,由同圆半径相等得:OC OB =,7OB BC ==,OC OB BC ∴==, BOC ∴是等边三角形,60BOC ∴∠=︒, 由圆周角定理得:1230BOC BDC ∠=︒=∠, 故选:B .【点睛】本题考查了等边三角形的判定与性质、同圆半径相等、圆周角定理,熟练掌握等边三角形的判定与性质是解题关键.9.C解析:C【分析】利用垂径定理可对①②进行判断;利用圆周角定理可得到CM 、AN 为角平分线,则利用三角形内心的定义可对③进行判断;根据P 是△ABC 的内心得出∠APC=90°+12∠B ,进而得出∠MON+∠B=180°,再代入求解即可.【详解】解:作BC 的垂直平分线,则ON 平分BC ,则BC =2NC ,所以①正确;作AB 的垂直平分线,则OM 平分AB ,则AB =2AM ,2AM >AB ,所以②错误; ∵M 点为AB 的中点,∴∠ACM=∠BCM ,∵点N 为BC 的中点,∴∠BAN=∠CAN ,故P 点为△ABC 的内心,所以③正确;∵∠APC=180°-∠PAC-∠PCA=180°-12∠BAC-12∠BCA=180°-12(∠BAC+∠BCA)=180°-12(180°-∠B)=90°+12∠B , ∴2∠MPN=2∠APC=180°+∠B ,又OM ⊥AB ,ON ⊥BC ,∴∠MON+∠B=180°,∴∠MON+2∠MPN=∠MON+180°+∠B=180°+180°=360°,故④正确,∴正确的结论有3个,故选:C.【点睛】本题考查了垂径定理、圆周角定理、三角形内心及外心的性质、线段的垂直平分线的尺规作图等,熟练掌握各图形的性质及尺规作图步骤是解决本题的关键.10.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A.【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P点的运动轨迹,找出DP长的最小值时的位置是解题的关键.11.B解析:B【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 度数,再由弧长公式即可得出结论.【详解】解:连接OB ,OC ,∵∠A=60°,∴∠BOC=2∠A=120°,∴BC =208161π⨯=4π. 故选:B .【点睛】 本题考查了三角形的外接圆与外心,根据题意作出辅助线,利用圆周角定理及弧长公式求解是解题的关键.12.D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A 、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB的垂直平分线为直线y=x,从而得到M点的坐标,然后计算MB得到⊙M的半径.【详解】解:∵点A,B,C的坐标分别是(0,2),(2,0),(4,0),∴BC的垂直平分线为直线x=3,∵OA=OB,∴△OAB为等腰直角三角形,∴AB的垂直平分线为第一、三象限的角平分线,即直线y=x,∵直线x=3与直线y=x的交点为M点,∴M点的坐标为(3,3),∵22MB=-+=,(32)310∴⊙M的半径为10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.14.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE 的长为最大值,∵AO=OC=OE ,且AB=AC=4, ∴122OE AC == 又∵∠BAC=90° ∴222224220BO AO AB =+=+=∴25BO =∴BE=252BO OE +=+故答案为:225+【点睛】此题主要考查了求线段的最大值,构造出△ACE 的外接贺是解答本题的关键.15.70°【分析】根据题意可以求得∠OAP 和∠OBP 的度数然后根据∠BAC =35°即可求得∠P 的度数【详解】解:连接OB :∵PAPB 是⊙O 的两条切线AB 是切点AC 是⊙O 的直径∴∠OAP =∠OBP =90°解析:70°【分析】根据题意可以求得∠OAP 和∠OBP 的度数,然后根据∠BAC =35°,即可求得∠P 的度数.【详解】解:连接OB :∵PA 、PB 是⊙O 的两条切线,A 、B 是切点,AC 是⊙O 的直径,∴∠OAP =∠OBP =90°,∵∠BAC =35°,OA =OB ,∴∠BAC =∠OBA =35°,∴∠PAB =∠PBA =55°,∴∠P =180°−∠PAB−∠PBA =70°,即∠P 的度数是70°,故答案为:70°.【点睛】本题考查切线的性质,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用切线的性质解答问题.16.【分析】如图(见解析)先根据等边三角形的判定与性质可得再根据圆周角定理可得然后根据垂径定理勾股定理可得BC 的长从而可得AB 的长最后利用扇形的面积公式即可得【详解】如图连接OBOCBC 过点O 作于点D 由 解析:218cm π【分析】如图(见解析),先根据等边三角形的判定与性质可得AB BC =,再根据圆周角定理可得120BOC ∠=︒,然后根据垂径定理、勾股定理可得BC 的长,从而可得AB 的长,最后利用扇形的面积公式即可得.【详解】如图,连接OB 、OC 、BC ,过点O 作OD BC 于点D ,由题意得:,60,6AB AC A OB OC cm =∠=︒==,ABC ∴是等边三角形,AB BC ∴=,由圆周角定理得:2120BOC A ∠=∠=︒,OD BC ⊥, 160,22BOD BOC BC BD ∴∠=∠=︒=, 30OBD ∴∠=︒,在Rt BOD 中,2213,332OD OB cm BD OB OD cm ===-=, 263AB BC BD cm ∴===,则剪下的扇形ABC (阴影部分)的面积为()()22606318360cm ππ⨯=,故答案为:218cm π.【点睛】本题考查了等边三角形的判定与性质、圆周角定理、垂径定理、扇形的面积公式等知识点,通过作辅助线,利用到垂径定理是解题关键.17.【分析】根据题意和正方形的性质可利用SAS 证明△ABM ≌△BCN 得出∠BAM =∠CBN 进而可证出∠APB =90°于是可得点P 在以AB 为直径的圆上运动运动路径是弧BG 连接OC 交圆O 于P 如图则此时PC 最5-1【分析】根据题意和正方形的性质可利用SAS证明△ABM≌△BCN,得出∠BAM=∠CBN,进而可证出∠APB=90°,于是可得点P在以AB为直径的圆上运动,运动路径是弧BG,连接OC交圆O于P,如图,则此时PC最小,进一步即可求解.【详解】解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=2,在△ABM和△BCN中,∵AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,运动路径是弧BG,是这个圆的1,如4图所示:连接OC交圆O于P,此时PC最小,∵AB=2,∴OP=OB=1,由勾股定理得:OC22+=,215∴PC=OC﹣OP51;51.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理和圆的有关性质等知识;熟练掌握上述知识,证出点P在以AB为直径的圆上运动是解题关键.18.6【分析】在线段BD上取一点E使得BE=CD连接AE由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD上取一点E使得BE=CD连接AE∵∴四点共圆∴∠∴∠∵△是等边解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.19.105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB 然后根据三角形的内角和定理即可求出∠BCA 与∠CED 再在△CDE 中利用三角形的内角和求解即可【详解】解:∵∴∠BCA =∠CBD =∠解析:105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB ,然后根据三角形的内角和定理即可求出∠BCA 与∠CED ,再在△CDE 中利用三角形的内角和求解即可【详解】解:∵AB BC CD ==,∴∠BCA =∠CBD =∠CDB ,∵∠BEC =130°,∴∠BCA =∠CBD =25°,∠CED =50°,∴∠CDB =25°,∴∠ACD =180°﹣50°﹣25°=105°.故答案为:105°.【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键. 20.1【分析】根据扇形的面积公式与圆的周长公式即可求解【详解】由得:扇形的弧长=(厘米)圆锥的底面半径=(厘米)故答案是:1【点睛】本题主要考查圆锥的底面半径掌握圆锥的侧面扇形弧长等于底面周长是解题的关键 解析:1【分析】根据扇形的面积公式与圆的周长公式,即可求解.【详解】 由1=2S lR 扇形得:扇形的弧长=215152ππ⨯÷=(厘米), 圆锥的底面半径=221ππ÷÷=(厘米).故答案是:1.【点睛】本题主要考查圆锥的底面半径,掌握圆锥的侧面扇形弧长等于底面周长,是解题的关键.三、解答题21.见解析【分析】过O 作OH ⊥AB 于H ,则AH =BH ;再根据线段的和差关系可得:CH =DH ,即OH 是CD 的线段垂直平分线,所以OC =OD ,继而即可求证结论.【详解】证明:如图过点O 作OH ⊥AB ,于点H .∵AB 为O 的弦, ∴AH =BH又∵AC =BD∴AC +AH =BD +BH ,即CH DH =又OH ⊥AB ,∴OC =OD ,∴∠C =∠D .【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC=OD.22.(1)见解析;(2)见解析;(3)面积是45【分析】(1)由等腰三角形的性质和直径定理可得∠AED=90°,∠OED=∠ADE,由余角的性质可得∠DEB+∠OED=90°,进而可得∠BEO=90°,可得结论;(2)由平行线的性质和等腰三角形的性质可证AE为∠CAB的角平分线,由角平分线的性质可得CE=EP;(3)连接PF,先证四边形CFPE是菱形,可得CF=EP=CE=PF,由“AAS”可证△ACE≌△APE,可得AP=AC=15,由勾股定理可求CF的长,即可求解.【详解】证明:(1)连接OE,∵OE=OD,∴∠OED=∠ADE,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,又∵∠DEB=∠EAD,∴∠DEB+∠OED=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG22-9,AC CG-225144∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=PE,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EPA=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP=AC=15,∴PG=AP﹣AG=15﹣9=6,∵PF2=FG2+GP2,∴CF2=(12﹣CF)2+36,∴CF=15,2∴四边形CFPE的面积=CF×GP=15×6=45.2【点睛】本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.23.(1)2m =;(2)622m =-或622m =+;(3)3m 7≤≤【分析】(1)在平面直角坐标系中作出直线l 并画出当以A 为圆心,AB 为半径的圆与直线l 相切时的图形,由切线的性质可得Rt ACE △,然后再根据含30角的直角三角形的性质、圆的基本性质求得24AC AE ==,最后利用线段的和差求得2OA OC AC =-=,即可得到点A 的坐标,进而求得m 的值;(2)由AMN 相对于x 轴的位置分两种情况进行讨论,添加辅助线过点A 作AF MN ⊥、过点A 作AG MN ⊥,根据等腰直角三角形的性质可求得22MN =,再根据等腰三角形的三线合一以及直角三角形斜边上的中线等于斜边的一半可求得2AF =、2AG =,然后根据根据含30角的直角三角形的性质求得22AC =,进而利用线段的和差求得622OA =-、622OA =+,即可得到点A 的坐标,进而求得m 的值;(3)以AB 为直径作Q ,根据直径所对的圆周角是直角可在Q 上找到符合要求的点P 使得90APB ∠=︒.当Q 在x 轴上向右平移的过程中,直线l 和Q 的位置关系从相离到相切再到相交、再到相切、最后再相离,其中当直线l 和Q 相切或相交时直线l 上存在点P ,使得90APB ∠=︒.画出图形,求得当直线l 和Q 相切于x 轴上方或下方点P 时点A 的坐标,即可求得相应的m 的值,最后可得m 的取值范围.【详解】解:(1)∵当以A 为圆心,AB 为半径的圆与直线l 相切于点E 时,连接AE ,如图:∴AE CD ⊥∵2AE AB ==,30ACE ∠=︒∴在Rt ACE △中,24AC AE ==∵()6,0C∴6OC =∴2OA OC AC =-=∴点A 的坐标为()2,0∴2m =.(2)①当AMN 在x 轴上方时,过点A 作AF MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AF MN ⊥∴122AF MN == ∵30ACF ∠=︒ ∴在Rt ACF 中,222AC AF ==∴622OA OC AC =-=-∴点A 的坐标为()622,0-∴622m =-;②当AMN 在x 轴下方时,过点A 作AG MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AG MN ⊥ ∴122AG MN == ∵30ACG OCD ∠=∠=︒∴在Rt ACG 中,222AC AG ==∴622OA OC AC =+=+∴点A 的坐标为()622,0+∴622m =+.∴综上所述,622m =-或622m =+.(3)当点P 位于x 轴上方点1P 时直线l 和Q 相切,当点P 位于线段12PP (不包含两端点)上时直线l 和Q 相交,当点P 位于x 轴下方点2P 时直线l 和Q 相切,如图:直线l 和Q 相切于x 轴上方点1P 时,连接11PQ∴11PQ l ⊥,22P Q l ⊥∵11222A B A B ==∴111111112PQ AQ A B ===,222222112P Q A Q A B === ∵112230PCQ P CQ ∠=∠=︒∴在11Rt PCQ 中,11122Q C PQ ==;在22Rt P CQ 中,22222Q C P Q == ∴11113OA OC Q C AQ =--=;22227OA OC Q C A Q =+-=∴此时,点A 的坐标为()3,0或()7,0∴3m =或7m =∴直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是3m 7≤≤.故答案是:3m 7≤≤【点睛】本题考查了平面直角坐标系中坐标与图形、含30角的直角三角形的性质、圆的基本性质、直线与圆的位置关系、切线的性质、等腰直角三角形的性质、直角三角形的性质、线段的和差等知识点,渗透了分类讨论的数学思想,熟练掌握相关知识点是解题的关键. 24.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 25.见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD =,∴CD = AB ,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立.26.(1)见解析;(2)AD =3)理由见解析.【分析】(1)根据圆周角定理及平行线的性质不难求解;(2)根据题意证明ABD ADE ∼,列出比例式即可求解;(3)要使DE 是圆的切线,那么D 就是切点,AD ⊥DE ,又根据AD 过圆心O ,BC ∥ED ,根据垂径定理可得出D 应是弧BC 的中点.【详解】(1)在ABC 中,∵AB AC =,∴ABC C ∠=∠.∵//DE BC ,∴ABC E ∠=∠,∴E C ∠=∠.又∵ADB C ∠=∠,∴ADB E ∠=∠.(2)解:∵ABC AED ∠=∠,A ABC CB =∠∠,ADB ACB ∠=∠,∴ADB E ∠=∠,BAD BAD ∠=∠,∴ABD ADE ∼, ∴AB AD AD AE=, 又6AB =,3BE =, ∴AD =.(3)当点D 是弧BC 的中点时,DE 是O 的切线. ∵当点D 是弧BC 的中点时,AD BC ⊥,且AD 过圆心O , 又∵//DE BC ,∴AD ED ⊥.∴DE 是O 的切线. 【点睛】本题主要考查了圆周角定理,切线的判定,平行线的性质,垂径定理相似三角形的判定与性质等知识点,正确运用好圆心角,弧,弦的关系是解题的关键.。

初三圆的测试题及答案

初三圆的测试题及答案

初三圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()A. d=2rB. d=rC. d=r/2D. d=r^22. 圆的周长公式是()A. C=πdB. C=2πrC. C=πr^2D. C=2r3. 已知圆的半径为5cm,那么这个圆的面积是多少平方厘米?()A. 25πB. 50πC. 75πD. 100π4. 圆心到圆上任意一点的距离叫做()A. 半径B. 直径C. 周长D. 面积5. 圆的面积公式是()B. A=πr^2C. A=2πrD. A=r^26. 一个圆的直径增加一倍,那么它的面积增加()A. 一倍B. 两倍C. 四倍D. 八倍7. 圆的半径扩大到原来的2倍,周长扩大到原来的()A. 2倍B. 3倍C. 4倍D. 5倍8. 圆的周长和它的直径的比值叫做()A. 半径B. 直径C. 周长D. 圆周率9. 已知一个圆的周长是12.56cm,那么这个圆的半径是多少厘米?()A. 2B. 3C. 4D. 510. 圆的直径是半径的()B. 1/2倍C. 1/4倍D. 4倍二、填空题(每题2分,共20分)1. 圆的周长公式为C=2πr,其中π是一个常数,约等于______。

2. 圆的面积公式为A=πr^2,其中r表示圆的______。

3. 一个圆的半径为4cm,那么它的直径是_______cm。

4. 一个圆的直径为10cm,那么它的半径是_______cm。

5. 圆的周长和它的直径的比值是一个固定的数,这个数叫做______。

6. 如果一个圆的半径扩大到原来的3倍,那么它的面积扩大到原来的______倍。

7. 一个圆的周长是6.28cm,那么它的半径是_______cm。

8. 圆的直径是半径的______倍。

9. 圆的周长是它直径的______倍。

10. 一个圆的半径为6cm,那么它的面积是______平方厘米。

三、解答题(每题10分,共50分)1. 已知一个圆的半径为8cm,求这个圆的周长和面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级圆测试题一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么OO'AB 第4题图( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

A 1个B 2个C 3个D 4个 二、填空题(每题3分,共24分)11.一个正多边形的内角和是720°,则这个多边形是正 边形;12.现用总长为m 80的建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛的面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形的边长 是 1 cm ,那么徽章的直径是 ;14.如图,弦AB 的长等于⊙O 的半径,如果C 是AmC 上任意一点,则sinC = ;15.一条弦分圆成2∶3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角为 ;BCA16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分的面积 之和是 ;17.如图:这是某机械传动部分的示意图,已知两轮的 外沿直径分别为2分米和8分米,轴心距为6分米,那 么两轮上的外公切线长为 分米。

18.如图,ABC 是圆内接三角形,BC 是圆的直径,∠B=35°,MN 是过A 点的切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形的各边的中点在同一个圆上.已知:如图所示,菱形ABCD 的对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 和⊙O 在点C 的切线相垂直,垂足为D ,延长AD 和BC 的延长线交于点E ,求证:AB=AE .★•第50题图 20题图21.如图,⊙O以等腰三角形ABC一腰AB为直径,它交另一腰AC于E,交BC于D.求证:BC=2DE22.如图,过圆心O的割线PAB交⊙O于A、B,PC切⊙O于C,弦CD⊥AB于点H,点H 分AB所成的两条线段AH、HB的长分别为2和8.求PA的长.23.已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.圆测试题题答案一、选择题1.D.提示:设两个半圆交点为D.连接CD,CD⊥AB. 阴影的面积为两个半圆的面积减去直角三角形的面积。

3.则CD=3,AD=1,BD=3.2.C.提示:设圆的半径为R,则三角形边长为3R, 正方形边长为2R, 正六边形的边长为R.3.B.提示:用勾股定理可以求出点A到圆心的距离为5.4.C. 提示:连接O’A,O’B. O’O.O’A⊥OA, O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图的圆心角等于216°.7.D.提示:设两圆的半径r1,r2. r1+r2=22ba=ba=5.r1-r21-r2. 两圆内含.8.B.提示:从圆的圆心引两条相交直径,再过直径端点作切线,可以得到菱形。

9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形。

AB=AC, ∠BAD =∠CAD. . 10.A.提示:④正确。

①错在两条直径平分但不互相垂直。

②面积之比为3∶2。

③直径垂直于过直径端点的切线。

⑤这三点可能在同一直线上。

二、填空题11.6.提示:根据多边形的内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值。

13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形的边长22()()22a b+=1。

r=1.14.12。

提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°, ∠C=30°.15.72°。

提示:如图。

劣弧AB=144°,∠AOB=144°, ∠OBA=18°, ∠ABC=72°,OCBA16.32π,五边形ABCDE的内角和为540°,五个阴影部分的扇形的圆心角为540°, 540°的扇形相当于32个圆。

图中五个阴影部分的面积之和是32π。

17.。

提示:将两圆圆心与切点连接起来,并将两圆的圆心联结起来,两圆的半径差是3,可抽象出如下的图形。

过O作OC⊥O’B,OO’=6, O’C=CBAO'O18.55°, 35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B. ∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形的对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上的中线,∴OE=12AB,OF=12BC,OG=12CD, OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径的圆上.应当指出的是:由于我们是在平面几何中研究的平面图形,所以在圆的定义中略去了“平面内”一词.更准确而严格的定义应是,圆是平面内到定点的距离等于定长的点的集合.证明四点共圆的另一种方法是证明这四个点所构成的四边形对角互补。

20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径的,通常要将圆上的一点与直径的端点连接起来,构造直角三角形。

我们发现∠ACD是弦切角,∠ACD =∠B。

∠ACD与∠CAD互余。

在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O的切线,∴∠ACD=∠B.又∵AB是⊙O的直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形的性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆的一个内角等于对角的外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理。

PC2=PA•PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH•BH=CH2解:∵PC为O的切线,∴PC2=PA•PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH•BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点的半径,为求公切线的长AB ,首先应连结O 1A 、O 2B ,得直角梯形O 1ABO 2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰的问题了. 解:连结O 1A 、O 2B ,则O 1A ⊥AB ,O 2B ⊥AB.过O 1作O 1C ⊥O 2B ,垂足为C ,则四边形O 1ABC 为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆的对称性可知,图中有两条外公切线,并且这两条外公切线的长相等.。

相关文档
最新文档