【小初高学习]2017-2018学年高中数学 考点2 命题及其关系、充分条件与必要条件(含2013年
高考数学 考点2 命题及其关系、充分条件与必要条件、简单的逻辑联结词、全称量词与存在量词
考点2 命题及其关系、充分条件与必要条件、简单的逻辑联结词、全称量词与存在量词1.(2010·天津高考文科·T5)下列命题中,真命题是( )(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数 【命题立意】考查简易逻辑、二次函数的奇偶性。
【思路点拨】根据偶函数的图像关于y 轴对称这一性质进行判断。
【规范解答】选A ,当0m =时函数2()f x x =的图像关于y 轴对称,故选A 。
2.(2010·天津高考理科·T3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数 【命题立意】考查命题的四种形式中的否命题的概念。
【思路点拨】原命题“若p 则q ”,否命题为“若p ⌝则q ⌝”。
【规范解答】选B ,明确“是”的否定是“不是”,并对原命题的条件和结论分别进行否定,可得否命题为“若f(x)不是奇函数,则f(-x)不是奇函数”。
3.(2010·辽宁高考文科·T4)已知a >0,函数2()f x ax bx c =++,若x 0满足关于x 的方程2ax+b=0,则下列选项的命题中为假命题的是( )0000(A) R,()() (B) R,()()(C) R,()() (D) R,()()x f x f x x f x f x x f x f x x f x f x ∃∈≤∃∈≥∀∈≤∀∈≥【命题立意】本题考查二次函数的顶点与最值问题,全称命题与特称命题。
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件
考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
2018高考数学核心考点专题演练02命题及其关系、充分条件与必要条件
2018 高考数学核心考点专题操练02 命题及其关系、充足条件与必需条件考点 2命题及其关系、充足条件与必需条件【考点分析】一.明确要求1.认识命题的观点,会分析原命题及其抗命题、否命题与逆否命题这四种命题的互相关系.2.理解必需条件、充足条件与充要条件的意义.二.命题方向1.本部分主要考察四种命题的观点及其互相关系,考察充足条件、必需条件、充要条件的观点及应用;2. 题型主要以选择题、填空题的形式出现.常与会合、不等式、几何等知知趣联合命题.三.规律总结一个差别否命题与命题的否认是两个不一样的观点:①否命题是将原命题的条件否认作为条件,将原命题的结论否认作为结论结构的一个新的命题;②命题的否认不过否认命题的结论,常用于反证法.两条规律(1)抗命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假.三种方法充足条件、必需条件的判断方法(1) 定义法:直接判断“若p 则 q”、“若 q 则 p”的真假.并注意和图示相联合,比如“p? q”为真,则 p 是 q 的充分条件.(2) 等价法:利用p ?q与q?p, ? 与p?q,?q与q?p的等价关系,关于条件或结论能否认式q p p的命题,一般运用等价法.(3)会合法:若 A? B,则 A 是 B 的充足条件或 B 是 A的必需条件;若 A= B,则 A是 B 的充要条件.【方法总结】1. 正确的命题要有充足的依照,不必定正确的命题要举出反例,这是最基本的数学思想方式,也是两种不一样的解题方向,有时举出反例可能比进行推理论证更困难,两者相同重要.2.判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断抗命题的真假,而后依据等价关系确立否命题和逆否命题的真假.假如原命题的真假不好判断,那就第一判断其逆否命题的真假.3. 判断p是q的什么条件,需要从双方面分析:一是由条件p 可否推得条件q,二是由条件q 可否推得条件p.关于带有否认性的命题或比较难判断的命题,除借助会合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、抗命题和否命题的等价性,转变为判断它的等价命题.1 / 82018 高考数学核心考点专题操练 02 命题及其关系、充足条件与必需条件【真题操练】1. 【2017 天津,理 4】设R ,则“ |π | π”是“ sin1 ”的()12122( A )充足而不用要条件 ( B )必需而不充足条件( C )充要条件( D )既不充足也不用要条件【答案】 A【分析】 |π | ππsin1 ,但0,sin 1π π2 ,不知足 ||,所以是充足不1212621212必需条件,选 A.2. 【2017 山东】已知命题p : x R ,x 2x 1 0 ; 命题 q :若 a 22, 则 a b以下命题为真命题的是b < .A . p q B.pqC.p qD.pq【答案】 B【分析】由 x0 时 x 2 x 1 0 建立知 p 是真命题 , 由 12 ( 2)2,12 可知 q 是假命题 , 所以 pq 是真命题 ,应选 B.3. 【2016 浙江理数】命题“x R , nN * ,使得 n x 2 ”的否认形式是()A . x R , n N * ,使得 n x 2B . x R , n N * ,使得 nx 2 C . xR , nN * ,使得 nx 2D . xR , n N * ,使得 nx 2【答案】 D【分析】的否认是 , 的否认是, nx 2 的否认是 n x 2 .应选 D .考点:全称命题与特称命题的否认.4. 【 2016 山东理数】已知直线 a ,b 分别在两个不一样的平面 α,β内.则 “直线 a 和直线 b 订交 ”是 “平面 α和平面 β订交”的( )( A )充足不用要条件( B )必需不充足条件( C )充要条件( D )既不充足也不用要条件【答案】 A【分析】 “直线 a 和直线 b 订交”“平面 和平面订交”,但“平面 和平面 订交”“直线 a 和直线 b订交”,所以“直线 a 和直线 b 订交”是“平面和平面订交”的充足不用要条件,应选A .5. 【 2016 天津理数】设 {a n }是首项为正数的等比数列, 公比为 q ,则“q<0”是 “对随意的正整数 n ,a 2 n- 1+a 2n <0”的( )( A )充要条件(B )充足而不用要条件( C )必需而不充足条件( D )既不充足也不用要条件2 / 82018 高考数学核心考点专题操练02 命题及其关系、充足条件与必需条件【答案】 C【分析】由题意得,a2 n 1 a2n 0 a1 (q 2n 2 q2n 1) 0 q2( n 1) (q 1) 0 q ( , 1) ,故是必需不充足条件,应选 C.6. 【2015 重庆,理4】“”是“( x 2) 0”的()x 1 log12A、充要条件B、充足不用要条件C、必需不充足条件D、既不充足也不用要条件【答案】 B【分析】 log 1 (x 2) 0 x 2 1 x 1 ,所以选 B.27.【2015 新课标1,理 3】设命题p:n N , n2 2n,则p 为( )( A)n N, n2 2n ( B)n N, n2 2n( C)n N, n2 2n (D)n N , n2=2n【答案】 C【分析】p :n N , n2 2n,应选 C.8. 【2015 浙江,理4】命题“n N * , f (n) N *且f (n) n 的否认形式是()A. n N * , f (n) N * 且 f (n) nB. n N * , f (n) N * 或 f (n) nC. n0 N * , f (n0 ) N *且 f ( n0 ) n0D. n0 N * , f (n0 ) N *或 f (n0 ) n0【答案】 D.【分析】依据全称命题的否认是特称命题,可知选 D.9. 【2015 天津,理4】设x R ,则“x 2 1 ”是“ 2x 2 0 ”的( )x( A)充足而不用要条件( B)必需而不充足条件( C)充要条件( D)既不充足也不用要条件【答案】 A【分析】 x 2 1 1 x 2 1 1 x 3,x2 x 2 0 x 2 或x 1,所以“x 2 1 ”是“x2 x 2 0 ”的充足不用要条件,应选 A.10. 【2015 湖北,理5】设 a1 , a2 , , a n R ,n 3 . 若 p: a1 , a2 , , a n成等比数列;q: (a12 a22 a n2 1)( a22 a32 a n2 ) (a1a2 a2 a3 a n 1a n )2,则()A. p 是 q 的充足条件,但不是q 的必需条件B. p 是 q 的必需条件,但不是q 的充足条件C. p 是 q 的充足必需条件3 / 82018 高考数学核心考点专题操练02 命题及其关系、充足条件与必需条件D. p 既不是 q 的充足条件,也不是q 的必需条件【答案】 A【分析】对命题p: a1 , a2 , , a n成等比数列,则公比q a n (n 3) 且 a n 0 ;a n 1对命题 q ,① 当a n0时,(a12 a22 a n2 1)( a22 a32 a n2 ) ( a1 a2 a2 a3 a n 1a n )2建立;②当 a n 0 时,依据柯西不等式,等式(a12 a22 a n2 1 )( a22 a32 a n2 ) ( a1a2 a2 a3 a n 1a n )2建立,则 a1 a2 an 1,所以 a1 , a2 , , a n成等比数列,所以p 是 q 的充足条件,但不是q 的必需条件.a2 a3 a n11. 【2015 四川,理8】设 a,b 都是不等于 1 的正数,则“a b log a 3 log b 33 3 3 ”的()”是“( A)充要条件( B)充足不用要条件( C)必需不充足条件( D)既不充足也不用要条件【答案】 B【分析】若3a 3b 3 ,则a b 1 ,进而有 log a 3 log b 3 ,故为充足条件. 若 log a 3 log b 3不必定有 a b 1 ,比方.a 1,b 3 ,进而 3a 3b 3 不建立 .应选 B. 312.【2015 安徽,理3】设p :1 x 2,q : 2x 1 ,则p是q建立的()(A)充足不用要条件( B)必需不充足条件(C)充足必需条件( D)既不充足也不用要条件【答案】 A【分析】由 q : 2x20,解得 x 0 ,易知,p能推出q,但q不可以推出p,故p是q建立的充足不用要条件,选 A.13. 【2015 湖南理 2】设A,B是两个会合,则“ A B A ”是“ A B ”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件【答案】 C.【分析】由题意得, A B A A B ,反之, A B A B A,故为充要条件,选 C.【考点定位】 1.会合的关系; 2.充足必需条件 .14. 【2017 北京,理13】可以说明“ a b c是随意实数.若a b c a+b c” a,设,,>>,则>是假命题的一组整数b, c 的值挨次为 ______________________________ .【答案】 -1 ,-2 , -3 (答案不独一)【分析】 1 2 3,12 3 3 相矛盾,所以考证是假命题.4 / 82018 高考数学核心考点专题操练02 命题及其关系、充足条件与必需条件15. 【2015 山东,理12】若“x0,, tan x m ”是真命题,则实数 m 的最小值为.4【答案】 1、所以答案应填:1。
2017届新课标高考总复习·数学课件:第1章 第2节 命题及其关系、充分条件与必要条件
第十七页,编辑于星期六:点 五十六分。
(3)对于选项 A,命题“若 x>1,则 x2>1”的否命题为“若 x≤1,则 x2≤1”,易知当 x=-2 时,x2=4>1,故选项 A 为假 命题;对于选项 B,命题“若 x>y,则 x>|y|”的逆命题为“若 x>|y|, 则 x>y”,分析可知选项 B 为真命题;对于选项 C,命题“若 x =1,则 x2+x-2=0”的否命题为“若 x≠1,则 x2+x-2≠0”, 易知当 x=-2 时,x2+x-2=0,故选项 C 为假命题;对于选项 D,命题“若 x2>1,则 x>1”的逆否命题为“若 x≤1,则 x2≤1”, 易知当 x=-2 时,x2=4>1,故选项 D 为假命题.
第七页,编辑于星期六:点 五十六分。
(4)当 q 是 p 的必要条件时,p 是 q 的充分条件.( ) (5)当 p 是 q 的充要条件时,也可说成 q 成立当且仅当 p 成 立.( ) (6)q 不是 p 的必要条件时,“p q”成立.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ (6)√
答案:(1)A (2)A
第二十二页,编辑于星期六:点 五十六分。
充要条件的三种判断方法 (1)定义法:根据 p⇒q,q⇒p 进行判断. (2)集合法:根据 p,q 成立的对应的集合之间的包含关系 进行判断. (3)等价转化法:根据一个命题与其逆否命题的等价性,把 判断的命题转化为其逆否命题进行判断.这个方法特别适合以 否定形式给出的问题,常用的是逆否等价法.
C.逆否命题是“若 m>1,则函数 f(x)=ex-mx 在(0,+∞) 上是减函数”,是真命题
高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件
高考数学复习考点知识与题型专题讲解命题及其关系、充分条件与必要条件考试要求1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p常用结论充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)“x>1”是“x>0”的充分不必要条件.(√)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)p是q的充分不必要条件等价于q是p的必要不充分条件.(√)教材改编题1.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.2.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等3.方程x2-ax+a-1=0有一正一负根的充要条件是________.答案a∈(-∞,1)解析依题意得a-1<0,∴a<1.题型一命题及其关系例1(1)(2022·玉林质检)下列四个命题为真命题的个数是()①命题“若x>1,则x2>1”的否命题;②命题“梯形不是平行四边形”的逆否命题;③命题“全等三角形面积相等”的否命题;④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题.A .1B .2C .3D .4答案B解析 ①命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,不正确,例如取x =-2.②命题“梯形不是平行四边形”是真命题,因此其逆否命题也是真命题.③命题“全等三角形面积相等”的否命题“不是全等三角形的面积不相等”是假命题. ④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题“若两条直线是异面直线,则这两条直线没有公共点”是真命题.综上可得真命题的个数为2.(2)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________________.答案f (x )=sin x ,x ∈[0,2](答案不唯一)解析设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.教师备选(2022·合肥模拟)设x ,y ∈R ,命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是()A .若x 2+y 2≤2,则x 2≤1或y 2≤1B.若x2+y2>2,则x2≤1或y2≤1C.若x2+y2≤2,则x2≤1且y2≤1D.若x2+y2>2,则x2≤1且y2≤1答案C解析根据否命题的定义可得命题“若x2+y2>2,则x2>1或y2>1”的否命题是“若x2+y2≤2,则x2≤1且y2≤1”.思维升华判断命题真假的策略(1)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练1(1)(2022·安顺模拟)命题“若x,y都是奇数,则x+y是偶数”的逆否命题是() A.若x,y都是偶数,则x+y是奇数B.若x,y都不是奇数,则x+y不是偶数C.若x+y不是偶数,则x,y都不是奇数D.若x+y不是偶数,则x,y不都是奇数答案D解析命题“若x,y都是奇数,则x+y是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是奇数”.(2)命题p:若m≤a-2,则m<-1.若p的逆否命题为真命题,则a的取值范围是________.答案(-∞,1)解析依题意,命题p 的逆否命题为真命题,则命题p 为真命题,即“若m ≤a -2,则m <-1”为真命题,则a -2<-1,解得a <1.题型二 充分、必要条件的判定例2(1)已知p :⎝ ⎛⎭⎪⎫12x <1,q :log 2x <0,则p 是q 的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由⎝ ⎛⎭⎪⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}单调递减,所以甲不是乙的充分条件.当数列{S n}单调递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在.所以甲是乙的必要条件.教师备选在△ABC中,“AB2+BC2=AC2”是“△ABC为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析在△ABC中,若AB2+BC2=AC2,则∠B=90°,即△ABC为直角三角形,若△ABC为直角三角形,推不出∠B=90°,所以AB2+BC2=AC2不一定成立,综上,“AB2+BC2=AC2”是“△ABC为直角三角形”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练2(1)“a>2,b>2”是“a+b>4,ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·成都模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为a⊥b,所以a ·b =0,则(a +b )2=a 2+2a ·b +b 2=a 2+b 2,所以“a ⊥b ”是“(a +b )2=a 2+b 2”的充分条件;反之,由(a +b )2=a 2+b 2得a ·b =0,所以非零向量a ,b 垂直,“a ⊥b ”是“(a +b )2=a 2+b 2”的必要条件.故“a ⊥b ”是“(a +b )2=a 2+b 2”的充要条件.题型三 充分、必要条件的应用例3已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解由x 2-8x -20≤0,得-2≤x ≤10,∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].延伸探究本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,则⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,解得m ≥9,故m 的取值范围是[9,+∞). 教师备选(2022·泰安检测)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是()A .(-∞,-1]B .(-∞,-1)C .[1,+∞)D .(1,+∞)答案A解析因为q :|x +2a |<3,所以q :-2a -3<x <-2a +3,记A ={x |-2a -3<x <-2a +3},p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以A B ,所以a ≤-2a -3,解得a ≤-1.思维升华 求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练3(1)使2x ≥1成立的一个充分不必要条件是()A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案B解析由2x ≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案[1,2]解析由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎪⎨⎪⎧a -1≤1,a +1≥2且等号不能同时取到,解得1≤a≤2.课时精练1.(2022·韩城模拟)设p:2<x<3,q:|x-2|<1,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式|x-2|<1得-1<x-2<1,解得1<x<3,因为{x|2<x<3}{x|1<x<3},因此p是q的充分不必要条件.2.(2022·马鞍山模拟)“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是() A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y不全为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案C解析根据命题“若p,则q”的逆否命题为“若綈q,则綈p”,可以写出“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是“若x,y∈R,x,y 不全为0,则x2+y2≠0”.3.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c,得到(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.4.已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.5.(2022·太原模拟)下列四个命题:①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题;②“若ab=0,则a=0”的逆否命题;③“若ac=cb,则a=b”的逆命题;④“若a=b,则a2=b2”的否命题.其中是真命题的为()A.①④B.②③C.①③D.②④答案C解析①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题是“在△ABC中,若∠C>∠B,则AB>AC”,是真命题;②“若ab=0,则a=0”是假命题,所以其逆否命题也是假命题;③“若ac=cb,则a=b”的逆命题是“若a=b,则ac=cb”,是真命题;④“若a=b,则a2=b2”的否命题是“若a≠b,则a2≠b2”,是假命题.6.(2022·青岛模拟)“∀x>0,a≤x+4x+2”的充要条件是()A.a>2B.a≥2 C.a<2D.a≤2 答案D解析因为x>0,所以x+4x+2=x+2+4x+2-2≥2(x+2)×4x+2-2=2,当且仅当x +2=4x +2,即x =0时等号成立,因为x >0,所以x +4x +2>2, 所以“∀x >0,a ≤x +4x +2”的充要条件是a ≤2. 7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题是真命题,则m 的取值范围是()A .(1,2)B .[1,2)C .(1,2]D .[1,2]答案D解析命题的逆命题“若1<x <2,则m -1<x <m +1”成立,则⎩⎪⎨⎪⎧ m +1≥2,m -1≤1,得⎩⎪⎨⎪⎧m ≥1,m ≤2,得1≤m ≤2, 即实数m 的取值范围是[1,2].8.(2022·厦门模拟)已知命题p :x <2m +1,q :x 2-5x +6<0,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .m >12B .m ≥12C .m >1D .m ≥1答案D解析∵命题p :x <2m +1,q :x 2-5x +6<0,即2<x <3,p 是q 的必要不充分条件,∴(2,3)(-∞,2m +1),∴2m +1≥3,解得m ≥1.实数m 的取值范围为m ≥1.9.(2022·延边模拟)若“方程ax 2-3x +2=0有两个不相等的实数根”是真命题,则a 的取值范围是________.答案a <98且a ≠0 解析由题意知⎩⎪⎨⎪⎧Δ=(-3)2-8a >0,a ≠0, 解得a <98且a ≠0. 10.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案x <-1(答案不唯一)解析由于4x =22x ,故2x >22x 等价于x >2x ,解得x <0,使得“2x >4x ”成立的一个充分条件只需为集合{x |x <0}的子集即可.11.直线y =kx +1与圆x 2+y 2=a 2(a >0)有公共点的充要条件是________.答案a ∈[1,+∞)解析直线y =kx +1过定点(0,1),依题意知点(0,1)在圆x2+y2=a2内部(包含边界),∴a2≥1.又a>0,∴a≥1.12.给出下列四个命题:①命题“在△ABC中,sin B>sin C是B>C的充要条件”;②“若数列{a n}是等比数列,则a22=a1a3”的否命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题;④命题“直线l与平面α垂直的充要条件是l与平面α内的两条直线垂直.”其中真命题是________.(填序号)答案①③解析对于①,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,①是真命题;②“若数列{a n}是等比数列,则a22=a1a3”的否命题是“若数列{a n}不是等比数列,则a22≠a1a3”,取a n=0,可知②是假命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题“若a与b的夹角为锐角,则a·b>0”为真命题;④直线l与平面α内的两条直线垂直是直线l与平面α垂直的必要不充分条件,④是假命题.13.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p 和q 中有且只有一个为真命题,则实数a 的取值范围是()A .0<a <1或a ≥2B .0<a <1或a >2C .1<a ≤2D .1≤a ≤2答案C解析若p 和q 中有且只有一个为真命题,则有p 真q 假或p 假q 真,当p 真q 假时,则⎩⎪⎨⎪⎧ -2-a <1<a ≤2,a >0,解得1<a ≤2;当p 假q 真时,则⎩⎪⎨⎪⎧1≤-2-a <2<a ,a >0,无解, 综上,1<a ≤2.14.若“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,则实数m 的取值范围为________. 答案m ≥5解析依题意有x 2-4x +3<0⇒1<x <3,x 2-mx +4<0⇒mx >x 2+4,∵1<x <3,∴m >x +4x ,设f (x )=x +4x (1<x <3),则函数f (x )在(1,2)上单调递减,在(2,3)上单调递增,∴f (1)=5,f (2)=4,f (3)=133,因此函数f (x )=x +4x (1<x <3)的值域为[4,5),∵“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,∴m ≥5.15.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是()A .a >3B .a <3C .a >4D .a <4答案A解析若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案⎝⎛⎦⎥⎤0,255 解析画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d=222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.。
第2节 命题及其关系、充分条件与必要条件
知识梳理自测
【教材导读】 1.在四种命题中,会有1个或3个命题为真命题吗?
把散落的知识连起来
提示:不会,由原命题与逆否命题,逆命题与否命题是两对互为逆否的命题, 真假性相同,则四种命题为真命题的可能个数为0,2,4. 2.写一个命题的其他三种命题时需要注意什么?
提示:(1)对于不是“若p,则q”形式的命题,需先改写.
1 , x
反之,当 f(x)=sin x-
又 f(-x)+f(x)=sin(-x)-
所以“a=0”是“函数 f(x)=sin x-
︱高中总复习︱一轮·理数
y x 1, (2)(2016· 四川卷)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足 y 1 x, y 1, 则p 是q 的( )
︱高中总复习︱一轮·理数
考点三 充分条件、必要条件的探求与应用
【例3】 (1)导学号 18702010 命题“∀x∈[1,3],x2-a≤0”为真命题的一个充 分不必要条件是( (A)a≥9 (C)a≥10 ) (B)a≤9 (D)a≤10
解析:(1)命题“∀x∈[1,3],x2-a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.
1
3
,则x是无理数”是真命题,故其逆否命题也是
真命题.故选B.
︱高中总复习︱一轮·理数
(2)导学号 38486010 原命题为“若 n
关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( (A)真,真,真 (C)真,真,假 (B)假,假,真 (D)假,假,假
a an 1 <an,n∈N*,则{an}为递减数列”, 2
答案:(2)②③
︱高中总复习︱一轮·理数
命题及其关系、充分条件与必要条件
(3)已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结
A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题
B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题 C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题 D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命 题
1 C.(-∞,0]∪2,+∞
第一章
集合与常用逻辑用语
返回导航
高三一轮总复习 · 数学(BS)
x-2 1 【解析】 (1)由不等式 <1,得 >0, x-1 x-1 解得 x>2 或 x<1,∴P=(-∞,1)∪(2,+∞). 由不等式 x2+(a-1)x-a>0 化为(x-1)(x+a)>0, 当-a≤1 即 a≥-1 时,x<-a 或 x>1, 若 P 是 Q 的充分不必要条件,则 P Q. ∴a=-1, 当-a>1 即 a<-1 时,x<1 或 x>-a, 由 P Q 得-a<2, 即-2<a<-1,综上可知-2<a≤-1.
返回导航
高三一轮总复习 · 数学(BS)
(1)解决与充要条件有关的参数问题,一般是根据条件把问题转化为集合之间的 关系,由此列出关于参数的不等式(组)求解. (2)证明充要条件的问题,应分“充分性”和“必要性”两个方面,此类问题一
般有两种设计形式:
①证明:A成立是B成立的充要条件,其中充分性是A⇒B,必要性是B⇒A. ②证明: A 成立的充要条件是 B ,此时的条件是 B ,充分性是 B⇒A ,必要性是 A⇒B.
第一章
集合与常用逻辑用语
【高中数学】第2讲 命题及其关系、充分条件与必要条件
第2讲命题及其关系、充分条件与必要条件一、知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p真命题时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.常用结论1.充要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件.(2)若p是q的充分不必要条件,则綈q是綈p的充分不必要条件.2.一些常见词语及其否定词语是都是都不是等于大于否定不是不都是至少一个是不等于不大于1.(选修1-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是() A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C.根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.故选C.2.(选修1-1P10练习T3(2)改编)“(x-1)(x+2)=0”是“x=1”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x -1)(x+2)=0,则x的值也可能为-2.故选B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(4)当q是p的必要条件时,p是q的充分条件.()(5)q不是p的必要条件时,“p⇒/q”成立.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏常见误区(1)不明确命题的条件与结论;(2)对充分必要条件判断错误;(3)含有大前提的命题的否命题易出错.1.命题“若△ABC有一内角为π3,则△ABC的三个内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若△ABC的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.2.已知p:a<0,q:a2>a,则綈p是綈q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:綈p:a≥0;綈q:a2≤a,即0≤a≤1,故綈p是綈q的必要不充分条件.答案:必要不充分3.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是____________.答案:对任意a,b∈R,若ab≤0,则a≤0.四种命题的相互关系及其真假判断(师生共研)(2020·长春质量检测(二))命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.【答案】 D(1)判断命题真假的两种方法(2)由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:选D.“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.2.(2020·甘肃酒泉敦煌中学一诊)有下列四个命题,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④解析:选B.①“若xy=1,则lg x+lg y=0”的逆命题为“若lg x+lg y=0,则xy=1”,该命题为真命题;②“若a·b=a·c,则a⊥(b-c)”的否命题为“若a·b≠a·c,则a不垂直(b-c)”,由a·b≠a·c可得a(b-c)≠0,据此可知a不垂直(b-c),该命题为真命题;③若b≤0,则方程x2-2bx+b2+b=0的判别式Δ=(-2b)2-4(b2+b)=-4b≥0,方程有实根,为真命题,则其逆否命题为真命题;④“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.综上可得,真命题是①②③④.故选B.充分条件、必要条件的判断(师生共研)(1)(2019·高考天津卷)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2019·高考北京卷)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】(1)由x2-5x<0可得0<x<5,由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要而不充分条件.(2)b=0时,f(x)=cos x,显然f(x)是偶函数,故“b=0”是“f(x)是偶函数”的充分条件;f(x)是偶函数,则有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,又cos(-x)=cos x,sin(-x)=-sin x,所以cos x-b sin x=cos x+b sin x,则2b sin x=0对任意x∈R恒成立,得b=0,因此“b=0”是“f(x)是偶函数”的必要条件.因此“b=0”是“f(x)是偶函数”的充分必要条件,故选C.【答案】(1)B(2)C充分条件、必要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.1.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由A⊆C,B⊆∁U C,易知A∩B=∅,但A∩B=∅时未必有A⊆C,B⊆∁U C,如图所示,所以“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分不必要条件.2.设x∈R,则“2-x≥0”是“(x-1)2≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.2-x≥0,则x≤2,(x-1)2≤1,则-1≤x-1≤1,即0≤x≤2,据此可知,“2-x≥0”是“(x-1)2≤1”的必要不充分条件.3.已知p:x+y≠-2,q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q 的充分不必要条件.故选A.充分条件、必要条件的应用(典例迁移)已知条件p:集合P={x|x2-8x-20≤0},条件q:非空集合S={x|1-m ≤x ≤1+m }.若p 是q 的必要条件,求m 的取值范围.【解】 由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10}, 由p 是q 的必要条件,知S ⊆P .则⎩⎨⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3. 所以当0≤m ≤3时,p 是q 的必要条件, 即所求m 的取值范围是[0,3].【迁移探究1】 (变结论)若本例条件不变,问是否存在实数m ,使p 是q 的充要条件.解:若p 是q 的充要条件,则P =S , 所以⎩⎨⎧1-m =-2,1+m =10,所以⎩⎨⎧m =3,m =9,即不存在实数m ,使p 是q 的充要条件.【迁移探究2】 (变结论)本例条件不变,若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10},因为綈p 是綈q 的必要不充分条件, 所以p ⇒q 且q ⇒p .所以[-2,10][1-m ,1+m ]. 所以⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10.所以m ≥9,即m 的取值范围是[9,+∞).已知充分、必要条件求参数取值范围的解题策略(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合的包含、相等关系,然后列出有关参数的不等式(组)求解.(2)涉及参数问题,直接解决较为困难时,可用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,如将綈p ,綈q 之间的关系转化成p ,q 之间的关系来求解.[注意] (1)注意对区间端点值的处理;(2)注意条件的等价变形.设p :-m +12<x <m -12(m >0);q :x <12或x >1,若p 是q 的充分不必要条件,则实数m 的取值范围为______.解析:因为p 是q 的充分不必要条件,又m >0,所以m -12≤12,所以0<m ≤2. 答案:(0,2]思想方法系列1 等价转化思想在充要条件中的应用等价转化思想就是对原问题换一个方式、换一个角度、换一个观点加以考虑,把要解决的问题通过某种转化,再转化,化归为一类已经解决或比较容易解决的问题,从而使问题得到圆满解决的思维方式.已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0).若綈p 是綈q 的充分不必要条件,则m 的取值范围为______.【解析】 条件p :-2≤x ≤10,条件q :1-m ≤x ≤1+m ,又綈p 是綈q的充分不必要条件,则q 是p 的充分不必要条件.故有⎩⎨⎧m >0,1-m ≥-21+m ≤10,,所以0<m ≤3.【答案】 (0,3]本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充分、必要条件问题中,常常要利用集合的包含、相等关系来考虑,这是解此类问题的关键.1.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析:选C.法一:设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.法二(等价转化法):因为x=y⇒cos x=cos y,而cos x=cos y⇒/x=y,所以“cos x=cos y”是“x=y”的必要不充分条件,故“x≠y”是“cos x≠cos y”的必要不充分条件.2.(2020·宁夏银川一中模拟)王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的() A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B.“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要非充分条件.故选B.[基础题组练]1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是() A.命题p的逆命题是“若x<a2+b2,则x<2ab”B.命题p的逆命题是“若x<2ab,则x<a2+b2”C.命题p的否命题是“若x<a2+b2,则x<2ab”D.命题p的否命题是“若x≥a2+b2,则x<2ab”解析:选C.命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A,B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误.2.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.a≠0⇒/ab≠0,但ab≠0⇒a≠0,因此p是q的必要不充分条件.3.已知a,b,c是实数,下列结论正确的是()A.“a2>b2”是“a>b”的充分条件B.“a2>b2”是“a>b”的必要条件C.“ac2>bc2”是“a>b”的充分条件D.“|a|>|b|”是“a>b”的充要条件解析:选C.对于A ,当a =-5,b =1时,满足a 2>b 2,但是a <b ,所以充分性不成立;对于B ,当a =1,b =-2时,满足a >b ,但是a 2<b 2,所以必要性不成立;对于C ,由ac 2>bc 2得c ≠0,则有a >b 成立,即充分性成立,故正确;对于D ,当a =-5,b =1时,|a |>|b |成立,但是a <b ,所以充分性不成立,当a =1,b =-2时,满足a >b ,但是|a |<|b |,所以必要性也不成立,故“|a |>|b |”是“a >b ”的既不充分也不必要条件.故选C.4.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③解析:选 A.本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题中的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.5.“(x +1)(y -2)=0”是“x =-1且y =2”的________条件.解析:因为(x +1)(y -2)=0,所以x =-1或y =2,所以(x +1)(y -2)=0⇒/ x =-1且y =2,x =-1且y =2⇒(x +1)(y -2)=0,所以是必要不充分条件.答案:必要不充分6.已知命题p :x ≤1,命题q :1x <1,则綈p 是q 的______.解析:由题意,得綈p :x >1,q :x <0或x >1,故綈p 是q 的充分不必要条件.答案:充分不必要条件7.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎨⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0.答案:[-3,0]8.已知命题p :(x +3)(x -1)>0;命题q :x >a 2-2a -2.若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:已知p :(x +3)(x -1)>0,可知p :x >1或x <-3,因为綈p 是綈q 的充分不必要条件,所以q 是p 的充分不必要条件,得a 2-2a -2≥1,解得a ≤-1或a ≥3,即a ∈(-∞,-1]∪[3,+∞).[综合题组练]1.(创新型)(2020·抚州七校联考)A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p 的逆否命题是若A ,B ,C 至少有一人及格,则及格分不低于70分.故选C.2.(2020·辽宁丹东质量测试(一))已知x ,y ∈R ,则“x +y ≤1”是“x ≤12且y ≤12”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当“x +y ≤1”时,如x =-4,y =1,满足x +y ≤1,但不满足“x ≤12且y ≤12”.当“x ≤12且y ≤12”时,根据不等式的性质有“x +y ≤1”.故“x +y ≤1”是“x ≤12且y ≤12”的必要不充分条件.故选B.3.(2020·湖南雅礼中学3月月考)若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4 ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a >3D .a ≥3解析:选D.|x -1|<a ⇒-a <x -1<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4⇒⎩⎨⎧a ≥1,a ≥3⇒a ≥3.故D 正确.4.下列命题中为真命题的序号是______.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x <0时,x +1x ≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④。
命题及其关系、充要条件
命题及其关系、充要条件
充分条件与必要条件的定义
(1)若p⇒q且q p,则p是q的充分非必要条件.
(2)若q⇒p且p q,则p是q的必要非充分条件.
(3)若p⇒q且q⇒p,则p是q的充要条件.
(4)若p q且q p,则p是q的非充分非必要条件.
设集合A={x|x满足条件p},B={x|x满足条件q},则有
(1)若A⊆B,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;
(2)若B⊆A,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;
(3)若A=B,则p是q的充要条件;
(4)若A⃘B,且B⃘A,则p是q的既不充分也不必要条件.
1.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.设x∈R,则“x=1”是“x3=x”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
3.“a+c>b+d”是“a>b且c>d”的()
A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件
4.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
5.已知p:{x|x+2≥0且x-10≤0},q:{x|-m≤x≤1+m,m>0},若q是p的必要非充分条件,则实数m的取值范围是。
命题及其关系、充分条件及必要条件知识点及题型归纳
-●高考明方向1.理解命题的概念.2.了解"假设p,则q〞形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.*备考知考情常用逻辑用语是新课标高考命题的热点之一,考察形式以选择题为主,试题多为中低档题目,命题的重点主要有两个:一是命题及其四种形式,主要考察命题的四种形式及命题的真假判断;二是以函数、数列、不等式、立体几何中的线面关系等为背景考察充要条件的判断,这也是历年高考命题的重中之重.命题的热点是利用关系或条件求解参数*围问题,考察考生的逆向思维.一、知识梳理"名师一号"P4知识点一命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感慨句都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有一样的真假性;②两个命题为互逆命题或互否命题,它们的真假性无关.注意:(补充)1、一个命题不可能同时既是真命题又是假命题2、常见词语的否认知识点二充分条件与必要条件1、充分条件与必要条件的概念〔1〕充分条件:q p ⇒ 则p 是q 的充分条件即只要有条件p 就能充分地保证结论q 的成立,亦即要使q 成立,有p 成立就足够了,即有它即可。
〔2〕必要条件:q p ⇒ 则q 是p 的必要条件即没有q 则没有p ,亦即q 是p 成立的必须要有的条件,即无它不可。
(补充)〔3〕充要条件q p ⇒且q p ⇒即p q ⇔则p 、q 互为充要条件〔既是充分又是必要条件〕"p 是q 的充要条件〞也说成"p 等价于q 〞、 "q 当且仅当p 〞等 (补充)2、充要关系的类型〔1〕充分但不必要条件定义:假设q p ⇒,但p q ⇒/, 则p 是q 的充分但不必要条件;〔2〕必要但不充分条件定义:假设p q⇒,但q p ⇒/, 则p 是q 的必要但不充分条件〔3〕充要条件定义:假设q p ⇒,且p q ⇒,即p q ⇔, 则p 、q 互为充要条件;〔4〕既不充分也不必要条件 定义:假设q p ⇒/,且p q ⇒/, 则p 、q 互为既不充分也不必要条件.3、判断充要条件的方法:"名师一号"P6 特色专题①定义法;②集合法;③逆否法〔等价转换法〕.逆否法----利用互为逆否的两个命题的等价性集合法----利用集合的观点概括充分必要条件假设条件p 以集合A 的形式出现,结论q 以集合B的形式出现,则借助集合知识,有助于充要条件的理解和判断.〔1〕假设⊂≠A B ,则p 是q 的充分但不必要条件〔2〕假设⊂≠B A ,则p 是q 的必要但不充分条件〔3〕假设B A =,则p 是q 的充要条件〔4〕假设B A ⊂/,且B A ⊃/, 则p 是q 的既不必要也不充分条件 (补充)简记作----假设A 、B 具有包含关系,则〔1〕小*围是大*围的充分但不必要条件〔2〕大*围是小*围的必要但不充分条件二、例题分析〔一〕四种命题及其相互关系例1.(1) "名师一号"P4 对点自测1命题"假设*,y 都是偶数,则*+y 也是偶数〞的逆否命题是( )A .假设*+y 是偶数,则*与y 不都是偶数B .假设*+y 是偶数,则*与y 都不是偶数-C.假设*+y不是偶数,则*与y不都是偶数D.假设*+y不是偶数,则*与y都不是偶数答案 C例1.(2) "名师一号"P5 高频考点例1以下命题中正确的选项是( )①"假设a≠0,则ab≠0〞的否命题;②"正多边形都相似〞的逆命题;③"假设m>0,则*2+*-m=0有实根〞的逆否命题;④"假设*-123是有理数,则*是无理数〞的逆否命题.A.①②③④B.①③④C.②③④D.①④解析:①中否命题为"假设a=0,则ab=0〞,正确;②中逆命题不正确;③中,Δ=1+4m,当m>0时,Δ>0,原命题正确,故其逆否命题正确;④中原命题正确故逆否命题正确.答案 B注意:"名师一号"P5 高频考点例1 规律方法在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比拟每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的"逆命题〞"否命题〞"逆否命题〞;判定命题为真命题时要进展推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.例1.(3) "名师一号"P4 对点自测2(2014·**卷)原命题为"假设z1,z2互为共轭复数,则|z1|=|z2|〞,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的选项是( )A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析易知原命题为真命题,所以逆否命题也为真,设z1=3+4i,z2=4+3i,则有|z1|=|z2|,但是z1与z2不是共轭复数,所以逆命题为假,同时否命题也为假.注意:"名师一号"P5 问题探究问题2四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;-互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比拟困难时,可转化为判断它的逆否命题的真假.同时要关注"特例法〞的应用.例2.(1)(补充)〔2011**文5)a ,b ,c ∈R ,命题"假设a b c ++=3,则222a b c ++≥3〞的否命题...是〔 〕 (A)假设a+b+c ≠3,则222a b c ++<3(B)假设a+b+c=3,则222a b c ++<3(C)假设a+b+c ≠3,则222a b c ++≥3(D)假设222a b c ++≥3,则a+b+c=3【答案】A 来 【解析】命题"假设p ,则q 〞的否命题是:"假设p ⌝,则q ⌝〞 例2.(2)(补充)命题:"假设0xy =,则0x =或0y =〞的否认..是:________ 【答案】假设0xy =,则0x ≠且0y ≠【解析】命题的否认只改变命题的结论。
高考数学 考点一遍过 专题02 命题及其关系、充分条件与必要条件(含解析)理
考点02 命题及其关系、充分条件与必要条件(1)理解命题的概念.(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的意义.一、命题及其关系 1.命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题. 2.四种命题及其关系 (1)四种命题命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题若p ⌝,则q ⌝逆否命题 若q ⌝,则p ⌝(2)四种命题间的关系(3)常见的否定词语 正面词语 = >(<) 是都是任意(所有)的 任两个至多有1(n )个至少有1个否定词≠ () 不是 不都是 某个某两个 至少有2(n +1)个 1个也没有(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动. 二、充分条件与必要条件 1.充分条件与必要条件的概念(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q 且q /⇒p ,则p 是q 的充分不必要条件; (3)若p /⇒q 且q ⇒p ,则p 是q 的必要不充分条件; (4) 若p ⇔q ,则p 是q 的充要条件;(5) 若p /⇒q 且q /⇒p ,则p 是q 的既不充分也不必要条件. 2.必记结论(1)等价转化法判断充分条件、必要条件①p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; ②p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; ③p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;④p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件. (2)集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :A ={x |p (x ) },q :B ={x |q (x ) },则 ①若A B ⊆,则p 是q 的充分条件; ②若B A ⊆,则p 是q 的必要条件; ③若A B ⊂≠,则p 是q 的充分不必要条件; ④若B A ⊂≠,则p 是q 的必要不充分条件; ⑤若A B =,则p 是q 的充要条件;⑥若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件.考向一 四种命题的关系及其真假的判断四种命题的关系及其真假的判断是高考中的一个热点,多以选择题的形式出现,难度一般不大,往往会结合其他知识点(如函数、不等式、三角、向量、立体几何等)进行综合考查.常见的解法如下: 1.判断四种命题间关系的方法①由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题. ②原命题和逆否命题、逆命题和否命题有相同的真假性,解题时注意灵活应用. 2.命题真假的判断方法①给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,则只需举一反例即可.②由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.典例1 (2017年高考北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________. 【答案】−1,−2,−3(答案不唯一)【名师点睛】解答本题时利用赋值的方式举反例进行验证,答案不唯一.1.已知命题“2,410x ax x ∀∈++>R ”是假命题,则实数的取值范围是 A .()4,+∞ B .(]0,4 C .(],4-∞D .[)0,4典例2 命题“0,0a ab ==若则”的逆否命题是 A .0,0ab a ≠≠若则 B .0,0a ab ≠≠若则 C .0,0ab a =≠若则D .0,0ab a ==若则【答案】A【方法点睛】将原命题的条件与结论互换的同时进行否定即得逆否命题.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.下列说法正确的是A .命题:“存在四边相等的四边形不是正方形”,该命题是假命题.B .命题“已知A 、B 为一个三角形的两内角,若A B >,则sin sin A B >”的逆命题为真命题C .“若a b >,则221a b >-”的否命题为“若a b <,则221a b <-”D .“1a =”是“直线10x ay -+=与直线20x ay +-=互相垂直”的充要条件考向二 充分、必要条件的判断充分条件与必要条件的判断是高考命题的热点,多以选择题形式出现,作为载体,考查知识面广,常与函数、不等式、三角函数、平面向量、立体几何、解析几何等知识综合考查.常见的解法如下: 1.命题判断法设“若p ,则q ”为原命题,那么:(1)原命题为真,逆命题为假时,则p 是q 的充分不必要条件; (2)原命题为假,逆命题为真时,则p 是q 的必要不充分条件; (3)当原命题与逆命题都为真时,则p 是q 的充要条件;(4)当原命题与逆命题都为假时,则p 是q 的既不充分也不必要条件. 2.集合判断法(同必记结论) 3.等价转化法(同必记结论)典例3 (2017年高考天津卷)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件,故选A . 【名师点睛】本题考查充要条件的判断,从定义来看,若p q ⇒,则p 是的充分条件,若q p ⇒,则p 是的必要条件,若p q ⇔,则p 是的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分而不必要条件,若B 是A 的真子集,则A 是B 的必要而不充分条件.3.设x ∈R ,则“20x -≥”是“|1|1x -≤”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件典例4 若条件:1p x ≤,且p ⌝是的充分不必要条件,则可以是 A .1x > B .0x > C .2x ≤D .10x -<<【答案】B【技巧点睛】有关探求充要条件的选择题,破题关键是:首先,判断是选项“推”题干,还是题干“推”选项;其次,利用以小推大的技巧,即可得结论.4.命题:e,ln 0p x a x ∀>-<“”为真命题的一个充分不必要条件是 A .1a ≤ B .1a < C .1a ≥D .1a >考向三 充分、必要条件的应用充分、必要条件的应用主要涉及根据充要条件求解参数的取值范围,具体解法如下:1.解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.2.求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.典例 5 已知命题p :“关于的方程240x x a -+=有实根”,若p ⌝为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是A .[)1,+∞ B .()1,+∞ C .(),1-∞D .(],1-∞【答案】B【解析】易得命题p :4a ≤,则p ⌝为4a >,又p ⌝为真命题的充分不必要条件为31a m >+,故3141m m +>⇒>.5.已知条件,条件,且是的充分不必要条件,则的取值范围是A .B .C .D .1.已知命题“若,则”为真命题,则下列命题中一定为真命题的是 A .若,则 B .若,则C .若,则D .若,则2.设m ∈R ,命题:若0m >,则20x x m +-=有实根的否命题是A .若0m >,则20x x m +-=没有实根B .若0m <,则20x x m +-=没有实根C .若0m ≤,则20x x m +-=有实根D .若0m ≤,则20x x m +-=没有实根 3.命题甲:1sin 2α≠;命题乙:30α≠o 且150α≠o ,则甲是乙的 A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分条件也不必要条件4.“若,则,都有成立”的逆否命题是A .有成立,则B .有成立,则C .有成立,则D .有成立,则5.“240x x -<”的一个充分不必要条件是 A .04x << B .02x << C .0x >D .4x <6.下列有关命题的说法正确的是A .“21x =”是“1x =”的充分不必要条件B .“x =2时,x 2-3x +2=0”的否命题为真命题C .直线1l :210ax y ++=,2l :220x ay ++=,12l l ∥的充要条件是12a = D .命题 “若x y =,则sin sin x y =”的逆否命题为真命题7.已知()12xf x ⎛⎫= ⎪⎝⎭,则“120x x +>”是“()()121f x f x ⋅<”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.已知,m n 是两条互相垂直的直线,α是平面,则n α∥是m α⊥的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设,a b 都是非零向量,下列四个条件,使=a ba b成立的充要条件是 A .=a bB .2=a bC .∥a b 且=a bD .∥a b 且方向相同10.已知函数()2π4sin 23cos 214f x x x ⎛⎫=+--⎪⎝⎭,且给定条件:p “ππ42x ≤≤”,条件:q“()2f x m -<”,若p 是q 的充分不必要条件,则实数m 的取值范围是 A .()3,5 B .[]3,5 C .()2,4D .[]2,41.(2017年高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2017年高考北京卷)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2016年高考天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的 A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.(2016年高考上海卷)设a ∈R ,则“1>a ”是“12>a ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2016年高考山东卷)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1.【答案】C【解析】当命题为真时,由0a>且0∆<可得4a>,故命题为假时,4a≤,故选C.2.【答案】B分不必要条件.3.【答案】B【解析】由20x-≥,可得2x≤,由|1|1x-≤,可得111x-≤-≤,即02x≤≤,因为{}{}022x x x x⊂≤≤≤≠,所以“20x-≥”是“|1|1x-≤”的必要而不充分条件,故选B.4.【答案】B【解析】由题意得()minln,e,ln11a x x x a<>∴>∴≤Q,因为()(],1,1,⊂-∞-∞≠因此命题p的一个充分不必要条件是1a<,选B.5.【答案】B【解析】由条件,解得或;因为是的充分不必要条件,所以是的充分不必要条件,有,故选B.1.【答案】C【解析】依据原命题与逆否命题的等价性可知:命题“若,则”的逆否命题“若,则”是真命题,故应选C.考点冲关变式拓展2.【答案】D【解析】命题:若0m >,则20x x m +-=有实根的否命题为“若0m ≤,则20x x m +-=没有实根”.故选D . 3.【答案】A【解析】因为30150α=︒︒或是1sin 2α=的充分不必要条件,所以命题甲:1sin 2α≠是命题乙: 30α≠o 且150α≠o 的充分不必要条件,选A.4.【答案】D【解析】由原命题与逆否命题的关系可得:“若,则,都有成立”的逆否命题是 “有成立,则”.本题选D.5.【答案】B【解析】因为()2404004x x x x x -<⇒-<⇒<<,充分不必要条件是其真子集,所以只有02x <<满足条件,故选B.6.【答案】D7.【答案】C【解析】考查充分性:因为120x x +>,且函数()f x 是R 上的单调递减函数,则:()()121211,22x xf x f x ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,()()1212112x x f x f x +⎛⎫⋅=< ⎪⎝⎭,即()()121f x f x ⋅<,充分性成立;以上过程可以逆向推倒,即必要性满足.综上,“120x x +>”是“()()121f x f x ⋅<”的充分必要条件.本题选C. 8.【答案】D【解析】若,m n n α⊥∥,则,m α可能垂直、平行、相交或m 在面α内,即n ∥α不是m ⊥α的充分条件,若,m n m α⊥⊥,则,n α可能平行或n 在面α内,即n ∥α不是m ⊥α的必要条件,所以n ∥α是m ⊥α的既不充分也不必要条件.故选D.9.【答案】D【解析】a a 表示与a 方向相同的单位向量,因此=a b a b成立的充要条件是a 与b 同向即可,故选D .10.【答案】A【解析】()π1cos 2π4423cos 212sin 223cos 214sin 2123x f x x x x x ⎛⎫-+ ⎪⎛⎫⎝⎭=⋅--=-+=-+ ⎪⎝⎭, 当ππ42x ≤≤时, ππ2π2633x ≤-≤,则1πsin 2123x ⎛⎫≤-≤ ⎪⎝⎭,所以()[]3,5f x ∈,又当()2f x m -<时,()()2,2f x m m ∈-+,若p 是q 的充分不必要条件,则23{25m m -<+>,所以35m <<,故选A.1.【答案】C 【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.2.【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.3.【答案】C直通高考【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a qq q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C .4.【答案】A【解析】2211,11a a a a >⇒>>⇒>或1a <-,所以是充分不必要条件,故选A .5.【答案】A。
命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件02命题及其关系、充分条件与必要条件知识梳理1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题互为逆命题或互为否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件(1)若p?q,则p是q的充分条件,q是p的必要条件;(2)若p?q且q p,则p是q的充分不必要条件;(3)若p q且q?p,则p是q的必要不充分条件;(4)若p?q,则p是q的充要条件;(5)若p q且q p,则p是q的既不充分也不必要条件.要点整合1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A?B与非B?非A;B?A与非A?非B;A?B与非B?非A的等价关系,特别对于条件或结论是否定形式的命题,一般运用等价法.3.利用集合间的包含关系判断设A={x|p(x)},B={x|q(x)}:若A?B,则p是q的充分条件或q 是p的必要条件;若A B,则p是q的充分不必要条件;若A=B,则p是q的充要条件.题型一. 四种命题的关系及真假性判断例1. (1)命题“若a2+b2=0,则a=0且b=0”的逆否命题是() A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0(2)命题p:“矩形的对角线相等”的逆命题为q,则p与q的真假性是()A.p真q假B.p真q真C.p假q真D.p假q假解析:(1)“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.(2)q:对角线相等的四边形是矩形,根据矩形的性质可知,p真,q假.[答案](1)D(2)A(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(3)判断一个命题为假命题时举反例即可.变式1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .若一个数是负数,则它的平方不是正数B .若一个数的平方是正数,则它是负数C .若一个数不是负数,则它的平方不是正数D .若一个数的平方不是正数,则它不是负数解析:选B.根据互为逆命题的概念,结论与条件互换位置,易得答案,故选B.变式2.若m <0,则方程x 2+x +m =0有实数根的逆否命题及其真假性为( )A .若方程x 2+x +m =0有实数根,则m <0,真命题B .若方程x 2+x +m =0无实数根,则m ≥0,真命题C .若方程x 2+x +m =0有实数根,则m ≥0,假命题D .若方程x 2+x +m =0无实数根,则m <0,假命题解析:选B.按逆否命题的定义,即得原命题的逆否命题为“若方程x 2+x +m =0无实数根,则m ≥0”,且1-4m <0,即m >14,而14,+∞?[0,+∞),所以逆否命题为真.故选B.题型二. 充分条件、必要条件的判断例2. (1)设a ,b 是非零向量,“a ·b =|a ||b |”是“a ∥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解析: (1)若a ·b =|a ||b |,则a 与b 的方向相同,所以a ∥b .若a ∥b ,则a ·b =|a ||b |,或a ·b =-|a ||b |,所以“a ·b =|a ||b |”是“a ∥b ”的充分而不必要条件,故选A.(2)对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8…显然不是等比数列,而相应的数列3,6,12,24,48,96…是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.[答案] (1)A (2)①④充要条件的三种判断方法(1)定义法:分三步进行,第一步,分清条件与结论;第二步,判断p ?q 及q ?p 的真假;第三步,下结论.(2)等价法:将命题转化为另一个等价且容易判断真假的命题.一般地,这类问题由几个充分必要条件混杂在一起,可以画出关系图,运用逻辑推理判断真假.(3)集合法:写出集合A ={x |p (x )}及B ={x |q (x )},利用集合之间的包含关系加以判断:①若A ?B ,则p 是q 的充分条件;②若A B ,则p 是q 的充分不必要条件;③若B ?A ,则p 是q 的必要条件;④若B A ,则p 是q 的必要不充分条件;⑤若A =B ,则p 是q 的充要条件;⑥若A B 且B A ,则p 是q 的既不充分也不必要条件.变式1.若x >5是x >a 的充分条件,则实数a 的取值范围为( )A .a >5B .a ≥5C .a <5D .a ≤5解析:选D.由x >5是x >a 的充分条件知,{x |x >5}?{x |x >a }.∴a ≤5,故选D.变式2.圆x 2+y 2+Dx +Ey +F =0与x 轴相切的充要条件是( )A .D 2=4F ,E ≠0B .D 2=4E ,F ≠0C .D 2=4F D .D 2=4E解析:选A.当圆x 2+y 2+Dx +Ey +F =0与x 轴相切时,因为圆心为-D 2,-E 2. 半径r =12D 2+E 2-4F ,则-E 2=12D 2+E 2-4F ,即D 2=4F . 且r =12|E |>0,即E ≠0.当D 2=4F 时,x 2+y 2+Dx +Ey +D 24=0,即x +D 22+y +E 22=E 22,由D 2+E 2-4F =E 2>0知,圆是以点-D 2,-E 2为圆心,E 2为半径的圆,圆心到x 轴的距离为E 2,此时圆与x 轴相切.所以圆x 2+y 2+Dx +Ey +F =0与x 轴相切的充要条件是D 2=4F ,E ≠0.故选A.题型三. 充分条件、必要条件的应用例3.设p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若非p 是非q 的必要不充分条件,则实数a 的取值范围是 ( )A.0,12B.0,12 C .(-∞,0)∪12,+∞ D .(-∞,0)∪12,+∞ 解析:由|4x -3|≤1,得12≤x ≤1,由x 2-(2a +1)x +a (a +1)=(x -a )[x -(a +1)]≤0,得a ≤x ≤a+1,∵非p 是非q 的必要不充分条件,∴p 是q 的充分不必要条件,有a ≤12,a +1>1,或a <12,a +1≥1,得0≤a ≤12.故选A.[答案] A利用充分条件、必要条件求参数范围的思路若A ={x |p (x )},B ={x |q (x )}.当p 是q 的充分条件时,A ?B ,再转化为含参数的不等式,求参数范围.当p 是q 的必要条件时,B ?A ,再转化为含参数的不等式,求参数范围.当p 是q 的充要条件时,A =B ,列出含参数的等式,求参数的值.变式1.已知命题p :|1-x -13|≤2,q :(x -1+m )·(x -1-m )≤0(m >0),且q 是p 的必要不充分条件,则实数m 的取值范围是( )A .[3,9]B .[3,+∞)C .[9,+∞)D .(-∞,3)解析:选C.由|1-x -13|≤2?-2≤x -13-1≤2?-2≤x ≤10,由(x -1+m )(x -1-m )≤0,得x ∈[1-m ,1+m ],又q 是p 的必要不充分条件,即p ?q ,q p ,所以1-m ≤-21+m ≥10,(等号不同时成立) 得m ≥9,即实数m 的取值范围为[9,+∞).故选C.变式2.已知函数f (x )=2sin ? ????2x -π3(x ∈R ).设p :x ∈π4,π2,q :m -3<="" +3.若p="">解析:∵p :x ∈π4,π2?2x -π3∈π6,2π3,∴f (x )∈[1,2],又∵p 是q 的充分条件,∴m -3<1,m +3>2,解得-1<="">答案:(-1,4)【真题演练】1.【重庆,理4】“1x >”是“12log (2)0x +<”的()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件【答案】B 【解析】12log (2)0211x x x +?>-,因此选B .2.【湖南,理2】.设A ,B 是两个集合,则“A B A = ”是“AB ?”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由题意得,A B A A B =?? ,反之,A B A B A =?? ,故为充要条件,选C.3.【2014·湖北卷】U 为全集,A ,B 是集合,则“存在集合C 使得A ?C ,B ??U C ”是“A ∩B =?”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】若存在集合C 使得A ?C ,B ??U C ,则可以推出A ∩B =?;若A ∩B =?,由维思图可知,一定存在C =A ,满足A ?C ,B ??U C ,故“存在集合C 使得A ?C ,B ??U C ”是“A ∩B =?”的充要条件.故选C.4.【陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假【答案】B5.【天津卷】设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【解析】当ab ≥0时,可得a >b 与a |a |>b |b |等价.当ab <0时,可得a >b 时a |a |>0>b |b |;反之,由a |a |>b |b |知a >0>b ,即a >b .。
高中数学命题及其关系_充分条件与必要条件
3.反证法证明命题的一般步骤 (1)否定结论,(2)从假设出发,经过推理论证得出矛盾,(3)断定
假设错误,肯定结论成立. 反证法属于间接证法,当证明一个结论成立,已知条件较少,或
结论的情况较多,或结论是以否定形式出现,如某些结论中 含有“至多”、“至少”、“惟一”、“不可能”、“不都” 等指示性词语时往往考虑采用反证法证明结论成立.
四种命题的结构不明致误
【典例2】 写出命题“若a,b都是偶数,则a+b是偶数”的逆 命题,否命题,逆否命题,并判断它们的真假.
[剖析] 解本题易出现的错误有两个:一是对一个命题的逆命 题、否命题、逆否命题的结构认识模糊出错;二是在否定一 个结论时出错,如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a,b都是奇数”.
[正解] 逆命题:“若a+b是偶数,则a,b都是偶数.”它是假命 题;
否命题:“若a,b不都是偶数,则a+b不是偶数.”它是假命题; 逆否命题:“若a+b不是偶数,则a,b不都是偶数.”它是真命题.
[评析]四种命题的结构与等价关系
如果原命题是“若A,则B”,则这个命题的逆命题是“若B,则 A”,否命题是“若¬A,则¬B”,逆否命题是“若¬B,则¬A”. 这里面有两组等价的命题,即“原命题和它的逆否命题等 价,否命题与逆命题等价”.在解答由一个命题写出该命题 的其他形式的命题时,一定要明确四种命题的结构以及它 们之间的等价关系.
x2
x2
1,
2,
m m
2, 3
1,
m
2;
又≥0,即: m2 4m 12≥0;解之得m 6或m≤ 2;
2018届高考数学 黄金考点精析精训 考点02 命题及其关系、充分条件与必要条件 文
考点2 命题及其关系、充分条件与必要条件【考点剖析】1.最新考试说明:(1)了解命题的概念,会分析原命题及其逆命题、否命题与逆否命题这四种命题的相互关系.(2)理解必要条件、充分条件与充要条件的意义. 2.命题方向预测:(1)四种命题的概念及其相互关系、四种命题真假的判断、充分要条件的判定及其应用是高考的热点.(2)题型主要以选择题、填空题的形式出现.(3)本节知识常与集合、函数、不等式、数列、立体几何中的直线、平面间的位置关系、复数、平面解析几何等知识结合,复习中在理解命题及其关系、充分条件与必要条件等基础知识的同时,重在掌握其它相关数学知识. 3.课本结论总结: (1)命题的概念在数学中用语言、符号或式子表达的,可以判定真假的陈述句叫做命题.其中,判定为真的命题叫真命题,判定为假的命题叫假命题.(2)四种命题及其关系 ①四种命题及其关系②四种命题的真假关系逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假,互逆或互否的两个命题,它们的真假没有关系. (3)充分条件与必要条件①若p q ⇒,则p 是q 充分条件,q 是p 的必要条件. ②若p q ⇒,且q p ⇒,则p 是q 充要条件 4.名师二级结论:(1) 常见结论的否定形式(2)充要条件判定方法①定义法:若p q ⇒,则p 是q 充分条件;若q p ⇒,则p 是q 必要条件;若p q ⇒,且q p ⇒,则p 是q 充要条件.②集合法:若满足条件p 的集合为A ,满足条件q 的集合为B ,若A B ,则p 是q 的充分不必要条件;若BA ,则p 是q 必要不充分条件;若A=B 则,p 是 q 充要条件。
对充要条件判定问题,一定要分清谁是条件,谁是结论,若条件、结论满足的条件易求,常用集合法.③利用原命题与逆命题的真假判断 若原命题为“若p 则q ”,则有如下结论:(1)若原命题为真逆命题为假,则p 是q 的充分不必要条件; (2)若原命题为假逆命题为真,则p 是q 的必要不充分条件; (3)若原命题与逆命题都为真,则p 是q 的充要条件;(4)若原命题与逆命题都为假,则p 是q 的既不充分也不必要条件 5.课本经典习题:(1)新课标A 版第8 页习题1.1A 组,第2题【经典理由】本题考查了命题的四种形式及其真假的判定,特别是都是的否定是一个难点,也是一个常考点.(2)新课标A 版第12页习题1.2A 组第3题【经典理由】本题主要考查了充要条件的三种判定方法,具有代表性. 6.考点交汇展示:(1)与集合交汇例1设A ,B 是两个集合,则“AB A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【解析】由题意得,AB A A B =⇒⊆,反之,A B A B A =⇒⊆ ,故为充要条件,选C. (2)与不等式交汇例2【2017天津,文2】设x ∈R ,则“20x -≥”是“|1|1x -≤”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B(3)与函数交汇例3【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ||1212θ-<,所以是充分不必要条件,选A. (4)与平面向量结合例4设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】由b c =得,0b c -=,得()0a b c ⋅-=;反之不成立,故()0a b c ⋅-=是b c =的必要而不充分条件. (5)与复数交汇例5已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A.【解析】(a +bi )2=a 2-b 2+2abi =2i ,于是a 2-b 2=0,2ab =2解得a =b =1或a =b =-1 ,故选A .(6)与立体几何交汇例6【2016高考山东卷】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是 “平面α和平面β相交”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A(7)与数列交汇例7 【2016高考天津卷】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C 【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. (8)与平面解析几何交汇例8【浙江省温州市2017届高三8月模拟】直线1l :10mx y +-=与直线2l :(2)10m x my -+-=,则“1m =”是“12l l ⊥”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A.【解析】12l l ⊥⇔(2)00m m m m -+=⇒=或1m =,故是充分不必要条件,故选A.【考点分类】热点一 命题及其关系1.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】B【解析】设复数1z a bi =+,则21z z a bi ==-,所以12z z ==,故原命题为真;逆命题:若12z z =,则12,z z 互为共轭复数;如134z i =+,243z i =+,且125z z ==,但此时12,z z 不互为共轭复,故逆命题为假;否命题:若12,z z 不互为共轭复数,则12z z ≠;如134z i =+,243z i =+,此时12,z z 不互为共轭复,但125z z ==,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选B .2.【2017北京卷】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 【答案】-1,-2,-3(答案不唯一)【方法规律】1.判断一个命题的真假有两种方法,法一:直接法,用直接法判定命题为真命题,需要严格的推理、考虑各种情况由命题条件推出结论正确,要判定一个命题为假命题,只要举出一个反例就行;法二:等价值法,若不易直接判断它的真假,利用原命题与其逆否命题同真假转化为判断其逆否命题的真假。
高三数学 命题及其关系充分条件与必要条件
充分条件、必要条件与充要条件 1.“若p,则q”为真命题,记p⇒q,则p是q的充分条件,q是p的必 要条件. 2.如果既有p⇒q,又有q⇒p,记作:p⇔q,则p是q的充要条件, q也是p的充要条件. 3.命题与充要条件的关系,原命题“若p则q”,逆命题“若q则 p”
原命题 逆命题
真
假
(p⇒q) (q p)
命题及其关系
【典例1】(2012·湖南高考)命题“若α= , 则tanα=1”的逆
4
否命题是( )
(A)若α≠ , 则tanα≠1
4
(C)若tanα≠1,则α≠
4
(B)若α= , 则tanα≠1
4
(D)若tanα≠1,则α=
4
【解题视角】由题目获取已知信息并分析如下:
(1)已知信息:①已知原命题“若α= 则, tanα=1”;②求逆
审题不细造成失误 【典例3】(2011·陕西高考)设n∈N*,一元二次方程x2-4x+ n=0有整数根的充要条件是n=_____. 【解题视角】由题目获取已知信息并分析如下: (1)已知信息:①一元二次方程x2-4x+n=0,n∈N*; ②二次方程有整数根. (2)信息分析:①由求根公式写出方程的根; ②分析根为整数需要的条件,确定n的值.
×
m=1且n=2时方程表示椭圆,此时mn>0, D 必要性成立,所以既不充分也不必要条件不 ×
对
6.(2012·四川高考)设a,b都是非零向量,下列四个条件中,
使 a b 成立的充分条件是( )
a |b|
(A)|a|=|b|且a∥b
(B)a=-b
(C)a∥b
(D)a=2b
【解析】选D. a表示与a同向的单位向量, b表示与b同向的单
高考数学 考点汇总 考点2 命题及其关系、充分条件与必
考点2 命题及其关系、充分条件与必要条件一、选择题1.(2014·湖北高考理科·T3)设U 为全集,B A ,是集合,则“存在集合C 使得,U A C B C ⊆⊆ð”是“∅=B A I ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断【解析】选C. 依题意,若C A ⊆,则U U C A ⊆痧,当U B C ⊆ð,可得∅=B A I ;若∅=B A I ,不妨另C A = ,显然满足,U A C B C ⊆⊆ð,故满足条件的集合C 是存在的.2.(2014·江西高考文科·T6)下列叙述中正确的是( )A.若a,b,c ∈R,则“ax 2+bx+c ≥0”的充分条件是“b 2-4ac ≤0”B.若a,b,c ∈R,则“ab 2>cb 2”的充要条件是“a>c ”C.命题“对任意x ∈R,有x 2≥0”的否定是“存在x ∈R,有x 2≥0”D.l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β【解题指南】利用逻辑用语的知识逐一验证.【解析】选D.对于选项A,a<0时不成立;对于选项B,b=0时不成立;对于选项C,应为x 2<0;对于选项D,垂直于同一直线的两平面平行.所以只有D 正确. 3.(2014·天津高考理科·T7)设a,b ∈R,则“a>b ”是“a a b b >”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C . 设()f x x x =,则()220,0,x x x x f x ìï³-=í<ïïïî,所以()f x 是R 上的增函数,“a b >”是“a a b b >”的充要条件.4.(2014·安徽高考理科·T2)“0<x ”是“0)1ln(<+x ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【解题提示】分清条件和结论,根据充分条件、必要条件的定义判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点2 命题及其关系、充分条件与必要条件
一、选择题
1. (2013·新课标Ⅰ高考文科·T5)已知命题:P x
x
R x 32,<∈∀;命题
231,:x x R x q -=∈∃,则下列命题中为真命题的是( )
A. p ∧q
B.¬p ∧q
C.p ∧¬q
D.¬p ∧¬q
【解题指南】对命题:P 采用特值法判断为假命题,命题q 利用存在零点的条件
0)1()0(<f f 判断为真命题,然后根据四种命题的关系求解.
【解析】选B.对于命题:P 取1-=x ,可知为假命题,命题q :令1)(2
3
-+=x x x f ,且
0)1)(0(<f ,故)(x f 有零点,即方程3210x x +-=有解,231,:x x R x q -=∈∃为真命
题,
2. (2013·湖南高考文科·T2) “1<x <2”是“x <2”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解题指南】若
A B ≠
⊂,则A 是B 的充分不必要条件,反之,A 是B 的必要不充分条件, 若
A=B ,则A 是B 的充要条件。
【解析】选A ,因为集合(1,2)是(-∞,2)的真子集,所以“1<x<2”是“x<2”成立的充分不必要条件,故选A.
3.(2013·安徽高考文科·T4)“(21)0x x -=”是“0x =”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解题指南】解出一元二次方程的解,根据充分必要条件的概念判定. 【解析】选B. 由1
2
Þ(2x-1)x=0x=0或x=
,所以应选B. 4.(2013·北京高考理科·T3)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
【解题指南】先将φ=π代入,得出曲线是否过原点,再求出过原点时φ的值,进而判断充分必要条件.
【解析】选 A.φ=π时,y=sin(2x+π)=-sin2x,过原点,但是函数过原点的时候φ=k π(k ∈Z).
5.(2013·福建高考文科·T2)设点(),P x y ,则“x=2且y=-1”是“点P 在直线l :x+y-1=0上”的 ( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件 【解题指南】先判断是否充分,再判断是否必要.
【解析】选A.由P ()2,1-在l 上,但l 上的点不止P,故选A.
6.(2013·湖北高考文科·T3)与(2013·湖北高考理科·T3)相同
在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.(﹁p )∨(﹁q ) B. p ∨(﹁q ) C. (﹁p )∧(﹁q ) D.p ∨q 【解题指南】本题考查了逻辑联结词的应用.
【解析】选A. 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则﹁p 是“没有降落在指定范围”, ﹁q 是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ .
7.(2013·陕西高考理科·T3)设a 为向量, =”是“//”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
【解题指南】根据充要关系的概念从两个方面进行推理.
【解析】选 C..a ,,θ的夹角为与设为向量b b a 由
==θcos 从而得
1cos ,1cos ±==θθ,所以πθ或0=,能够推得//,反之也能够成立,为充分必要条
件.
8.(2013·天津高考文科·T4)设a,b ∈R,则“(a-b)a 2
<0”是“a<b ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【解题指南】依据充分必要条件的定义进行判断.
【解析】选A.由(a-b)a 2
<0知,a 2
>0,a-b<0,即a<b 成立,反之,当a<b 时,由于a 2
可能为0,故(a-b)a 2
≤0,因此“(a-b)a 2<0”是“a<b ”的充分而不必要条件. 9.(2013·天津高考理科·T4)已知下列三个命题: ①若一个球的半径缩小到原来的
12,则其体积缩小到原来的1
8
; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线x+y+1=0与圆x 2
+y 2
=
1
2
相切. 其中真命题的序号是 ( )
A.①②③
B.①②
C.①③
D.②③
【解析】选C.命题①由球的体积公式可知,一个球的半径缩小到原来的
1
2
,则其体积缩小到原来的1
8
,正确;命题②两组数据的平均数相等,若其离散程度不同,则它们的标准差也不相
等,故该命题错误;命题③圆心(0,0)到直线x+y+1=0的距离
=
d ,与圆x 2+y 2=12
的半径相等,故直线与圆相切,该命题正确.
10.(2013·浙江高考理科·T4)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“2
π
ϕ=”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解题指南】先由f(x)是奇函数可以得到φ的取值,再由2
π
ϕ=判断f(x)是否为奇函数,
最后再判断.
【解析】选 B.f(x)是奇函数⇒,2
k k Z π
ϕπ=+∈; 2
=
π
ϕ⇒f(x)是奇函数,所以“f(x)是
奇函数”是“2
π
ϕ=
”的必要不充分条件.
11.(2013·浙江高考文科·T3)若α∈R,则“α=0”是“sin α<cos α”的 ( ) A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解题指南】让“α=0”和“sin α<cos α”其中一个作条件,另一个作结论,判断命题是否正确.
【解析】选 A.当α=0时,sin α=0,cos α=1,所以sin α<cos α;若sin α<cos α,则
52,
22,2244k k k k k z π
παπππππ⎛⎫⎛⎫∈+++∈ ⎪ ⎪⎝
⎭⎝⎭
. 12.(2013·上海高考理科·T16)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()
A .充分条件 B.必要条件 C.充分必要条件 D.既非充分也非必要条件 【解析】选
B .根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B .
13.(2013·上海高考文科·T17)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) A.充分条件 B.必要条件
C.充分必要条件
D.既非充分又非必要条件 【解析】选B.由题意可知,好货⇒不便宜,故选A.。