求二次函数的解析式ppt 下载

合集下载

二次函数解析式专题ppt

二次函数解析式专题ppt

解:〔 1〕作BD⊥y 轴于D
∵C〔0,q〕,AC ∥ x轴 ∴点A的纵坐标为q。
∵A在直线y=x上 ∴A〔q,q〕
∴q=
1
2
×q 2 +pq+q ①
∵ AC∥x轴 , x轴 ⊥y 轴 ∴ AC ⊥y 轴
又∵ BD⊥y 轴 ∴ ∠BDO= ∠ACO
也可利用 对称性得!
y 1x2 pxq 2
y
D
x12+x22=10 即〔x1+x2 〕 2 - 2 x1·x2
由=1韦0 达定理得:b2-2 c=0 b= -2 ∵ OA<OB
c= -3 ∴ b= -2 ,c= -3 ∴ y=x2-2x-3
P
易得A〔-1,0〕,B〔3,0〕,
C〔0,-3〕。
AO
BH
C
M y=x2-2x-3
〔2〕在抛物线上是否存在点P,使三 角形PAB的面积等于四边形ACMB的面 积的2倍?如存在,求出所有符合条 件的坐标;假设不存在,请说明理由。
又∵DE= 2 ∴ HD=HE=1
∴S=
1
2
×DF
×HE=
-
1
4
t2+1 易得- 2≤t ≤1,t=0时,S最大=1单位2
尝试中考题:
已知:如图,等腰梯形ABCD的边BC在x轴上, 点A在y轴的正方向上,A( 0, 6 ),D ( 4,6),且AB =2 10 (1)求点B的坐标;
(2)求经过A、B、D三点的抛物线的解析式;
H - 2 ODE
y
EE B D
1
∵D在直线y=x上,F在y=
1
2
x2+x-2上
∴D、F的纵坐标分别为t和

用待定系数法求二次函数解析式PPT课件

用待定系数法求二次函数解析式PPT课件
人教版 九年级上
第22章 二次函数
22.1 二次函数的图象和性质 *第7课时 用待定系数法求二次函数
解析式
提示:点击 进入习题
1 一般式 2 见习题 3 见习题 4 顶点式 5 见习题
6 见习题 7 交点式 8 见习题 9 见习题
答案显示
1.已知函数图象上的三个点的坐标求函数解析式时,设出 二次函数的__一__般__式__,即y=ax2+bx+c(a≠0),然后将三 个点的坐标分别代入解析式,求出待定的系数a,b,c即 可.
2.(2020·陕西)如图,抛物线y=x2+bx+c经过点(3,12)和 (-2,-3),与两坐标轴的交点分别为A,B,C,它的对 称轴为直线l.
(1)求该抛物线的解析式. 解:将点(3,12)和(-2,-3)的坐标代入抛物线的解析式, 得1-2=3=9+4-3b2+b+c,c,解得bc==-2,3. 故抛物线的解析式为 y=x2+2x-3.
解:如图所示.该曲线 是一条抛物线.
(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有
两个交点,交点从左到右依次为A1,A2,A3,A4,请根 据图象直接写出线段A1A2,A3A4之间的数量关系: __A_3_A_4_-__A_1_A_2_=__1____.
4.若已知顶点坐标或对称轴或函数的最值,用待定系数法 求解析式时,一般设___顶__点__式_____,即y=a(x-h)2+k.
课堂导练
11.(2020·吉林)如图是人们常用的插线板。可以用_试__电__笔___ 来判断插孔接的是火线还是零线;当把三线插头插入三 孔插座中时,用电器的金属外壳就会与___大__地___相连, 以防止触电事故的发生。
8.(2020·攀枝花)如图,开口向下的抛物线与x轴交于点A(-1, 0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物 线上的一点.

【例题讲解】求二次函数解析式例 -完整版课件

【例题讲解】求二次函数解析式例 -完整版课件
• 例.已知二次函数图象的顶点为C(1,4),与x轴左交点为 A(-1,0),右交点为点B,求其解析式.
方法1:一般式(三点式 )

: 分析: 设二次函数的解析式为
y=ax2+bx+c
将A、B、C三点坐标代入
利用待定系数法可得其解析式
设二次函数的解析式 将A、B、C三点坐标代入
为y=ax²+bx+c ∵顶点C的坐标为(1,4)
a-bc 0
a bc 4
9a 3b c 0
∴直线x=1为对称轴 解得:a= -1, b=2, c=3.
∵A、B关于直线x=1对 故二次函数的解析式为:
称,且A点坐标为(-1,0) y= -x2+2x+3
∴B点坐标为(3,0)
• 例.已知二次函数图象的顶点为C(1,4),与x轴左交点为A(-1,0),右交点为点B,求其解析式.
• 例、已知二次函数图象的顶点为C(1,4),与x轴左交点为A(-1,0),右交点为点B,求其解析式.
方法3:交点式 分析: 设二次函数的解析式为
y=a(x-x1)(x-x2)
由点A、C坐标可得点B坐标
把点A和点B的坐标代入交点式
再把点C坐标代入可得其解析式
解 设二次函数的解析式为y=a(x-x1)(x-x2) : ∵二次函数图象的顶点为C(1,4),与x轴的函数的解析式为 y=a(x-h)2+k
把顶点C和点A的坐标代入
利用待定系数法可得其解析式
解 设二次函数的解析式为y=a(x-h)2+k : ∵二次函数图象的顶点为C(1,4)
∴h=l,k=4. ∴y=a(x-1)2+4 又∵A(-1,0)在二次函数图象上 ∴0=a(-1-1)2+4 ∴a=-1 ∴二次函数的解析式为:y=-(x-1)2+4 即:y=-x2+2x+3

用待定系数法求二次函数的解析式(新人教版)课件

用待定系数法求二次函数的解析式(新人教版)课件
$ax_3^2+bx_3+c=y_3$
设立待定系数并建立方程组
• 同样,若已知抛物线的对称轴为直线$x=h$,则可设立如 下方程组
设立待定系数并建立方程组
$-frac{b}{2a}=h$
$y=ax^2+bx+c$
解方程组求得待定系数
解方程组求得$a, b, c$的值。
解方程组的方法有多种,如代入消元法、加减消元法等。
提高解决问题能力
在学习过程中,学生将学会如何根据问题条件设立未知数 、建立方程组,从而提高解决实际问题的能力。
为后续课程做准备
本节课所介绍的待定系数法将在后续课程中得到广泛应用 ,如求解二次方程、二次曲线等,因此本节课的学习将为 后续课程打下基础。
THANKS
感谢观看
用待定系数法求二 次函数的解析式(新 人教版)
目录
• 引言 • 二次函数的基本概念 • 待定系数法介绍 • 用待定系数法求二次函数的解析式 • 实例分析 • 课程总结与展望
01
CATALOGUE
引言
课程背景
01
二次函数是初中数学的重要内容 ,是中考的重点和难点之一。
02
通过学习待定系数法求二次函数 的解析式,学生可以更好地理解 二次函数的性质和图像,提高解 决实际问题的能力。
实际应用举例
通过具体的例题演示如何使用待定系数法求解二次函数解析式,包括如何设立未知数、建 立方程组以及求解过程。
课程对未来的影响和意义
深化对二次函数的理解
通过本节课的学习,学生对二次函数的理解将更加深入, 能够掌握其解析式的求解方法,为后续学习打下基础。
培养数学思维能力
待定系数法是一种重要的数学思维方法,通过本节课的学 习,学生将培养出灵活运用数学思维解决问题的能力。

初中数学人教版九年级上册 第二十二章22.1.4用待定系数法求二次函数的解析式(共21张PPT)

初中数学人教版九年级上册 第二十二章22.1.4用待定系数法求二次函数的解析式(共21张PPT)

知识应用
有一个抛物线形的立交桥拱,这个 桥拱的最大高度为16m,跨度为40m. 现把它的图形放在坐标系里(如图所示), 求抛物线的解析式. 解: 设抛物线为y=ax(x-40 )
根据题意可知 ∵ 点(20,16)在抛物线上,
4、已知二次函数y=ax2+bx+c的最大值 是2,图象顶点在直线y=x+1上,并且图 象经过点(3,-6)。求aቤተ መጻሕፍቲ ባይዱb、c。
用待定系数法求二次函数的解析式
说一说
说出下列函数的开口方向、对称轴和顶点坐标:
y=3x2
y= -2x2+3
y= - 4(x+3)2
y=
1 2
(x-2)2+1
y=x2+2x+1
温故而知新
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c (a≠0) • 顶点式:y=a(x-h)2+k (a≠0) 特殊形式 • 交点式:y=a(x-x1)(x-x2) (a≠0)
25 5 ∴ 所求抛物线解析式为 y
1
x2 8 x
25 5
知识应用
有一个抛物线形的立交桥拱,这个
桥拱的最大高度为16m,跨度为40m.
现把它的图形放在坐标系里(如图所示),
求抛物线的解析式.
解 设抛物线为y=a(x-20)2+16
法 二
根据题意可知 ∵ 点(0,0)在抛物线上,
∴ 所求抛物线解析式为
通常选择一般式 y
▪ 已知图象的顶点坐标(对称轴和最值)
通常选择顶点式
o
▪ 已知图象与x轴的两个交点的横坐标x1、x2,
x 通常选择交点式
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,

《用待定系数法求二次函数的解析式》PPT课件(甘肃省市级优课)

《用待定系数法求二次函数的解析式》PPT课件(甘肃省市级优课)
一设:指先设出二次函数的解析式
二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组
三解:指解此方程或方程组
四还原:指将求出的a、b、c还原回原解析式中
做一做
1、若抛物线y=ax2+bx+c的对称轴为x=2,
且经过点(1,4)和点(5,0),求此抛物线解析式?
解:设抛物线的解析式为:
课堂练习
1. 一个二次函数,当自变量x=0时,函数值 y=-1,当x=-2与0.5时,y=0.求这个二次函数 的解析式.
y x2 3 x 1 2
2. 一个二次函数的图象经过(0,0),(-1, -1),(1,9)三点.求这个二次函数的解析 式.
y 4x2 5x
课堂小结
1. 已知图象上三点或三对的对应值, 通常选择一般式
(1,4),(2,7)三点,得关于a,b,c的 三元一次方程组
a b c 10, a b c 4, 4a 2b c 7. 解这个方程组,得
a=2,b=-3,c=5
∴所求二次函数是y=2x2-3x+5
方法小结
用待定系数法确定二次函数解析的 基本方法分四步完成:一设、二代、
三解、四还原
y a(x 2)2 k 代入(1, 4),(5, 0)得
a k 4 9a k 0
解得:a=- 1 , k 9
2
2
所以抛物线的解析式为:
y 1 ( x 2)2 9
2
2
2、已知二次函数的图像过点A(-1,0)、 B(3,0),与y轴交于点C2,3且BC= ,求二
次函数关系式?
解:设抛物线的解析式为: y a(x 3)(x 1) 由题得C点坐标为(0, 3) 代入解析式得 a 1 所以抛物线的解析式为 y x2 2x 3

二次函数的解析式的三种解法ppt课件

二次函数的解析式的三种解法ppt课件

完整编辑ppt
封面 10
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
11
由条件得: 点( 0,-5 )在抛物线上
x o
a-3=-5, 得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
完整编辑ppt
封面 4 例题
例题选讲
例 已知抛物线与X轴交于A(-1,0),B(1,0)
一般式: 3 并经过点M(0,1),求抛物线的解析式?
y=ax2+bx+c
例题选讲
例一般式: 1ຫໍສະໝຸດ y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c
由条件得:
a-b+c=10 a+b+c=4
4a+2b+c=7 解方程得: a=2, b=-3, c=5
与Y轴交点的纵坐标是,求这个抛物线的解析式?
完整编辑ppt
封面 9小结
课堂小结
求二次函数解析式的一般方法:
▪ 已知图象上三点或三对的对应值,
y
通常选择一般式
▪ 已知图象的顶点坐标*对称轴和最值)
通常选择顶点式
x
o
▪ 已知图象与x轴的两个交点的横x1、x2,
通常选择两根式
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,
一次方程组,求出a、

求二次函数解析式共14页PPT资料

求二次函数解析式共14页PPT资料

如图是某公园一圆形喷水池的效果图,水流在
各方向沿形状相同的抛物线落下。建立如图坐
标系,如果喷头所在处A(0,1.25),水流路
线最高处B(1,2.25),如果你是设计师,那
么水池的半径至少要多少米,才能使喷出的水
流不致落到池外?
y
B A
x
O
C
如图所示是喷灌设备图,水管AB高出地 面1.5米,B处是自转的喷水头,喷出水 流呈抛物线状,点B与水流最高点C的连
二次函数的 解析式
顶点
对称轴
y ax2 (0 , 0 )
yax2 k (0 , k )
ya(xh)2 ( h , 0 )
ya(xh)2k ( h , k )
y轴 y轴 直线x=h 直线x=h
我们生活中有很多“抛物线”的例子, 你能举出几个出来吗?
已知二次函数的顶点在原点,且经过点 (2,4),求该函数的解析式。
解:设二次函数的解析式为 y ax2
把(2,4)代入上式,得:
4a 4
a 1
所以,二次函数的解析式为 y x2
已知抛物线顶点为M(1,2),且过点N (2,4),求此二次函数解析式。
变式: 已知抛物线顶点为M(-1,-2),且 过点N(2,4),求此二次函数解析式。
注意:代顶点坐标时的符号处理!
线与水平地面成45°角,BC= 2 2 米。
求水流落地点D到原点O的距离
1、已知抛物线的顶点是(- 2,-3), 且经过点(-1,-2),求函数解析式;
2、如图,求抛物线的解析式
y
4
2
1
-5
-1 0
x已Leabharlann 抛物线 ya2xb xc(a0)经

二次函数解析式的求法(PPT课件(共24张PPT)

二次函数解析式的求法(PPT课件(共24张PPT)
解:∵抛物线的顶点为(2,-1) ∴设解析式为:y=a(x-2)2-1 把点(-1,2)代入
a(-1-2)2-1=2
(3)图象与X轴交于(2,0) (-1,0)且过点(0,-2)
解法(一)可设一般式 解法(二)可设两根式 解:∵抛物线与X轴交于点(2,0)(-1,0)
∴设解析式为:y=a(x-2)(x+1) 把点(0,-2)代入
元山中学九年级四班
年1月12日
有两个交点,则a的取值范围是————
6。抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物
线的对称轴是直线_________,它必定经过
________和____
7。若
为二次函数

图象上的三点,则 y1 , y2 ,y3 的大小关
系是( )
A.
B.
C.
D.
8.抛物线y= (k2-2)x2 -4kx+m的对称轴是直线 x=2,且它的最低点在直线y= -k x+2上,求函数
解析式。
9. y= ax2+bx+c图象与x轴交于点A、点B,与y 轴交于点C,OA=2,OB=1 ,OC=1,
求函数解析式
10。若抛物线
的顶点在 x轴的下
方,则 的取值范围是( )
Aa>1. B.A<1 C. D.
11.(天津市)已知二次函数 的图象如图所示, 下列结论:①abc>0;②b<a+c;③4a+2b+c>0; ④2c<3b;⑤a+b>m(am+b), ( 的实数). 其中正确的结论序号有( )
8 已知抛物线 y=ax2+bx+c

二次函数的解析式课件

二次函数的解析式课件

弹性力学问题
在弹性力学中,二次函数 可以用于描述物体的应力 和应变关系,以及弹性体 的变形和稳定性等问题。
04
二次函数解析式的性质
二次函数的开口方向与a的关系
总结词:a的正负决定二次函数的开口方 向 a>0时,开口向上;a<0时,开口向下。
a的符号决定了二次函数的开口方向,这 是判断二次函数增减性的关键。
几何问题
二次函数与几何图形密切相关,可以 用于研究平面几何、立体几何中的一 些问题,例如抛物线、椭圆、双曲线 的性质和图像。
在物理问题中的应用
01
02
03
运动学问题
二次函数可以用于描述物 体在重力作用下的运动规 律,例如自由落体运动、 抛体运动等。
波动问题
在波动现象中,例如声波 、光波等,二次函数可以 用于描述波的传播规律和 性质。
参数的取值还影响抛物线 的顶点位置:顶点的x坐标 为-b/2a,y坐标为(4acb^2)/4a。
03
二次函数解析式的应用
在生活中的实际应用
金融领域
二次函数可以用于描述股 票价格、债券收益率等金 融数据的变动规律,帮助 投资者进行风险评估和预
测。
建筑领域
在建筑设计中,二次函数 可以用于计算结构物的受 力分析、稳定性等,以确 保建筑的安全性和稳定性
最小值为c-b^2/4a,此时二次函数开 口向上;最大值为c-b^2/4a,此时二 次函数开口向下。
二次函数的最小值或最大值在对称轴 上取得,即x=-b/2a处。
05
二次函数解析式的求解方法
配方法求解二次函数解析式
总结词
通过配方将二次函数转化为顶点式,便于分析函数的开口方向、对称轴和顶点坐标。
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x
x=1,图象上最低点P的纵坐标为
-8,图象经过点(-2,10),求这 个函数的解析式.
6、已知抛物线的顶点在原点,且 过(2,8),求这个函数的解析式。
7、抛物线y=ax2+bx+c经过(0,0) 与(12,0), 最高点的纵坐标 是3,求这条抛物线的解析式
8、已知抛物线与X轴交于A (-1,0),B(1,0)并经过点M (0,1),求抛物线的解析式?
函数模型的选择
▪ 已知图象上三点或三对的对应值,
通常选择一般式 y
▪ 已知图象的顶点坐标(对称轴和最值)
通常选择顶点式
o
▪ 已知图象与x轴的两个交点的横坐标x1、x2,
x 通常选择交点式
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,
一般式: y=ax2+bx+c
例题选讲
解: 设所求的二次函数为 y=a(x+1)(x-3)
由条件得: 点C( 0,-3)在抛物线上
所以:a(0+1)(0-3)=-3 得: a=1
故所求的抛物线解析式为 y= (x+1)(x-3) 即:y=x2-2x-3
一般式: y=ax2+bx+
例题选讲
c 例2 已知抛物线的顶点在(3,-2),且与x轴两交点
11、已知抛物线y=ax2+bx+c与抛物线 y=-x2-3x+7的形状相同,顶点在直线x=1 上,且顶点到x轴的距离为5,请写出满足 此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1
又 顶点在直线x=1上,且顶点到x轴的距离为5,
顶点为(1,5)或(1,-5)
一设:指先设出二次函数的解析式
二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组
三解:指解此方程或方程组 四还原:指将求出的a、b、c还原回原解析式中
小试牛刀
1、已知二次函数的图像过点(0, 0),(1,-3),(2,-7) 三点,则该二次函数关系式为__y_____12_x_2___52_x_。 2、若二次函数的图像有最高点为(1,-6),且经过点 (2,-8),则此二次函数的关系式__y___2_(_x__1_)2__6__
得: a=1 b= -2 c= -3
故所求的抛物线解析式为 y=x2-2x-3
一般式: y=ax2+bx+c
例题选讲
例1 已知抛物线y=ax2+bx+c(a≠0)与x轴交于
A(-1,0),B(3,0),并且过点C(0,-3), 求抛物线的解析式?
顶点式: y=a(x-h)2+k
交点式: y=a(x-x1)(x-x2)
2、已知抛物线的顶点坐标为 (-1,-2), 且通过点(1,10).
3、已知抛物线与x轴交点的横坐标为2和1,且通过点(2,8).
2、已知抛物线的顶点为(-1,-3)与 y轴交点为(0,-5)求抛物线的解 析式?
解:设所求的二次函数为 y=a(x+1)2-3
由题意得: 点( 0,-5 )在抛物线上 a-3=-5, 得a=-2
9、 已知抛物线y=-2x2+8x-9的 顶点为A点,若二次函数 y=ax2+bx+c的图像经过A点, 且与x轴交于B(0,0)、C (3,0)两点,试求这个二次 函数的解析式。
10、已知二次函数y=ax2+bx+c的最大值是2,图 象顶点在直线y=x+1上,并且图象经过点(3,6)。求a、b、c。
所以其解析式为:
(1) y=(x-1)2+5
(2) y=(x-1)2-5
(3) y=-(x-1)2+5
(4) y=-(x-1)2-5
展开成一般式即可.
12、 已知:抛物线y=ax2+bx+c的图象如图 所示:
3、若二次函数的图像与x轴的交点坐标为(1,0)、(2,0) 且过点(3,4),则此二次函数的关系式为_y__2_(_x__1_)(_x__2)
❖1.已知一个二次函数的图象 经过(-1,8),(1,2), (2,5)三点。求这个函数的 解析式
1.根据下列条件,求二次函数的解析式:
1、 已知抛物线经过 (2,0),(0,-2), (-2,3) 三点.
说一说
说出下列函数的开口方向、对称轴和顶点坐标(x+3)2
y=
1 2
(x-2)2+1
y=x2+2x+1
如果要求二次函数解析式y=ax2+bx+c(a≠0) 中的a、b、c,至少需要几个点的坐标?
温故而知新
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c (a≠0) • 顶点式:y=a(x-h)2+k (a≠0) 特殊形式 • 交点式:y=a(x-x1)(x-x2) (a≠0)
例1 已知抛物线y=ax2+bx+c(a≠0)与x轴交于
A(-1,0),B(3,0),并且过点C(0,-3), 求抛物线的解析式?
顶点式: y=a(x-h)2+k
交点式: y=a(x-x1)(x-x2)
解: 设所求的二次函数为 y=ax2+bx+c
由条件得: 0=a-b+c 0=9a+3b+c -3=c
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
4、二次函数y= ax2+bx+c的对称轴 为x=3,最小值为-2,,且过点 (0,1),求此函数的解析式。
4、抛物线的对称轴是x=2,且过 点(4,-4)、(-1,2),求 此抛物线的解析式。
5、已知二次函数的对称轴是直线
的距离为4,求此二次函数的解析式.
解:设函数关系式 y=a(x-3)2-2
顶点式: ∵抛物线与x轴两交点距离为4,对称轴为x=3
y=a(x-h)2+k
∴过点(5,0)或(1,0)
把(1,0)代入得, 4a=2
交点式: y=a(x-x1)(x-x2)
a=
1 2
∴y=
1 2
(x-3)2-2
方法小结
用待定系数法确定二次函数解析式的 基本方法分四步完成: 一设、二代、三解、四还原
相关文档
最新文档