第二十六章 二次函数检测题(答案解析)
华师大版九年级下册数学第26章 二次函数含答案
华师大版九年级下册数学第26章二次函数含答案一、单选题(共15题,共计45分)1、将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12B.﹣或2C.﹣12或2D.﹣或﹣122、抛物线y=-(x-2)2向右平移2个单位得到的抛物线的解析式为()A.y=-x 2B.y=-(x-4) 2C.y=-(x-2) 2+2D.y=-(x -2) 2-23、下列关于二次函数y=x2﹣3的图象与性质的描述,错误的是( )A.该函数图象的开口向上B.函数值y随着自变量x的值的增大而增大 C.该函数图象关于y轴对称 D.该函数图象可由函数y=x 2的图象平移得到4、对抛物线y=-x2+2x-3而言,下列结论正确的是( )A.与x轴有两个交点B.开口向上C.与y轴交点坐标是(0,3) D.顶点坐标是(1,-2)5、如果关于二次函数与x轴有公共点,那么m的取值范围是( )A. B. C. D.6、将抛物线y=2x2向右平移一个单位后得到的新抛物线的解析式为()A.y=2(x+1)2B.y=2(x-1)2C.y=2x 2+1D.y=2x 2-17、二次函数y=x2-2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当时,函数的最大值是C.抛物线的对称轴是直线D.抛物线与x轴有两个交点8、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9、抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4B.6C.8D.1010、如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有( )A.1个B.2个C.3个D.4个11、已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A. m>﹣B. m≥﹣C. m>﹣且m≠0D. m≥﹣且m≠012、将抛物线向右平移2个单位,再向下平移1个单位,则平移后抛物线的顶点坐标是()A.(2,1)B.(2,-1)C.(-2,-1)D.(-2,1)13、三角形的一边长与这边上的高都为xcm,其面积是ycm2,则y与x的函数关系为()A.y=x 2B.y=2x 2C.y= x 2D.y= x 214、如图所示,已知二次函数的图象与轴交于点,与轴交于点,,对称轴为直线,则下列结论:①;②;③;④是关于的一元二次方程的一个根.其中正确的有()A.1个B.2个C.3个D.4个15、如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(共10题,共计30分)16、如果抛物线y=ax2+bx+c在对称轴左侧呈上升趋势,那么a的取值范围是________.17、已知一个函数,当时,函数值随着的增大而减小,请写出这个函数关系式________(写出一个即可).18、二次函数的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(为实数)在﹣1<x<4的范围内有解,则t的取值范围是________ .19、如图,在平面直角坐标系中,点A的坐标为,点B的坐标为.若抛物线(h、k为常数)与线段交于C、D两点,且,则k的值为________.20、某种产品原来的成本为185元,经过两次降价后为y元,如果每次的降价率都为x,则y与x的函数关系式为________.21、抛物线y=3(x﹣9)2+1的顶点坐标为________.22、抛物线:y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是________.23、抛物线的对称轴为直线,且经过点(-1,0).若关于x的一元二次方程(t为实数)在-1 x 4的范围内有两个不相等的实数根,则t的取值范围是________.24、如图,抛物线与直线交于A、B两点,则使y1≥y2成立的x取值范围是________.25、抛物线的图象与y轴的交点坐标为________.三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、正方形的边长是5,若边长增加x,面积增加y,求y与x之间的函数表达式.28、如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,(1)求出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x的增大而减小?29、用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.30、已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、D6、B7、D8、D9、A10、A11、C12、B13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
华师大九年级下《第26章二次函数》检测题含答案
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
2022-2023学年华东师大版九年级下册数学《第26章 二次函数》单元测试卷(有答案)
2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
2023年华东师大版九年级数学下册第二十六章《二次函数》复习检测卷附答案解析
2023年九年级数学下册第二十六章《二次函数》复习检测卷一、单项选择。
1.在平面直角坐标系中,将二次函数y=(x-1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的表达式为()A.y=(x-2)2-1B.y=(x-2)2+3C.y=x 2+1D.y=x 2-12.关于二次函数y=-3x 2+6x+1,下列说法错误的是()A.图象与y 轴的交点坐标为(0,1)B.图象的对称轴在y 轴的右侧C.当x>0时,y 的值随x 值的增大而减小D.y 的最大值为43.如图,抛物线L 1:y=ax 2+bx+c(a≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为()A.1B.2C.3D.44.如图,抛物线y=ax 2+bx+c 与x 轴相交于点A(-2,0),B(6,0),与y 轴相交于点C,小红同学得出了以下结论:①b 2-4ac>0;②4a+b=0;③当y>0时,-2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.15.抛物线y=ax 2+bx+c 上部分点的横坐标x,纵坐标y 的对应值如下表:下列结论不正确的是()x -2-101y466A.抛物线的开口向下B.抛物线的对称轴为直线x=12C.抛物线与x 轴的一个交点坐标为(2,0)D.函数y=ax 2+bx+c 的最大值为2546.若函数y=mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,那么m 的值为()A.0B.0或2C.2或-2D.0,2或-27.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为()A.1或-2B.-2或2C.2D.18.二次函数y=ax 2+bx+c 的部分图象如图所示,则下列选项错误的是()A.若(-2,y 1),(5,y 2)是图象上的两点,则y 1>y 2B.3a+c=0C.方程ax 2+bx+c=-2有两个不相等的实数根D.当x≥0时,y 随x 的增大而减小9.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b 2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1个B.2个C.3个D.4个10.如图,函数y=ax 2-2x+1和y=ax-a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是()11.已知二次函数y=x 2-2ax+a 2-2a-4(a 为常数)的图象与x 轴有交点,且当x>3时,y 随x 的增大而增大,则a 的取值范围是()A.a≥-2B.a<3C.-2≤a<3D.-2≤a≤312.若二次函数y=x 2-6x+c 的图象经过A(-1,y 1),B(2,y 2),C(3+2,y 3)三点,则关于y 1,y 2,y 3大小关系正确的是()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 213.已知a>1,点A(a-1,y 1),B(a,y 2),C(a+1,y 3)都在二次函数y=12-x 2的图象上,则()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 214.已知y=ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是()A.a>0B.a<0C.a≥0D.a≤015.如图,二次函数y=ax 2+bx(a≠0)的图象过点(2,0),下列结论错误的是()A.b>0B.a+b>0C.x=2是关于x 的方程ax 2+bx=0(a≠0)的一个根D.点(x 1,y 1),(x 2,y 2)在二次函数的图象上,当x 1>x 2>2时,y 2<y 1<0二、填空题。
沪教版九年级上册数学第二十六章 二次函数 含答案
沪教版九年级上册数学第二十六章二次函数含答案一、单选题(共15题,共计45分)1、已知函数:①y=3x﹣1;②y=3x2﹣1;③y=3x3+2x2;④y=2x2﹣2x+1,其中二次函数的个数为()A.1B.2C.3D.42、下列函数中,是二次函数的为()A. B. C. D.3、下列函数中是二次函数的有()①y=x+;②y=3(x-1)2+2;③y=(x+3)2-2x2;④.A.1个B.2个C.3个D.4个4、下列函数不属于二次函数的是()A. B. C. D.5、若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m 的值为()A.﹣2B.1C.2D.﹣16、下列表达式中,y是x的二次函数的是()A. B. C. D.7、下列函数中是二次函数的是()A. B. C. D.8、下列函数不属于二次函数的是()A.y=(x-1)(x+2)B.y= (x+1)2C.y=1- x 2D.y=2(x+3)2-2x 29、在下列函数中,属于二次函数的是()A.y=B.C.y=D.y=3x-510、在下列函数关系式中,y是x的二次函数的是()A. =6B.xy=﹣6C.x 2+y=6D.y=﹣6x11、下列函数中,是二次函数的是()A.y=8x 2+1B.y=8x+1C.y=D.y= +112、下列式子中表示y是x的二次函数的是()A. B. C. D.13、下列函数中,不是二次函数的是()A.y=1﹣x 2B.y=2(x﹣1)2+4C.y= (x﹣1)(x+4) D.y=(x﹣2)2﹣x 214、函数(是常数)是二次函数的条件是()A. B. C. D.15、在下列y关于x的函数中,一定是二次函数的是()A.y=x 2B.y=C.y=kx 2D.y=k 2x二、填空题(共10题,共计30分)16、请写出一个开口向下,且与y轴的交点坐标为(0,4)的抛物线的表达式________.17、农机厂第一个月水泵的产量为50(台),第三个月的产量y(台)与月平均增长率x之间的关系表示为________.18、当m=________时,函数y=(m﹣4)x +3x是关于x的二次函数.19、二次函数y=x2+4x﹣3中,当x=﹣1时,y的值是________.20、请写出一个二次函数,使它的图象满足下列两个条件:(1)开口向下;(2)与y轴的交点是(0,2) .你写出的函数表达式是________ .21、当m________时,函数y=(m﹣2)x2+3x﹣5(m为常数)是关于x的二次函数.22、已知函数 y=(m+2) 是二次函数,则m等于________23、若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=________.24、已知是二次函数,则k的值为________.25、函数y=(m﹣1)﹣2mx+1是抛物线,则m=________三、解答题(共5题,共计25分)26、一个二次函数y=(k﹣1).求k值.27、若函数y=(a-1)x(b+1)+x2+1是二次函数,试讨论a、b的取值范围.28、(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.29、已知y=(m+1)是二次函数,求m的值.30、已知函数y=(a+1)+(a﹣2)x(a为常数),求a的值:(1)函数为二次函数;(2)函数为一次函数.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、D5、A6、B7、B9、B10、C11、A12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
华东师大版九年级数学下册 第26章 二次函数 单元测试题(有答案)
第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。
九年级第26章《二次函数》测试题(含答案)
第26章《二次函数》检测题(全卷共五个大题,满分150分,考试时间120分钟)抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、 选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷中相应的位置上.1.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大2、k 为任何实数,则抛物线y =2(x +k)2-k 的顶点在( )上A 、直线y=x 上,B 、直线y= -xC 、x 轴D 、y 轴3、0=+q p ,抛物线q px x y ++=2必过点( )A 、(-1,1)B 、(1,-1)C 、(-1,-1)D 、(1,1) 4、已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 15.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6、抛物线234y x x =--+与坐标轴的交点个数是( )A . 0B .1C . 2D . 37、若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =3 8.二次函数c bx ax y ++=2的图象如右上图所示,则abc ,ac b 42-,b a +2,cb a ++这四个式子中,值为正数的有( )A . 4个B .3个C .2个D .1个 9、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5 10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个卷相应位置的横线上.11:抛物线422-+=xxy的对称轴是________,顶点坐标是_________;12.已知二次函数2(0)y ax bx c a=++≠的顶点坐标(1, 3.2)--及部分图象(如图1所示),由图象可知关于x的一元二次方程20ax bx c++=的两个根分别是11.3x=和2x=。
华东师大数学九年级下《第26章二次函数》单元测试题含答案
华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-33. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①② B.只有① C.③④ D.①④9. 如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k值为何?()A.1 B. 12 C.43 D.4510.如图,正方形ABCD的边长为3 cm,动点P从B点出发以3 cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动,设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )二、填空题11.已知函数y=(m-1)xm2+1+4x-3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________.13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是___________.14.某学习小组为了探究函数y=x2-|x|的图象和性质,根据以往学习函数的经验,列x…-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y… 2 0.75 0 -0.25 0 -0.25 0 m 2 …15.如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n),直线AB与y轴交于点C,则△AOB的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高 2.5m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m<2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)求二次函数图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(3)请直接写出当y1>y2时,自变量x的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC中,边BC长为12,高AD长为8.如图,矩形EFGH的边GH在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AD于点K.(1)求EFAK的值;(2)设EH=x,矩形EFGH的面积为S.求S与x的函数表达式,并求S的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m)时桥下水面的宽度为d(m),试求d与h之间的函数关系式;(3)设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC二、11. (1,-1)12. 9cm213. k≤414. 0.7515. 216. 能17. 2.3m18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m,0),且1<m<2,∴0<-b2a<1 2,∴12+b2a=a+b2a>0,∴a+b>0,所以②的结论正确;∵点A(-3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(-1,0),(m,0),∴a-b+c=0,am2+bm+c=0,∴am2-a+bm+b=0,a(m+1)(m-1)+b(m+1)=0,∴a(m-1)+b=0,所以④的结论正确;∵4ac-b24a<c,而c≤-1,∴4ac-b24a<-1,∴b2-4ac>4a,所以⑤的结论错误三、19. 解:(1)y=x2-5x+6 (2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320. 解:(1)把(2,1)代入y=x2-2x+c得4-4+c=1,解得c=1,所以抛物线表达式为y=x2-2x+1,顶点坐标为(1,0) (2)y=x2-2x+1=(x-1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A,B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的表达式为y=x(x-2),即y=x2-2x21. 解:(1)m=-1,y2=x2-2x-3 (2)C(1,-4),当x≤1时,y随x 的增大而减小;当x>1时,y随x的增大而增大(3)-1<x<222. 解:(1)根据题意得y=(200+20x)(6-x)=-20x2-80x+1200 (2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EFAK=BCAD=32(2)由(1)知EF8-x=32,∴EF=12-32x,∴S=EH·EF=12x-32x2=-32(x-4)2+24,当x=4时,Smax=2424. 解:(1)设抛物线所对应的表达式为y=ax2,把(-10,-4)代入得y=-125x2(2)由(1)得y=-125x2,将(d2,-4+h)代入得-4+h=-125(d2)2,求得d=104-h (3)当x=9时,y=-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m时,就会影响船只在桥下顺利航行25. 解:(1)∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
新人教版26章 二次函数试题(含参考答案及评析)
新人教版九年级下第26章《二次函数》试题班级姓名得分一.选择题(共10小题)1.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()23.(2013•岳阳)二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c <0.其中正确的个数是()4.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()26.(2013•攀枝花)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( ).C D .7.(2013•南昌)若二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 18.(2013•牡丹江)抛物线y=ax 2+bx+c (a <0)如图所示,则关于x 的不等式ax 2+bx+c >0的解集是( )210.(2012•泰安)设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+a 上的三点,则y 1,y 2,y 3的二.填空题(共10小题)11.(2013•宿迁)若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 _________ .12.(2013•牡丹江)抛物线y=ax 2+bx+c (a ≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c= _________ .13.(2012•扬州)如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 _________ .14.(2012•新疆)当x= _________ 时,二次函数y=x 2+2x ﹣2有最小值.15.(2011•资阳)将抛物线y=2x2﹣1沿x轴向右平移3个单位后,与原抛物线交点的坐标为_________.16.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为_________.17.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为_________.18.(2008•青海)二次函数y=ax2+bx+c图象如图所示,则点A(b2﹣4ac,﹣)在第_________象限.19.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_________.20.(2007•黄石)二次函数y=a(x﹣1)2+bx+c(a≠0)的图象经过原点的条件是_________.三.解答题(共5小题)21.(2010•双鸭山)已知二次函数的图象经过点(0,3),(﹣3,0),(2,﹣5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(﹣2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.22.(2013•泉州)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.24.已知:二次函数的图象与一次函数y=4x﹣8的图象有两个公共点P(2,m)、Q(n,﹣8).如果抛物线的对称轴是x=﹣1,(1)求二次函数的解析式;(2)当x为何值时,y随x增大而增大,当x为何值时,抛物线在x轴上方.25.(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是_________,请说明理由;(2)如图2,已知D(,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?新人教版九年级下第26章《二次函数》试题参考答案与试题解析一.选择题(共10小题)1.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()>﹣23.(2013•岳阳)二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c <0.其中正确的个数是()=1=14.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()=26.(2013•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是().C D.y=(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x17.8.(2013•牡丹江)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()2,在对10.(2012•泰安)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的二.填空题(共10小题)11.(2013•宿迁)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.12.(2013•牡丹江)抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(﹣1,﹣6)两点,则a+c=﹣2.13.(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是1.CE=x(14.(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.15.(2011•资阳)将抛物线y=2x2﹣1沿x轴向右平移3个单位后,与原抛物线交点的坐标为(,).,解得,16.(2010•镇江)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为4.17.(2010•扬州)抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.,即﹣=1,.18.(2008•青海)二次函数y=ax2+bx+c图象如图所示,则点A(b2﹣4ac,﹣)在第四象限.x=<,﹣)在第四象限.19.(2007•眉山)如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为y=(20﹣2t)2.y=(20.(2007•黄石)二次函数y=a(x﹣1)2+bx+c(a≠0)的图象经过原点的条件是a+c=0.三.解答题(共5小题)21.(2010•双鸭山)已知二次函数的图象经过点(0,3),(﹣3,0),(2,﹣5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(﹣2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.;×22.(2013•泉州)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(2013•牡丹江)如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.,24.已知:二次函数的图象与一次函数y=4x﹣8的图象有两个公共点P(2,m)、Q(n,﹣8).如果抛物线的对称轴是x=﹣1,(1)求二次函数的解析式;(2)当x为何值时,y随x增大而增大,当x为何值时,抛物线在x轴上方.,得到﹣25.(2012•新疆)如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是正方形,请说明理由;(2)如图2,已知D(,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?,的坐标为(,﹣﹣2或。
华东师大九年级数学下《第26章二次函数》检测题含答案解析
第26章二次函数检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.(2019·兰州中考)下列函数解析式中,一定为二次函数的是( ) A.y =3x -1 B.y =a +bx +c C.s =2-2t +1D.y =2.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论中正确的是( )A.c >-1B.b >0C.02≠+b aD.b c a 39>+ 3.(2019•成都中考)将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为( )A.2(1)4y x =++B.2(1)2y x =++C.2(1)4y x =-+ D.2(1)2y x =-+4.抛物线21=+44y x x --的对称轴是直线( )A.=2x -B.=2xC.=4x -D.=4x5.已知二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论中,正确的是( ) A.0,0ab c >> B.0,0ab c >< C.0,0ab c <> D.0,0ab c <<6.二次函数()20y ax bx c a =++≠的图象如图所示,则点,c b a ⎛⎫⎪⎝⎭在第( )象限.A. 一B. 二C. 三D. 四7.如图所示,已知二次函数()20y ax bx c a =++≠的图象的顶点P 的横坐标是4,图象交x 轴于点(),0A m 和点B ,且>4m ,则AB 的长是( )第5题图第6题图A.4m+ B.m C.28m- D.82m-第7题图第8题图8.(2019·安徽中考)如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y =ax2+(b1)x+c的图象可能为()A. B. C. D.9.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线=1x-,()()111222,,,P x y P x y是抛物线上的点,()333,P x y是直线l上的点,且3121,x x x<-<<则123,,y y y的大小关系是( )A.123y y y<< B.231y y y<<C.312y y y<< D.213y y y<<10.把抛物线2241y x x=-++的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.()2=21+6y x-- B.()2=216y x---C.()2=2+1+6y x- D.()2=2+16y x--11.(2019·山东潍坊中考)已知二次函数y =+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()A.1B.2C. 3D.4第9题图第11题图第12题图12.(2019•四川资阳中考)如图,抛物线()20y ax bx c a =++≠过点(1,0)和点(0,-2),且顶点在第三象限,设P a b c =-+,则P 的取值范围是( ) A.40P -<< B.42P --<< C.20P -<< D.10P -<<二、填空题(每小题4分,共24分)13.(2019•长沙中考)抛物线23(2)5y x =-+的顶点坐标是 . 14.(2019•辽宁营口中考)二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限.15.已知二次函数2=++y ax bx c 的图象交x 轴于,A B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________. 16.(2019•杭州中考)设抛物线2(0)y ax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x=上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 .17.已知抛物线22y x x b =++经过点1,4a ⎛⎫- ⎪⎝⎭和()1,a y -,则1y 的值是_________.18.(2019·四川资阳中考)已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A ,B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为______________.三、解答题(共72分)19.(8分)若二次函数图象的对称轴是直线3=2x ,且图象过点(04)A -,和(40)B ,. (1)求此二次函数图象上点A 关于对称轴3=2x 对称的点A '的坐标; (2)求此二次函数的解析式.20.(8分)在直角坐标平面内,点O 为坐标原点,二次函数()()254y x k x k =+--+的图象交x 轴于点12(0),(0)A x B x ,,,且()()12118x x ++=-. (1)求二次函数的解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y轴的交点为第14题图C ,顶点为P ,求△POC 的面积.21.(8分)已知:如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于,A B 两点,其中A点坐标为(10)-,,点(05)C ,,另抛物线经过点(18),,M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积MCB S △.22.(8分)(2019•北京中考)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0, -2),B (3, 4). (1)求抛物线的表达式及对称轴.(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A , B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.23. (8分)(2019•安徽中考)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数; (2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.24.(10分)(2019•河北中考)如图,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点,抛物线l 的解析式为y =(-1)n x²+bx +c (n 为整数). (1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B(2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;第21题图(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(10分)如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20 m ,如果水位上升3 m 时,水面CD 的宽是10 m . (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280 km (桥长忽略不计). 货车正以每小时40 km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25 m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?26.(12分)某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当 每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益 (收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用. (2)求y 与x 之间的二次函数关系式.(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该 租出多少套机械设备?请你简要说明理由.(4)请把(2)中所求的二次函数配方成22424b ac b y x a a -⎛⎫=++ ⎪⎝⎭的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?第26章二次函数检测题参考答案1.C 解析:选项A 是一次函数;选项B 当a =0,b ≠0时是一次函数,当a ≠0时是二次函数,所以选项B 不一定是二次函数;选项C 一定是二次函数;选项D 不是二次函数.第25题图2.D 解析:因为抛物线与轴的交点在点(0,-1)的下方,所以c <-1,因此选项A 错误;观察抛物线发现a >0,02b a->,所以b <0,因此选项B 错误;因为抛物线的对称轴是直线x =1,所以12b a -=,即2b a =-,则20a b +=,所以选项C 错误.故选D.3.D 解析:()22223211312y x x x x x =-+=-+-+=-+.4.B 解析:抛物线21=+44y x x --,直接利用公式,得其对称轴为直线x =2.5.C 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-.又因为<0a ,所以0,0b ab ><. 由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c . 6.D 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-. 又因为<0a ,所以0b >.由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c ,所以<0ca .所以点,c b a ⎛⎫⎪⎝⎭在第四象限.7.C 解析:因为二次函数()2+0y ax bx c a =+≠图象顶点P 的 横坐标是4,所以抛物线的对称轴为直线4x =,对称轴与x 轴交于点D , 所以,A B 两点关于对称轴对称.因为点()0A m ,,且>4m ,所以()224=28AB AD m m ==--. 8.A 解析:一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象有两个交点,且都在第一象限,可知一元二次方程ax 2+bx +c =x ,即ax 2+(b -1)x +c =0有两个不等的正实数根,所以函数y =ax 2+(b -1)x +c 的图象与x 轴正半轴有两个不同的交点,故选项A 符合题意.9.D 解析:因为抛物线的对称轴为直线=1x -,且121x x -<<,当>1x -时,由图象知,y 随x 的增大而减小,所以21<y y .又因为31x <-,此时点()333,P x y 在二次函数图象上方,所以213y y y <<. 10.C 解析:原二次函数变形为,将其图象向左平移2个单位,函数解析式变为,再向上平移3个单位,函数解析式变为,所以答案选C.11.B 解析:∵ 函数图象开口向上,∴ a >0.又∵ 顶点为(-1,0),∴ - = -1,∴ b =2a >0.由图象与y 轴的交点坐标可知:c +2>2,∴ c >0,∴ abc >0,故①错误. ∵ 抛物线顶点在x 轴上,∴-4a (c +2)=0,故②错误.∵ 顶点为(-1,0),∴ a -b +c +2=0.∵ b =2a ,∴ a =c +2. ∵ c >0,∴ a >2,故③正确.由抛物线的对称性可知x =-2与x =0时函数值相等,∴ 4a -2b +c +2>2, ∴ 4a -2b +c >0,故④正确.13. (2,5) 解析:抛物线()2y a x h k =-+的顶点坐标是(h ,k ).14.四 解析:根据图象得0,0,0a b c <>>,故一次函数y bx c =+的图象不经过第四象限.15.21y x =-(答案不唯一) 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及ABC △是直角三角形,可知答案不唯一,如21y x =-. 16.211284y x x =-+或213284y x x =-++ 解析:由题意知抛物线的对称轴为直线1x =或3x =.(1)当对称轴为直线1x =时,2b a =-,抛物线经过点(0,2)A ,(4,3)B ,∴{2,3168,c a a c ==-+解得1,82.a c ==⎧⎪⎨⎪⎩∴ 211284y x x =-+. (2)当对称轴为直线3x =时,6b a =-,抛物线经过点(0,2)A ,(4,3)B ,∴{2,31624,c a a c ==-+解得1,82.a c =-=⎧⎪⎨⎪⎩∴ 213284y x x =-++.∴ 抛物线的函数解析式为211284y x x =-+或213284y x x =-++.17.34 解析:将点1,4a ⎛⎫- ⎪⎝⎭的坐标代入得2214a a b ++=-,所以221+=04a a b ++,即22102a b ⎛⎫++= ⎪⎝⎭,解得1,02a b =-=.所以当x a =-时,134y =.18.223y x x =-- 解析:由题意知,两条抛物线的开口方向相同,开口大小相等,所以抛物线p 中的a =1.因为122++=x x y 的顶点坐标为(-1,0),所以点A 的坐标为 (-1,0).将点(-1,0)的坐标代入c bx x y ++=2,得1-b +c =0,所以c =b -1.根据点C ′与点C 的横坐标都等于2b-,可求得点C ′的纵坐标为-b +2,点C 的纵坐标为442b c -.因为点C 与点C ′关于x 轴对称,所以442b c -+(-b +2)=0,又因为c =b 1,所以解得b =±2(b =2,不合题意舍去).当b =-2时,c =-3,所以抛物线p 的解析式为223y x x =--. 19.解:(1)(34)A '-,.(2)设二次函数解析式为()20y ax bx c a =++≠,由题设知3=,2216+4+=0,=4,b a a bc c ⎧-⎪⎪⎨⎪-⎪⎩∴ 1,3,4,a b c =⎧⎪=-⎨⎪=-⎩∴ 二次函数的解析式为234y x x =--. 20.解:(1)由题意知12,x x 是方程()2(5)40x k x k +--+=的两根,∴ ()()1212+=5,=+4.x x k x x k ⎧--⎪⎨-⎪⎩又∵ ()()12118x x ++=-, ∴ ()121290x x x x +++=.∴ ()()4590k k -+--+=.∴5k =. ∴ 二次函数的解析式为29y x =-.(2) ∵ 平移后的函数解析式为()229y x =--,且当0x =时,5y =-, ∴ (05),(29)C P --,,.∴ 15252POC S =⨯⨯=△. 21.解:(1)依题意,得0,5,8,a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得1,4,5,a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为245y x x =-++. (2)令0y =,得()()12510,5,1x x x x -+===-, ∴ (50)B ,.由()22 45=2+9y x x x =-++--,得(29)M ,.作ME y ⊥轴于点E ,则MCB ECM COB EOBM S S S S =--梯形△△△, 可得MCB S △=15. 22. 解:(1)∵ 22yx mx n =++经过点A (0,-2),B (3,4),代入得2,1834,n m n =-++=⎧⎨⎩∴ 4,2.m n =-=-⎧⎨⎩ ∴ 抛物线的表达式为224 2.yx x =--222242221214y x x x x x =--=--=--()(),∴ 其对称轴为直线x =1. (2)由题意可知C (-3,-4), 二次函数2242yx x =--的最小值为-4.由图象可以看出D 点纵坐标最小值即为-4, 最大值即BC 与对称轴交点的纵坐标. 设直线BC 的解析式为y =kx +b ,根据题意得34,34,k b k b +=-+=-⎧⎨⎩解得0,4,3b k ==⎧⎪⎨⎪⎩∴ 直线BC 的解析式为4.3y x =当x =1时,4.3y =第22题答图∴ 点D 纵坐标t 的取值范围是44.3t -≤≤23. 解:(1)本题是开放题,答案不唯一,符合题意即可,如221y x =,22y x =.(2)∵ 函数1y 的图象经过点(1,1)A ,则224211m m -++=,解得1m =.∴ 221243211()y x x x =-+=-+.方法一:∵ 12y y +与1y 为“同簇二次函数”,∴ 可设212(1)1(0)y y k x k +=-+>,则2221(1)1(2)(1)y k x y k x =-+-=--.由题意可知函数2y 的图象经过点(0,5),则2(2)15k -⨯=,∴ 25k -=.∴2225(1)5105y x x x =-=-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=5(31)20⨯-=.方法二:∵ 12y y +与1y 为“同簇二次函数”,则212(+2)(4)8(+20)y y a x b x a +=+-+>,∴412(2)b a --=+,化简得2b a =-.又232(2)(4)14(2)a b a +--=+,将2b a =- 代入,解得5a =,10b =-.∴ 225105y x x =-+. 当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=53103520⨯-⨯+=.24. 解:(1)n 为奇数,则y =-x 2+bx +c .∵ 点H (0,1)和C (2,1)在抛物线上,∴21,221,c b c =⎧⎨-++=⎩2,1.b c =⎧⎨=⎩解得∴ y =-x 2+2x +1.故格点E 是该抛物线的顶点. (2)n 为偶数,则y =x 2+bx +c .∵ 点A (1,0)和B (2,0)在抛物线上,∴ 221++0,220,b c b c ⎧=⎪⎨++=⎪⎩3,2.b c =-⎧⎨=⎩解得∴ y =x 2-3x +2.当x =0时,y =2≠1,故点F (0,2)在该抛物线上,而点H (0,1)不在该抛物线上.(3)所有满足条件的抛物线共有8条.如图①所示,当n 为奇数时,由(1)中的抛物线平移又得3条抛物线;如图②所示,当n 为偶数时,由(2)中的抛物线平移又得3条抛物线.第24题答图∴ 抛物线的解析式为225x y -=. (2)水位由CD 处涨到点O 的时间为()10.254h ÷=,货车按原来速度行驶的路程为401404200280⨯+⨯=<, ∴ 货车按原来速度行驶不能安全通过此桥.设货车的速度提高到km /h x ,当2801404=⨯+x 时,60=x .∴ 要使货车安全通过此桥,货车的速度应超过60km /h . 26.解:(1)未租出的设备为10270-x 套,所有未租出设备的支出费用为)5402(-x 元. (2)2270140(2540)655401010x y x x x x -⎛⎫=---=-++ ⎪⎝⎭. ∴ 540651012++-=x x y . (3)当月租金为300元时,租赁公司的月收益为11 040元,此时租出的设备为37套; 当月租金为350元时,租赁公司的月收益为11 040元,此时租出的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4)221165540(325)11102.51010y x x x =-++=--+ . ∴ 当325=x 时,y 有最大值11 102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11 100元.。
人教实验版九年级数学(下)第二十六章二次函数检测题参考答案
第二十六章二次函数检测题参考答案1.A 解析:根据二次函数的左右平移规律解题.把向右平移3个单位长度得到,即,故选A.2.D 解析:二次函数的图象开口向上时开口向下时图象交于y 轴正半轴时交于 y轴负半轴时3.A 解析:依据当因为所以二次函数有最小值.当时,4. B 解析:顶点为当时,故图象顶点在直线上.5.B 解析:求二次函数图象与x轴的交点个数,要先求得的值.若, 则函数图象与x轴有两个交点;若,则函数图象与x轴只有一个交点;若,则函数图象与x轴无交点.把代入得,故与x轴有两个交点,故选B.6.C 解析:令,则7.D 解析:由题意可知所以所以当8.B 解析:因为当取任意实数时,都有,又二次函数的图象开口向上,所以图象与 轴没有交点,所以9.B 解析:由图象可知当时,因此只有①③正确.10. D 解析:因为二次函数与轴有两个交点,所以,(1)正确;抛物线开口向上,所以0,抛物线与轴交点在负半轴上,所以,又(2)错误;(3)错误;由图象可知当所以(4)正确; 由图象可知当,所以(5)正确.11.-2 解析:设A 点坐标为 则C 点坐标为故am =-1. 又因为所以 12.11 解析:把它向左平移3个单位长度,再向上平移2个单位长度得即 ∴∴ ∴13.-1 解析: 故14. 0 解析:根据二次函数的定义,得,解得.又∵,∴.∴当时,这个函数是二次函数.15.解析:16.左 3 下 2 解析:抛物线是由先向左平移3个单位长度,再向下平移2个单位长度得到.17.(答案不唯一)解析:由题意可知要想抛物线与轴的一个交点在(1,0)和(3,0)之间,只需异号即可,所以18.解析:把(-1,0)和(0,-1)两点代入中,得,,∴.由图象可知,抛物线对称轴,且,∴,.∴=,故本题答案为.19.解:∵抛物线的顶点为∴设其解析式为①将代入①得∴故所求抛物线的解析式为即20.(1)证明:∵∴∴方程有两个不相等的实数根.∴抛物线与x轴必有两个不同的交点.(2)解:令则解得21.解:能.∵,∴顶点坐标为(4,3),设+3,把代入上式,得,∴,∴即.令,得∴(舍去),故该运动员的成绩为.22.(1)解:∵二次函数的对称轴是,∴,解得经检验是原分式方程的解.故时,二次函数的对称轴是. (2)证明:①当时,原方程变为,方程的解为;②当时,原方程为一元二次方程,,当方程总有实数根,∴整理得,∵时,总成立,∴取任何实数时,方程总有实数根.23.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c<.(2)设抛物线与轴的两交点的横坐标为,∵两交点间的距离为2,∴.由题意,得,解得,∴,.24.解:(1)当时,.(2)当时,,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当时,,∴用15分钟与用10分钟相比,学生的接受能力增强了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 二次函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2013·兰州中考)二次函数的图象的顶点坐标是( )A.(1,3)B.(1,3)C.(1,3)D.(1,3)2.(2013·哈尔滨中考)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )A. B. C. D.3.(2013·吉林中考)如图,在平面直角坐标系中,抛物线所表示的函数解析式为,则下列结论正确的是( ) A.B.<0,>0C.<0,<0D.>0,<04.(2013·河南中考)在二次函数的图象上,若随的增大而增大,则的取值范围是( ) A.1B.1C.-1D.-15.(2013·烟台中考)如图是二次函数图象的一部分,其对称轴为,且过点(-3,0),下列说法:①<0;②;③;④若(-5,),(,)是抛物线上两点,则.其中正确的是( ) A.①②B.②③C.①②④D.②③④第5题图第6题图6.(2013·长沙中考)二次函数的图象如图所示,则下列关系式错误的是( ) A.B.C.D.7.(2013·陕西中考)已知两点(-5,),(3,)均在抛物线上,点是该抛物线的顶点.若,则的取值范围是( )A.>-5B.>-1C.-5<<-1D.-2<<38.二次函数无论取何值,其图象的顶点都在( )A.直线上B.直线上C.x 轴上D.y 轴上9.已知二次函数,当取,(≠)时,函数值相等,则当取时,函数值为( ) A.B .C. D.c10.已知二次函数,当取任意实数时,都有,则的取值范围是( )A .B .C .D .第3题图二、填空题(每小题3分,共24分)11.(2013·成都中考)在平面直角坐标系中,直线为常数)与抛物线交于两点,且点在轴左侧,点的坐标为(0,-4),连接,.有以下说法: ①;②当时,的值随的增大而增大;③当-时,;④△面积的最小值为4,其中正确的是 .(写出所有正确说法的序号) 12.把抛物线的图象先向右平移3 个单位长度,再向下平移2 个单位长度,所得图象的解析式是则 . 13.已知抛物线的顶点为则,.14.如果函数是二次函数,那么k 的值一定是 .15.将二次函数化为的形式,则.16.二次函数的图象是由函数的图象先向 (左、右)平移个单位长度,再向 (上、下)平移 个单位长度得到的. 17.如图,已知抛物线经过点(0,-3),请你确定一个的值,使该抛物线与轴的一个交点在(1,0)和(3,0)之间,你所确定的的值是 .18.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式= .三、解答题(共46分)19.(6分)已知抛物线的顶点为,与y 轴的交点为求抛物线的解析式. 20.(6分)已知抛物线的解析式为(1)求证:此抛物线与x 轴必有两个不同的交点; (2)若此抛物线与直线的一个交点在y 轴上,求m 的值.21.(8分)(2013·重庆中考)如图,对称轴为直线的抛物线与轴相交于,两点,其中点的坐标为(3,0).(1)求点的坐标.第18题图第17题图(2)已知,为抛物线与轴的交点.①若点在抛物线上,且4,求点的坐标;②设点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.22. (8分)(2013·哈尔滨中考)某水渠的横截面呈抛物线形,水面的宽为(单位:米),现以所在直线为轴,以抛物线的对称轴为轴建立如图所示的平面直角坐标系,设坐标原点为.已知米,设抛物线解析式为.第22题图(1)求的值;(2)点(-1,)是抛物线上一点,点关于原点的对称点为点,连接,,,求△的面积.23.(8分)已知抛物线与轴有两个不同的交点.(1)求的取值范围;(2)抛物线与轴的两交点间的距离为2,求的值.24.(10分)心理学家发现,在一定的时间范围内,学生对概念的接受能力与提出概念所用的时间(单位:分钟)之间满足函数关系式的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.第二十六章二次函数检测题参考答案1.A 解析:因为的图象的顶点坐标为,所以的图象的顶点坐标为(1,3).2.D 解析:把抛物线向下平移2个单位,所得到的抛物线是,再向右平移1个单位,所得到的抛物线是.点拨:抛物线的平移规律是左加右减,上加下减.3.A 解析:∵图中抛物线所表示的函数解析式为,∴这条抛物线的顶点坐标为.观察函数的图象发现它的顶点在第一象限,∴.4.A 解析:把配方,得.∵ -10,∴二次函数图象的开口向下.又图象的对称轴是直线,∴当1时,随的增大而增大.5.C 解析:本题考查了二次函数的图象和性质.由图象开口向上,对称轴在轴的左侧,与轴的交点在轴的下方,得∴故①正确.∵抛物线的对称轴是直线,∴-=-1,即,∴,故②正确.∵抛物线上的点(-3,0)关于直线对称的点是(1,0),当时,,根据抛物线的对称性,知当时,随的增大而增大,∴当x=2时,y=a+b+c>0,故③错误.抛物线上的点(-5,)关于直线x=-1对称的点的坐标是(3,),∵ 3,∴.故④正确.故正确的说法是①②④.6.D 解析:∵抛物线开口向上,∴a>0,∴ A项正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴ B项正确;∵抛物线与x轴有两个交点,∴>0,∴ C项正确;∵抛物线的对称轴是直线x=1,顶点在x轴下方,∴当x=1时,y=a+b+c<0,∴ D 项错误.7.B 解析:由>≥,知抛物线的开口只能向上.若点A,B在抛物线对称轴的左侧,则>3;若点B,C重合,则=3;若点A在点C的左侧,点B在点C的右侧且点B比点A低,如图,(-5,0)和(3,0)两点连线的中点为(-1,0),所以抛物线的顶点C应在直线x的右边,从而有-1<<3.综上知>-1.8.B 解析:顶点为当时,故图象顶点在直线上.9.D 解析:由题意可知所以所以当10.B 解析:因为当取任意实数时,都有,又二次函数的图象开口向上,所以图象与轴没有交点,所以11.③④解析:本题综合考查了二次函数与方程和方程组的综合应用.设点A的坐标为(,),点B的坐标为().不妨设,解方程组得∴(,-),B(3,1).此时,,∴.而=16,∴≠,∴结论①错误. 当=时,求出A(-1,-),B(6,10),此时()(2)=16.由①时, ()()=16.比较两个结果发现的值相等.∴结论②错误.当-时,解方程组得出A(-2,2),B(,-1),求出12,2,6,∴,即结论③正确.把方程组消去y得方程,∴,.∵=·||OP·||=×4×||=2=2,∴当时,有最小值4,即结论④正确.12.11 解析:把它向左平移3个单位长度,再向上平移2个单位长度得即∴∴∴13.-1 解析:故14. 0 解析:根据二次函数的定义,得,解得.又∵,∴.∴当时,这个函数是二次函数.15.解析:16.左 3 下 2 解析:抛物线是由先向左平移3个单位长度,再向下平移2个单位长度得到的.17.(答案不唯一)解析:由题意可知要想抛物线与轴的一个交点在(1,0)和(3,0)之间,只需异号即可,所以18.解析:把(-1,0)和(0,-1)两点代入中,得,,∴.由图象可知,抛物线对称轴,且,∴,∴.∴=,故本题答案为.19.解:∵抛物线的顶点为∴设其解析式为①将代入①得∴故所求抛物线的解析式为即20.(1)证明:∵∴∴方程有两个不相等的实数根.∴抛物线与轴必有两个不同的交点.(2)解:令则解得21.分析:本题主要考查了与二次函数图象和性质相关的综合应用.(1)根据点A和点B关于直线对称,则点B的横坐标点A的横坐标.(2)用待定系数法确定抛物线的解析式.①,计算△POC的面积时把OC作为底,点P到OC的距离就是△POC的底OC上的高;②∵QD⊥x轴,∴线段QD的长度等于Q、D两点纵坐标差的绝对值.解:(1)∵点A(-3,0)与点B关于直线x=-1对称,∴点B的坐标为(1,0).(2)∵,∴.∵抛物线过点(-3,0),且对称轴为直线,∴∴,且点C的坐标为(0,-3).①设点P的坐标为.由题意得=×1×3=,∴ 6.当时,有×3×x=6,∴x=4,∴y=+2×4-3=21.当时,有×3×()=6,∴,∴+2×(-4)-3=5.∴点的坐标为(4,21)或(-4,5).②设直线AC的解析式为,则解得∴.如图,设点的坐标为,-3≤x≤0.则有QD=--3-()+.∵ -3≤-≤0,∴当时,有最大值.∴线段长度的最大值为.点拨:(1)确定抛物线的解析式时也可设为两根式,即的形式. (2)在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.22. 分析:(1)求出点A或点B的坐标,将其代入,即可求出a的值;(2)把点代入(1)中所求的抛物线的解析式中,求出点C的坐标,再根据点C和点D关于原点O对称,求出点D的坐标,然后利用求△BCD的面积.解:(1)∵,由抛物线的对称性可知,∴(4,0).∴ 0=16a-4.∴a.(2)如图所示,过点C作于点E,过点D作于点F.∵a=,∴-4.当-1时,m=×-4=-,∴C(-1,-).∵点C关于原点O的对称点为点D,∴D(1,).∴.∴×4×+×4×=15.∴△BCD的面积为15平方米.点拨:在直角坐标系中求图形的面积,常利用“割补法”将其转化为有一边在坐标轴上的图形面积的和或差求解.23.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c<.(2)设抛物线与轴的两交点的横坐标为,∵两交点间的距离为2,∴.由题意,得,解得, ∴,.24.解:(1)当时,. (2)当时,,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当时,,∴用15分钟与用10分钟相比,学生的接受能力增强了.。