沪科版八年级(上) 中考题单元试卷:第13章 一次函数(11)

合集下载

2019—2020年沪科版八年级数学第一学期《一次函数》单元测试解析版.docx

2019—2020年沪科版八年级数学第一学期《一次函数》单元测试解析版.docx

《第12章一次函数》一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y 随之y=kx﹣1.12.函数y=2x﹣4,当x ,y<0.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .14.已知函数y=(m﹣1)+1是一次函数,则m= .15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>020.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.321.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>222.下列关系式中,表示y是x的正比例函数的是()A.y=B.y=1 C.y=x+1 D.y=2x23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2)D.(2,0)24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.29.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?《第12章一次函数》参考答案与试题解析一.填空题1.关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【解答】解:∵在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,∴点A关于x轴对称的点的坐标是(﹣3,﹣4),∵关于y轴对称时,横坐标为相反数,纵坐标不变,∴点A关于y轴对称的点的坐标是(3,4),∵关于原点对称时,横纵坐标都为相反数,∴点A关于原点对称的点的坐标是(3,﹣4).故答案为:(﹣3,﹣4),(3,4),(3,﹣4).【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.【考点】勾股定理;点的坐标.【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离.【解答】解:∵点A坐标为(﹣5,﹣2),∴点A到x轴的距离为2,到y轴的距离为5,到原点的距离==.故答案为2,5,.【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标.也考查了勾股定理.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.【考点】直线与圆的位置关系;坐标与图形性质.【分析】根据A的坐标和半径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y轴的交点坐标.【解答】解:∵⊙A的半径为5,A(3,0),∴5﹣3=2,5+3=8,即⊙A和x轴的交点坐标为(﹣2,0)和(8,0);连接AD、AE,由勾股定理得:OD==4,同理OE=4,即⊙A和y轴的交点坐标为(0,4)和(0,﹣4);故答案为:(﹣2,0)或(8,0);(0,4)或(0,﹣4).【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可.【解答】解:∵点P(a﹣3,5﹣a)在第一象限内,∴,解不等式①得,a>3,解不等式②得,a<5,所以,a的取值范围是3<a<5.故答案为:3<a<5.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.【考点】根据实际问题列一次函数关系式.【专题】经济问题.【分析】剩余的钱数=总钱数500﹣x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值范围.【解答】解:x件这种商品的总价格为3x,∴y=500﹣3x,∵500﹣3x≥0,解得x≤166,∴0≤x≤166,且x为整数.故答案为:y=500﹣3x;0≤x≤166,且x为整数.【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所买商品的总价钱不能超过所带的总钱数.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.【考点】一次函数的性质.【专题】开放型.【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.【考点】一次函数图象与系数的关系.【分析】根据一次函数y=(k﹣1)x+k+1的图象经过第一、二、四象限判断出k的取值范围即可;求得直线y=﹣2x+4与坐标轴的交点坐标即可求得围成的三角形的面积.【解答】解:∵一次函数y=(k﹣1)x+k+1经过一、二、四象限,∴k﹣1<0,k+1>0,解得:﹣1<k<1;∵函数y=﹣2x+4中﹣2<0,4>0,∴函数y=﹣2x+4的图象经过一、二、四象限,∵令y=﹣2x+4=0,解得:x=2,∴与x轴交于(2,0),令x=0,解得:y=4,故与y轴交于(0,4),∴与两坐标轴围成的面积为×2×4=4,故答案为:﹣1<k<1,一、二、四,4.【点评】考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .【考点】待定系数法求一次函数解析式.【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数.【解答】解:∵一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),∴,解得.故答案为:2,3.【点评】本题考查了待定系数法求一次函数的解析式.9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .【考点】一次函数图象上点的坐标特征.【分析】直接把点(m,m+3)代入直线y=﹣x+2进行计算即可.【解答】解:∵点(m,m+3)在函数y=﹣x+2的图象上,∴m+3=﹣m+2,解得m=﹣.故答案为:﹣.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】因为y与3x成正比例,所以可设y=k•3x即y=3kx,又因为当x=8时,y=﹣12,则有﹣12=3×8×k.从而可求出k的值,进而解决问题.【解答】解:∵y与3x成正比例∴设y=k•3x即y=3kx又∵当x=8时,y=﹣12∴﹣12=3×8×k∴k=﹣∴y与x的函数解析式为y=﹣x.【点评】此类题目可根据题意,利用待定系数法建立函数关系式,然后利用方程解决问题.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y 随之y=kx﹣1.【考点】一次函数的性质.【分析】把x=2代入y=﹣x得到y=﹣2,然后根据一次函数性质确定直线y=﹣x所经过的象限和增减性.【解答】解:函数y=﹣x的图象是一条过原点及(2,﹣2)的直线,这条直线经过第二、四象限,当x 增大时,y随之减小.故答案为﹣2;二、四;减小.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12.函数y=2x﹣4,当x ,y<0.【考点】一次函数与一元一次不等式.【分析】求出一次函数与x轴的交点,然后根据k>0,y随x的增大而增大解答即可.【解答】解:当y=0时,2x﹣4=0,解得x=2,∵k=2>0,∴y随x的增大而增大,∴当x<2时,y<0.故答案为:<2.【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小是解题的关键.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣,∴函数y=4x+b与xy轴的交点分别为(﹣,0)(0,b).∵函数y=4x+b的图象与两坐标轴围成的三角形面积为6,∴|b|•|﹣|=6,解得b=±4.故答案为:±4.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.已知函数y=(m﹣1)+1是一次函数,则m= .【考点】一次函数的定义.【专题】计算题.【分析】根据一次函数的定义,令m2=1,m﹣1≠0即可解答.【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.【考点】一次函数的应用.【分析】通话时间小于3分钟时,需付0.7元,故小文打了2分钟,需付费0.7;通过A点和B点坐标分别为(3,0.7)和(4,1)用待定系数法列方程,求函数关系式.再将x=8代入得出y.【解答】解:根据图形可知,当通话时间小于3分钟时,需付电话费话0.7元.故小文打了2分钟,需付费0.7元.设需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=kx+b.因为点A(3,0.7)和点B(4,1)都在y=kx+b上,代入得:0.7=3k+b,1=4k+b.解得:k=0.3,b=﹣0.2.故需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=0.3x﹣0.2 (x≥3).当x=8时,y=0.3×8﹣0.2=2.4﹣0.2=2.2(元).【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.【考点】一次函数的性质.【专题】开放型.【分析】要使一次函数的图象经过第二、三、四象限,又知b<0,故只需k<0即可.【解答】解:因为要使函数图象经过第二、三、四象限,必须k<0,b<0,而y=kx﹣1中,b=﹣1<0,所以只需添加条件k<0即可.故答案为:k<0【点评】能够根据k,b的符号正确判断直线所经过的象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数【考点】一次函数的定义;正比例函数的定义.【专题】常规题型.【分析】根据一次函数和正比例函数的定义条件判断各选项即可.【解答】解:A、正比例函数是一次函数,故本选项正确;B、一次函数不一定是正比例函数,故本选项错误;C、正比例函数是一次函数,故本选项错误;D、不是正比例函数有可能是一次函数,如y=x+1,故本选项错误.故选A.【点评】本题主要考查了一次函数和正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1;正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径【考点】正比例函数的定义.【专题】常规题型.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、正方形的面积=边长的平方,故本选项错误;B、变量x增加,变量y也随之增加,如y=2x,但不是正比例函数,故本选项错误;C、矩形的一组对边的边长固定,则另一组对边的边长也固定,其周长也一定,故本选项错误;D、圆的周长=2π×半径,符合正比例函数的定义,故本选项正确.故选D.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>0【考点】一次函数图象与系数的关系.【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.20.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.3【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=0,y=2代入所给函数解析式,得到关于m的方程,求解即可,注意x的系数应不为0.【解答】解:∵y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),∴m2﹣m﹣4=2,解得m=﹣2或3,∵m+2≠0,解得m≠﹣2,∴m=3,故选D.【点评】考查一次函数图象上的点的坐标的特点;用到的知识点为:点在函数解析式上,点的横纵坐标适合该函数解析式.注意一次函数中的比例系数应不为0.21.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>2【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的性质横坐标互为相反数,纵坐标相等,进而求出点A(2﹣a,1﹣2a)关于y轴的对称点,再利用第三象限点的性质,即可得出答案.【解答】解:∵点A(2﹣a,1﹣2a)关于y轴的对称点为:(a﹣2,1﹣2a),且此点在第三象限,∴解得:.故选:C.【点评】此题主要考查了关于y轴对称点的性质以及一元一次不等式组的解法,得出关于a的不等式组是解题关键.22.下列关系式中,表示y是x的正比例函数的是()A.y=B.y=1 C.y=x+1 D.y=2x【考点】正比例函数的定义.【分析】根据形如y=kx (k是常数,k≠0)是正比例函数,可得答案.【解答】解:A、是反比例函数,故A错误;B、是常函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故正确;故选:D.【点评】本题考查了正比例函数,利用了正比例函数的定义.23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2)D.(2,0)【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题,解方程组的解即为两直线的交点坐标.【解答】解:解方程组得,所以直线y=4x﹣2与y=﹣4x﹣2的交点坐标为(0,﹣2).故选B.【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质求解.【解答】解:∵k<0,b>0,∴直线经过第一、二、四象限.故选C.【点评】掌握根据k,b的符号正确判断一次函数图象经过的象限.25.一次函数y=ax﹣a(a≠0)的大致图象是()A .B .C .D .【考点】一次函数的图象.【分析】因为a 的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a >0时,一次函数y=ax ﹣a 经过第一、三、四象限,选项A 符合;(2)当a <0时,一次函数y=ax ﹣a 图象经过第一、二、四象限,无选项符合.故选A .【点评】本题考查了一次函数的性质,根据图象能正确判断一次项系数以及常数项的符号;根据符号判断判断图经过的象限.三、解答题.26.已知一次函数的图象经过点A (﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C (﹣2,5)是否在该函数图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据一次函数图象过A (﹣1,3)和点B (2,﹣3),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)把)把x=﹣2代入y=﹣2x+1,得出y 的值,和C 的纵坐标进行比较即可判断.【解答】解:(1)设直线AB 的函数 解析式为y=kx+b (k 、b 为常数且k ≠0)∵一次函数的图象经过点A (﹣1,3)和点(2,﹣3),∴解得.∴直线AB的函数解析式为y=﹣2x+1.(2)把x=﹣2代入y=﹣2x+1,得y=﹣2×(﹣2)+1=5,所以点C(﹣2,5)在该函数图象上.【点评】本题综合考查了待定系数法求一次函数的解析式、一次函数图象上的点的坐标特征.解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【考点】两条直线相交或平行问题.【分析】(1)根据x轴上点的坐标特征把y=0分别代入y=x+1和y=﹣2x+2,求出对应的自变量的值即可得到A和B点坐标;通过解方程组可确定P点坐标;(2)利用三角形面积公式计算.【解答】解:(1)把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,);(2)S△PAB=×(1+1)×=.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.28.已知y﹣3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)根据正比例函数的定义可设y﹣3=k(3x+1),再把x=2,y=6.5代入可计算出k=,则y=x+,然后根据一次函数的定义进行判断;(2)根据一次函数图形上点的坐标特征,把(a,2)代入(1)中的解析式中即可得到a的值.【解答】解:(1)设y﹣3=k(3x+1),把x=2,y=6.5代入得6.5﹣3=k(6+1),解得k=,所以y﹣3=(3x+1),所以y=x+,y是x的一次函数;(2)把(a,2)代入y=x+得a+=2,解得a=﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.29.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)【考点】一次函数的应用.【分析】(1)从图上可看出B出发时与A相距10千米;(2)从图象看出3小时时,两个图象相交,所以3小时时相遇;(3)修理的时间就是路程不变的时间是1.5﹣0.5=1小时;(4)不发生故障时,B的行走的路程和时间是正比例关系,设函数式为y=kx,过(0.5,7.5)点,求出函数式,从而求出相遇的时间,从而求出路程;(5)S和t的函数关系是一次函数,设函数是为S=kx+t,过(0,10)和(3,22.5),从而可求出关系式.【解答】解:(1)B出发时与A相距10千米.(2)3小时时相遇.(4)设B修车前的关系式为:y=kx,过(0.5,7.5)点.7.5=0.5kk=15.y=15x.相遇时:S=yx+10=15xx=.y=×15=.小时时相遇,此时B走的路程是千米.(5)设函数是为S=kx+t,且过(0,10)和(3,22.5),,解得.∴S=x+10.【点评】本题考查一次函数的应用,关键从图象上获取信息,根据图象的确定函数形式,设出函数式,代入已知点确定函数式,求变量或函数值或交点.30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0<x≤4时,y与x的函数关系式是什么?(3)4<x≤12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?【考点】一次函数的应用.【专题】数形结合.【分析】(1)根据等量关系:水量=单位时间内进水量×时间,可得出每分钟进水多少.(2)设出x、y的关系式,把(4,20)代入求出即可.(3)设出x、y的关系式,把(4,20)(12,30)代入求出即可.(4)根据等量关系:放水量=单位时间放水量×时间,代入求出即可.【解答】解:(1)如图:当x=4时,y=20∴每分钟进水量是:20÷4=5(升)(2)y与x的函数关系式是y=kx,把(4,20)代入得20=4k,解得:k=5,∴y与x的函数关系式是y=5x(0<x≤4)(3)设y与x的函数关系式是y=kx+b,把(4,20)(12,30)代入得∴k=,b=15∴y与x的函数关系式是y=x+15(4<x≤12)(4)由图知:当4<x≤12时,进水量是5×8=40(升),放水量是40﹣10=30(升),∴每分钟放水量是:30÷8=3.75(升)【点评】本题重点考查了一次函数图象和实际应用相结合的问题.能够根据题意中的等量关系建立函数关系式,能够根据函数解析式求得对应的x的值,渗透了函数与方程的思想.31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?【考点】一次函数的应用.【专题】图表型.。

一次函数(考题猜想,易错必刷40题12种题型)(解析版)—八年级数学上学期期中(沪科版)

一次函数(考题猜想,易错必刷40题12种题型)(解析版)—八年级数学上学期期中(沪科版)

一次函数(易错必刷40题12种题型专项训练)➢认识函数➢函数的三种表示方法➢认识一次函数➢正比例函数定义➢正比例函数的图象➢正比例函数的性质➢一次函数的图象➢一次函数的性质➢确定一次函数的表达式➢一次函数与方程➢一次函数与不等式➢一次函数的实际应用一.认识函数(共4小题)1.(22-23九年级·山东泰安·自主招生)下列等式中,①y =ax 2+x +2,②y =x ,③y =x ―1,④x =(y ―2)(y +2)其中函数有( )A .1个B .2个C .3个D .4个【答案】D【分析】本题主要考查了函数的定义, 函数的定义:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y是x 的函数,由此即可判断.关键是掌握函数的定义.【详解】解:①y =ax 2+x +2,是函数,②y =x ,是函数,③y =x ―1,是函数,④x =(y ―2)(y +2)=y 2―4,是函数,综上①②②④是函数,故选:D .2.(24-25九年级上·全国·课后作业)下列图象中,不能表示y 是x 的函数的是( )A.B.C.D.3.(23-24七年级上·山东菏泽·期末)下列变量间的关系不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.圆柱的底面半径与体积D.圆的周长与半径【答案】C【分析】本题考查了函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的定义对各选项进行判断.【详解】解:A、长方形的宽一定,其长与面积成正比,所以其长与面积是函数关系,所以A选项是函数,不符合题意;B、正方形的面积与它的周长为二次函数关系,所以B选项是函数,不符合题意;C、圆柱的底面半径与体积不是函数关系,因为圆柱体的体积(V)与底面半径(r)、圆柱体的高(ℎ)有关,即V =2πr·ℎ,有三个变量,与函数的定义不符,所以C 选项不是函数,符合题意;D 、圆的周长与半径成正比,所以它们为函数关系,所以D 选项是函数,不符合题意;故选:C .4.(22-23七年级下·陕西西安·期中)水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .在上述变化中,自变量是( )A .2B .半径rC .πD .周长C【答案】B【分析】可得周长C 是半径r 的函数,周长C 随着半径r 的变化而变化,周长C 是因变量,半径r 为自变量,即可求解.【详解】解:由题意得周长C 是半径r 的函数,∵周长C 随着半径为r 的变化而变化,∴半径为r 是自变量;故选:B .【点睛】本题考查了函数的定义,理解定义是解题的关键.二.函数的三种表示方法(共3小题)5.(23-24八年级下·河北沧州·8元,如果一次购买10本以上,超过10本部分打八折,那么付款金额y 与购书数量x 之间的函数关系如何,同学们对此展开了讨论:(1)小明说:y 与x 之间的函数关系为y =6.4x +16;(2)小刚说:y 与x 之间的函数关系为y =8x ;(3)小聪说:y 与x 之间的函数关系在010x ££时,y =8x ;在x >10时,y =6.4x +16;(4)小斌说:我认为用下面的列表法也能表示它们之间的关系;购买量/本1234…9101112…付款金额/元8162432…728086.492.8…(5)小志补充说:如图所示的图象也能表示它们之间的关系.其中,表示函数关系正确的个数有()A.1个B.2个C.3个D.4个6.(2024·北京海淀·二模)某种型号的纸杯如图1所示,若将n个这种型号的杯子按图2中的方式叠放在一起,叠在一起的杯子的总高度为H.则H与n满足的函数关系可能是()A.0.3H n=B.100.3Hn=C.100.3H n=-D.100.3H n=+【答案】D【分析】本题考查了用字母表示数或数量关系,理解题目中的数量关系,掌握代数式的表示方法是解题的关键.根据一个杯子的高度和杯沿的高度,可得H=ℎ+0.3n,由此即可求解.【详解】解:根据题意,1个杯子的高ℎ=10,1个杯子沿高为0.3,∴n个杯子叠在一起的总高度为H=10+0.3n,故选:D .7.(23-24七年级下·广东佛山·期末)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,测得弹簧的长度y(cm)随所挂物体的质量x(kg)变化关系的图象如下:(1)上图反映哪两个变量之间的关系?(2)根据上图,补全表格:x/kg01257y/cm1216(3)弹簧长度是如何随悬挂物体质量的变化而变化的?【答案】(1)弹簧的长度y(cm)与所挂物体的质量x(kg)的变化关系(2)见解析(3)当所挂物体的质量不超过5kg时,所挂物体的质量x(kg)每增加1kg,弹簧的长度增加2cm;当所挂物体的质量超过5kg时,弹簧的长度为18kg,不随所挂物体的质量x(kg)的变化而变化.【分析】本题考查了函数的基本概念,函数的表示方法:(1)直接观察图象,即可求解;(2)直接观察图象,即可求解;(3)直接观察图象,即可求解.(3)解:由图象得:当所挂物体的质量不超过5kg 时,所挂物体的质量x (kg)每增加1kg ,弹簧的长度增加2cm ;当所挂物体的质量超过5kg 时,弹簧的长度为18kg ,不随所挂物体的质量x (kg)的变化而变化.三.认识一次函数(共4小题)8.(23-24八年级下·全国·期末)下列y 关于x 的函数中,属于正比例函数的是( )A .y =x +3 B .y =2xC .²y x =D .y =4x9.(23-24八年级下·全国·单元测试)有下列函数:①y =―12x ;②y =3x ―2;③ y =1x ;④22y x =.其中是一次函数的有( )A .2个B .3个C .4个D .0个【答案】A【分析】本题考查了一次函数,根据一次函数的定义:一般的,形如y =kx +b (k ≠0,k b 、为常数)的函数叫一次函数,据此即可判断求解,掌握一次函数的定义是解题的关键.【详解】解:根据一次函数的定义可得①②是一次函数,③④不是一次函数,∴一次函数有2个,故选:A .10.(23-24八年级下·山东济宁·阶段练习)若函数23(2)1my m x -=--为一次函数,则m 的值为( )A .2B .―2C .±2D .0【答案】B【分析】本题主要考查了一次函数的定义,平方根的应用,掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1是解题关键.根据一次函数的定义,列出关于m 的方程和不等式,从而求出m 的值即可.【详解】解:∵函数23(2)1m y m x -=--为一次函数,∴m ―2≠0,m 2―3=1,∴m =―2,故选:B11.(2024·安徽·模拟预测)已知y ax b =+与y =bx +a 是一次函数.若b >a ,那么如图所示的4个图中正确的是()A .B .C .D .【答案】A【分析】本题考查一次函数的图象,其图象是直线,要求学生掌握通过函数的解析式,判断直线的位置及与坐标轴的交点.联立方程y =bx +ay =ax +b ,得出两直线的交点为(1,a +b ),依次分析选项可得答案.【详解】解:联立方程y =bx +a y =ax +b ,可解得x =1y =a +b ,故两直线的交点为(1,a +b ),B 选项中交点纵坐标是0,即b +a =0,但根据图象可得0b a +>,故选项B 不符合题意;而选项C 中交点横坐标是负数≠1,故选项C 不符合题意;选项D 中交点横坐标是负数≠1,选项D 不符合题意;A 选项中交点横坐标是正数,纵坐标是正数,即b +a >0,根据图象可得0b a +>,故选项A 符合题意;故选:A .四.正比例函数定义(共3小题)12.(22-23八年级上·上海·单元测试)下列各关系中成正比例的有()①圆的周长与半径;②速度一定,路程与时间;③当三角形的面积一定时,它的一条边和这条边上的高ℎ;④长方形的面积一定时,长与宽.A.4个B.3个C.2个D.1个13.(22-23八年级上·广西贺州·期末)如果函数y=(m―1)x|m|是正比例函数,那么()A.m=1或m=―1B.m=1C.m=―1D.m=2【答案】Ck¹的函数叫做正比例函【分析】本题考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,0)数是解题的关键.根据正比例函数的定义得出关于m的方程和不等式,求出m的值即可.【详解】解:∵函数y=(m―1)x|m|是正比例函数,∴m―1≠0且|m|=1,解得m=―1.故选:C.14.(23-24七年级上·四川泸州·开学考试)张奶奶在超市买了2千克橘子,每千克橘子13.6元,一共花了27.2元,买橘子的总价与质量之间的关系是()A.正比例关系B.反比例关系C.不成比例D.不能确定【答案】A【分析】本题主要考查了正比例关系的概念,熟练掌握正比例关系的定义是解题的关键.根据买橘子的总价¸质量=单价即可得到答案.【详解】解:根据买橘子的总价¸质量=单价,买橘子的总价与质量之间的关系是正比例关系.故选A.五.正比例函数的图象(共3小题)15.(21-22九年级·山东枣庄·自主招生)如果一个定值电阻R两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U变化的图象是()A.B.C.D.16.(24-25八年级上·全国·课后作业)如果一个正比例函数的图象经过点(3,―2),那么这个正比例函数的表达式为( )A .y =―23x B .y =23xC .y =32xD .y =―32x17.(23-24八年级下·河北张家口·期末)在平面直角坐标系中,函数y =45x 的图象大致是( )A .B .C .D ..故选:A六.正比例函数的性质(共4小题)18.(23-24八年级下·全国·单元测试)如图,正比例函数y =kx,y =mx,y =nx 在同一平面直角坐标系中的图象如图所示.则比例系数k ,m ,n 的大小关系是 .19.(23-24八年级上·全国·单元测试)函数y =kx (k ≠0)中,y 值随x 值的增大而增大,则图象经过第 象限.【答案】一、三【分析】本题主要考查了正比例函数的图像和性质,由已知条件了得出0k >,且函数经过点(0,0),结合正比例函数的图像和性质即可得出答案.【详解】解:∵函数y =kx (k ≠0)中,y 值随x 值的增大而增大,∴0k >,且函数经过点(0,0),∴图象经过第一、三象限,故答案为:一、三.20.(24-25八年级上·上海·单元测试)已知y 是x 的正比例函数,并且当x =2时,8y =,如果(,24)A m m -+是它图象上的一点,求m 的值.21.(23-24八年级下·广东广州·阶段练习)已知正比例函数图象过点(―6,2)且点(,3)-a 在这个函数的图象上,求a 的值.七.一次函数的图象(共3小题)22.(2023九年级·贵州遵义·学业考试)如图,在平面直角坐标系中有M ,N ,P ,Q 四个点,其中恰有三点在一次函数y=kx+b(k>0)的图象上.根据图中四点的位置,判断这四个点中不在一次函数y=kx+b的图象上的点是()A.点M B.点N C.点P D.点Q观察图形可知:可得出点Q在直线∴这四个点中不在函数y=kx故选:C.23.(23-24八年级下·河北唐山·期末)关于一次函数y=2x―1的图象,下列结论正确的是()A.点(3,5)在图象上B.图象经过第二、三、四象限C.若点A(―5,m)、点B(1,n)在函数图象上,m>nD.图象与x轴的交点坐标为(0,―1)【答案】A【分析】本题考查了一次函数的图象和性质,根据一次函数的图象和性质逐项判断即可求解,掌握一次函数的图象和性质是解题的关键.=,y=bx,y=cx+1,y=dx―3的图象24.(23-24八年级下·全国·单元测试)如图,四个一次函数y ax如图所示,则a,b,c,d的大小关系是.【答案】a>b>c>d【分析】此题考查函数的图象,根据一次函数图象的性质分析,了解一次函数图象的性质:当0k>时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大.b>,c<0,d<0,【详解】解:由图象可得:a>0,0=比y=bx陡,直线y=dx―3比y=cx+1陡,由于直线y ax∴a b>,|d|>|c|,∴c>d,∴a>b>c>d故答案为:a>b>c>d.八.一次函数的性质(共4小题)25.(23-24八年级下·全国·期末)一次函数y =x ―1的图象平移后经过点(―4,2),则平移后的函数解析式为 ( )A .6y x =-B .y =―x ―2C .y =x +6D .y =x ―8【答案】C【分析】本题考查一次函数y =kx +b (k ≠0)图像与几何变换,根据平移不改变k 的值可设y =x +b ,然后将点(―4,2)代入即可得出直线的函数解析式.解题的关键是掌握:求一次函数y =kx +b (k ≠0)平移后的解析式时要注意平移时k 的值不变.【详解】解:设平移后的函数表达式是y =x +b ,∵它经过点(―4,2),∴2=―4+b ,解得:b =6,∴平移后的函数解析式为y =x +6.故选:C .26.(23-24八年级下·全国·单元测试)如图所示,下列说法:①对于函数1y ax b =+来说,y 随x 的增大而增大;②函数y =cx +d 不经过第二象限;③不等式ax ―d ≥cx ―b 的解集是x ≥4;④a ―c =14(d ―b ),其中正确的是( )A .①②③B .①③④C .②③④D .①②④【答案】B 【分析】本题考查一次函数与不等式,一次函数的图象和性质,根据图象判断增减性和所过的象限,判断①和②,图象法判断③和④.【详解】解:由图象可知,直线1y ax b =+, y 随x 的增大而增大;直线y =cx +d 经过一,二,四象限,故①正确;②错误;∵两直线交点的横坐标为x =4,且当x ≥4时,直线1y ax b =+在直线y =cx +d 的上方,27.(24-25九年级上·广东广州·开学考试)已知A (x 1,y 1),B (x 2,y 2)是一次函数y =ax +2x ―2024图象上不同的两个点,若记m =(x 1―x 2)(y 1―y 2),则当m >0时,a 的取值范围是( )A .a <2024B .a >2024C .a <―2D .a >―228.(23-24八年级上·四川达州·期中)已知一次函数(21)(3)y m x n =--+,求:(1)m 当为何值时,y 的值随x 的增加而增加;(2)当m 、n 为何值时,此一次函数也是正比例函数;(3)若m =1,n =2,求直线与x 轴和y 轴的交点坐标.九.确定一次函数的表达式(共3小题)29.(23-24八年级下·湖南长沙·阶段练习)已知一次函数y=kx+b,当x=―1时,y=―1;当x=2时,y=5,(1)求这个一次函数的解析式;(2)当x=―3时,求y的值.【答案】(1)y=2x+1(2)―5【分析】本题考查了待定系数法求一次函数解析式,得到关于k、b的二元一次方程组是解题的关键.(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值,从而求得解析式.(2)把x=―3代入解析式即可求得.【详解】(1)解:将x=―1,y=―1;x=2,y=5分别代入一次函数解析式得:―1=―k+b 5=2k+b,解得k=2 b=1,∴这个一次函数解析式为y=2x+1;(2)解:把x=―3代入y=2x+1得,y=2×(―3)+1=―5.30.(23-24八年级上·安徽六安·期末)已知2y+1与3x―3成正比例,且x=6时,y=17.(1)求y与x之间的函数关系式;(2)将(1)中函数图象向上平移5个单位后得到直线1l,求直线1l对应的函数表达式,并回答:点P(4,3)是否在直线1l上?31.(23-24八年级下·安徽六安·阶段练习)如图,A、B分别是y轴上位于原点两侧的两点,点P(m,4)在第S=.二象限内,直线PA交x轴于点C(―2,0),直线PB交x轴于点D,且6(1)求点A的坐标及m的值;(2)若3S△AOP=S△BOP,求直线BD的解析式.一十.一次函数与方程(共3小题)32.(23-24九年级上·浙江台州·期中)在平面直角坐标系xOy中,抛物线y=―2x2+mx+n与x轴交于A,B两点,若顶点C到x轴的距离为18,则线段AB的长度为.33.(23-24八年级下·全国·期中)如图,函数y ax=和y=kx+b的图象交于点P(3,―2),则根据图象可得,关于x,y的二元一次方程组y=axy=kx+b的解是.【答案】x =3y =―2【分析】本题主要考查了一次函数与二元一次方程组之间的关系,根据两一次函数的交点的横纵坐标是两一次函数解析式联立得到的二元一次方程组的解,进行求解即可.【详解】解:∵函数y ax =和y =kx +b 的图象交于点P (3,―2),∴关于x ,y 的二元一次方程组y =ax y =kx +b 的解是x =3y =―2,故答案为:x =3y =―2.34.(23-24八年级下·全国·单元测试)如图,已知一次函数y =2x +b 和y =kx ―3(k ≠0)的图象交于点P ,则二元一次方程组2x ―y =―b kx ―y =3 的解是 .【答案】x =4y =―6【分析】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y 1=k 1x +b 1,y 2=k 2x +b 2,其图象的交点坐标(,)x y 中x ,y 的值是方程组y =k 1x +b 1y =k 2x +b 2的解.【详解】解:由图象可知,二元一次方程组2x ―y =―b kx ―y =3 的解是x =4y =―6.故答案为:x =4y =―6.一十一.一次函数与不等式(共2小题)35.(24-25九年级上·广东深圳·开学考试)直线l :y =k x +b 与直线l :y =k x 在同一平面直角坐标系中的图象(如图所示),则关于x的不等式k1x+b<k2x的解集为.【答案】x>2【分析】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.利用函数图象,直线1l在直线l2下方所对应的自变量的范围即可.【详解】解:由图象可知,直线1l和直线l2的交点为(2,4),∴关于x的不等式k1x+b<k2x的解集是x>2,故答案为:x>2.36.(23-24八年级下·全国·单元测试)如图,直线y=kx+b与y=mx+n分别交x轴于点A―0.5,0,B(2,0),则不等式(kx+b)(mx+n)<0的解集为.【答案】x<―0.5或x>2【分析】本题主要考查一次函数和一元一次不等式.本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.【详解】解:直线y=kx+b与直线y=mx+n分别交x轴于点A(―0.5,0)、B(2,0),∵(kx+b)(mx+n)<0,∴一个正数和一个负数的积为负数,∴不等式(kx+b)(mx+n)<0的解集为x<―0.5或x>2,故答案为:x<―0.5或x>2.一十二.一次函数的实际应用(共4小题)37.(2024·湖南长沙·模拟预测)为响应国家关于推动各级各类生产设备、服务设备更新和技术改造的号召,某公司计划将办公电脑全部更新为国产某品牌,市场调研发现,A品牌的电脑单价比B品牌电脑的单价少1000元,通过预算得知,用30万元购买A品牌电脑比购买B品牌电脑多10台.(1)试求A,B两种品牌电脑的单价分别是多少元;(2)该公司计划购买A,B两种品牌的电脑一共40台,且购买B品牌电脑的数量不少于A品牌电脑的3,试求出5该公司费用最少的购买方案.38.(24-25九年级上·湖南长沙·阶段练习)为了迎接中秋节的到来,河西某商场计划购进一批甲、乙两种月饼,已知一盒甲种月饼的进价与一盒乙种月饼的进价的和为180元,用4000元购进甲种月饼的盒数与用5000元购进乙种月饼的盒数相同.(1)求每盒甲种、乙种月饼的进价分别是多少元;(2)商场用不超过4600元的资金购进甲、乙两种月饼共50盒,其中甲种月饼的盒数不超过乙种月饼的盒数,甲种月饼售价190元,乙种月饼售价200元,为了回馈顾客,每卖一盒甲种月饼就返利顾客m元(10<m<12),当月饼售完后,要使利润最大,对甲种、乙种月饼应该怎样进货?(2)解:设购进甲种月饼x 盒,则购进乙种月饼(50―x )盒,根据题意得,x ≤50―x 80x +100(50―x )≤4600,解得20≤x ≤25,设总利润为W 元,根据题意可得.W =(190―80―m )x +(200―100)(50―x )=(10―m )x +5000(20≤x ≤25),∵10<m <12,∴100m -<,∴W 随x 的增大而减小,则当x =20时,W 达到最大,即购进甲种月饼20盒,购进乙种月饼30盒利润最大.39.(21-22八年级下·吉林长春·阶段练习)甲骑电动车,乙骑自行车从都梁公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x (ℎ),甲、乙两人距出发点的路程S 甲、S 乙关于x 的函数图象如图1所示,甲、乙两人之间的路程差y 关于x 的函数图象如图2所示,请你解决以下问题:(1)甲的速度是km/ℎ,乙的速度是 km/ℎ;(2)对比图1.图2可知:a = ,b = ;(3)当两人相遇后,请写出甲乙两人之间的距离d 与x 之间的函数关系式(注明x 的取值范围).(4)乙出发 h ,甲、乙两人相距7.5km ?40.(23-24八年级下·全国·单元测试)如图,在平面直角坐标系中,过点C 0,6的直线AC 与直线OA 相交于点A 4,2,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AB 的解析式;(2)求△OAC 的面积;(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14,若存在,求出此时点M 的坐标;若不存在,请说明理由.。

沪科版八年级数学上册(第11-12章)综合测试试题

沪科版八年级数学上册(第11-12章)综合测试试题

沪科版八年级数学上册(第11-12章)综合测试试题测试范围:第11~12章考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)3.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)第3题图第5题图第9题图4.点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值等于()A.5 B.3 C.﹣3 D.﹣15.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)6.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.69.如图,一个弹簧不挂重物时长6 cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.610.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)第10题图第14题图二、填空题(本大题共4小题,每小题5分,满分20分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.在函数y=中,自变量x的取值范围是.13.点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n 的大小关系是.14.某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.三、(本大题共2小题,每小题8分,满分16分)15.已知一次函数y=kx+b,它的图象经过(1,﹣3),(4,6)两点.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.16.已知点P(2m+4,m﹣1),试分别根据下列条件,求出P 点的坐标.(1)点P在y轴上;(2)点P在过点A(2,3)且与x轴平行的直线上.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(﹣2,5),并且与y 轴相交于点P,直线y=﹣x+3与y轴相交于点Q,点Q恰与点P关于x轴对称,求这个一次函数y=kx+b的表达式.18.在平面直角坐标系中,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:「P」,即「P」=|x|+|y|.(1)求点A(﹣1,3)的勾股值「A」;(2)若点B在第一象限且满足「B」=3,求满足条件的所有B点与坐标轴围成的图形的面积.五、(本大题共2小题,每小题10分,满分20分)19.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B 种电器每件70元.设购买B种电器x件,购买两种电器所需费用为y 元.(1)y关于x的函数关系式为:;(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.20.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标;(2)若y1>y2>0,求x的取值范围;(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.六、(本题满分12分)21.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.七、(本题满分12分)22.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y 甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱八、(本题满分14分)23.在平面直角坐标系xOy中,△ABC如图所示,点A(﹣3,2),B(1,1),C(0,4).(1)求直线AB的解析式;(2)求△ABC的面积;(3)已知一次函数y=ax+3a+2(a为常数).①求证:一次函数y=ax+3a+2的图象一定经过点A;②若一次函数y=ax+3a+2的图象与线段BC有交点,直接写出a 的取值范围.答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.B 9.A10.C 解析:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4每个数一个循环,因为2021÷4=505……1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选C.11.﹣1(答案不唯一)12.x>13.m<n14.65 解析:当x≥2时,设函数解析式为y=kx+b,把(2,156)和(3,221)代入解析式,可得,解得,所以函数解析式为y=65x+26(x≥2),所以2小时后货车的速度是65km/h,或利用图象法,平均速度==65(km/h).故答案为65.15.解:(1)将(1,﹣3),(4,6)代入y=kx+b中,得,解得,∴y与x之间的函数关系式为y=3x﹣6.(4分)(2)把点(a,3)代入y=3x﹣6中,得3a﹣6=3,解得a=3,∴a的值为3.(8分)16.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3).(4分)(2)由题意得点P的纵坐标与点A的纵坐标相等,令m﹣1=3,解得m=4.所以P点的坐标为(12,3).(8分)17.解:由题意可得,点Q的坐标是(0,3),则点P的坐标是(0,﹣3),把(0,﹣3),(﹣2,5)代入一次函数y=kx+b得3,25,bk b解得3,4.bk所以这个一次函数的表达式为y=﹣4x﹣3.(8分)18.解:(1)「A」=|﹣1|+|3|=4.(3分)(2)设B(x,y),由「B」=3且点B在第一象限知,x+y=3(x>0,y>0),即:y=﹣x+3(x>0,y>0).故所有点B与坐标轴围成的图形为如图所示的三角形,故其面积为×3×3=.(8分)19.解:(1)y=﹣20x+1890(4分)(2)∵y=﹣20x+1890,﹣20<0,∴y随x的增大而减小,∴x 取最大值时,y最小.∵购买B种电器的数量少于A种电器的数量,∴x<21﹣x,∴x<.∵x为整数,∴x的最大值为10,∴当x=10时,y有最小值,为1690,21﹣x=11.∴使费用最省的方案是购买B种电器10件,A种电器11件,所需费用为1690元.(10分)20.解:(1)根据题意,得,解得,∴点P的坐标为(﹣2,1).(3分)(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3.由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2.(6分)(3)由题意可知E(m,﹣2m﹣3),F(m,m+3).∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得m=﹣3或m=﹣1.(10分)21.解:(1)如图所示,A′(0,4)、B′(﹣1,1)、C′(3,1).(3分)(2)S△ABC=×(3+1)×3=6.(7分)(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,∴点P的坐标为(0,1)或(0,﹣5).(12分)22.解:(1)y甲=25x+200,.(6分)(2)当0≤x≤10时,令25x+200=60x,解得x=.当10<x≤20时,令25x+200=600,解得x=16.答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人且小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人且不超过20人时,小王公司应该选择在乙店吃小龙虾更省钱.(12分)23.解:(1)设直线AB的解析式是y=kx+b,将点A(﹣3,2),点B(1,1)代入,得,解得,∴直线AB的解析式是1544y x.(4分)(2)设直线AB与y轴的交点为D点,则点D的坐标为,.(8分)(3)①证明:∵y=ax+3a+2=a(x+3)+2,∴y=ax+3a+2必过点(﹣3,2),即必过A点;②把B(1,1)代入y=ax+3a+2得,1=a+3a+2,解得a=﹣;把C(0,4)代入y=ax+3a+2得,4=3a+2,解得a=,∴若一次函数y=ax+3a+2的图象与线段BC有交点,则且a≠0.(14分)]。

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(10)

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(10)

沪科版八年级(上)中考题同步试卷:13.2 一次函数(10)一、选择题(共4小题)1.已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱250元.若他再加买0.5公斤的西红柿,需多付10元,则空竹篮的重量为多少公斤?()A.1.5B.2C.2.5D.32.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时3.如图表示甲、乙两车行驶距离与剩余油量的线型关系,其中甲、乙两车均可行驶超过20公里.若甲、乙两车均行驶5公里时,乙车剩余油量比甲车剩余油量多0.5公升,则根据图中的数据,比较甲、乙两车均行驶20公里时的剩余油量,下列叙述何者正确?()A.甲车剩余油量比乙车剩余油量多1公升B.甲车剩余油量比乙车剩余油量多2公升C.乙车剩余油量比甲车剩余油量多1公升D.乙车剩余油量比甲车剩余油量多2公升4.若等腰三角形的周长是80cm,则能反映这个等腰三角形的腰长ycm与底边长xcm的函数关系式的图象是()A.B.C.D.二、填空题(共1小题)5.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.三、解答题(共25小题)6.为鼓励市民节约用水,某市自来水公司按分段收费标准收费,如图反映的是每月所收水费y(元)与用水量x(方)之间的函数关系.(1)小亮家三月份用水7方,请问应交水费多少元(直接写出结果)?(2)按上述分段收费标准,小亮家四、五月份分别交水费33元和21元,问五月份比四月份节约用水多少方?7.下面的图象反映的过程是:甲、乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60千米/时,y(千米)表示甲、乙两人相距的距离,x(小时)表示乙行驶的时间.请根据图象回答下列问题:(1)A、B两地相距多少千米?(2)求点D的坐标.(3)甲往返的速度分别是多少?8.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?9.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格200010.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=,b=;(2)求小明的爸爸下山所用的时间.11.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?12.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.13.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?15.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?16.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:品种购买价(元/棵)成活率甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?17.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.18.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.19.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?20.如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?21.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.22.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:桌椅型号一套桌椅所坐学生人数(单位:人)生产一套桌椅所需木材(单位:m3)一套桌椅的生产成本(单位:元)一套桌椅的运费(单位:元)A20.51002B30.71204设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.23.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.24.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B 市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?25.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?26.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.27.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?28.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y 元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?29.今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.30.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C 村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?沪科版八年级(上)中考题同步试卷:13.2 一次函数(10)参考答案一、选择题(共4小题)1.C;2.C;3.A;4.D;二、填空题(共1小题)5.2200;三、解答题(共25小题)6.;7.;8.;9.;10.8;280;11.40;12.;13.;14.;15.24;16.;17.;18.;19.;20.440;21.;22.;23.;24.60;96;(,80);25.1.6;2.4;26.560;27.;28.;29.;30.120;2;。

沪科版八年级上册数学第十三章一次函数练习题(附解析)

沪科版八年级上册数学第十三章一次函数练习题(附解析)

沪科版八年级上册数学第十三章一次函数练习题一、单项选择题1、函数 y=3x﹣ 4 与函数 y=2x+3 的交点的坐标是()A.( 5, 6)B.( 7,﹣ 7)C.(﹣ 7,﹣ 17)D.( 7, 17)2、已知一次函数y=kx﹣ k,若 y 随 x 的增大而减小,则该函数的图象经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限3、函数 y=-x-1 的图像不经过()象限.A.第一B.第二C.第三D.第四4、若点 P(a, b)在第二象限内,则直线y=ax+b 不经过().A.第一象限B.第二象限C.第三象限D.第四象限5、如图表示某加工厂今年前 5 个月每个月生产某种产品的产量c(件)与时间A. 1 月至 3 月每个月产量逐月增t (月)之间的关系,则对这类产品来说,添,4、5 两月产量逐月减小该厂()B. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量与 3 月持平C. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量均停止生产6 、一次函数yx 4 和 y 2x 1D.1 月至 3 月每个月产量不变,4、5 两月均停止生产的图象的交点个数为()个A、没有B、一C、两D、无数7、若直线 y=3x+6 与坐标轴围成的三角形的面积为S,则 S等于().A. 6 B. 12 C.3 D. 24A.加油前油箱中节余油量y(升)与行驶时间t(小时)的函数关系是y=﹣ 8t+25B.途中加油 21 升C.汽车加油后还可行驶 4 小时8、张师D.汽车抵达乙地时油箱中还余油 6 升傅驾车从甲地到乙地,两地相距 500 千米,汽车出发前油箱有油 25 升,途中加油若干升,加油前、后汽车都以100 千米 / 小时的速度匀速行驶,已知油箱中节余油量 y(升)与行驶时间 t (小时)之间的关系以下图.以下说法错误的选项是().9、假如直线经过第一、二、四象限,则m 的取值范围是()A、 m<2B、m>1C、 m≠ 2D、 1<m<2A.甲、乙两人的速度相同B.甲先抵达终点10、甲、乙两人在一次百米赛C.乙用的时间短D.乙比甲跑的行程多跑中,行程 s(米)与赛跑时间t(秒)的关系以下图,则下列说法正确的选项是().11、一次函数y=kx+b 知足 x=0 时 y=-1;x=1 时, y=1,则一次函数的表达式为().A. y=2x+1 B. y=-2x+1 C.y=2x-1 D. y=-2x-112、如图 1,在矩形 ABCD中,动点 P 从点 B 出发,沿矩形的边由运动,设点 PA. 10 B. 16 C. 18 D.20 运动的行程为x,的面积为 y,把 y 看作 x 的函数,函数的图像如图 2 所示,则的面积为()13、一次函数的图像以下图,则以下结论正确的选项是()A.,B.,C.,D.,14、如图 1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的行程为,的面积为,假如对于的函数图象如图 2 所示,则当时,点应运动到().A.处B.处C.处D.处15、小李和小陆从 A 地出发,骑自行车沿同一条路行驶到 B 地,他们离出发地的距离 S(单位: km )和行驶时间 t(单位: h)之间的函数关系的图象以下图,依据图中的信息,有以下说法:(1)他们都行驶了 20 km;(2)小陆全程共用了 1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中逗留了 0.5h 。

沪科新版八年级数学上册第13章一次函数单元测试题AB卷【精】-(1)

沪科新版八年级数学上册第13章一次函数单元测试题AB卷【精】-(1)

沪科版八年级数学上册一次函数测试卷A 卷一、 填空题 1、函数224y x =+中,自变量x 的取值范围为。

2、某中学今年为改善教案设备投资15万元,计划以后每年增加2万元,则年投资量y 与年数x 的函数关系式为。

3、 一个正比例函数(32)y m x =-其函数图像经过第 二、第四象限,则m 的取值范围为。

4、如果点(-2,1)在正比例函数y kx =的图像上,那么点(-1,2)是否也在该函数的图像上?。

5、一次函数34y x =+的图像与x 轴的交点A 为,与y 轴的交点B 为,△AOB 的面积为6、函数33y x =-+的图像经过,y 随x 的增大而,函数7y -的图像经过象限,y 随x 的增大而。

7、y -2与x 成正比例,当x =-2时,y =4,则x =时,y =-4。

8、已知函数y=(1()32m x m ++-是一次函数,则m 的取值范围为____。

9、已知一次函数Y=kx+b 与Y=2x+1平行,切经过点(-3,4),则k=___,b=____.10、一次函数Y=(m+4)x-5+2m,当Y 随x 的增大而增大,则m______,当Y 随x 的增大而减小,则m______,当此函数图象过原点时,m=_____. 二、选择题1、下列函数(1)y +x =0 (2)y=-2x +1 (3)y=-1x (4)y=-x 2中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个2、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕迟到,于是加快了骑车的速度,在以下给出的四个函数图象中(S 是距离,t 是时间),符合以上情况的是( )3、函数31-=x y 中,自变量x 的取值范围是(A )x >3 (B )x ≥3 (C )x ≤3 (D )x <34、下列各点,在一次函数112y x =-的图像上的是( ) (A )(0,-1) (B )(-1,0) (C )(1,2) (D )(2,1)5、已知点(-1,y 1),(2,y 2)都在直线y=12 x +1上,则y 1 y 2大小关系是( )(A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较6、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图像表示应为( )7、已知一次函数y=kx +b (k ≠0)的图像如图所示, 当x<0时,y 的取值范围( )A )y >0(B )y<0(C )-2<y<0(D )y <08ABCD9、.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) (D )10、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,则的值是( )(A)4 (B)-2 (C)12 (D)-12一、填空题(10×3’=30’) 1、,2、,3、,4、,、5、6、7、 8、 9、 10、三、解答题(6×10’=60’)1、画一次函数y=2x-5和y=-3x 的图象.利用图像求方程组的解。

沪科版-初中数学八年级(初二)(上册)—一次函数章节(单元练习题)试题及答案

沪科版-初中数学八年级(初二)(上册)—一次函数章节(单元练习题)试题及答案

沪科版-八年级(初二)(上册)数学—一次函数章节单元练习题一.选择题(共20小题)1.(2019秋•南岸区校级月考)下列函数是一次函数的是( )A .y =B .23y x =-C .23y x=- D .1y x =-2.(2019秋•岳麓区校级月考)下列各点在函数21y x =-上的是( ) A .(1,0)B .(1,1)C .(0,1)D .(2,1)3.(2019秋•中原区校级月考)下列各组变量间的关系中,y 是x 的一次函数关系的有()A .32y a x =B .331y x =-C .y =D .42x y -=4.(2019春•桥西区期末)一次函数2y x =-与x 轴的交点为( ) A .(1,1)B .(0,2)C .(2,0)D .(3,0)5.(2019春•桥西区期末)对于函数3y x =-+,下列结论正确的是( ) A .当4x >时,0y <B .它的图象经过第一、二、三象限C .它的图象必经过点(1,3)-D .y 的值随x 值的增大而增大6.(2019春•桥西区期末)下列函数中,是正比例函数的是( ) A .1y x=B .22y x =C .2y x =+D .2y x =-7.(2019秋•香坊区校级月考)点(2,6)-在正比例函数y kx =图象上,下列各点在此函数图象上的为( ) A .(3,1)B .(3,1)-C .(1,3)D .(1,3)-8.(2019春•宣州区校级月考)一次函数(2)1y m x m =+-+,若y 随x 的增大而减小,且该函数的图象与x 轴交点在原点右侧,则m 的取值范围是( ) A .2m >-B .2m <-C .21m -<<D .1m <9.(2019•恩施州)函数11y x =+x 的取值范围是( ) A .23x …B .23x …C .23x <且1x ≠- D .23x …且1x ≠- 10.(2019春•裕华区校级期中)A 点(1,)m -和点(0.5,)n 是直线(1)(01)y k x b k =-+<<上的两个点,则m ,n 关系为( ) A .m n >B .m n …C .m n …D .m n <11.(2019春•思明区校级期中)一次函数图象与y 轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是( ) A .23y x =-B .23y x =+C .23y x =--D .23y x =-+12.(2019秋•蚌山区月考)下列有关一次函数2(1)2y m x =-++的说法中,错误的是()A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .当0x >时,2y >D .函数图象经过第一、二、四象限13.(2019春•硚口区期末)下列式子:①35y x =-;②2y x =;③||y x =;④y =.其中y 是x 的函数的个数是( ) A .1B .2C .3D .414.(2018秋•莱州市期末)直线2(1)y x =-向下平移3个单位长度得到的直线是( ) A .2(3)y x =-B .33y x =-C .25y x =-D .22y x =-15.(2018秋•金山区期末)直线23y x =-不经过点( )A .(2,3)-B .(0,0)C .(3,2)-D .(3,2)-16.(2019秋•蚌山区校级月考)若直线y kx b =-沿y 轴平移3个单位得到新的直线1y kx =-,则b 的值为( )A .2-或4B .2或4-C .4或6-D .4-或617.(2019春•思明区校级)把直线y kx =向上平移3个单位,经过点(1,5),则k 值为() A .1-B .2C .3D .518.(2019春•新华区校级月考)某人要在规定的时间内加工100个零件,如果用n 表示工作效率,用t 表示规定的时间,下列说法正确的是( ) A .数100和n ,t 都是常量 B .数100和n 都是变量 C .n 和t 都是变量D .数100和t 都是变量19.(2019春•思明区校级期中)如图,直线(0)y kx b b =+>经过点(2,0),则关于x 的不等式0kx b +…的解集是( )A .2x >B .2x <C .2x …D .2x …20.(2019秋•香坊区校级月考)甲乙两人在同一条笔直的公路上步行从A 地去往B 地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y (千米)与甲步行的时间t (小时)的函数关系图象如图所示,下列说法: ①乙的速度为7千米/时; ②乙到终点时甲、乙相距8千米; ③当乙追上甲时,两人距A 地21千米; ④A 、B 两地距离为27千米. 其中错误的个数为( )A .1个B .2个C .3个D .4个二.填空题(共10小题)21.(2019春•裕华区校级期中)已知3y -与x 成正比例,且2x =时,7y =,则x 与y 的函数关系式为 .22.(2019秋•蚌山区校级月考)函数(31)2y m x =+-中,y 随x 的增大而增大,则直线(1)2y m x =---经过第 象限.23.(2018秋•景德镇期末)已知点(,2)A a ,(,4)B b 是一次函数y =+点,则a b (填“>”, <”或“=” )24.(2018秋•莱州市期末)在平面直角坐标系中,已知一次函数21y x =+的图象经过11(1,)P y -,22(2,)P y 两点,则1y 2y (填“>”或“<”或“=” ).25.(2019秋•中原区校级月考)若关于x 的函数2(53)n y m x m n -=-++是正比例函数,则当1x =时,y 的值是 .26.(2019春•西湖区校级)某款宝马汽车的油箱一次加满汽油50升,可行驶y 千米,设该汽车行驶百公里耗油x 升,假设汽车能行驶至油用完,则y 关于x 的函数解析式为 . 27.(2019春•思明区校级期中)关于函数3y x =,下列说法正确的是 . ①是正比例函数; ②图象是经过原点的一条直线; ③y 随x 增大而减小; ④图象过第一、三象限.28.(2019春•京口区校级月考)已知一次函数y kx b =+与y mx n =+的图象如图所示,若kx b mx n +<+,则x 的取值范围为 .29.(2019春•西湖区校级月考)关于函数(3)y k x k =-+,给出下列结论: ①此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若函数经过二,三,四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是3k <, 其中正确的是 ;(填序号)30.(2019春•凤翔县期中)如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x (时)与油箱的余油量y (升)之间的关系,它可以表示为 .三.解答题(共5小题)31.(2019秋•蚌山区校级月考)如图,已知过点(1,0)B 的直线1:l y kx b =+与直线2:24l y x =+相交于点(,2)P a .(1)求直线1l 的解析式;(2)根据图象直接写出不等式24kx b x ++…的解集; (3)求四边形PAOC 的面积.32.(2019春•桥西区期末)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了 个小时;(2)从图象上看,风速在 (小时)时间段内增大的最快,最大风速是 千米/小时; (3)风速从开始减小到最终停止,平均每小时减小多少千米?33.(2019秋•青羊区校级月考)如图,直线AB 过点(3,0)A ,(0,2)B (1)求直线AB 的解析式.(2)过点A 作AC AB ⊥且:3:4AC AB =,求过B 、C 两点直线的解析式.34.(2019•望花区四模)在某市的创优工作中,某社区计划对21200m 的区域进行绿化.经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天. (1)求甲、乙两施工队每天分别能完成的绿化面积是多少?(2)设先由甲队施工m天,再由乙队施工n天,刚好完成绿化任务,①求n与m的关系式;②若甲、乙两队施工的总天数不超过14天,问甲工程队最少施工多少天?35.(2018秋•莱州市期末)海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应山东省加快新旧动能转换的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为y万元,不合要求的扇贝有x万笼.(1)求纯收入y关于x的关系式.(2)当x为何值时,养殖场不赔不嫌?沪科版-八年级(初二)(上册)数学—一次函数章节单元练习题参考答案与试题解析一.选择题(共20小题)1.(2019秋•南岸区校级月考)下列函数是一次函数的是( )A .y =B .23y x =-C .23y x=- D .1y x =-【解答】解:一次函数的一般形式为(0)y kx b k =+≠, 1y x ∴=-是一次函数.故选:D .2.(2019秋•岳麓区校级月考)下列各点在函数21y x =-上的是( ) A .(1,0)B .(1,1)C .(0,1)D .(2,1)【解答】解:当1x =时,211y x =-=,∴点(1,0)不在函数21y x =-的图象上;点(1,1)在函数21y x =-的图象上;当0x =时,211y x =-=-,∴点(0,1)不在函数21y x =-的图象上;当2x =时,213y x =-=,∴点(2,1)不在函数21y x =-的图象上;故选:B .3.(2019秋•中原区校级月考)下列各组变量间的关系中,y 是x 的一次函数关系的有()A .32y a x =B .331y x =-C .y =D .42x y -=【解答】解:A 、当0a =时,该函数不是y 关于x 的一次函数,故本选项不符合题意;B 、该函数不符合一次函数的一般形式,故本选项不符合题意;C 、函数的式的右侧不是整式,故本选项不符合题意;D 、符合一次函数的一般形式,故本选项符合题意;故选:D .4.(2019春•桥西区期末)一次函数2y x =-与x 轴的交点为( ) A .(1,1)B .(0,2)C .(2,0)D .(3,0)【解答】解:令0y =,则20x -=,解得2x =,所以一次函数2y x =-与x 轴的交点坐标是(2,0), 故选:C .5.(2019春•桥西区期末)对于函数3y x =-+,下列结论正确的是( ) A .当4x >时,0y <B .它的图象经过第一、二、三象限C .它的图象必经过点(1,3)-D .y 的值随x 值的增大而增大【解答】解:A .当4x >时,0y <,符合题意;B .它的图象经过第一、二、四象限,不符合题意;C .它的图象必经过点(1,4)-,不符合题意;D .y 的值随x 值的增大而减小,不符合题意;故选:A .6.(2019春•桥西区期末)下列函数中,是正比例函数的是( ) A .1y x=B .22y x =C .2y x =+D .2y x =-【解答】解:A 、分母中含有自变量x ,不是正比例函数,故A 错误;B 、22y x =是二次函数,故B 错误;C 、2y x =+是一次函数,故C 错误;D 、2y x =-是正比例函数,故D 正确.故选:D .7.(2019秋•香坊区校级月考)点(2,6)-在正比例函数y kx =图象上,下列各点在此函数图象上的为( ) A .(3,1)B .(3,1)-C .(1,3)D .(1,3)-【解答】解:将点(2,6)-代入函数表达式:y kx =得:62k =-, 解得:3k =-,故函数的表达式为:3y x =-,当1x =时,3y =-,当3x =时,9y =-,当3x =-时,9y =,当1x =-时,3y =, 故选:D .8.(2019春•宣州区校级月考)一次函数(2)1y m x m =+-+,若y 随x 的增大而减小,且该函数的图象与x 轴交点在原点右侧,则m 的取值范围是( )A .2m >-B .2m <-C .21m -<<D .1m <【解答】解:y 随x 的增大而减小,20m ∴+<,解得2m <-;又该函数的图象与x 轴交点在原点右侧,所以图象过一、二、四象限, 直线与y 轴交点在正半轴,故10m -+>.解得1m <. m ∴的取值范围是2m <-.故选:B .9.(2019•恩施州)函数11y x =+x 的取值范围是( ) A .23x …B .23x …C .23x <且1x ≠- D .23x …且1x ≠- 【解答】解:根据题意得:230x -…且10x +≠, 解得:23x …且1x ≠-. 故选:D .10.(2019春•裕华区校级期中)A 点(1,)m -和点(0.5,)n 是直线(1)(01)y k x b k =-+<<上的两个点,则m ,n 关系为( ) A .m n >B .m n …C .m n …D .m n <【解答】解:01k <<,∴直线(1)y k x b =-+中,10k -<,y ∴随x 的增大而减小,10.5-<, m n ∴>.故选:A .11.(2019春•思明区校级期中)一次函数图象与y 轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是( ) A .23y x =-B .23y x =+C .23y x =--D .23y x =-+【解答】解:设一次函数表达式为:3y kx b kx =+=+, 3b =,图象经过第四象限,则0k <,故选:D .12.(2019秋•蚌山区校级)下列有关一次函数2(1)2y m x =-++的说法中,错误的是()A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .当0x >时,2y >D .函数图象经过第一、二、四象限 【解答】解:2(1)0m -+<, y ∴随x 值的增大而减小;故A 正确; 当0x =时,2y =,∴函数图象与y 轴的交点坐标为(0,2),故B 正确; 由于0k <,∴当0x >时,2y <,故C 错误; 函数0k <,0b >,∴函数图象经过第一、二、四象限;故选:C .13.(2019春•硚口区期末)下列式子:①35y x =-;②2y x =;③||y x =;④y =.其中y 是x 的函数的个数是( ) A .1B .2C .3D .4【解答】解:①35y x =-,y 是x 的函数;②2y x =,当x 取一个值时,有两个y 值与之对应,故y 不是x 的函数; ③||y x =,y 是x 的函数;④y =y 是x 的函数. 所以y 是x 的函数的有3个. 故选:C .14.(2018秋•莱州市期末)直线2(1)y x =-向下平移3个单位长度得到的直线是( ) A .2(3)y x =-B .33y x =-C .25y x =-D .22y x =-【解答】解:将线2(1)y x =-向下平移3个单位长度后得到的直线解析式为2(1)3y x =--,即25y x =-.故选:C .15.(2018秋•金山区期末)直线23y x =-不经过点( ) A .(2,3)- B .(0,0) C .(3,2)- D .(3,2)-【解答】解:A 、当2x =-时,24(2)333y =-⨯-=≠,故直线不经过点(2,3)-; B 、当0x =时,2003y =-⨯=,故直线经过点(0,0); C 、当3x =时,2323y =-⨯=-,故直线经过点(3,2)-; D 、当3x =-时,2(3)23y =-⨯-=,故直线经过点(3,2)-. 故选:A .16.(2019秋•蚌山区校级月考)若直线y kx b =-沿y 轴平移3个单位得到新的直线1y kx =-,则b 的值为( )A .2-或4B .2或4-C .4或6-D .4-或6【解答】解:根据上加下减的原则可得:31b -±=-,解得2b =-或4.故选:A .17.(2019春•思明区期中)把直线y kx =向上平移3个单位,经过点(1,5),则k 值为( )A .1-B .2C .3D .5【解答】解:直线(0)y kx k =≠的图象向上平移3个单位长度后的解析式为3y kx =+, 将点(1,5)代入3y kx =+,得:53k =+,2k ∴=,∴平移后直线解析式为23y x =+.故选:B .18.(2019春•新华区校级月考)某人要在规定的时间内加工100个零件,如果用n 表示工作效率,用t 表示规定的时间,下列说法正确的是( )A .数100和n ,t 都是常量B .数100和n 都是变量C .n 和t 都是变量D .数100和t 都是变量【解答】解:100n t=,其中n 、t 为变量,100为常量. 故选:C . 19.(2019春•思明区校级期中)如图,直线(0)y kx b b =+>经过点(2,0),则关于x 的不等式0kx b +…的解集是( )A .2x >B .2x <C .2x …D .2x …【解答】解:由图象可得:当2x …时,0kx b +…,所以关于x 的不等式0kx b +…的解集是2x …,故选:C .20.(2019秋•香坊区校级月考)甲乙两人在同一条笔直的公路上步行从A 地去往B 地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y (千米)与甲步行的时间t (小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A 地21千米;④A 、B 两地距离为27千米.其中错误的个数为( )A .1个B .2个C .3个D .4个【解答】解:①由题意,得甲的速度为:1243÷=千米/时;设乙的速度为a 千米/时,由题意,得(74)37a -=⨯,解得:7a =.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(94)7938-⨯-⨯=千米,故②正确;③当乙追上甲时,两人距A 地距离为:7321⨯=千米.故③正确;④A ,B 两地距离为:7(94)35⨯-=千米,故④错误.综上所述:正确的是①②③.故选:C .二.填空题(共10小题)21.(2019春•裕华区校级期中)已知3y -与x 成正比例,且2x =时,7y =,则x 与y 的函数关系式为 23y x =+ .【解答】解:3y -与x 成正比例,∴设函数解析式为:3y kx -=,当2x =时,7y =,732k ∴-=2k =,则y 与x 的函数关系式是:32y x -=,即:23y x =+.故答案为:23y x =+.22.(2019秋•蚌山区校级月考)函数(31)2y m x =+-中,y 随x 的增大而增大,则直线(1)2y m x =---经过第 二、三、四 象限.【解答】解:函数(31)2y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >-. 10m ∴--<,∴直线(1)2y m x =---经过第二、三、四象限.故答案是:二、三、四.23.(2018秋•景德镇期末)已知点(,2)A a ,(,4)B b是一次函数y =+点,则a > b (填“>”, <”或“=” )【解答】解:20k =-<,∴一次函数y =+y 随x 的增大而减小,24<,a b ∴>.故答案为:>.24.(2018秋•莱州市期末)在平面直角坐标系中,已知一次函数21y x =+的图象经过11(1,)P y -,22(2,)P y 两点,则 1y < 2y (填“>”或“<”或“=” ).【解答】解:一次函数21y x =+中20k =>,y ∴随x 的增大而增大,12-<,12y y ∴<.故答案为:<.25.(2019秋•中原区校级月考)若关于x 的函数2(53)n y m x m n -=-++是正比例函数,则当1x =时,y 的值是 8- .【解答】解:函数2(53)n y m x m n -=-++是y 关于x 的正比例函数,∴210530n m n m -=⎧⎪+=⎨⎪-≠⎩,解得:11m n =-⎧⎨=⎩, ∴正比例函数为8y x =-,当1x =时,8y =-,故答案为:8-.26.(2019春•西湖区校级月考)某款宝马汽车的油箱一次加满汽油50升,可行驶y千米,设该汽车行驶百公里耗油x升,假设汽车能行驶至油用完,则y关于x的函数解析式为5000yx=.【解答】解:汽车行驶每100千米耗油x升,1∴升汽油可走100x千米,100500050yx x∴=⨯=.故答案为:5000 yx =27.(2019春•思明区校级期中)关于函数3y x=,下列说法正确的是①②③④①是正比例函数;②图象是经过原点的一条直线;③y随x增大而减小;④图象过第一、三象限.【解答】解:①3y x=,3k=≠,故函数是正比例函数,符合题意;②0x=,0y=,故图象是经过原点的一条直线,符合题意;③30k=>,故y随x增大而减小,符合题意;④3k=,故图象过第一、三象限,符合题意;故答案为:①②③④.28.(2019春•京口区校级月考)已知一次函数y kx b=+与y mx n=+的图象如图所示,若kx b mx n+<+,则x的取值范围为3x>.【解答】解:kx b mx n+<+,则x的取值范围是:3x>.故答案是:3x>.29.(2019春•西湖区校级月考)关于函数(3)y k x k =-+,给出下列结论:①此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若函数经过二,三,四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是3k <,其中正确的是 ②③ ;(填序号)【解答】解:①当30k -≠时,函数是一次函数,故①不符合题;②(3)(1)3y k x k k x x =-+=+-,当1x =-时,3y =,过函数过点(1,3)-,故②符合题意; ③当30k -=时,3y k ==,图象在一、二象限,当30k -≠时,函数经过二,三,四象限,0k <,03k k -<-,解得:0k <,故符合题意; ④当30k -=时,3y =,与x 轴无交点;当3k ≠时,函数图象与x 轴的交点始终在正半轴,即03k k ->-,解得:03k <<,故不符合题; 故答案为:②③.30.(2019春•凤翔县期中)如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x (时)与油箱的余油量y (升)之间的关系,它可以表示为 6010y x =- .【解答】解:由表格数据可知,行驶时间延长1小时,剩余油量减少10L ,即耗油量为10/L h , 6010y x ∴=-;故答案为:6010y x =-.三.解答题(共5小题)31.(2019秋•蚌山区校级月考)如图,已知过点(1,0)B 的直线1:l y kx b =+与直线2:24l y x =+相交于点(,2)P a .(1)求直线1l 的解析式;(2)根据图象直接写出不等式24kx b x ++…的解集;(3)求四边形PAOC 的面积.【解答】解:(1)点(,2)P a 在直线2:24l y x =+上,242a ∴⨯+=,即1a =-,则P 的坐标为(1,2)-,直线1:l y kx b =+过点(1,0)B ,∴02k b k b +=⎧⎨-+=⎩, 解得11k b =-⎧⎨=⎩. ∴直线1l 的解析式为:1y x =-+.(2)不等式24kx b x ++…的解集为1x -….(3)直线1l 与y 轴相交于点C ,C ∴的坐标为(0,1), 又直线2l 与x 轴相交于点A ,A ∴点的坐标为(2,0)-,则3AB =,而PAB BOC PAOC S S S ∆∆=-四边形,1153211222PAOC S ∴=⨯⨯-⨯⨯=四边形. 32.(2019春•桥西区期末)如图表示的是热带风暴从发生到结束的全过程.请结合图象回答下列问题:(1)热带风暴从开始发生到结束共经历了 16 个小时;(2)从图象上看,风速在 (小时)时间段内增大的最快,最大风速是 千米/小时;(3)风速从开始减小到最终停止,平均每小时减小多少千米?【解答】解:(1)由图象可得,热带风暴从开始发生到结束共经历了16个小时,故答案为:16;(2)从图象上看,风速在2~5(小时)时间段内增大的最快,最大风速是54千米/小时, 故答案为:2~5,54;(3)风速从开始减小到最终停止,平均每小时减小:54(1610)5469÷-=÷=(千米/小时), 即风速从开始减小到最终停止,产均每小时减小9千米/小时.33.(2019秋•青羊区校级月考)如图,直线AB 过点(3,0)A ,(0,2)B(1)求直线AB 的解析式.(2)过点A 作AC AB ⊥且:3:4AC AB =,求过B 、C 两点直线的解析式.【解答】解:(1)设直线AB 为y kx b =+,点(3,0)A ,(0,2)B ,∴302k b b +=⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的解析式为223y x =-+; (2)作CD x ⊥轴于D ,AC AB ⊥,90OAB CAD ∴∠+∠=︒,90OAB OBA ∠+∠=︒,CAD OBA ∴∠=∠,90AOB CDA ∠=∠=︒,CAD ABO ∴∆∆∽, ∴34CD AD AC OA OB AB ===, ∴3324CD AD ==, 94CD ∴=,32AD =, 39322OD OA AD ∴=+=+=, 9(2C ∴,9)4, 设直线BC 的解析式为2y ax =+, 把9(2C ,9)4代入得,99242a =+, 解得118a =, ∴过B 、C 两点直线的解析式为1218y x =+.34.(2019•望花区四模)在某市的创优工作中,某社区计划对21200m 的区域进行绿化.经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天.(1)求甲、乙两施工队每天分别能完成的绿化面积是多少?(2)设先由甲队施工m 天,再由乙队施工n 天,刚好完成绿化任务,①求n 与m 的关系式;②若甲、乙两队施工的总天数不超过14天,问甲工程队最少施工多少天?【解答】解:(1)设乙施工队每天能完成绿化的面积是2xm , 根据题意得:30030032x x-=, 解得:50x =,经检验,50x =是原方程的解,则甲施工队每天能完成绿化的面积是2502100()m ⨯=,答:甲、乙两施工队每天能完成的面积分别是2100m 、250m ;(2)①由题意得:100501200m n +=, 整理得:120010024250x n m -==-; ②设应甲队的工作a 天,则乙队工作b 天,(014,014)a b 剟剟根据题意得,100501200a b +=,242b a ∴=-14a b +…,24214a a ∴+-…,10a ∴….答:甲工程队最少施工10天.35.(2018秋•莱州市期末)海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应山东省加快新旧动能转换的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为y 万元,不合要求的扇贝有x 万笼.(1)求纯收入y 关于x 的关系式.(2)当x 为何值时,养殖场不赔不嫌?【解答】解:(1)由题意可得,(10040)(200)(2540)7512000y x x x =--+-=-+,即纯收入y 关于x 的关系式是7512000y x =-+;(2)令75120000x -+=,解得,160x =,答:当x 为160时,养殖场不赔不赚.。

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(08)

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(08)

沪科版八年级(上)中考题同步试卷:13.2 一次函数(08)一、选择题(共4小题)1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个2.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.43.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,已知摩托车速度小于汽车,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.14.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面二、填空题(共3小题)5.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.6.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.7.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)56三、解答题(共23小题)8.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?9.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?10.胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.11.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?12.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.13.甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别在A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s.(1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200).(2)根据(1)中所画图象,完成下列表格:两人相遇次数(单位:次)1234…n 两人所跑路程之和(单位:m)100300…(3)①直接写出甲、乙两人分别在第一个100m内,t与s的函数解析式,并指出自变量t的取值范围.②求甲、乙第6次相遇时t的值.14.“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC 上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v=米/分钟,路程s=米;②当t=15分钟时,速度v=米/分钟,路程s=米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.15.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.16.某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A区域面积的2倍.设A区域面积为x(m2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式.(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)若三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元.请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.17.在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.18.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?19.水龙头关闭不严会造成滴水,容器内盛水量w(L)与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?20.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在某一交通时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?21.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200016001000售价(元/台)230018001100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?22.光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A 种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分227064170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目无限制,那么小王该月的工资数目最多为多少?23.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b =;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.24.1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin(0≤x≤50)(Ⅰ)根据题意,填写下表:上升时间/min1030 (x)1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?25.如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?26.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?27.荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车载鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.28.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数关系式.29.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?30.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?沪科版八年级(上)中考题同步试卷:13.2 一次函数(08)参考答案一、选择题(共4小题)1.B;2.C;3.B;4.D;二、填空题(共3小题)5.5;6.2;7.29;三、解答题(共23小题)8.;9.;10.;11.;12.;13.500;700;200n ﹣100;14.200;200;300;4050;15.;16.;17.;18.;19.;20.;21.;22.;23.0;﹣360;1080;24.35;x+5;20;0.5x+15;25.;26.;27.;28.;29.;30.;。

沪科版八年级数学上册第13章一次函数单元测试题AB卷精

沪科版八年级数学上册第13章一次函数单元测试题AB卷精

沪科版八年级数学上册一次函数测试卷A 卷一、 填空题1、函数224y x =+中,自变量x 的取值范围为 。

2、某中学今年为改善教学设备投资15万元,计划以后每年增加2万元,则年投资量y 与年数x 的函数关系式为 。

3、 一个正比例函数(32)y m x =-其函数图像经过第 二、第四象限,则m 的取值范围为 。

4、如果点(-2,1)在正比例函数y kx =的图像上,那么点(-1,2)是否也在该函数的图像上? 。

5、一次函数34y x =+的图像与x 轴的交点A 为 ,与y 轴的交点B 为 ,△AOB 的面积为6、函数33y x =-+的图像经过 ,y 随x 的增大而 ,函数7y =-的图像经过 象限,y 随x 的增大而 。

7、y -2与x 成正比例,当x =-2时,y =4,则x = 时,y =-4。

8、已知函数y=(1()32m x m ++-是一次函数,则m 的取值范围为_ ___。

9、已知一次函数Y=kx+b 与Y=2x+1平行,切经过点(-3,4),则k=___,b=____.10、一次函数Y=(m+4)x-5+2m,当Y 随x 的增大而增大,则m______,当Y 随x 的增大而减小,则m______,当此函数图象过原点时,m=_____.二、选择题1、下列函数(1)y +x =0 (2)y=-2x +1 (3)y=-1x(4)y=-x 2中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个2、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕迟到,于是加快了骑车的速度,在以下给出的四个函数图象中(S 是距离,t 是时间),符合以上情况的是( )A B C D3、函数31-=x y 中,自变量x 的取值范围是(A )x >3 (B )x ≥3 (C )x ≤3 (D )x <34、下列各点,在一次函数112y x =-的图像上的是( )(A )(0,-1) (B )(-1,0) (C )(1,2) (D )(2,1)5、已知点(-1,y 1),(2,y 2)都在直线y=12 x +1上,则y 1 y 2大小关系是( ) (A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较6、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图像表示应为( )7、已知一次函数y=kx +b (k ≠0)的图像如图所示,当x<0时,y 的取值范围( )A )y >0 (B )y<0 (C )-2<y<0 (D )y <08、下列四个图像中不表示某一函数的是( )A B C D9、.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) (D )10、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,则的值是( )(A)4 (B)-2 (C) 12 (D)- 12一、填空题(10×3’=30’)1、 ,2、 ,3、 ,4、 ,、5、6、7、 8、 9、10、题号1 2 3 4 5 6 7 8 9 10答案 三、解答题(6×10’=60’)1、画一次函数y=2x-5和y=-3x 的图象.利用图像求方程组的解。

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(11)

沪科版八年级(上) 中考题同步试卷:13.2 一次函数(11)

沪科版八年级(上)中考题同步试卷:13.2 一次函数(11)一、选择题(共2小题)1.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③二、填空题(共1小题)3.一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=(小时).三、解答题(共27小题)4.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?5.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?6.在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x(时),1号队员和其他队员行进的路程分别为y1、y2(千米),并且y1、y2与x的函数关系如图所示:(1)1号队员折返点A的坐标为,如果1号队员与其他队员经过t小时相遇,那么点B的坐标为;(用含t的代数式表示)(2)求1号队员与其他队员经过几小时相遇?(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?7.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.516…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.8.我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:销售方式批发零售加工销售利润(百元/吨)122230设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.9.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.10.天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后其余羽毛球每只按原价的九折出售.(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?11.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.12.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:印制x(张)…100200300…收费y(元)…153045…乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?13.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C 的速度至少为多少?(结果精确到0.1米/分钟)14.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.15.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?16.为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?17.甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?18.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?19.甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.20.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.21.某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.22.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.23.某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?24.在开展“美丽广西,清洁乡村”的活动中某乡镇计划购买A、B两种树苗共100棵,已知A种树苗每棵30元,B种树苗每棵90元.(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请你写出y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)如果购买A、B两种树苗的总费用不超过7560元,且B种树苗的棵数不少于A种树苗棵数的3倍,那么有哪几种购买树苗的方案?(3)从节约开支的角度考虑,你认为采用哪种方案更合算?25.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.26.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.27.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?28.黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.29.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.30.甲、乙两车从A地前往B地,甲车行至AB的中点C处后,以原来速度的1.5倍继续行驶,在整个行程中,汽车离开A地的距离y与时刻t的对应关系如图所示,求:(1)甲车何时到达C地;(2)甲车离开A地的距离y与时刻t的函数解析式;(3)乙车出发后何时与甲车相距20km.沪科版八年级(上)中考题同步试卷:13.2 一次函数(11)参考答案一、选择题(共2小题)1.C;2.A;二、填空题(共1小题)3.5;三、解答题(共27小题)4.;5.;6.(,10);(t,35t);7.10;18;8.;9.;10.;11.;12.;13.;14.;15.;16.5900;6000;17.;18.;19.;20.270;21.;22.14;5;23.;24.;25.900;26.;27.;28.;29.0.5;30.;。

沪科版八年级(上) 中考题单元试卷:第13章 一次函数(10)

沪科版八年级(上) 中考题单元试卷:第13章 一次函数(10)

B.第一、四象限
C.第二、三象限
D.第二、四象限
第2页(共5页)
14.设点 A(x1,y1)和 B(x2,y2)是反比例函数 y= 图象上的两个点,当 x1<x2<0 时,
y1<y2,则一次函数 y=﹣2x+k 的图象不经过的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
15.若实数 a,b 满足 ab<0,且 a<b,则函数 y=ax+b 的图象可能是( )
A.
B.
C.
D.
5.一次函数 y=x+2 的图象不经过的象限是( )
A.一
B.二
C.三
D.四
6.在平面直角坐标系中,过点(﹣2,3)的直线 l 经过一、二、三象限,若点(0,a),(﹣
1,b),(c,﹣1)都在直线 l 上,则下列判断正确的是( )
A.a<b
B.a<3
C.b<3
第1页(共5页)
D.c<﹣2
A.第二、四象限
B.第一、二、三象限
C.第一、三象限
D.第二、三、四象限
3.若反比例函数 y= 的图象过点(﹣2,1),则一次函数 y=kx﹣k 的图象过( )
A.第一、二、四象限
B.第一、三、四象限
C.第二、三、四象限
D.第一、二、三象限
4.若实数 a,b,c 满足 a+b+c=0,且 a<b<c,则函数 y=cx+a 的图象可能是( )
沪科版八年级(上)中考题单元试卷:第 13 章 一次函数(10)
一、选择题(共 21 小题) 1.如图,一次函数 y=(m﹣2)x﹣1 的图象经过二、三、四象限,则 m 的取值范围是( )

八年级数学上学期期中模拟卷(考试版)【测试范围:沪科版第11-13章】A4版

八年级数学上学期期中模拟卷(考试版)【测试范围:沪科版第11-13章】A4版

2023-2024学年上学期期中模拟考试八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第11-13章(沪科版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若点()1,3P m m --在第四象限,则m 的取值范围是( ) A .13m <<B .3m >C .1m <D .3<1m -<-2.在平面直角坐标系中,线段平移后得到线段A B '',点(2,1)A 的对应点(2,3)A '--,则点)6(,1B '--的对应点B 的坐标为( ) A .(10,5)--B .(2,1)--C .(2,3)-D .(6,3)-3.函数1xy x =-中,自变量x 的取值范围是( ) A .1x ≠B .1x ≥C .1x ≤D .1x >4.一次函数()1y k x b =--的图象如图所示,则下列正确的是( )A .1k >,0b >B .1k <,0b >C .1k >,0b <D .1k <,0b <5.下列命题中,逆命题是真命题的是( ) A .对顶角相等B .如果两个数是偶数,那么它们的和是偶数C .两直线平行,内错角相等D .如果a b =,那么22a b =6.已知三角形三边长分别为3,a ,8,且a 为奇数,则这样的三角形有( ) A .2个B .3个C .4个D .5个7.如图所示,一次函数y kx b =+(k ,b 是常数,0k ≠)与正比例函数y mx =(m 是常数,0m ≠)的图象相交于点()1,2M ,下列判断错误的是( )A .关于x 的不等式mx kx b ≥+的解集是1x ≤B .关于x 的方程mx kx b =+的解是1x =C .当0x <时,函数y kx b =+的值比函数y mx =的值大D .关于x ,y 的方程组0y mx y kx b -=⎧⎨-=⎩的解是12x y =⎧⎨=⎩8.如图,BD ,CD 分别是ABC 的一条内角平分线与一条外角平分线,20D ∠=︒,则A ∠的度数为( )A .20B .30C .40D .609.如图,已知AB PG ∥,BC DE ∥,BD EF ∥,则α,β,γ三者之间的关系是( )A .180y αβ++=︒B .βαγ=+C .αβγ-=D .γαβ-=10.在ABC 中,BD BE 、分别是高和角平分线,点F 在CA 的延长线上,FH BE ⊥交BD 于点G ,交BC 于点H ,下列结论: ①DBE EFH ∠=∠; ②2BEF BAF C ∠=∠+∠; ③2EFH BAC C ∠=∠-∠, ④BGH ABE C ∠=∠+∠; 其中正确的有( )个.A .1B .2C .3D .4第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分)11.若2(1)1y a x a =-+-是关于x 的正比例函数,则2023a 的值为 . 12.直线26y x =-与两坐标轴围成的三角形面积为13.如图,在ABC 中,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;……;2022A BC ∠与2022A CD ∠的平分线交于点2023A ,得2023A ∠,则2023A ∠= .(用含α的式子表示)14.定义:在平面直角坐标系中,对于任意两点1122(,),(,)A x y B x y ,如果点(,)M x y 满足:12,2x x x -=122y y y -=,那么称点M 是点A ,B 的“双减点”. (1)若点(3,2)A -,(,)B a b 的“双减点”M 的坐标是(1,4)-,则点B 的坐标是 ;(2)若点(2,4)D -,(3,27)E m m --的“双减点”是点F ,当点F 在直线1y x =-的上方时,则m 的取值范围是 .三、(本大题共2小题,每小题5分,满分10分)15.已知点()36,1M a a --,根据下列条件分别求出点M 的坐标. (1)点M 在y 轴上;(2)点N 的坐标为(2,1).直线MN y ∥轴.16.已知一次函数(,y kx b k b =+是常数,且0)k ≠的图象过()2,3A 与()1,3B --两点.(1)求一次函数的解析式;(2)若点(),3a 在该一次函数图象上,求a 的值.四、(本大题共2小题,每小题6分,满分12分)17.如图,在ABC 中,CD 平分ACB ∠,CD 交边AB 于点E ,在边AE 上取点F ,连结DF ,使1D ∠=∠.(1)求证:DF BC ∥;(2)当40A ∠=︒,36DFE ∠=︒时,求2∠的度数.18.如图,过点()2,0A -的直线1l :y kx b =+与直线2l :1y x =-+交于()1,P a -.(1)求直线1l 对应的表达式;(2)直接写出方程组1y kx by x =+⎧⎨=-+⎩的解;(3)求三角形ABP 的面积.五、(本大题共2小题,每小题8分,满分16分)19.如图,是边长为1的小正方形组成的88⨯方格,线段AB 的端点在格点上.建立平面直角坐标系,使点A B 、的坐标分别为()21,和()13-,.(1)画出该平面直角坐标系xOy ;(2)画出以线段AB 为斜边的Rt ABC △,写出C 点的坐标(写出一个即可).20.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆60万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量不大于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.六、(本题满分8分)21.如图,在ABC 中,AE 为边上的高,点D 为BC 边上的一点,连接AD .(1)当AD 为BC 边上的中线时,若6AE =,ABC 的面积为30,求CD 的长; (2)当AD 为BAC ∠的角平分线时,若66C ∠=︒,36B ∠=︒,求DAE ∠的度数.七、(本题满分8分)22.如图,在平面直角坐标系中,已知点A 的坐标为()2a -,,点B 的坐标为()2b -,,且()21b =+AB 向右平移5个单位得到线段CD ,其中点A 的对应点为点D .(1)请直接写出点A 、B 、C 、D 的坐标;(2)线段AD 与y 轴交于点E ,线段DE 上是否存在一动点P ,使得415OPCABCD S S =四边形,若存在,求出点P 的坐标,若不存在,请说明理由;(3)若动点Q 从原点出发,沿y 轴以每秒0.5个单位长度的速度向上运动,连接直线QC 交四边形ABCD 的边于点F ,当直线QC 将四边形ABCD 的面积分成2:3两部分时,求点Q 的运动时间.八、(本题满分10分)23.如图1,已知线段AB CD 、相交于点O ,连接AB CD 、,则我们把形如这样的图形称为“8字型”. (1)求证:A C B D ∠+∠=∠+∠;(2)如图2,若CAB ∠和BDC ∠的平分线AP 和DP 相交于点P ,与CD AB 、分别相交于点M N 、. ①以线段AC 为边的“8字型”有_______个,以点O 为交点的“8字型”有________个; ②若100B ∠=︒,120C ∠=︒,求P ∠的度数;③根据②的结果直接写出B ∠、C ∠、P ∠之间的关系(不需要证明).。

沪科版八年级上一次函数单元测试卷95

沪科版八年级上一次函数单元测试卷95

沪科版八年级上一次函数单元测试卷95一、选择题(共12小题;共60分)1. 小华以每分钟个字的速度书写,分钟写了个字,则与的函数关系式为A. B. C. D.2. 已知正比例函数的图象经过点,则这个正比例函数的解析式为A. B. C. D.3. 某日广东省遭受台风袭击,大部分地区发生强降雨.某条河流因受到暴雨影响,水位急剧上升,下表为这条河流该天的水位记录,观察表中数据,水位上升最快的时间段是A. 时到时B. 时到时C. 时到时D. 时到时4. 如图,两条直线和相交于点,则方程组的解是A. B. C. D.5. 某油箱容量为的汽车,加满汽油后行驶了时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为,邮箱中剩油量为,则与之间的函数解析式和自变量取值范围分别是A. ,B. ,C. ,D. ,6. 函数中自变量的取值范围是A. B. 且C. D. 且7. 已知甲、乙两地相距,汽车从甲地匀速行驶到乙地,则汽车行驶的时间与行驶速度的函数关系图象大致是A. B.C. D.8. 甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①,两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,或.其中正确的结论有A. 个B. 个C. 个D. 个9. 若一次函数,随着的增大而减小,且,在直角坐标系内,其大致图象是A. B.C. D.10. 将的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是,正方形的顶点都在格点上,若直线与正方形有公共点,则不可能是A. B. C. D.11. 如图,直线与交于点,点的横坐标是,则关于的不等式的解集是A. B. C. D.12. 甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则下列结论错误的是A. 甲车的平均速度为B. 乙车的平均速度为C. 乙车比甲车先到B城D. 乙车比甲车先出发二、填空题(共6小题;共31分)13. 将直线向下平移个单位,得到直线.14. 生产某种产品所需的成本(万元)与数量(吨)之间的关系如图所示,那么生产吨这一产品所需成本为万元.15. 在右面的平面直角坐标系中作出与这两个函数的图象.从而可以得到:函数与轴交于点,而函数的图象与轴交于点.因此函数的图象可以看做由直线向平移个单位长度而得到.这样函数的图象又可称为直线.16. 一次函数中,随的增大而减小,且,则这个函数的图象一定不经过第象限.17. 已知直线,,的图象如图所示,若无论取何值,总取,,中的最小值,则的最大值为.18. 周末小明匀速步行从家赶往学校参加植树活动,出发分钟后,发现忘带植树工具,于是马上掉头往回走,速度比之前每小时提高了千米(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了分钟,爸爸的速度与小明提速后的速度相同.两人相遇后,小明接过工具立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了分钟吃早餐,当爸爸到家时小明刚好到达学校,两人相距的路程(千米)与小明从家出发的时间(分钟)之间的函数关系如图所示,则小明从家到学校途中步行的总路程是千米.三、解答题(共8小题;共104分)19. 已知正比例函数的图象经过第一、三象限,求的取值范围.20. 已知一个一次函数,当自变量时,函数值;当时,.求这个函数的解析式.21. 画出下列函数的大致图象:(1);(2);(3).22. 如果一个正比例函数的图象经过点,求这个正比例函数的解析式.23. 求下列函数的定义域:(1);(2);(3).24. 德国著名心理学家艾宾浩斯(年年)对人的记忆进行了硏究,他釆用无意义的音节作为记忆的材料进行实验,获得了如下相关数据:他又根据上表绘制了一条曲线,这就是著名的艾宾浩斯遗忘曲线.观察这条曲线,回答:(1)在这一变化过程中,有哪两个变量?它们之间是否存在确定的依赖关系?其中一个变量是另一个变量的函数吗?为什么?(2)你从图中发现怎样的规律?对你的学习有什么启示?25. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为.(2)请解释图中点的实际意义.(3)求慢车和快车的速度.(4)求线段所表示的与之间的函数表达式,并写出自变量的取值范围.26. 用图象法解二元一次方程组答案第一部分1. B2. B3. D4. B5. D【解析】因为油箱容量为的汽车,加满汽油后行驶了时,油箱中的汽油大约消耗了,,所以与之间的函数解析式和自变量取值范围是.6. B 【解析】提示:且.7. C8. B 【解析】由图象可知、两城市之间的距离为,甲行驶的时间为小时,而乙是在甲出发小时后出发的,且用时小时,即比甲早到小时,①②都正确;设甲车离开城的距离与的关系式为,把代入可求得,,设乙车离开城的距离与的关系式为,把和代入可得解得,令得:,解得,即甲、乙两直线的交点横坐标,乙出发时间为小时,即乙车出发小时后追上甲车,③不正确;令,可得,即,当时,可解得,当时,可解得,又当时,,此时乙还没出发,当时,乙到达城,;综上可知当的值为或或或时,两车相距千米,④不正确;综上可知正确的有①②,共两个.9. A10. A【解析】由图可知,,,当直线过点时,;当直线过点时,,即,,不可能是.11. B 【解析】当时,,即不等式的解集为.12. D 【解析】由图象知:A.甲车的平均速度为,故此选项正确;B.乙车的平均速度为,故此选项正确;C.甲时到达B城,乙时到达B城,所以乙比甲先到B城,故此选项正确;D.甲时出发,乙时出发,所以乙比甲晚出发D.第二部分13.15. 如图即为所求.,原点,,上,,16. 一17.【解析】如图,分别求出,,交点的坐标;;.当,;当,;当,;当,.总取,,中的最小值,.千米/小时,小明返回速度为千米/小时小明返回分钟,即小时,小明爸爸才出门且速度与小明返回速度一样千米/小时,设小明与爸爸相遇用时(爸爸出门到相遇),,小时,相遇后爸爸吃早餐用时分钟,即小时,爸爸返回家中用时小时,小明刚好到达学校,则小明返回拿工具再去学校过程中用时为:,总路程千米.故小明从家到学校途中步行总路程为干米.第三部分19. .20. .21. (1)所作图形如下:(2)所作图形如下:(3)所作图形如下:22. 设正比例函数的解析式为,正比例函数的图象过点,,,正比例函数的解析式为.23. (1)且.(2)且.(3)且.24. (1)变量:时间和记忆量;从列表和图象中可见,当时间变化时,记忆量也随之变化,与之间存在确定的依赖关系;是的函数.(2)略.25. (1)(2)图中点的实际意义是:当慢车行驶时,慢车和快车相遇.(3)由图象可知,慢车行驶的路程为,所以慢车的速度为;当慢车行驶时,慢车和快车相遇,两车行驶的路程之和为,第11页(共11 页) 所以慢车和快车行驶的速度之和为, 所以快车的速度为 .(4) 根据题意,快车行驶 到达乙地, 所以快车行驶 到达乙地,此时两车之间的距离为 ,,所以点 的坐标为. 设线段 所表示的 与 之间的函数表达式为 . 把 , 代入,得解得所以,线段所表示的 与 之间的函数表达式为. 自变量 的取值范围是 . 26. 如图,在同一坐标系中画出直线 ,,可得两直线的交点坐标是,二元一次方程组 的解为 .。

沪科版八年级上 第十三章 一次函数单元测试题(含答案)

沪科版八年级上 第十三章 一次函数单元测试题(含答案)

第十三章 一次函数单元测试题一.选择题(每小题3分,共30分)1.下列各函数中,x 逐渐增大y 反而减少的函数是( )A .13y x =-B .13y x =C .41y x =+D .41y x =-2.下面哪个点不在函数23y x =-+的图象上( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)3.已知直线y =x +b ,当b <0时,直线不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.直线y =kx 过点(3,4),那么它还通过点( )A .(3,-4)B .(4,3)C .(-4,-3)D .(-3,-4)5.一次函数y =kx +b 的图象经过点(2,1)和点(0,3),那么这个函数表达式为( )A .132y x =-B .y =-x +3C .y =3x - 2D .y =-3x +26.如果直线y =kx +b 经过一.二.四象限,则有( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >07.关于正比例函数y =-2x ,下列结论中正确的是( )A .图象过点(-1,-2)B .图象过第一.三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <08.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一.二.三象限B .第一.二.四象限C .第二.三.四象限D .第一.三.四象限9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s (千米)与行驶时间t (小时)的函数关系的图象表示为( )A. B. C. D.10.甲.乙两人赛跑,所跑路程与时间的关系如图2所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是( )A .这是一次1500m 赛跑B .甲.乙两人中先到达终点的是乙C .甲.乙同时起跑D .甲在这次赛跑中的速度为5m/s二.填空题(每小题4分,共32分)11.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.12.直线1y x =+与直线22y x =-的交点坐标是 .13.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .14.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 .15.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过第象限.16.直线y kx b =+过点(2,-1),且与直线132y x =+相交于y 轴上同一点,则其函数表达式为 .17.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 .18.若三点A (0,3),B (-3,0)和C (6,y )共线,则y =三.解答题(本题共58分,19题10分,20题11分,21题12分,22题12分,23题13分)19.如图3所示,直线m 是一次函数y =kx +b 的图象.(1)求k .b 的值;(2)当12x =时,求y 的值;(3)当y =3时,求x 的值.20.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元.(1)求出y与x的函数关系式(纯利润=总收入-总支出);(2)当y=106000时,求该厂在这个月中生产产品的件数.21.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。

新沪科版八年级数学上册《一次函数》试卷(附答案)

新沪科版八年级数学上册《一次函数》试卷(附答案)

新沪科版八年级数学上册《一次函数》试卷(附答案)
2
《一次函数》试卷
专题一一次函数解析式的确定1.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与线段AB 有交点,则k 的值可能是() A.-5 B.-2 C.3 D. 5 2.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了
如下操作:
请根据图中给出的信息,解答下列问题:
(1)放入一个小球量筒中水面升高_______cm ;
(2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)?之间的一次函数关系式(不要求写出自变量的取值范围);
(3)量筒中至少放入几个小球时有水溢出?
专题二一次函数中的开放性问题
3. “一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y (cm )与所挂物体质量x (kg)之间的函数关系式是y =10+0.5x (0≤x ≤5).”
王刚同学在阅读上面材料时就发现部分内容被墨迹污染,被污染部分是确定函数关系式的一个条件,你认为该条件可以是:(只需写出一个).
4.阅读函数图象,并根据你所获得的信息回答问题:
(1)折线OAB 表示某个实际问题的函数图象,请你编写一道符合图象意义的应用题;
(2)根据你所给出的应用题分别指出x 轴,y 轴所表示的意义,并写出
A ,
B 两点的坐标;
(3)求出图象AB 的函数解析式,并注明自变量x 的取值范围.
y x B。

沪科版八年级(上) 中考题单元试卷:第13章 一次函数(23)

沪科版八年级(上) 中考题单元试卷:第13章 一次函数(23)

沪科版八年级(上)中考题单元试卷:第13章一次函数(23)一、填空题(共2小题)1.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.2.如图,在平面直角坐标系中,直线l1:y=x,直线l2:y=x,在直线l1上取一点B,使OB=1,以点B为对称中心,作点O的对称点B1,过点B1作B1A1∥l2,交x轴于点A1,作B1C1∥x轴,交直线l2于点C1,得到四边形OA1B1C1;再以点B1为对称中心,作O点的对称点B2,过点B2作B2A2∥l2,交x轴于点A2,作B2C2∥x轴,交直线l2于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.二、解答题(共28小题)3.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).4.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.5.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O 顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.8.如图,已知直线y=﹣x+3分别与x,y轴交于点A和B.(1)求点A,B的坐标;(2)求原点O到直线l的距离;(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M 的坐标.9.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.10.如图,在直角坐标系中,点A的坐标是(0,3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴负半轴上移动时,点P所在函数图象的解析式.11.如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.12.如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.13.如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x 轴的正半轴上,且BC⊥OC于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.14.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P(﹣2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.所以点P(﹣2,1)到直线y=x+1的距离为d====.根据以上材料,求:(1)点P(1,1)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;(2)点P(2,﹣1)到直线y=2x﹣1的距离;(3)已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.15.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.16.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.17.如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y= x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.18.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A 是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.(1)用含t的式子表示点E的坐标为;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.19.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?20.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?21.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.22.某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?23.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.24.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?25.甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途经C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x (小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?26.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.27.如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?28.端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;‚②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.29.为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.30.如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点)上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克)受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株)的影响情况统计如下表:(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;(2)根据种植示意图1填写下表,并求出这块地平均每平方米的产量为多少千克?(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?沪科版八年级(上)中考题单元试卷:第13章一次函数(23)参考答案一、填空题(共2小题)1.();2.;二、解答题(共28小题)3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.(t+4,8);19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

八年级数学上册 13一次函数单元测试(无答案)沪科版

八年级数学上册 13一次函数单元测试(无答案)沪科版

第13章一次函数测验班级_________姓名__________得分___________一、 填空(每题4分,计32分)1、 已知点(3,m )与点(n ,-2)关于坐标系原点对称,则mn =_______2、 点A 为直线y =-2x +2上的一点,且到两坐标轴距离相等,那么A 点坐标为_____3、 已知y=3x+4当x_______时,函数值为正数4、 函数函数8141+=x y 与x 轴交点坐标为_________ 5、 某种储蓄的月利率是0.25%,存入200元本金后,则本息和y 元与所存月数x 之间函数关系式为_______________6、 直线y =-3x -1与坐标轴围成三角形面积为________7、 在函数21+=x y 的表达式中,自变量x 取值范围是______________ 8、 若函数b ax y +=图象如图所示, 则不等式0≥+b ax 解集为__________二、 选择题(每题4分,计28分)1、如果直线)1()2(-+-=m x m y 经过第一、二、四象限,则m 的取值范围是( )A 、m <2B 、m>1C 、m ≠2D 、1<m<22、一次函数4+-=x y 和12+=x y 的图象的交点个数为( ) A 、没有 B 、一个 C 、两个 D 、无数个3、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为( )A B C D121 02 y24200 0400 t/hS 24200400 t/hS 24200400 t/hS 2 42000 400 t/hS /km4、已知函数13+=x y ,当自变量x 增加m 时,相应函数值增加( ) A 、3m+1 B 、3m C 、m D 、3m -15、若点A (-2,n )在x 轴上,则B (n -1,n+1)在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限6、m 为整数,点P (3m -9,3-3m )是第三象限的点,则P 点的坐标为( ) A 、(-3,-3) B 、(-3,-2) C 、(-2,-2) D 、(-2,-3)7、观察下列图象,可以得出不等式组⎩⎨⎧>-->+015.0013x x 的解集是( ) A 、31<x B 、031<<-x C 、20<<x D 、231<<-x三、解答题(每题10分,计40分)1、已知一次函数的图象经过(2,5)和(-1,-1)两点,(1)在给定坐标系中画出这个函数图象;(2)求这个一次函数解析式2、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8元(含空白光盘费);若学校自刻,除租用刻录机需120元外每张还需成本费4元(含空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用少?还是自刻费用少?说明你的理由3、有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为(3,-2),学生乙因把c 抄错了而解出它们的交点坐标为)41,43(,求这两条直线解析式1 211-y4、已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于点P (3,-6) (1)求21,k k 的值(2)如果一次函数92-=x k y 与x 轴交于点A ,求A 点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

别交于点 A,B,点 M 是直线 AB 上的一个动点,则 PM 长的最小值为

第2页(共8页)
13.如图,在平面直角坐标系中,点 A 的坐标为(0,6),将△OAB 沿 x 轴向左平移得到△ O′A′B′,点 A 的对应点 A′落在直线 y=﹣ x 上,则点 B 与其对应点 B′间的距离


14.点(﹣1,y1)、(2,y2〕是直线 y=2x+1 上的两点,则 y1 或“<”)
沪科版八年级(上)中考题单元试卷:第 13 章 一次函数(11)
一、选择题(共 11 小题)
1.直线 y=4 与 y 轴的交点坐标是( )
A.(4,0)
B.(0,4)
C.(﹣4,0)
D.(0,﹣4)
2.一次函数 y=2x+4 的图象与 y 轴交点的坐标是( )
A.(0,﹣4)
B.(0,4)
C.(2,0)
△AnAn+1Bn 均为等边三角形,点 A1、A2、A3…An+1 在 x 轴的正半轴上依次排列,点 B1、
B2、B3…Bn 在直线 OD 上依次排列,那么点 Bn 的坐标为

19.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1 都是等腰直角三角形,其中点
A1、A2、…、An 在 x 轴上,点 B1、B2、…、Bn 在直线 y=x 上,已知 OA1=1,则 OA2015
且矩形 PBOA 的面积为 5,则在 x 轴的上方满足上述条件的点 P 的个数共有( )
A.1 个
B.2 个
C.3 个
D.4 个
11.如图,在平面直角坐标系中,点 A1,A2,A3…都在 x 轴上,点 B1,B2,B3…都在直线
y=x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,
O′A′B′,点 A 的对应点 A′是直线 y= x 上一点,则点 B 与其对应点 B′间的距离


23.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为 1 的等边三角形,点 A 在 x
轴上,点 O,B1,B2,B3,…都在直线 l 上,则点 A2015 的坐标是

24.正方形 A1B1C1O 和 A2B2C2C1 按如图所示方式放置,点 A1,A2 在直线 y=x+1 上,点
D.(﹣2,0)
3.若点(3,1)在一次函数 y=kx﹣2(k≠0)的图象上,则 k 的值是( )
A.5
B.4
C.3
D.1
4.若点 A(2,4)在函数 y=kx 的图象上,则下列各点在此函数图象上的是( )
A.(1,2)
B.(﹣2,﹣1)
C.(﹣1,2)
D.(2,﹣4)
5.若点 A(﹣2,m)在正比例函数 y=﹣ x 的图象上,则 m 的值是( )
第4页(共8页)
(用含 n 的代
数式表示,n 为正整数).
21.在平面直角坐标系 xOy 中,过点 P(0,2)作直线 l:y= x+b(b 为常数且 b<2)的
垂线,垂足为点 Q,则 tan∠OPQ=

22.如图,在平面直角坐标系中,点 A 的坐标为(0,4),△OAB 沿 x 轴向右平移后得到△

第6页(共8页)
第7页(共8页)
沪科版八年级(上)中考题单元试卷:第 13 章 一次函
数(11)
参考答案
一、选择题(共 11 小题)
1.D; 2.B; 3.D; 4.A; 5.C; 6.D; 7.D; 8.A; 9.B; 10.C; 11.A;
二、填空题(共 19 小题)
12. ; 13.8; 14.<; 15.3; 16.
A.
B.﹣
C.1
D.﹣1
6.已知函数 y=ax+b 经过(1,3),(0,﹣2),则 a﹣b=( )
A.﹣1
B.﹣3
C.3
D.7
7.一次函数 y=kx+b(k≠0)的图象如图,则下列结论正确的是( )
A.k=2
B.k=3
C.b=2
D.b=3
8.已知点 M(1,a)和点 N(2,b)是一次函数 y=﹣2x+1 图象上的两点,则 a 与 b 的大
的长为

20.在直角坐标系中,直线 y=x+1 与 y 轴交于点 A,按如图方式作正方形 A1B1C1O、A2B2C2C1、
A3B3C3C2…,A1、A2、A3…在直线 y=x+1 上,点 C1、C2、C3…在 x 轴上,图中阴影部
分三角形的面积从左到右依次记为 S1、S2、S3、…Sn,则 Sn 的值为
; 17.1; 18.(3×2n﹣2, ×2n﹣2);
19.22014; 20.22n﹣3; 21. ; 22.5; 23.(

); 24.(3,2); 25.答
案不唯一,如:y=x+3 等; 26.(﹣1,2); 27.<; 28.<; 29.(﹣1,﹣1); 30. •22n;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
C1,C2 在 x 轴上.已知 A1 点的坐标是(0,1),则点 B2 的坐标为

第5页(共8页)
25.写出一个图象经过点(﹣1,2)的一次函数的解析式

26.如图,直线 y=2x+4 与 x,y 轴分别交于 A,B 两点,以 OB 为边在 y 轴右侧作等边三角
形 OBC,将点 C 向左平移,使其对应点 C′恰好落在直线 AB 上,则点 C′的坐标
日期:2019/3/20 11:49:50; 用户:qgjyus er10 493;邮箱:q gjyus er10493.219 57750;学号 :21985501
第8页(共8页)


30.如图,在平面直角坐标系中,点 A 和点 C 分别在 y 轴和 x 轴的正半轴上,OA=a,∠
ACO=30°,以线段 AC 为边在第一象限作等边三角形 ABC,过点 B 作 BE∥AC 交 x 轴
于点 E,再以 BE 为边作第二个等边三角形 BDE,…,依此方法作下去,则第 n 个等边
三角形的面积是
y2(填“>”或“=”
15.若一次函数 y=2x+b(b 为常数)的图象经过点(1,5),则 b 的值为

16.如图,直线 y=﹣2x+2 与两坐标轴分别交于 A、B 两点,将线段 OA 分成 n 等份,分点
分别为 P1,P2,P3,…,Pn﹣1,过每个分点作 x 轴的垂线分别交直线 AB 于点 T1,T2,
T3,…,Tn﹣1,用 S1,S2,S3,…,Sn﹣1 分别表示 Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn
﹣1Pn﹣2Pn﹣1 的面积,则当 n=2015 时,S1+S2+S3+…+Sn﹣1=

第3页(共8页)
17.直线 y=2x+1 经过点(0,a),则 a=

18.如图,直线 OD 与 x 轴所夹的锐角为 30°,OA1 的长为 1,△A1A2B1、△A2A3B2、△A3A4B3…
且 OA1=1,则点 B2015 的坐标是( )
A.(22014,22014) C.(22014,22015) 二、填空题(共 19 小题)
B.(22015,22015) D.(22015,22014)
12.如图,在平面直角坐标系中,点 P 的坐标为(0,4),直线 y= x﹣3 与 x 轴、y 轴分
小关系是( )
A.a>b
B.a=b
C.a<b
D.以上都不对
9.如图,在平面直角坐标系中,点 A(2,m)在第一象限,若点 A 关于 x 轴的对称点 B 在
直线 y=﹣x+1 上,则 m 的值为( )
第1页(共8页)
A.﹣1
B.1
C.2
D.3
10.如图,在一次函数 y=﹣x+6 的图象上取一点 P,作 PA⊥x 轴于点 A,PB⊥y 轴于点 B,


27.在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(x1,y1)、P2(x2,y2)两
点,若 x1<x2,则 y1
y2.(填“>”“<”或“=”)
28.已知 P1(1,y1),P2(2,y2)是正比例函数 y= x 的图象上的两点,则 y1
y2
(填“>”或“<”或“=”).
29.如图,定点 A(﹣2,0),动点 B 在直线 y=x 上运动,当线段 AB 最短时,点 B 的坐标
相关文档
最新文档