高数极限与函数等价代换公式
高数 第1章 极限计算方法总结
极限计算方法总结一、极限定义、运算法则和一些结果 1.定义:数列极限、函数极限,课本42页的表格必须认真填写并掌握。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1lim2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞→q q n n 当等。
定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限(1) 1sin lim 0=→xx x (2) e x x x =+→10)1(lim ; e x xx =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。
(2)一定注意两个重要极限成立的条件。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。
4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数公式(精简版)
高数公式集萃一、极限重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7) (8)lim arc cot 0x x →∞=lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10) (11)lim x x e →+∞=∞0lim 1xx x +→= 二、常用等价无穷小关系(0x →)(1)sin x x (2)tan x x (3)arcsin x x (4)arctan x x (5)211cos 2x x − (6)()ln 1x x + (7) (8) (9)1x e − x a 1ln x a x − ()11x x ∂+−∂三、导数的四则运算法则(1) (2)()u v u v ′′±=±′()uv u v uv ′′′=+ (3)2u u v u v v ′′′−⎛⎞=⎜⎟⎝⎠v 四、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− x ⑼()xxe ′⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x ′=−⋅e=⑽() ⑾()ln xxaa′=a 1ln x x ′= ⑿()1log ln x a x a′=⒀()arcsin x ′=⒁()arccos x ′= ⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x′=−+(17)′=五、微分运算法则⑴ ⑵ ⑶()d u v du dv ±=±()d cu cdu =()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠六、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d xxdx μμμ−=()sin cos d x xd =x x x⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x x ⑺ ⑻ ⑼()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅()xxd e e dx =⑽ ⑾()ln x x d a a adx =()1ln d x dx x =⑿()1log ln x a d dx x a=⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+ 七、下列常用凑微分公式八、中值定理与导数应用:拉格朗日中值定理。
(完整版)高数公式大全(费了好大的劲),推荐文档
lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
考研高数中求极限的几种特殊方法
考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
高数微积分公式大全3篇
高数微积分公式大全第一篇:高数微积分公式大全(上)微积分是数学中的重要分支,也是物理、工程、经济等领域中不可或缺的工具。
下面将介绍一些高等数学中常用的微积分公式,包括极限、导数、微分等,供读者参考。
1. 极限极限是微积分中的基本概念,它描述的是函数在某一点附近的取值趋近于某个常数的情况。
极限公式如下:(1)左极限$$\lim_{x\to x_{0}^{-}}f(x)=A$$(2)右极限$$\lim_{x\to x_{0}^{+}}f(x)=A$$(3)无穷远处的极限$$\lim_{x\to \infty}f(x)=A$$(4)无穷小量$$\lim_{x\to x_{0}}\frac{f(x)}{g(x)}=0$$2. 导数导数是微积分中的重要概念,它描述的是函数在某一点处的变化率。
导数公式如下:(1)切线的斜率$$k=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} $$(2)函数的导数$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 微分微分是微积分中的基本运算,它可以帮助我们研究函数的变化趋势。
微分公式如下:$$df=f'(x)dx$$其中,$dx$表示自变量$x$的微小变化量,$df$表示因变量$y$的微小变化量。
4. 泰勒公式泰勒公式是微积分中的重要定理,它可以帮助我们将一个函数表示为一系列多项式的和,从而简化函数的计算。
泰勒公式如下:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} $$其中,$f^{(n)}(x)$表示函数$f(x)$的$n$阶导数。
5. 柯西-黎曼方程柯西-黎曼方程是复分析中的重要定理,它描述了复函数的导数和复共轭函数的关系。
柯西-黎曼方程如下:$$\frac{\partial u}{\partial x}=\frac{\partialv}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$其中,$u(x,y)$和$v(x,y)$分别表示复函数$f(z)=u(x,y)+iv(x,y)$的实部和虚部。
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高数知识点
高数知识点总结1.函数定义:x 经过对应法则f 唯一确定y三要素:定义域、值域和对应法则基本性质:单调性、奇偶性、周期性、有界性基本初等函数:反对幂指三复合函数:函数套函数y =f(g (x ))(注意复合次序及取值范围) 初等函数:由常数和基本的初等函数经过有限次的四则运算和有限次的复合步骤形成的一个式子的函数2.极限(1)定义:当自变量在某个变化的过程中,函数无限的接近某一个常数A ,则收敛,lim x→?f (x )=A (2)左右极限:左右极限存在且相等,则极限存在。
(3)求极限的方法:①四则运算(直接代入)②C 0或C ∞型:利用无穷大与无穷小的关系C 0=∞,C ∞=0 ③00型:去零因子(因式分解或有理化)、洛必达法则(上下求导) ④∞∞型:看最高次项、洛必达法则 ⑤无穷小的性质(有界变量与无穷小量的乘积是无穷小量) ⑥等价无穷小替换(只能乘积因子)0~sin ~arcsin ~tan ~arctan ~ln(1)~1x x x x x x x x e →+-当时,,211cos ~.2x x -⑦两个重要极限:lim x→0sinx x=1(适用于含三角函数的00) lim x→∞(1+1x)x =e (1∞ 型的幂指函数) 3.函数的连续性(1)定义:0lim 0x y ∆→∆=,极限值=函数值 (2)单侧连续:左连续且右连续⇔连续(3)间断点:①第一类间断点:左右极限都存在可去间断点(左右相等但不等于此处函数值)、 跳跃间断点(左右不相等)②第二类间断点:(左右极限至少有一个不存在) 无穷间断点、振荡间断点4.导数(变化率问题):(1)定义:增量比值取极限,极限存在即可导lim △x→0△y △x =A几何意义:切线的斜率单侧导数:左导右导存在且相等,则可导(2)常用导数公式(基本的初等函数求导) 复合函数求导: x u x y y u '''=⋅(外导*内导)隐函数求导: 参数方程求导:''d ()=d ()t t y y t x t x ψϕ'='5.导数的应用(1)单调性:()0f x '>单增,()0f x '<单减(2)极值:(驻点和不可导点为可能极值点) 法一:f ′(x )左负右正取极小,f ′(x )左正右负取极大 法二:f ′′(x 0)<0时, f(x)在x 0处取得极大值;f ′′(x 0)>0时, f(x)在x 0处取得极小值(3)最值:比较端点值和极值出最值(4)凹凸性:()0f x ">,则在[],a b 上为凹的;()0f x "<,则在[],a b 上为凸的. 拐点:其横坐标是()0f x "=的点或()f x 二导不存在的点. 微分:00|()()x x dy f x x f x dx =''=∆=6.不定积分:(1)定义:原函数的全体()d ()f x x F x C =+⎰几何意义:积分曲线族(2)不定积分的计算:①直接积分法②换元积分法:第一类还原法(凑微分法)()()(())()d (())d ()()d ()(())u x g x dx f x x x f x x f u u F u C F x Cϕϕϕϕϕϕ='====+=+⎰⎰⎰⎰第二类还原法 1()()d (())()d t x f x x f t t tψψψ-='=⎰⎰(根式代换、三角代换、倒数代换)③分部积分法: d d u v uv v u =-⎰⎰(反对幂指三,谁在前谁设为u )7.定积分:(1)定义:分割、近似、求和、取极限,极限存在即可积01()d lim ()nb i i a i I f x x f x λξ→===∆∑⎰ 几何意义:曲边梯形的面积(2)性质:线性性、依区间可加性:()d ()d ()d b c ba a c f x x f x x f x x =+⎰⎰⎰ 几何度量性:∫cdx =c(b −a)ba保号性、保序性、积分绝对值不等式、估值定理:()()d ()b a m b a f x x M b a -≤≤-⎰ 积分中值定理:至少存在一点[,]a b ξ∈,使得 ()d ()()ba f x x fb a ξ=-⎰.(3)定积分的计算:(求原函数,算增量)直接积分法、换元积分法、分部积分法+微积分基本公式 ()()|()()bba a f x dx F x Fb F a ==-⎰。
考研数学高数1极限与函数
第一讲:极限与函数数列极限:数列极限的严格定义不需要掌握,但需要理解如下定理:lim {}n n n x a x a →∞=⇔-是无穷小量数列极限的四则运算:设lim n n x x →∞=,lim n n y y →∞=,则:lim()n n n x y x y →∞±=±、lim()n n n x y xy →∞=、lim()(0)n n n x xy y y→∞=≠ 推论:若lim 0n n x →∞=,数列{}n y 有界,则lim 0n n n x y →∞=例:计算下列极限n n n n n 323)1(lim ++-∞→ )12(lim --+∞→n n n n数列极限的性质唯一性:如果数列{}n x 收敛,则其期限必唯一 有界性:如果数列{}n x 收敛,则该数列必定有界保序性:设数列{}n x 、{}n y 均收敛,且当n 足够大时,有n n x y >,则必有lim lim n n n n x y →∞→∞≥保序性的推论(保号性):设数列{}n x 收敛,且当n 足够大时,有0n x >,则必有lim 0n n x →∞≥注意:1、后面的不等式并不是严格的不等号;2、保序性的逆命题不一定成立思考:求如下几个数列的极限:1111{sin }{sin }{sin }n n n n n n、、数列极限的三个常用定理:数列与其子列的关系:如果数列{}n x 收敛,则其任意子列均收敛,且收敛于同一极限lim n n x →∞;如果数列{}n x 中存在两个子列收敛于不同的极限,或是一个收敛一个发散到无穷大,则{}n x必发散。
例:计算(1)1lim[]nn n n-→∞+夹逼准则:如果当n 足够大时,数列{}n x 、{}n y 、{}n z 满足不等式n n n x y z ≤≤,且{}n x 、{}n z 收敛于同一极限,则{}n y 必收敛于该极限例:计算下列极限1、设0>>>c b a ,nn n n n c b a x ++=,求222111lim (1)(2)nn n n →∞⎡⎤+++⎢⎥+⎣⎦2、2lim n n →∞⎛⎫+++ 3、222111lim (1)(2)n n n n →∞⎡⎤+++⎢⎥+⎣⎦4、(思考)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n (需要用定积分来求)单调有界数列必收敛定理:如果数列{}n x 单调递增且有上界,或是单调递减且有下界,则{}n x 必收敛。
高数重要知识点汇总
高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比拟设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim〔1〕l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x)= 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
〔2〕l ≠0,称f (x )与g (x )是同阶无穷小。
〔3〕l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1−cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x +~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准那么准那么1.单调有界数列极限一定存在准那么2.〔夹逼定理〕设g (x ) ≤f (x ) ≤h (x ) 放缩求极限假设A x h A x g ==)(lim ,)(lim ,那么A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法那么定理1 设函数)(x f 、)(x F 满足以下条件:〔1〕0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;〔2〕)(x f 与)(x F 在0x〔3〕)()(lim 0x F x f x x ''→这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达〔H L 'ospital 〕法那么.例1计算极限0e 1lim x x x→-.解该极限属于“00〞型不定式,于是由洛必达法那么,得0e 1lim x x x→-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx →.解该极限属于“0〞型不定式,于是由洛必达法那么,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注假设(),()f x g x ''仍满足定理的条件,那么可以继续应用洛必达法那么,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足以下条件: 〔1〕∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域可导,且0)(≠'x F ;〔3〕)()(lim 0x F x f x x ''→注:上述关于0x x →时未定式∞∞时未定式∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解所求问题是∞∞型未定式,连续n 次施行洛必达法那么,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法那么时必须注意以下几点: 〔1〕洛必达法那么只能适用于“00〞和“∞∞〞型的未定式,其它的未定式须先化简变形成“0〞或“∞∞〞型才能运用该法那么; 〔2〕只要条件具备,可以连续应用洛必达法那么;〔3〕洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不能断定原极限不存在.7.利用导数定义求极限根本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在〕8.利用定积分定义求极限根本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n 〔如果存在〕三.函数的连续点的分类函数的连续点分为两类: (1)第一类连续点设0x 是函数y = f (x )的连续点。
大学高数2-3极限的运算法则
03
复合函数的极限运算法则
函数的极限与复合函数的极限
函数的极限
当函数在某点的自变量趋于某值时,函数值的极限。
复合函数的极限
对于复合函数$f(g(x))$,当$x$趋于某值时,$g(x)$趋于某值,则$f(g(x))$的极限存在。
复合函数的极限运算法则
乘法法则
若$f(x)$和$g(x)$在某点的极 限都存在,则$f(x) cdot g(x)$ 在该点的极限也存在,且$f(x) cdot g(x) = f(x) cdot g(x)$。
01
02
03
04
加法运算性质
两个无穷小量的和仍为无穷小 量。
减法运算性质
两个无穷小量的差仍为无穷小 量。
乘法运算性质
有限个无穷小量的乘积仍为无 穷小量。
除法运算性质
有限个无穷小量的商仍为无穷 小量,但除数不能为无穷大量 。
05
极限的运算技巧
利用等价无穷小替换求极限
等价无穷小替换是求极限的一种常用方法,通过将复杂的表达式替换为简单的无穷 小量,可以简化计算过程。
在等价无穷小替换中,常用的等价无穷小量包括:当x趋近于0时,sin x ≈ x,tan x ≈ x,e^x - 1 ≈ x,ln(1 + x) ≈ x等。
使用等价无穷小替换求极限时,需要注意替换的准确性和适用范围,以确保结果的 正确性。
利用洛必达法则求极限
01
02
03
洛必达法则是求极限的一种重要 法则,适用于0/0型和∞/∞型的 极限问题。
利用反常函数求极限
总结词
反常函数包括无界函数和无穷大量,求极限时需要注意函数的定义域和性质。
详细描述
对于无界函数和无穷大量,需要分别讨论其类型和性质,利用等价无穷小替换、夹逼准则等方法求极 限。在处理反常函数时,需要注意函数的定义域和性质,以及无穷小与无穷大的关系。
高数重要定理(高数上下)
1.找 n;
2.确定 x0,将函数 f (x)在点 x0处展开成泰勒公式.一般题设中会
提示一些特殊的点作为泰勒公式的展开点 x ,通常取 x 为函数值
0
0
为零的点、导数值为零的点、区间中点、函数的极值点或题设中
给出的其他特殊的点.
3.将区间端点a和b分别代入泰勒展开式,把得到的两个展开式相
加或相减.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
求导法则: 1.四则运算法则; 2.复合函数求导法; 3.隐函数求导法; 4.反函数求导数; 5.参数方程求导法; 6.对数求导法; 7.高阶导数.
高阶导数
1.归纳法
求一阶 y′、二阶 y′′,归纳n阶导数 y(n). 2.公式法(莱布尼兹公式):(uv)(n) = ∑n Cnk u(k) v(n−k).
g(x) (3) 已知lim f (x)g(x)= A,lim f (x)=∞,
则limg(x)=0.
1.连续函数的和,差,积,商(分母不为零)及复合仍连续. 2.初等函数在其定义区间内处处连续. 3.闭区间上连续函数的性质
(1)最值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上必有最大值
x→a F ′( x)
( x→∞)
关于大学高等数学等价无穷小
关于大学高等数学等价无穷小这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。
其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。
1.做乘除法的时候一定可以替换,这个大家都知道。
如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。
关键要记住道理lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x)其中两项的极限是1,所以就顺利替换掉了。
2.加减法的时候也可以替换!但是注意保留余项。
f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看:f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的!问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。
当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。
比如你的例子,ln(1+x)+x是可以替换的,因为ln(1+x)+x=[x+o(x)]+x=2x+o(x),所以ln(1+x)+x和2x是等价无穷小量。
但是如果碰到ln(1+x)-x,那么ln(1+x)+x=[x+o(x)]-x=o(x),此时发生了相消,余项o(x)成为了主导项。
此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。
碰到这种情况也不是说就不能替换,如果你换一个高阶近似:ln(1+x)=x-x^2/2+o(x^2)那么ln(1+x)-x=-x^2/2+o(x^2)这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。
大学高等数学等价无穷小
那个问题很多人都弄不明白,很多自以为明白的人也不负责任地说一句“乘除能够,加减不行”,包括很多高校教师。
其实这种讲法是不对的!关键是要明白其中的道理,而不是记住结论。
1•做乘除法的时候必然能够替换,那个大伙儿都明白。
若是f(x)〜u(x), g(x)〜v(x),那么lim f(x)/g(x) = lim u(x)/v(x)o关键要记住道理lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x)苴中两项的极限是1,因此就顺利替换掉了。
2.加减法的时候也能够替换!可是注意保留余项。
f(x)〜u(x)不能推岀f(x)+g(x)〜u(x)+g(x),那个是很多人说不能替换的缘故,可是若是你如此看:f(x)〜u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意那个地址是等号,因此必然是成立的!问题就出在u(x)+g(x)可能因为相消变成髙阶的无穷小量,现在余项o(f(x))成为主导,因此不能忽略掉。
当u(x)+g(x)的阶没有提高时,o(f(x))仍然是能够忽略的。
比如你的例子,ln(1+x)+x是能够替换的,因为ln(1 +x)+x=[x+o(x)]+x=2x+o(x),因此ln(1+x)+x和2x是等价无穷小量。
可是若是碰着ln(1+x)-x,那么ln(1 +x)+x=[x+o(x)]-x=o(x),现在发生了相消,余项o(x)成了主导项。
现在那个式子仍然是成立的!只只是用它来作为分子或分母的极限问题可能取得不定型而无法直接求出来罢了。
碰着这种情形也不是说就不能替换,若是你换一个高阶近似:ln(1 +x)=x-x A2/2+o(x A2)那么ln(1 +x)-x=-x A2/2+o(x A2)那个和前而ln(1+x)-x=o(x)是相容的,可是是更成心义的结果,现在余项0(x^2)能够忽略。
高数一知识点
第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==- 左导数 0000000()()()()'()l i m l i mx x x f x f x f x xf x f xx x x ---->->-+-==-右导数 0000000()()()()'()l i m l i mx x x f x f x f x xf x f xx x x+++->->-+-==-微分 ()'y A x z d y A d x y d xο∆=⋅∆+==可导⇒连续 可导⇔可微可导⇔既左可导又右可导求导数:(1) 复合函数链式法则 (2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。
(3)参数方程求导 四、导数的应用(1)罗尔定理和拉格朗日定理(证明题)(9)2d csc cot x x x C =-+⎰(10)d s x ec tan sec x x x C =+⎰ (11)dx csc cot csc x x x C =-+⎰(12)arcsin x C =+(13)2arctan 1d xx C x=++⎰除了上述基本公式之外,还有几个常用积分公式1.tan ln |cos |;xdx x C =-+⎰2.cot ln |sin |;xdx x C =+⎰3.sec ln |sec tan |;xdx x x C =++⎰4.csc ln |csc cot |;xdx x x C =-+⎰5.2211arctan ;xdx C a x a a =++⎰6.arcsin ;x C a =+7.2211ln ;2x a dx C x a a x a -=+-+⎰8.2arcsin ;2a x C a =+9.ln |.x C =++(3).⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(;(4). 若在[],a b 上,()0≥x f ,则0)(≥⎰badx x f ;推论1.若在[],a b 上,()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰推论2.⎰⎰≤bab adx x f dx x f |)(||)(|(a b <)(5).若函数()x f 在区间[]b a ,上可积,且()M x f m ≤≤,则(6).(定积分中值定理)设()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使()()a b f dx x f b a-=⎰ξ)(.3. 积分上限函数()x af t dt ⎰及其性质(1).()x f dt t f x a='⎰))((,或()x f dt t f dx d xa=⎰)(;(2).如果()⎰=)(0)(x dt t f x ϕφ,则()))(()(0'='⎰x dt t f x ϕφ()()()x x f ϕϕ'=.c 为瑕点则()⎰b adx x f 收敛⇔()⎰c adx x f 与()⎰bcdx x f 均收敛,并且在收敛时,有二、计算(一)定积分的计算1、微积分基本公式:设函数()x f 在区间[]b a ,上连续,且()()x f x F =',则()()a F b F dx x f b a-=⎰)( ,牛顿-莱布尼兹(N-L )公式2、换元法:设函数()x f 在区间[]b a ,上连续,函数()t x ϕ=满足: ①在区间[]βα,上可导,且()t ϕ'连续;②()αϕ=a ,()βϕ=b ,当[,]t αβ∈时,[]b a x ,∈,则 3、分部积分法:()|b bb a aauv dx uv u vdx ''=-⎰⎰,或()|bbba aaudv uv vdu =-⎰⎰.4、偶倍奇零:设函数()x f 在区间[]a a ,-上连续,则2、旋转体的体积(1)直角坐标:由曲线(),,,()y f x x a x b a b ===<与x 轴所围曲边梯形绕x 轴旋转一周的旋转体的体积22()().bbaaV f x dx f x dx ππ==⎰⎰由曲线(),,,()x y y c y d c d ϕ===<与y 轴所围曲边梯形绕y 轴旋转一周的旋转体的体积22()().ddccV y dy y dy πϕπϕ==⎰⎰(2)参数方程由()()x t y t ϕψ=⎧⎨=⎩与,x a x b ==及x 轴所围成的图形绕x 由旋转一周的旋转体的体积2()()V t t dt βαπψϕ'=⎰3、平面曲线的弧长(积分限从小到大) (1)直角坐标 as =⎰(2)参数方程 s βα=⎰ 齐次线性''()'()0(*)y P x y Q x y ++= 非齐次线性''()'()()(**)y P x y Q x y f x ++=1、12,y y 是(*)的解,则1122y C y C y =+也是(*)的解;若12,y y 线性无关,则1122y C y C y =+为(*)的通解)2、12*,*y y 是(**)的解,则12**y y -是对应齐次线性方程的解Y 是(*)的通解,*y 是(**)的解,则*Y y +是(**)的通解 (三)、解方程:判别类型,确定解法。